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1. Introduction

The first two sections below describe the solution to the model analyzed in our papers and

proceedings paper. In section 2, we apply the Lagrangian approach which in effect assumes

an interior solution. In section 3 we develop an approach that works even if the solution

is on the boundary. This is important in an environment like this, because there can be

discontinuities on the boundary with the possible consequence that a point which satisfies

suffi cient conditions for local optimality in fact are not globally optimal. The approach we

develop converts the banker problem into a maximization problem in one variable alone, after

substituting out the other variables using the constraints. The calculations reported in Figure

1 are based on this latter approach. Section 4 discusses the computation of the equilibrium

with leverage. The MATLAB software to reproduce Figure 1 is called run_scaled.m, and

appears in code_P&P.zip.

Section 5 considers the version of the model without scaling effort cost by N + d. We

show the Francesco Ferrante and Andrea Prestipino (private communication) results that

the equilibrium in that case is not interesting. Depending on parameter values, either there

is no deposit contract equilibrium (i.e., the only equilibrium has d = 0) or there is one, but

it involves R = Rg and p (e) = 1. This analysis uses our piecewise linear specification of

p (e) and quadratic form for the cost of e. In section 6 we consider a general class of such

functions and conclude that these do not offer a way out.

In section 7 we consider an example in which the banker experiences diminishing returns

to its investments. In this case, we identify model parameterizations in which we identify

a candidate equilibrium in which e and d satisfy suffi cient conditions to be a global maxi-

mum for the banker’s problem. However, the cases we examined were not deposit contract

equilibria because the banker’s outside option dominated the value of the deposit contract.

We searched without success for parameterizations with the property that taking a bank

deposit dominates the banker’s outside option. The code for this exercise is diminish.m, also

contained in code_P&P.zip.

2. Solving the Model Using Lagrangian Methods

Here, we solve the model by representing the banker problem in Lagrangian form. By

representing all the equilibrium conditions (including the incentive constraint) as equality

constraints, the approach in effect focuses on interior equilibria.

Because effort is not observable, whatever terms the banker receives he will ex post always

exert effort to maximize his criterion, subject to the given values of Rg
d, R

b
d and d. That is,
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ex post, the effort level set by the banker that takes deposits is:

e (N + d) = βp′ (e)
[(
Rg −Rb

)
(N + d)−

(
Rg
d −Rb

d

)
d
]
.

Because the mutual fund understands that this is how banker effort will be set, the above

equation is included among the conditions that characterize the loan contract. The equation

is referred to as the incentive constraint. The surplus received by the mutual fund, Smf , is

its profits:

Smf = p (e)Rg
d + (1− p (e))Rb

d −R.

We assume that the banker makes a take-it-or-leave-it offer to the mutual fund, which drives

the mutual fund Smf = 0. This is the mutual fund’s zero profit condition. It is convenient

to write this constraint in the following form:

Rg
d −Rb

d =
R−Rb

d

p (e)
.

We assume that the cash constraint in the bad state is binding. The Lagrangian represen-

tation of the problem is:

max
e,d,Rbd

β
{
p (e)Rg (N + d) + (1− p (e))Rb (N + d)−Rd

}
− 1

2
e2 (N + d)

+η

{
e (N + d)σ − βp′ (e)

[(
Rg −Rb

)
(N + d)− R−Rb

d

p (e)
d

]}
+ v

[
Rb (N + d)−Rb

dd
]

Here, we have substituted out the mutual fund’s zero profit condition in the objective and

in the incentive constraint. The first order conditions are:

e : βp′ (e)
(
Rg −Rb

)
(N + d)− e (N + d) + η

{
(N + d)− β

(
p′ (e)

p (e)

)2 (
R−Rb

d

)
d

}
= 0

d : β
{
p (e)Rg + (1− p (e))Rb −R

}
− 1

2
e2

+η

{
e− βp′ (e)

[(
Rg −Rb

)
− R−Rb

d

p (e)

]}
+ v

(
Rb −Rb

d

)
= 0

Rb
d : −ηβ p

′ (e)

p (e)
d− vd = 0 (d > 0)

η : e (N + d) = βp′ (e)

[(
Rg −Rb

)
(N + d)− R−Rb

d

p (e)
d

]
v : Rb (N + d)−Rb

dd

Substituting the Rb
d condition into the d condition:

0 = β
{
p (e)Rg + (1− p (e))Rb −R

}
− 1

2
e2

+η

{
e− βp′ (e)

[(
Rg −Rb

)
− R−Rb

d

p (e)

]}
− ηβ p

′ (e)

p (e)

(
Rb −Rb

d

)
2



or, after rearranging,

d : β

(
1− ηp

′ (e)

p (e)

)[
p (e)Rg + (1− p (e))Rb −R

]
= e

(
1

2
e− η

)
.

Then, the 5 equations in the following 5 unknowns, e, d, Rb
d, η, v, are

e : βp′ (e)
(
Rg −Rb

)
(N + d)− e (N + d) + η

{
(N + d)− β

(
p′ (e)

p (e)

)2 (
R−Rb

d

)
d

}
= 0

d : β

(
1− ηp

′ (e)

p (e)

)[
p (e)Rg + (1− p (e))Rb −R

]
= e

(
1

2
e− η

)
Rb
d : v = −ηβ p

′ (e)

p (e)

η : e (N + d) = βp′ (e)

[(
Rg −Rb

)
(N + d)− R−Rb

d

p (e)
d

]
v : Rb (N + d)−Rb

dd

The households also provide an equilibrium condition in the form of savings supply:

R =
u′ (Y − d)

β
=

1

β (Y − d)
.

Here, Y is the first period endowment of the household.

To compute the equilibrium for the model, consider first the possibility that the two

constraints are slack, so that v = η = 0 and the problem is (taking into account the zero

profit condition of the mutual funds):

max
e,d,Rbd

β
{
p (e)Rg (N + d) + (1− p (e))Rb (N + d)−Rd

}
− 1

2
e2 (N + d) .

Optimality for e and d, respectively, implies:

(a) : e = βb̄
(
Rg −Rb

)
(b) : β

{
p (e)Rg + (1− p (e))Rb −R

}
=

1

2
e2

Then, d is obtained by solving (b) with the equilibrium condition on R :

d = Y − 1

β (p (e)Rg + (1− p (e))Rb)− 1
2
e2
.

If the bad-state cash constraint is violated, then solve the constrained version of the

model with v > 0 (and therefore also η < 0, by equation Rb
d). To solve the constrained

version of the model, set p ∈ [ā, 1] and compute e = (p− ā) /b̄. The η equation can be solved

for d:

e (N + d) = βb̄

[(
Rg −Rb

)
(N + d)−

d
β(Y−d)

− (N + d)Rb

p

]
, (2.1)
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where use has been made of the equilibrium condition, R = u′ (Y − d) /β and the assumption

that the cash constraint in the bad state is binding. Then, solve the v equation for Rb
d :

Rb
d =

N + d

d
Rb.

