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A The plant’s problem

A.1 Product demand and general input demand functions

We specify product demand following Bartelsman, Haltiwanger and Scarpetta (2013) and add
to their model by explicitly modeling the idiosyncratic demand component. Firms face a
downward sloping demand schedule in a differentiated products environment. The final good is
a CES aggregator of intermediate goods produced by individual firms. The final goods sector
is perfectly competitive with the only inputs coming from intermediate goods: Y; = Nt(p —U/e

o\ /e
<ZZ (Q,tgj /p > ) , implies the following inverse demand for the product of plant ¢ in period
t:!

Py =P, (Q/Qu) "¢, (1)

where P, and P, denote aggregate and plant-level product prices, and @, and Q;; denote
aggregate and plant-level product quantitites, respectively. We assume plant-specific shocks
to residual demand are captured by &;. Assuming a Cobb-Douglas production function Q;; =
AitHng-{L, where X;;; denotes input j of plant 7 and A;; denotes TFPQ), firm revenues and
marginal revenue products of input factors can be written as

PuQi = P&Qy Q5 Qi = P&LQy Q5
aPitQit ~1— —1 ant
— P&QTpQ), .
9X, 2$iQy Q% 0X 1

In the presence of distortions, the first order condition for profit maximization implies:

pO[ ) PitQit
! Xije

= (1 + 7ij)wy, (2)

which is to be modified in the presence of output distortions, denoted by (1 — 7¢,)Ait, as

pOéAPitQit —ws 1+ 7
J Xijt jl—TQ

= Wkkyj, (3)

where the combined effect of input and output distortions are denoted by (1+7;;)/(1—7g,)=k;.
Equation (3) has the same interpretation as equations (10)-(11) in Hsieh and Klenow (2009)
(hereafter HK), except that the effects of all distortions are accounted for in this case. The
after-tax marginal revenue products (MRP) of production factors are equalized across firms,
and equal their price w;. Therefore before-tax MRP-s must be higher for firms that face higher
input distortions and can be lower where firms benefit from subsidies.

MRP; can be rewritten using the following expression 88)%; = angi_lAitHS# X =
o; X3 _1Ejt, where Fi = Ayll ;X5 denotes the part of production not attributed by Xj.

ijt ist

aY;
0Qit
= Ne=D/r(1/p)(3, th)(l_p)/prf_l, Vi. The optimum product allocation satisfies MRS;=%£. Since

'In the simpler case without idiosyncratic shocks, the CES aggregator defined above implies

p—1 p—1
MRSji:((%:) / (ggj):(%) , we have that (%) :%. Choosing product j=1 as the numeraire, P;=1

implying Yi’t)_lz %+, and choosing the average as the numeraire, we have that (Qit/Qt)p_l = P;;/P;, which
immediately implies the inverse demand function in equation (1).



In this notation, the demand for input j can be written as
~1— 1/(1=a;p)
P&Q, pO‘j p} ’ (4)

X — P
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it —

Equation (4) is a useful starting point because it can be used to determine the capital-labor
ratio without actually solving it. We derive this ratio in the remainder of this section. We can
rewrite the expression for labor and capital demand as

~1- 1/(1~aLp)
P&Q, ar PP exe/(-azp)
(1 +TiL)wL 1, AME it
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Solving for L}, and L}, yields
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implying that the capital-labor ratio can be written as:
plaptag)—1 1-plaptag)
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exactly as in HK, except that we allow for distortions for both capital and labor. Adding
output distortions does not affect these results. The relative optimal allocations for energy and

intermediate inputs can be obtained along the exact same logic. The analogous ratios are given
by:

L _ apwr TiL 8)
Ly  opwpTie
Mi _ o wr 7iv 9)

L oy Wpr TiMm

B Input demand, output, prices and TFPR
B.1 Input demand

We derive key equations assuming that, in addition to capital and labor, plants use intermediate
inputs and energy in the production process. The calculations leave returns to scale as a free
parameter. Let us write out equation (4) for four production factors, and redefine 7,; = 1+ 7,



for expositional purposes:

Ki = (Pt& )1/(1 akp)
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One way to solve the system above is using the per-unit-of-labor representation of inputs in (7)
-(9) to eliminate the other inputs from the respective equation above. Consider labor demand as
an example. We can substitute out K, E; and M;; using these ratios and write labor demand
as a function of L;, aggregate variables, A; and demand/production parameters. Denoting
returns to scale by v so that ax + ap + ay = v — ar, and after rearranging, the closed-form
solution for L}, is given by

