Crowdsourcing City Government: Using Tournaments to Improve Inspection Accuracy

By Edward L. Glaeser, Andrew Hillis, Scott Duke Kominers, and Michael Luca

Online Appendix – Proof of Proposition 1

The value of $(1-\varphi)^{1-\frac{\overline{w}}{w}} - 1$ is monotonically increasing in φ and goes from 0 to ∞ as φ goes from 0 to 1. Hence, there must exist a value of φ at which $(1-\varphi)^{1-\frac{\overline{w}}{w}} - 1$ equals $\frac{V(\overline{q})-V(q)}{V(q_{\max})-V(\overline{q})}$, a constant. The value of $\frac{V(\overline{q})-V(q)}{V(q_{\max})-V(\overline{q})}$ is rising with $V(\overline{q})$ and falling with $V(\underline{q})$ and $V(q_{\max})$; hence, φ^* is rising with $V(\overline{q})$ and falling with $V(\underline{q})$ and $V(q_{\max})$. For a given φ , the value of $(1-\varphi)^{1-\frac{\overline{w}}{w}} - 1$ is rising with $\frac{\overline{w}}{w}$; hence, φ^* must be falling with $\frac{\overline{w}}{w}$.