Use the e equation to solve for η

η =
e (N + d)− βp′ (e)

(
Rg −Rb

)
(N + d)

(N + d)− β
(
p′(e)
p(e)

)2 (
R−Rb

d

)
d

. (2.2)

All the terms in the d equation can be evaluated. Adjust p until that equation is satisfied.

If the model has been solved in which there is a loan contract with d > 0 then it is

necessary to verify that this contract dominates the bank’s outside option, in which it sets

d = 0. In this case,

e∗ = βb̄
(
Rg −Rb

)
(2.3)

p∗ = ā+ b̄e∗ (2.4)

u∗ = β
(
p∗Rg + (1− p∗)Rb

)
N − 1

2
(e∗)2N. (2.5)

It is necessary to verify that

u ≥ u∗,

where

u = β
{
p (e)Rg (N + d) + (1− p (e))Rb (N + d)−Rd

}
− 1

2
e2 (N + d)

= β
[
p (e)Rg + (1− p (e))Rb

]
N

+β
[
p (e)Rg + (1− p (e))Rb −R

]
d− 1

2
e2 (N + d)

Finally, we need to verify the second order conditions for the banker’s problem. This

involves the determinant of a particular bordered Hessian. To define the bordered Hessian,

let

V
(
e, d, Rb

d

)
= β

(
p(e)Rg(N + d) + (1− p(e))Rb(N + d)−Rd

)
− 1

2
e2(N + d)

+η

(
e(N + d)σ − βb̄

[(
Rg −Rb

)
(N + d)− R−Rb

d

p(e)
d

])
+v
(
Rb(N + d)−Rb

dd
)
.

and

g
(
e, d, Rb

d

)
= e(N + d)− βb̄

[(
Rg −Rb

)
(N + d)− R−Rb

d

p(e)
d

]
h
(
e, d, Rb

d

)
= Rb(N + d)−Rb

dd.
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The bordered Hessian is: 
Vee Ved VeRbd ge he
Ved Vdd VdRbd gd hd
VeRbd VdRbd Vee gRbd hRbd
ge gd gRbd 0 0

he hd hRbd 0 0

 .

The solution to the first order conditions is a local maximum if the determinant of the

bordered Hessian matrix is negative (see the appendix in Henderson and Quandt (1971) or

Mas Colell, Whinston and Green (1995)). In the numerical example featured in the paper,

this determinant is negative.

3. Solving the Banker Problem by Substituting Out the Constraints

In the approach here, we allow for the possibility of a corner solution where the banker’s

incentive constraint is not represented as an equality. The approach we take is to substitute

out the constraints in the problem, including the incentive constraint. The computation of

the equilibrium mainly focuses on the banker problem, since the other equilibrium condition

is just the household intertemporal condition associated with the deposit decision.

Bankers have three options: (a) they may take a deposit contract from a mutual fund

and invest what they have in assets; (b) they could forego a deposit contract and simply

invest their net worth in assets (the ‘outside option’); or (c) they could take their net worth

and deposit it at the interest rate, R, in a mutual fund. Although we allow all three choices,

we focus on equilibria in which bankers choose (a). We first describe the banker’s outside

option, (b). We then consider (a). The value of option (c) is simply, βNR.

3.1. The Outside Option

A banker that takes no deposits and sets e to e∗, where

e∗ = βb̄
(
Rg −Rb

)
.

Then, the value of the outside option is:

V ∗ =

(
β
[
p∗Rg + (1− p∗)Rb

]
− 1

2
(e∗)2

)
N.

An individual banker in any equilibrium in which bankers take deposit contracts must prefer

that to the outside option.

5



3.2. The Banker’s Deposit Contract Problem

We now investigate the actions of a banker conditional on taking a deposit contract from a

mutual fund. To select a loan contract, a banker solves:

V = max
e,d,Rbd,R

g
d

β
{
p (e) [Rg (N + d)−Rg

dd] + (1− p (e))
[
Rb (N + d)−Rb

dd
]}
− 1

2
e2 (N + d) ,

(3.1)

subject to R given, d ≥ 0 and

‘incentive’: e(N + d)− βb̄
[(
Rg −Rb

)
(N + d)−

(
Rg
d −Rb

d

)
d
]

= 0 0 < e < (1− ā) /b̄
≤ 0 e = (1− ā) /b̄
≥ 0 e = 0

‘zero profit’: R = p (e)Rg
d + (1− p (e))Rb

d

‘good-state cash constraint’: Rg (N + d) ≥ Rg
dd,

‘bad-state cash constraint’: Rb (N + d) ≥ Rb
dd.

3.2.1. Non binding Cash and Incentive Constraints

It is instructive to begin with the assumption that the incentive and cash constraints are

non-binding, while the zero-profit condition is binding. The zero-profit is obviously always

binding, for otherwise the solution is Rb
d = Rg

d = −∞. Substituting the zero profit condition
into (3.1), we obtain

max
e,d

β
{
p (e)Rg (N + d) + (1− p (e))Rb (N + d)−Rd

}
− 1

2
e2 (N + d) .

Interior optimality of e and d imply, respectively,

e = βp′ (e)
(
Rg −Rb

)
0 = β

{
p (e)Rg + (1− p (e))Rb −R

}
− 1

2
e2.

The first expression states that the marginal cost of effort must equal the benefit of shifting

probability in the direction of the good outcome. The second expression says that the

marginal benefit of extra deposits, in terms of extra profits, must equal the marginal cost.

Substituting this second expression into banker’s objective, we see that it equals βRN, which

is what a banker can obtain by depositing his net worth into another bank, making no effort

and earning the return on deposits.

We compute the equilibrium by solving for e using the first of the two optimality condi-

tions. We can then solve for R from the second optimality condition. In effect, the demand

for loans is infinitely elastic at the interest rate,

R = p (e)Rg + (1− p (e))Rb +
1

2β
e2.
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For a higher R, demand for d is zero. For a lower R, demand is infinite. So, the equilibrium

quantity of deposits must be where this horizontal demand intersects with the upward-sloped

supply:

d = Y − 1

βR
.

Next, we verify whether it was correct to ignore the cash and incentive constraints.

Because we ignored the incentive constraint in solving the problem, the only way that the e

decision can be reconciled with ‘incentive’is for deposit returns to be state-independent:

Rg
d = Rb

d = R.

Here, the last equality reflects the zero profit condition. This ways of the setting the deposit

returns across states is consistent with the cash constraints if

(N + d)Rg ≥ dR, (N + d)Rb ≥ dR.

If this is the case, then the banker problem is solved.

3.2.2. Binding Bad-state Cash and Incentive Constraints

3.2.2.1.Overview If N is suffi ciently low, then the solution in the previous subsection can

lead to a violation of the cash constraint in the bad state. In this case, solving the banker

problem requires setting Rg
d > Rb

d. But, this in turn has an impact on e via ‘incentive’and so

it is necessary to incorporate ‘incentive’explicitly into the solution of the banker problem.1

In this way, we are led to incorporate three constrains: (i) the zero profit condition of

mutual funds (‘zero profit’), (ii) ‘incentive’and (iii) the assumption that the bad-state cash

constraint binds:

Rb (N + d) = dRb
d.