1—p(y—ap) pak pap pa g
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The demand functions for the other production factors are obtained by multiplying (10) by
-1
SILTL ( oL ) % which implies that the exponent of ( oL
LW;Tij WLTiL W; Ty WLTiL
and the exponent of the ratio including the j-th factor elasticity increases by 1. We have the
following formulas for the other factor demand functions

) in (10) decreases by 1
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(13)
B.2 Output and prices
The factors’ contribution to output is calculated using equations (10)-(13):
N p_ozL +1 pai(aL pa_EaL payaL
(s = D ATE (0 )< z >( o ) (L )P ()
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and similarly for the other inputs, where D includes demand-related variables for the sake
of exposition. Collecting exponents for terms in @) = AiH]J (X]’-k)o‘j2 implies we can write
equilibrium output as

L YK *FE XM

1 1— 1— 1— 1—
Y — aL PY OéK PY aE PY OéM PY
Qi =Dr=mA"" | —— , (14)
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and equilibrium prices are given by

« a « a p—1
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Equation (15) is a generalization of equation (6) in HK to include more production factors and
idiosyncratic demand shocks.

B.3 TFPR and its dispersion

The output and price equations (14)-(15) can be used to determine the revenue function:

par, POK PR PaNT
— 1 oy _Pr o 1—p~y o 1—p~y o 1—p~y o 1—p~y
Pi@i = (R&QI") ™7 prr AT (—L - - - .
WLT;L WKTiK WETE WrTiMm
(16)

By definition, TFPR is revenue per unit of input index, where the input index is a weighted
average of production factors. Combining (14), (15) and the input index yields the following
expression for TFPR:

TFPR;, = |(R&QL ") pr o art=] 7

ap(p—=1) ag(p—1) ap(p—1) apr(p=1)

Qy, 1=py Qi 1—py ag 1=py Qg 1—py (17>
7
WLTiL WKTiK WETE WMTiM

The expression collapses to the case discussed in HK if we impose CRS (y=1), abstract from
intermediate inputs and energy, and set 7;;, = 0.® In this special case, high revenue-productivity
is a signal that distortions affect the allocation of production factors such that input demands
are smaller relative to the undistorted optimum (and so is output).

Equation (17) implies that any quantile-based dispersion measure of TFPR will be a function
of distance measures of distortions, TFPQ (denoted by A) and demand shocks. Specifically,
define dispersion in TFPR by o6 (tfpr)}" = ¢(tfpr), — q(tfpr);, where u and ! denote the chosen
quantiles, typically 75-25 or 90-10. The log-difference of (17) between the u-th and I-th quantiles
is affected by the variation in A;, § and 7;; because industry-level variables cancel. Taking logs
in (17) and calculating the log difference yields

g ne)y + 2L gy L

- J
=1 L (6, + poi(A) 2:: Goh (18)

ZNote that one is added to the exponent of A; since the objective is to obtain an expression for Q.
3See footnote 10 in HK.



where d(y)}" denotes the distance between the u-th and I-th quantile in the log-TFPR distri-
bution, measured in terms of variable y. For example, 5(A)% is calculated as the difference
between the log-TFPQ levels of the plants at the 75" and 25" percentiles of the log-TFPR
distribution. Equation (18) makes it explicit that under CRS, distortions are the only source
of variation and therefore the difference between the u-th and [-th percentile of distortions also
gives log-TFPR dispersion. The difference relative to the two-factor case discussed in HK is
that under non-CRS technology, demand shocks and TFPQ shocks also contribute to dispersion
in TFPR.

C TFPR and revenue residuals

Under the assumption of iso-elastic product demand, we can recover factor elasticities (@;) from

revenue elasticities (BJ) This approach has often been used in the literature, see for example
Klette and Griliches (1996), Melitz (2000), Martin (2008), De Loecker (2011), Bartelsman,
Haltiwanger and Scarpetta (2013). Allowing for idiosyncratic shocks in residual demand, see
equation (1), generates cross-plant variation in demand. Since P,Q; = PQ' Q" '&Q; =
PQ'™“PQP¢;, plant-level revenues can be written as

J
pit @i =pgi+ (L—p)g+p+ng=p <Z%w§ +ai> + (1 =plg+p+Ing  (19)

j=1

where the coefficients Bj:ﬁ&j and qul — p are jointly estimated. In other words, the coefficient
of ¢ determines the demand elasticity parameter p = 1—/,, and factor elasticities are determined
by &;=p;/p.