We use our three constraints, (i), (ii) and (iii), to substitute out three of the four deci-

sion variables in the banker problem, (3.1). As a consequence, we reduce the original four

dimensional maximization problem in e, d, Rg
d, R

b
d to a one dimensional maximization prob-

lem in e alone. Substituting out the incentive constraint is somewhat tricky because it is

characterized by inequalities.

To proceed, we find it convenient to express the banker’s objective, (3.1), in terms of

leverage, L = (N + d) /N, instead of d.Making use of the zero profit condition, the objective

is:

V (e, L;R) =

{
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2

}
NL+ βRN. (3.2)

1This is the intuition underlying the result in section 2, showing that the bad-state cash constraint binds
if, and only if, the incentive constraint binds.
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Define

Ṽ (e;R) = max
L

V (e, L;R) , (3.3)

where the maximization is restricted by our three constraints, (i)-(iii). The level of effort

that solves the banker’s deposit contract problem is the value of e that solves:

max
0≤e≤emax

Ṽ (e;R) , (3.4)

where

emax ≡
1− ā
b̄

.

To ensure that (5.2) is well defined for each e, we make several assumptions. Not surprisingly,

if R is too low, the demand for deposits by banks is infinite. To ensure finite demand, R

must satisfy

R >
1

4β

(
βb̄
[
Rg −Rb

]
− ā

b̄

)2

+
[
āRg + (1− ā)Rb

]
. (3.5)

Values of R which violate (3.5) imply that 0 < e < emax can be found, for which the solution

to (5.2) implies Ṽ (e;R) = +∞ and L = +∞. Such a value of R cannot be an equilibrium

because it is inconsistent with clearing in the market for deposits, where supply is bounded

above by Y. In addition, the following restriction is helpful to guarantee d ≥ 0 :

βRg ≥ 1− ā
b̄2

. (3.6)

Finally, we assume
1− ā
b̄

>
1

2

(
βb̄
(
Rg −Rb

)
− ā

b̄

)
> 0. (3.7)

This is a necessary condition for the existence of an interior solution to (5.2).

Suppose that R also satisfies the upper bound constraint,

Rg − 1

2β

(
1− ā
b̄

)2

≥ R. (3.8)

We show that,

Ṽ (e;R) = V (e;R) , (3.9)

for all 0 ≤ e ≤ emax. Here, V (e;R) a ratio of two second order polynomials in e:

V (e;R) ≡
(
p (e)

p′ (e)
e− 1

2
e2

)
βR

l (e;R)
N, (3.10)

l (e;R) ≡ p (e)

p′ (e)
e− β

[
p (e)Rg + (1− p (e))Rb −R

]
. (3.11)

Under our assumptions, V (e;R) is nicely behaved. For example, we show that l (e;R) strictly

positive for all e. So, if (3.8) is satisfied, then the solution to the contract problem, (5.2),

8



is straightforward. For example, the maximum is guaranteed to exist because V (e;R) is a

continuous function and e is restricted to lie in a compact set.

Suppose (3.8) is not satisfied. We show that in this case, (3.9) holds for all e except

e = emax. At e = emax, Ṽ (e;R) takes a discontinuous jump up to ∞ > Ṽ (emax;R) >

V (emax;R) . Let e∗ denote value of e that solves (5.2) when Ṽ (e;R) is replaced by V (e;R) .

If Ṽ (emax;R) ≤ V (e∗;R) , then e∗ solves (5.2). If Ṽ (emax;R) > V (e∗;R) , then the solution

to (5.2) is emax. Interestingly, when (3.8) is violated, then the banker’s outside option

dominates taking a loan contract. It follows that (3.8) will be satisfied in any deposit

contract equilibrium.

All the results just described are derived below. We state them in the form of propositions.

3.2.2.2.Formal Results We begin by studying the properties of the polynomial, l, in

(3.11). Substituting out the functional form for p (e) ,

l (e;R) =
ā

b̄
e+ e2 − β

[(
ā+ b̄e

)
Rg +

(
1−

(
ā+ b̄e

))
Rb −R

]
.

Collecting terms:

l (e;R) =

γ︷ ︸︸ ︷
−β
[
āRg + (1− ā)Rb −R

]
−

ξ︷ ︸︸ ︷(
βb̄
[
Rg −Rb

]
− ā

b̄

)
e+ e2

= γ − ξe+ e2.

Evidently, l (e;R) is a ‘U’shape function of e. This function achieves its unique minimum at

e =
1

2
ξ > 0.

This value of e is strictly interior to the interval, [0, emax] by (3.7). The value of l at the

minimum is:

l

(
1

2
ξ;R

)
= γ − 1

4
ξ2.

If R satisfies (3.5), then γ > ξ2/4, so

l (e;R) > 0, for all e.

We now develop an upper bound on l. Note from the definition of γ, that

γ + β
[
āRg + (1− ā)Rb

]
= βR, (3.12)

so
βR

l (e;R)
=
γ + β

[
āRg + (1− ā)Rb

]
γ − ξe+ e2

.

9



From the latter expression and the fact, γ > 0 (see (3.5)), we conclude that l (0;R) < βR.

In addition, because the derivative of l with respect to e is negative at e = 0, l (e;R) is

decreasing at e = 0 until it reaches its minimum at e = ξ/2 > 0. For e > ξ/2, l (e;R)

increases monotonically in e. So, l (e;R) is guaranteed to satisfy l (e;R) ≤ βR for all

0 ≤ e ≤ emax if l (emax;R) ≤ βR. It can be verified that l (emax;R) ≤ βR is implied by (3.6).2

We summarize the argument as follows. The function, l (e;R) achieves a minimum in

the interior of its domain, 0 ≤ e ≤ emax by (3.7). That l is strictly positive at its minimum

is guaranteed by the lower bound, (3.5), on R. Finally, the result that l (e;R) ≤ βR for all

0 ≤ e ≤ emax is implied by (3.6). We summarize these results in the form of a proposition:

Proposition 3.1. Suppose R and the model parameters satisfy (3.5), (3.6) and (3.7). Then,
βR ≥ l (e;R) > 0 for all 0 ≤ e ≤ emax.

For each 0 ≤ e ≤ emax, we now identify the set of values of banker leverage, L ≥ 1, that

is consistent with the three constraints, (i)-(iii). Using the binding bad-state cash constraint

and the implication of the zero profit condition, R − Rb
d = p (e)

(
Rg
d −Rb

d

)
, the incentive

constraint, ‘incentive’, reduces to:{
e− βb̄

[(
Rg −Rb

)
−
R
(
L−1
L

)
−Rb

p(e)

]}
= 0, 0 < e < emax

≤ 0, e = emax

≥ 0, e = 0.
. (3.13)

Here, we have made use of the definition of L and rearranged terms. Multiplying the object

in braces in (3.13) by p (e) /b̄ and rearranging, we obtain

p (e)

b̄

{
e− βb̄

[(
Rg −Rb

)
−
R
(
L−1
L

)
−Rb

p(e)

]}

= l (e;R)− βR

L
,

2To see this, consider

βRg ≥ 1− ā
b̄2

.

add −β
[
Rg −Rb

]
+ β

[
Rg −Rb

]
ā to both sides of the previous expression, to obtain:

βRb + β
[
Rg −Rb

]
ā ≥ 1− ā

b̄2
− β

[
Rg −Rb

]
+ β

[
Rg −Rb

]
ā,

or,

β
[
ā
(
Rg −Rb

)
+Rb

]
≥ −β

[
Rg −Rb

]
+ β

[
Rg −Rb

]
ā+

1

b̄

1− ā
b̄

.

This in turn is equivalent to

β
[
āRg + (1− ā)Rb

]
≥ −

(
βb̄
[
Rg −Rb

]
− ā

b̄

) 1− ā
b̄

+

(
1− ā
b̄

)2
.

The result follows by adding γ to both sides and taking into account (3.12) and the definition of ξ.

10



where l (e;R) is defined in (3.11). Then, using the Proposition 3.1 result, l (e;R) > 0, we

express (3.13) as follows:

L =
βR

l (e;R)
, for 0 < e < emax (3.14)

L ≤ βR

l (emax;R)
, for e = emax

L ≥ βR

l (0;R)
, for e = 0. (3.15)

Proposition 3.1 and (3.14), (3.15) imply L ≥ 1 for 0 ≤ e < emax. In the condition that

pertains to e = emax, we combine the restriction, L ≥ 1, with the incentive constraint to

obtain the following restriction:

1 ≤ L ≤ βR

l (emax;R)
. (3.16)

Proposition 3.1 guarantees that the interval in (3.16) is non-empty. We state our findings in

the form of a proposition:

Proposition 3.2. Suppose that the conditions of Proposition 3.1 hold. Suppose we have
an e satisfying 0 ≤ e ≤ emax. The set of values of banker leverage, L, consistent with the

zero profit condition, the bad-state cash constraint, the incentive constraint and L ≥ 1 is

provided by (3.14), (3.15), (3.16).

We now investigate the relationship between Ṽ (e;R) in (3.3) and V (e;R) in (3.10).

Consider an interior value of e, 0 < e < emax. For each such value of e, (3.14) indicates that

there is only one value of L that is consistent with our three constraints, (i)-(iii). So, the

solution to (3.3) is

Ṽ (e;R) =

(
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2

)
N

βR

l (e;R)
+ βRN

=

(
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2 + l (e;R)

)
l (e;R)

NβR

=

(
p (e)

p′ (e)
e− 1

2
e2

)
βR

l (e;R)
N,

after rearranging. We conclude,

Ṽ (e;R) = V (e;R) , for 0 < e < emax.

Next, consider e = emax. Suppose the object in braces in (3.2) is weakly positive, so that

R satisfies (3.8). Then, V (emax, L;R) is weakly increasing in L. In this case, optimality in

11



(3.3) is consistent with setting L to its upper bound of βR/l (emax;R) . We conclude that if

(3.8) holds, then

Ṽ (emax;R) = V (emax;R) .

Now suppose the object in braces in (3.2) is strictly negative, so that R violates (3.8). In

this case, Ṽ (emax, L;R) is strictly decreasing in L and so the solution to (3.3) puts L at its

lower bound of unity. Thus,

Ṽ (emax;R) =

(
βRg − 1

2

(
1− ā
b̄

)2
)
N > V (emax;R) . (3.17)

It is obvious that when the object in braces in (3.2) is strictly negative, then V (emax;R) <

βRN. We see that

lim
e→emax

Ṽ (e;R)→ V (emax;R) ,

while Ṽ (e;R) takes on a value higher than V (emax;R) at e = emax. We conclude that when

R violates (3.8), Ṽ (e;R) jumps discontinuously to Ṽ (emax;R) < +∞ at the upper bound

for e.

Now consider the lower bound on e, e = 0. Substituting into (3.2), we obtain,

V (0, L;R) = β
[
āRg + (1− ā)Rb −R

]
NL+ βRN,

where the term in square brackets is negative, by (3.5). In this case, V (0, L;R) is decreasing

in L. According to (3.15), the solution to (3.3) implies L = βR/l (0;R) , so that

Ṽ (0;R) = β
[
āRg + (1− ā)Rb −R

]
N

βR

l (0;R)
+ βRN

= V (0;R) .

We summarize our results as follows:

Proposition 3.3. Suppose that the conditions of Proposition 3.1 hold. Suppose R satisfies
(3.8). Then, Ṽ (e;R) = V (e;R) for all 0 ≤ e ≤ emax. Suppose R does not satisfy (3.8).

Then: (a) Ṽ (e;R) = V (e;R) for 0 ≤ e < emax; (b) Ṽ (e;R) jumps up discontinuously to the

finite value, (3.17), at e = emax and (c) Ṽ (emax;R) < βRN.

This proposition justifies the strategy for solving the banker’s deposit contract problem,

(5.2), described in the previous subsection. Begin by finding e∗, the value of e, 0 ≤ e ≤ emax,

that maximizes V (e;R) . If R satisfies (3.8), then e∗ is the solution to the contract problem.

Suppose R does not satisfy (3.8). If Ṽ (emax;R) ≤ V (e∗;R) , then e∗ solves the contract

problem after all. If Ṽ (emax;R) > V (e∗;R) , then emax is the solution to the contract
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problem. Notice that, regardless of whether (3.8) holds, optimizing V (e;R) is central to the

strategy for solving the contract problem.

The practical problem of finding the maximum of V (e;R) is simple. For example, one

can begin by constructing an extremely fine grid of values of e covering the closed interval,

[0, emax] . One then graphs V (e;R) over the grid points and identifies the point on the grid,

e∗, where the function is maximized. With this good guess for the maximum in hand, one can

proceed by driving Ve, the derivative of V (e;R) with respect to e, to zero. This derivative

is:

Ve (e;R) =
p (e)

p′ (e)
L (e;R)N +

[
p (e)

p′ (e)
e− 1

2
e2

]
Le (e;R)N = 0.

From this expression we see that if there is an interior equilibrium then it must be that

Le < 0. This is because all the other terms are positive for e > 0. For example, although the

expression in square brackets is zero for e = 0, its derivative is strictly positive for e ≥ 0.

Differentiating (3.11),

Le =
βR
(
βp′ (e)

(
Rg −Rb

)
− e− p(e)

p′(e)

)
(
p(e)
p′(e)e− β [p (e)Rg + (1− p (e))Rb −R]

)2 =
2L2

βR

(
1

2

[
βb̄
(
Rg −Rb

)
− ā

b̄

]
− e
)
.

Note that (3.7) guarantees the existence of e ∈ [0, emax] such that Le < 0. Using the previous

expression to substitute out for Le in Ve, we obtain the following very simple expression:

Ve (e;R)

NL
=
p (e)

p′ (e)
+

(
p (e)

p′ (e)
e− 1

2
e2

)
2L

βR

(
1

2

[
βb̄
(
Rg −Rb

)
− ā

b̄

]
− e
)

= 0.