The residual from equation (19) is given by

J

Pitq —pzajxf — (1= p)g = pa; +p +Ing;,
j=1

which says that the residual from a regression of revenues on inputs and a measure of aggregate
demand includes the effects of physical TFP, demand shocks and aggregate prices.* Formally,

J
res; = pi + ¢ — Z@ﬂf — Pry
j=1

J
:Pi—FqZ’—I/O\ZajIZ_(1_15)61:551“"134‘11“51‘- (20)
j=1
Given an estimate for o; we can measure TFPR as

J
tfpr; = pi + ¢ — Z a;al, (21)
j=1

4Using the same logic, we can express tfpré® as tfpré*=p+ (1 — p)q +1n&; + pg; — Zj &;x;;, which shows that
tfpr§® #tfpr]”.



where a; = BJ /p. implying we can use equation (21) to calculate d;(tfpr)¥ on the left hand
side of (18). The expression in brackets within the first term on the left hand side of (18) is by
definition the dispersion in the revenue residual, or res;, implying we can write (18) as

J

1 1 .

o (tfpr)) = - ;5(1@5)}‘ + T ppv Z a;0(Rjt);
j=1

J

S g = b thpn)f — 1 ares)f (22)

= p 1—p
This equation shows the basic logic of our exploratory empirical analysis, which can be sum-
marized as follows. Using estimates of revenue elasticities and demand elasticities, we calculate
factor elasticities and TFPR. Next, 0,(tfpr)¥ and 0,(res)!" are calculated. These estimates (¥
and p) together uniquely determine the dispersion of composite distortions that are consistent
with equation (22).

D Empirical results

This section presents descriptive statistics on estimates of returns to scale, price elasticity, and
various dispersion measures. In order to recover these estimates, we jointly estimate revenue
elasticities and the price elasticity parameter, as outlined in Appendix C and described in more
detail in Klette and Griliches (1996).

Table 1 shows summary statistics of industry-level moments of estimated coefficients and
dispersion measures. We first calculate each measure for each industry and the table reports
summary statistics of those industry-level measures. We focus on results obtained by the
method described in Olley and Pakes (1996) because these are consistent estimates. While we
report OLS results for comparison, we note that OLS estimates are biased because factor inputs
and unobserved productivity are endogenous. The main conclusion is that the properties of
revenue residual dispersion and distortion dispersion are very similar. The results also highlight
that revenue elasticities together with iso-elastic demand may imply extreme returns to scale
estimates in a nontrivial number of industries. We note that Klette and Griliches (1996),
who we follow in our approach, also found industries where some of the revenue function
estimates are extreme, see the negative capital elasticities in table II in their paper. Repeating
these calculations in a restricted industry where returns to scale estimates are not extreme,
yielded the same conclusions with smaller standard errors. Focusing on industries where the
demand elasticity parameter is less than 1 and all estimated revenue elasticities are positive, as
these are consistent with our assumptions about demand, the returns to scale estimates are by
construction closer to 1 and show smaller variation.

Table 2 shows the average of the within-industry correlation measures between key variables.
We first calculate the industry-level correlations using the plant-level measures within each
industry and then in the table we report the average industry correlations. The main findings
can be summarized as follows. First, tfpr and tfpr"” are positively correlated but the correlation
is less than 1. The same pattern holds for tfpr and distortions: they are also correlated but
not perfectly. Third, tfpr™ is correlated with distortions.” Panel B shows correlations based
on a restricted set of industries, where p and 7 are not extreme. We believe applying such

5We note that instead of computing the correlations for each industry first and then taking averages, we
have considered controlling for industry and year effects in the plant-level data and then computing correlations
using pooled data across all plants regardless of industry. This exercise yields similar qualitative patterns



restrictions is useful because our crude approach to model demand may not provide a good
fit in all industries. One such sign is that p is larger than 1. If p is poorly estimated, it will
effect 7. Similar arguments can be made about estimates of revenue elasticities and returns to
scale. The number of industries in the restricted set depends on the estimation method: 24
of them are included under OLS and 25 under OP. The results are qualitatively similar but
quantitatively stronger than in the full sample.

It is illustrative to look at the correlation between TFPR and distortions, denoted by
r(k, tfpr), on an industry-by-industry basis. This is the main variable of interest in the context
of the findings in HK. Figures (1(a)-1(b)) plot r(, t/fl;) against 7 for two estimators. They
suggest that around CRS r(F, t/ﬁ;“) ~ 1, as we would expect based on HK. However, r(R, t/f};")
decreases quadratically in the distance between 7 and 1, which emphasizes the empirical im-
portance of CRS in the context of the findings in HK.