An interior maximum requires Ve = 0. Evidently, for e = 0, Ve > 0. Under (3.7) it is possible

to have Ve < 0 for e high enough, in which case there is an interior solution. In several

numerical examples, we found that the solution is interior.

It is particularly simple to find an e that sets Ve to zero numerically. After multiplying

the previous expression by l (e;R) (recall that l (e;R) > 0) we find that setting Ve = 0

requires a value of e that solves:([ ā
b̄

+ e
]
e− β

[
p (e)Rg + (1− p (e))Rb −R

]) ( ā
b̄

+ e
)

(3.18)

+2e

(
ā

b̄
+

1

2
e

)(
1

2

[
βb̄
(
Rg −Rb

)
− ā

b̄

]
− e
)

= 0.

This quadratic equation can be solved for two values of e by the well-known quadratic

formula. The desired value of e is the one that is closest to e∗. As long as the initial grid for

e was fine enough, this strategy is guaranteed to identify the global maximum of V (e;R).
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3.2.2.3.Coherence of the Analysis We have described two ways to solve the banker

contract problem. One uses Lagrange multipliers and appears in section 2. The other appears

in the previous subsection and substitutes out the constraints in the banker’s problem.

Coherence of the analysis requires that both approaches provide the same solution, when

the solution is interior. Here, we show that the solutions are indeed the same.

Section 2 displays five first order conditions for the Lagrangian problem, including the

constraints. Substituting out the two multipliers, deposits and Rb
d, that system can be

expressed as follows:

e = βb̄(Rg −Rb)−

{
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2
} [p(e)+eb̄

βb̄
− b̄(Rg −Rb)

]
p(e)e

βb̄
− [p(e)Rg + (1− p(e))Rb −R]

We now show that the preceding equation coincides with (3.18). Rearranging, we obtain,

e = βb̄(Rg −Rb)−

{
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2
} [p(e)

b̄
+ e− βb̄(Rg −Rb)

]
p(e)e

b̄
− β [p(e)Rg + (1− p(e))Rb −R]

.

Define X ≡ β
[
p (e)Rg + (1− p (e))Rb −R

]
. Then, the previous condition can be written

as follows:

e = βb̄(Rg −Rb)−

(
X − 1

2
e2
) [p(e)

b̄
+ e− βb̄(Rg −Rb)

]
p(e)e

b̄
−X

.

Rearranging, we obtain:[
e− βb̄(Rg −Rb)

] [p(e)e
b̄
−X

]
= −

(
X − 1

2
e2

)[
p(e)

b̄
+ e− βb̄(Rg −Rb)

]
,

[
e− βb̄(Rg −Rb)

] p(e)e
b̄

+
p(e)

b̄
X =

1

2
e2

[
p(e)

b̄
+ e− βb̄(Rg −Rb)

]
,

[
e− βb̄(Rg −Rb)

] [p(e)e
b̄
− 1

2
e2

]
+
p(e)

b̄
X =

1

2
e2

(
p(e)

b̄

)
. (3.19)

Rewriting (3.18), we obtain,

0 =

(
p(e)e

b̄
−X

)
p(e)

b̄
+ 2e

(
p(e)

b̄
− 1

2
e

)[
1

2
βb̄(Rg −Rb)−

(
e+

1

2

p(e)− b̄e
b̄

)]
,

0 =

(
p(e)e

b̄
−X

)
p(e)

b̄
+

(
p(e)e

b̄
− 1

2
e2

)[
βb̄(Rg −Rb)−

(
2e+

p(e)− b̄e
b̄

)]
,

0 =

(
p(e)e

b̄
−X

)
p(e)

b̄
+

(
p(e)e

b̄
− 1

2
e2

)[
βb̄(Rg −Rb)− e− p(e)

b̄

]
,

0 = −
[
e− βb̄(Rg −Rb)

](p(e)e
b̄
− 1

2
e2

)
− p(e)

b̄
X +

1

2
e2p(e)

b̄
,

which is identical (3.19).
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4. Socially Optimal Leverage

In this section, we explore the implications of the model for leverage restrictions. In the first

section we describe a strategy for finding the best leverage restriction, which allows for the

possibility that the solution is on a corner. In the example we work with, this strategy leads

us to the conclusion that the solution is, in fact, interior. We then turn to a Lagrangian

approach to the problem, which implicitly assumes an interior solution. The Lagrangian

approach has the advantage that it reveals the economic reason that social welfare may be

improved by imposing a leverage restriction.

4.1. Socially Optimal Leverage: An Approach Based on Substituting out the
Constraints

Consider a regulation that restricts leverage to be f < 1 times what it is in an unregulated

equilibrium. We assume that the leverage restriction is strictly binding for the banker.

That is, the banker is required to select a lower value of d than is privately optimal in the

unregulated economy. Suppose that the leverage restriction is L̄ = fL, where L denotes

the level of leverage in the unregulated equilibrium. The equilibrium rate of interest, R̄, is

determined by the household Euler equation for deposits:

R̄ =
1

β
(
Y −

(
L̄− 1

)
N
) .

One ‘parameter’associated with the banker’s choice of deposit contract has been taken off

the table, namely, d. The banker may still choose the other parameters, e, Rg
d, R

b
d. But,

these must be consistent with the incentive constraint, the zero profit condition and the cash

constraints (i.e., constraints (i)-(iii) in section 3.2.2.1). Suppose, to begin, that the cash and

incentive constraints are non-binding. In this case, the banker selects the following level of

effort:

e = βb̄
(
Rg −Rb

)
.

For this level to be consistent with the incentive constraint, it must be that

Rg
d = Rb

d = R̄.

The requirement that the cash constraints be satisfied is:

Rg ≥ L̄− 1

L̄
R̄, Rb ≥ L̄− 1

L̄
R̄.

If the bad-state cash constraint is violated, then we proceed under the assumption that

it is binding, along with the incentive constraint. The banker’s contract problem is now to

simply choose a level of effort for the given L̄ :

max
e∈E

V
(
e, L̄; R̄

)
, (4.1)
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where V (e, L;R) is defined in (3.2). The set E represents the values of e that are consistent

with L̄ and the three constraints, (i)-(iii), in section section 3.2.2.1. That is, the elements of

E are the values of e that solve (3.14), (3.15) and (3.16) for the given L̄. Consider the values

of e that solve (3.14):

l
(
e; R̄

)
=
βR̄

L̄
. (4.2)

Substituting out for l from (3.11) and using the functional form for p (e) , (4.2) reduces to:[ ā
b̄

+ e
]
e− β

[(
ā+ b̄e

)
Rg +

(
1−

(
ā+ b̄e

))
Rb − R̄

]
=
βR̄

L̄
.

Collecting terms,

γ︷ ︸︸ ︷
−β
[
āRg + (1− ā)Rb − R̄

]
−

ξ︷ ︸︸ ︷(
βb̄
(
Rg −Rb

)
− ā

b̄

)
e+ e2 =

βR̄

L̄

so that (4.2) reduces to:

γ − ξe+ e2 =
βR̄

L̄
.

The values of e that solve this equation are:

e =

ξ ±
√
ξ2 − 4

(
γ − βR̄

L̄

)
2

.

The intersection of the above two values of e with the interval, [0, emax] , is included in the

set, E.

Condition (3.15) implies that emax also belongs to E if

L̄ ≤ βR̄

l
(
emax; R̄

) .
Condition (3.16) implies that 0 ∈ E if

L̄ ≥ βR̄

l
(
0; R̄

) .
We conclude that E contains at most 4 elements.

Once the set, E, is available, the maximization problem, (4.2), is straightforward to solve.

In the examples that we studied, we found that e = emax and e = 0 are not elements of E.

That is, the solution to the banker problem is interior.

We can compute the optimal f by placing a fine grid on [fl, 1] , where fl is a number,

0 < fl < 1.We then evaluate (4.1) for each f on the grid and identifying the maximum. We

make fl small enough until we identify an interior maximum for f. In the example that we

developed, fl = 0.9 works.
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4.2. Socially Optimal Leverage: A Lagrangian Approach

To explore the economic role of leverage restrictions, it is convenient to express the banker

problem in Lagrangian form. The first subsection states the banker problem with a lever-

age constraint in this form. We assume that the banker incentive constraint and bad-state

cash constraints are binding in the unregulated economy, for otherwise the leverage con-

straint would be counterproductive. In the second subsection we consider the decision of a

benevolent regulator who has the power to restrict the amount of banker leverage. Again,

for gaining economic intuition, it is useful to express the regulator problem in Lagrangian

form. We then show that when the banker incentive constraint is binding, then a leverage

restriction is desirable because it forces the banker to internalize a pecuniary externality.

4.2.1. Private Sector

We modify the banker problem to include the requirement,

L ≤ L̄.

The banker’s objective is (3.2). We substitute out for Rg
d, R

b
d by imposing the binding cash

constraint in the bad state and the zero profit condition. The banker’s problem in Lagrangian

form is:

V = max
e,L

{
β
[
p (e)Rg + (1− p (e))Rb −R

]
− 1

2
e2

}
LN + βRN

+η

(
βb̄

[(
Rg −Rb

)
−
RL−1

L
−Rb

p (e)

]
− e
)

+ξ
(
L̄− L

)
.

Here, ξ ≥ 0 represents the Lagrange multiplier on the leverage constraint and η ≥ 0 repre-

sents the multiplier on the incentive constraint. Note that the above problem corresponds to

the same problem we studied in the previous section, with one exception. The exception is

that by representing the incentive constraint as an equality constraint we implicitly assume

an interior solution. In the numerical example that we studied, we verified the interiority

assumption by also taking the approach in the previous section, which does not assume

interiority of the solution.

The first order condition for L is:

[
p(e)Rg + (1− p(e))Rb

]
− 1

2β
e2 = R + η

(
R

N

p′(e)

p(e)

1

L2

)
+

ξ

βN
. (4.3)

According to this expression, the banker equates the net marginal benefit of deposits (left

side of equality) to the privately experienced cost of deposits (right side). The benefit is
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the expected earnings on assets financed by deposits, net of the marginal cost of the effort

expended to manage the assets. The cost of extra funds has three components: (i) the

expected marginal cost of the deposits, R; plus (ii) the cost, measured by η, of tightening the

incentive constraint; plus (iii) the cost, measured by ξ, of tightening the leverage constraint.

The first order condition for e is:

0 =
[
βp′(e)(Rg −Rb)− e

]
LN + η

[
β

(
p′(e)

p(e)

)2(
R
L− 1

L
−Rb

)
− 1

]
. (4.4)

4.2.2. Benevolent Regulator

We assume there is a regulator that has the power to compel the banker to issue fewer

deposits. In effect, the regulator takes over the choice of deposits from the banker, leaving

the banker only with a decision over the other parameters of the loan contract, e, Rg
d, R

b
d. The

regulator is assumed to be benevolent in the sense of wishing to maximize social welfare. Of

course, the regulator must respect all the private sector equilibrium conditions. There are

four such conditions. The equilibrium conditions are the one associated with the household

deposit decision:

βR = u′
(
Y −

(
L̄− 1

)
N
)
, (4.5)

where we have replaced d with (L− 1)N ; the resource constraint in each period:

c = Y −
(
L̄− 1

)
N

C =
[
p(e)Rg + (1− p(e))Rb

]
L̄N,

and the incentive constraint of the bankers:

e− βb̄
[
Rg −Rb −

RL−1
L
−Rb

p (e)

]
= 0.

At the same time, we have five unknowns:

R, L̄, c, C, e.

In choosing a value for L̄, the regulator in effect chooses values for all five economic variables.3

So, we can think of the regulator’s problem as simply choosing all the variables subject to the

four private sector equilibrium conditions, with the objective of maximizing social welfare.

3Actually, there are two other unknowns, Rgd and R
b
d. We have substituted these out of the problem by

apply the binding bad-state cash constraint and the zero profit condition on mutual funds.
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After substituting out for c, C and R, the regulator’s problem is:

max
{L̄,e}

βu(Y − (L̄− 1)N) +

{
β
[
p(e)Rg + (1− p(e))Rb

]
− 1

2
e2

}
L̄N

+ η

[
βp′(e)

(
Rg −Rb −

u′(Y−(L̄−1)N)
β

L̄−1
L̄
−Rb

p(e)

)
− e
]
.

The first order condition with respect to L̄ is, after rearranging,[
p(e)Rg + (1− p(e))Rb

]
− 1

2
e2 (4.6)

= R + η

(
R

N

p′(e)

p(e)

1

L̄2

)
+ η

p′(e)

p(e)

[
−u′′(Y − (L̄− 1)N)

]
β

L̄− 1

L̄
,

where u′′
(
Y −

(
L̄− 1

)
N
)
/β < 0 denotes the first derivative of R with respect to L̄, taking

into account (4.5). On the left side of (4.6) we have the marginal benefit of an increase in

leverage, which coincides with the assessment of that benefit by the banker (see (4.3)). On

the right the regulator includes three costs: (i) R, which measures the marginal cost of extra

leverage to the household in the form of decreased consumption; (ii) the direct tightening

in the banker incentive constraint due to increased leverage; and (iii) the indirect tightening

in the banker incentive constraint that occurs as extra leverage raises R (see the u′′ term

in (4.6)). By comparing (4.6) and (4.3), we see that the banker correctly internalizes costs

(i) and (ii). However, the banker does not internalize the general equilibrium effect on the

market interest rate, R, of issuing deposits. This effect constitutes an externality, a pecuniary

externality because it operates through the price system. Obviously the banker can be made

to correctly internalize the pecuniary externality if the banker’s multiplier is given by:

ξ = η
p′(e)

p(e)

[
−u′′(Y − (L̄− 1)N)

]
β

L̄− 1

L̄
βN. (4.7)

The first order condition associated with the effort decision is:[
βp′(e)

(
Rg −Rb

)
− e
]
L̄N + η

[
β

(
b̄

p (e)

)2(
u′(Y − (L̄− 1)N)

β

L̄− 1

L̄
−Rb

)
− 1

]
= 0.