We note that these results should be interpreted with caution because the identification
and both demand and production funciton parameters is based on a relatively crude approach.
Ideally, one would use data on plant level prices and quantities. Instead, we are using industry-
level variation to identify the demand parameter which in turn implies our converting revenue
elasticities into factor elastiticies should be viewed with caution. But even with these lim-
itations, our illustrative example yields conclusions that are similar to those implied by the
estimates of Foster et al. (2015). To facilitate comparison with the latter, we include in the
results comparisons with the moments from Foster et al. (2015). We find that ¢fpry” from
Foster et al. (2015) is highly correlated with ¢ fpr" from this analysis where we seek to identify
separately the demand parameters as well as the revenue elasticities. We also find that both of
these measures are highly correlated with ¢ fpre from Foster et al. (2015). The inference that
emerges from both of these approaches is that estimates of distortions are highly correlated
with estimates of fundamentals (i.e., demand and technology shocks). As we discussed in the
main paper, a more reasonable intepretation for the U.S. is that measures of distortions actually
reflect adjustment frictions so that plants with high current realizations of fundamentals have
not yet adjusted yet so they have high estimates of tfpr.

but somewhat lower correlations. This is not surprising since this approach may imply we pool plants from
heterogenous industries, which reduces correlations. This pooling method also gives a higher weight to industries
with more observations. The latter may be industries with especially high within industry heterogeneity across
plants.



Table 1: Cross-industry moments of the estimated demand parameter (p), returns to scale (v),
and dispersion measures: tfpr, tfpr’”, tfpr® and distortions.
P Y 5tfpr 5tfpr” 55
OLS
mean 091 1.2 0.62 0.24 0.25
sd 0.19 051 1.01 0.09 0.11

OP
mean 0.95 1.09 0.53 0.29 0.27
sd 0.16 0.51 1.08 0.08 0.09

tfpres
mean i 1 0.31 ) 0.31
sd . 1 0.11 ) 0.11

Dispersion measures for the revenue residual and distortions were calculated using the averages of appropriate
variables within percentiles of the log-TFPR distribution. The top panel shows ordinary least squares
estimates, the middle panel is based on the estimation method described in Olley and Pakes (1996), and the
bottom panel is based on cost-shares. Note that the average dispersion in the revenue residual is similar but
not identical to those reported in Foster et al. (2015). These statistics are unweighted while the ones in Foster
et al. (2015) are weighted using the number of plant-year observations in an industry.

Table 2: Cross-industry averages of within-industry correlations of terms underlying the dis-
persion measures in equation (22).
Panel A: 50 industries

OLS OP
tfpr™™  tfpr dist tfpr®®  tfpry” tfpr’™  tfpr dist tfpr®®  tfpry”
tfpr’™ 1 tfpr™” 1
tfpr 0.83 1 tfpr 0.9 1
dist 1 0.81 1 dist 0.96 0.88 1
tfpre®  0.92  0.77 0.92 1 tfpr®®  0.88 0.81 0.92 1

tfprg”  0.87  0.66 0.87 0.88 1 tfprg” 085  0.76 0.82 0.75 1

Panel B: Industries with 5; <0, 1 < p and 1.2 <7 excluded

OLS OP
tipr™™  tfpr  dist  tfpr®®  tipry” tipr™  tfpr  dist  tfpr®®  tipry”
tfpr™ 1 tfpr™ 1
tfpr 0.94 1 tfpr 0.93 1
dist 1 0.93 1 dist 097 094 1
tfpre*  0.92  0.89 0.92 1 tfpres 09 089 094 1

tipry” 0.9 0.8 0.89 0.92 1 tfpry” 0.89  0.81 0.84 0.77 1

tfpr™ and tfpr respectively denote: the revenue residual and the estimate of tfpr, see equations (20) and (21).
dist denotes the composite of distortions, i.e. the variable underlying the left hand side of equation (22). tfpr®*
and tfpry” denote the cost-share based residual (growth accounting) and the regression based revenue residual
used in Foster et al. (2015).



r(dist,tfpr)
1

X
™
0.95 X
N
0.9 X X
0.85 y=-9.71x + 19.76x - 9.0 XXX
(adjusted) R? = .81 )
0.8 ‘
.\
0.75 .\
0.7 As
|}
0.65
X actual = fitted
0.6
0.55 X
0.5 T T T T T T T )
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 12
gamma
(a) OLS
r(dist,tfpr)
1 N4
5 x).ﬁ.gﬂ\\ g
=X *y\‘
0.95 > = 6.
, X
S \
// \\\
0.9 o X S X
0.85 @ y =-5.85x2 + 11.63x - 4.79[" N
X (adjusted) R?=0.73 \.
D
08 X
[}
Xactual e fitted
0.75
X
0.7 T T T T T T T Y
0.8 0.85 0.9 0.95 1 1.05 11 1.15 1.2
gamma
(b) OP

Figure 1: Relationship between returns to scale and the correlation between TFPR and distor-
tions (r(tfpr,dist)). Unit of observation: industry. Industries with p > 1, §; < 0 and 4 > 1.2

are excluded from analysis.
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