(4.8)

Note that this first order condition is identical to the first order condition of the banker (see

(4.4)).

It is easy to verify that if the regulator’s choice of L̄ is imposed as a restriction on the

banker, then the equilibrium values of R, L̄, c, C, e are the ones that solve the regulator’s

problem. Moreover, the banker’s multipliers, ξ and η, are the ones that satisfy (4.7) and

(4.8), respectively. It is also easy to verify using this type of argument, that the regulator

does not want to restrict leverage in case the incentive and bad-state cash constraints are

not binding.
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5. Detailed Analysis of a Version of the Model With No Scaling of
Effort Cost

Here, we study the properties of a simple version of the model in which the banker’s cost of

effort is replaced with
1

2
e2.

This is the version of the model studied by Christiano and Ikeda (2013,2014). To keep

the analysis simple, we focus on the special case, Rb = 0. We describe the observations of

Francesco Ferrante and Andrea Prestipino, who brought to our attention an error in our

earlier analysis of this model. In our analysis, we characterized the solution to the banker’s

deposit contract problem by the solution to the first order conditions of the Lagrangian

representation of the problem. Ferrante and Prestipino show that the correct characterization

leads to very different model properties that are not interesting. They recommend replacing

the cost of effort with (??). This is a recommendation whose wisdom is verified in the

preceding sections. Interestingly, the properties reported for the model in Christiano and

Ikeda (2013,2014) are in fact the properties of the model with the effort cost specification

recommended by Ferrante and Prestipino.

In this version of the model, the mutual fund zero profit condition is:

p (e)Rg
d = R.

Conditional on Rg
d and d the banker effort choice, after receiving a deposit contract, solves:

max
e
V (e, d, Rg

d) = βp (e) [Rg (N + d)−Rg
dd]− 1

2
e2. (5.1)

We adopt the following piecewise-linear specification of p (e) :

p (e) = min
{
ā+ b̄e, 1

}
, e ≥ 0. (5.2)

To visualize the problem in (5.1), construct a graph with e on the horizontal axis and the

return β
[
ā+ b̄e

]
[Rg (N + d)−Rg

dd] and the utility cost, e2/2 on the vertical axis. The

problem is to choose e to maximize the vertical distance between the return and the utility

cost. These functions are defined over e ≥ 0. The cost function is at its minimum at zero,

has zero slope there and is increasing and convex for e > 0. The return function is piecewise

linear, has value βā [Rg (N + d)−Rg
dd] at the intercept and slope βb̄ [Rg (N + d)−Rg

dd] for

0 ≤ e < (1− ā) /b̄. Thereafter, it has slope zero. The value of e that solves the problem is:

e = min

[
ẽ,

1− ā
b̄

]
, (5.3)
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where

ẽ = βb̄ [Rg (N + d)−Rg
dd] ,

The banker’s deposit contract problem is to choose a contract, e, d, Rg
d, to maximize V (e, d, Rg

d)

subject to the zero profit condition and the incentive constraint, (5.3). After solving the de-

posit contract problem, the banker decides whether to take the contact, or go with its outside

option. Here, we specify that the banker’s outside option is to take no bank contract and

simply invest his net worth, N, choosing e to solve (5.1) with d = 0.

5.1. Lagrangian Approach to the Problem

The approach proceeds under the (alas, possibly false) assumption that the solution to the

problem puts e in the following set:

0 < e <
1− ā
b̄

,

with the incentive constraint,

e = βb̄ [Rg (N + d)−Rg
dd] .

The Lagrangian representation of the problem is:

max
e,d

β [p (e)Rg (N + d)−Rd]− 1

2
e2 (5.4)

+η

(
e− βb̄

[
Rg (N + d)− R

p (e)
d

])
,

where η denotes the multiplier on the incentive constraint. Also, the zero profit condition of

the mutual fund has been imposed by replacing Rg
d with R/p (e) .

The first order condition with respect to d :

d : β [p (e)Rg −R]− ηβb̄

p (e)
[p (e)Rg −R] = 0

d : β

(
1− ηb̄

p (e)

)
[p (e)Rg −R] = 0,

and with respect to the incentive constraint:

η : e− βb̄
[
Rg (N + d)− R

p (e)
d

]
= 0

η : e− βb̄RgN − βb̄

p (e)
(p (e)Rg −R) d = 0
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All together:

e : βb̄Rg (N + d)− e+ η

(
1− β

(
b̄

p (e)

)2

d

)
= 0

d : β

(
1− ηb̄

p (e)

)
[p (e)Rg −R] = 0

η : e− βb̄RgN − βb̄

p (e)
(p (e)Rg −R) d = 0.

This represents three equations in e, d, η. We can identify at least two solutions. First,

suppose that the object in parentheses in d is non-negative, so that p (e)Rg = R. Then, d

and η become two seemingly incompatible equations:

d : p (e)Rg = R

η : e = βb̄RgN.

These equations cannot be solved for arbitrary R. They only have a solution when R takes

on the following value:

R =

≡p̃︷ ︸︸ ︷[
ā+ b̄2βRgN

]
×Rg.

We assume that model parameters have been chosen such that

0 < ā+ b̄2βRgN < 1.

Given the value of R described above, then we can back out equilibrium d using the saving

supply curve:

R =
1

β (Y − d)
.

Finally, η can be backed out to solve e :

η =
e− βb̄Rg (N + d)(

1− β
(
b̄
p̃

)2

d

) =
−βb̄Rgd(

1− β
(
b̄
p̃

)2

d

) .
There appears to be a second solution to the bank deposit equations. In particular, set

e ∈
[
0, (1− ā) /b̄

]
. Compute η that solves:

η =
p (e)

b̄
.

Solve the e equation for d.

d =
e− η − βb̄RgN

βb̄Rg − βη
(

b̄
p(e)

)2 =
e− p(e)

b̄
− βb̄RgN

βb̄Rg − β p(e)
b̄

(
b̄

p(e)

)2
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Then adjust e until the η equation is satisfied.

We considered the following parameterization:

ā = 0.7, b̄ = 0.4, β = 0.99, Rg = 1.20, N = 1, Y = 2.

Then, we found the following two solutions to the Lagrangian equations:

solution #1: e = 0.4752, p = 0.89, η = −0.635, d = 1.054

solution #2: p = 0.89, η = 2.2252, d = −73.45, e = 0.4752

Evidently, the second solution is not economically interesting because d < 0.

We now consider the second order conditions associated with the Lagrangian problem.

Let

V (e, d) = β [p (e)Rg (N + d)−Rd]− 1

2
e2 + η

(
e− βb̄

[
Rg (N + d)− R

p (e)
d

])
g (e, d) = e− βb̄

[
Rg (N + d)− R

p (e)
d

]
.

Consider the following bordered Hessian: Vee Ved ge
Ved Vdd gd
ge gd 0

 .
The solution to the first order conditions of the Lagrangian problem represent a local max-

imum (minimum) if the above matrix has a positive (negative) determinant. It is easy to

verify that Vdd = 0 in each solution. Then, the determinant is

(2Vedge − Veegd) gd.

But, it is also easy to verify that gd = 0 in the case of both solutions to the first order

conditions. The Lagrangian analysis provides no basis for thinking that the solution to

the first order conditions is either a local minimum or a local maximum of the Lagrangian

problem.

5.2. Substituting Out the Constraint

We now proceed with an analysis that does not rule out corner solutions. Let emax denote

the level of effort that makes success certain, i.e., p (emax) = 1 :

emax =
1− ā
b̄

.
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What levels of bank debt have the property that emax is incentive compatible? Suppose there

exists a value of d such that

emax ≤ βb̄RgN + βb̄ [Rg −R] d. (5.5)

With such a d the banker would not have an incentive to deviate to a higher value of e. This

deviation results in a higher cost of effort and produces no benefit because p (e) remains

unchanged at unity. The banker also has no incentive to deviate to a lower value of e. The

marginal benefit of such a deviation in terms of reduced utility cost of effort is emax. But,

the cost in terms of reduced revenues is greater (the slope of p (e) is b̄ for reductions in e).

We summarize this result in the form of a proposition:

Proposition 5.1. The effort level, emax, is incentive compatible for any d that satisfies (5.5).

The banker’s objective is:

max
e,d

βp (e)RgN + βp (e)

[
Rg − R

p (e)

]
d− 1

2
e2,

subject to e being incentive compatible, ex post, with d. We now consider three cases:

Rg > R, Rg = R and Rg < R.

Consider Rg > R, so the set of d’s that satisfies (5.5) is unbounded above. Then, by

setting e = emax the banker’s return,

βRgN + β [Rg −R] d− 1

2
e2

max,

can be made arbitrarily large by choosing an arbitrarily large value for d. Thus, the banker’s

demand for d is infinite for Rg > R.

Suppose that R = Rg. In this case, the return from taking a bank deposit is:

max
e,d

βp (e)RgN + βp (e)

[
1− 1

p (e)

]
Rd− 1

2
e2.

When contemplating e < emax the banker would always prefer the outside option, d = 0,

since d > 0 generates a negative return to deposits. So, we only need to consider what the

banker wants to do conditional on e = emax. The Proposition indicates that any d ≥ 0 lies

in the banker’s choice set because they all satisfy incentive-compatibility. For each d ≥ 0,

the banker’s return is:

V = βRgN − 1

2
e2

max.

Under the outside option, the banker sets

e∗ = min
{
βb̄RgN, emax

}
,
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and receives the return

V ∗ = p∗βRgN − 1

2
(e∗)2 ,

p∗ = p (e∗) = ā+ b̄e∗.

Then,

V − V ∗ = βRgNb̄ (emax − e∗) +
1

2

[
(e∗)2 − e2

max

]
Since,

(e∗)2 − e2
max = (e∗ − emax) (e∗ + emax) ,

we have,

V − V ∗ =

[
βRgNb̄+

1

2
(e∗ + emax)

]
(e∗ − emax) .

Since e∗ ≤ emax, it follows that V ≤ V ∗ and

V − V ∗ =

{
0 βb̄RgN ≥ emax

< 0 βb̄RgN < emax
.

If the banker’s effort under the outside option is less than emax, then the outside option is

strictly preferred. If the banker exerted the same effort in a bank contract and issued deposits,

he would lose money on the deposits. He would have to raise effort to emax simply to get to

the point of earning zero on deposits. But, at that point the banker’s situation is equivalent

to taking the outside option and choosing a suboptimal level of effort. If the banker’s effort

under the outside option is equal to emax, then the banker is indifferent between taking a

deposit contract and the outside option. We assume that under indifference, the banker

takes a deposit contract. We conclude that when R = Rg, then

d ∈ [0,+∞), for βb̄RgN ≥ emax

d = 0, for βb̄RgN < emax.

Finally, we consider the case, Rg < R. In this case, it is trivial that the outside option

is preferred to the deposit contract. Whatever effort the banker exerts (whether incentive

compatible or not), the banker loses money on deposits. We summarize the previous results

in the following proposition:

Proposition 5.2. Consider four cases:
(i) If Rg > R, then the banker chooses a deposit contract with d = +∞.
(ii) If Rg = R and βb̄RgN ≥ 1−ā

b̄
, then the banker is indifferent over any deposit contract

with d ≥ 0.

(iii) If Rg = R and βb̄RgN < 1−ā
b̄
then the banker strictly prefers the outside option, so

that d = 0.

(iv) If Rg < R, then the banker strictly prefers the outside option, so that d = 0.
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The previous proposition displays what is in effect the demand curve from the financial

system, for deposits, as a function of R. Suppose

βb̄RgN ≥ 1− ā
b̄

.

In this case, the demand for d is represented in a graph with R on the vertical axis and d on

the horizontal, as a horizontal line at R = Rg. The upward-sloped supply curve is provided

by household optimization:

R =
1

β (Y − d)
.

At d = 0, we have R = 1/ (βY ) . So, if

1

βY
< Rg,

then there is a unique intersection of demand and supply. At this point, the equilibrium

level of demand is:

d = Y − 1

βRg
.

We summarize the preceding results in the form of two propositions, which distinguish be-

tween two cases. In the first, the return on the banker’s project is high and the in the second

it is relatively low.

Proposition 5.3. Suppose βY Rg > 1 and βb̄RgN ≥ (1− ā) /b̄. Then, there exists a unique

deposit equilibrium with

R = Rg, d = Y − (βRg)−1 , e = (1− ā) /b̄, p (e) = 1.

The proposition describes a situation in which the banker’s return is high enough, that

he exerts suffi cient effort to guarantee the good outcome. The interest rate on deposits is the

same as the return on the banker’s project, so that he makes no profits in this equilibrium.

The banker makes the same level of effort by taking a deposit contract as he would under

his outside option, so he is indifferent between the bank contract and the outside option.

Proposition 5.4. Suppose βb̄RgN < (1− ā) /b̄. Then there exists a unique equilibrium

with zero deposits.

In this case, the demand for deposits is +∞ for R > Rg and then drops discontinuously

to d = 0 for R ≤ Rg. As a result, there is no equilibrium with positive deposits.
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6. Generalizing The Probability and Cost Functions, No Scaling

We now keep to the case in which effort is not scaled and Rb = 0. But, we consider fairly

general cost and probability functions. We would like it to be the case that with Rg > R

there are versions of the model in which the banker finds it optimal to choose a deposit

contract in which the probability of success is less than unity. Here, we expand the set of

cost and probability functions to a broader class. We show that, within this class, it is not

possible to find functions that have the desired property.

The probability function satisfies:

0 ≤ p (e) ≤ 1,

p′ (e) > 0 for all emax ≥ e ≥ 0,

where [0, emax] denotes the domain of p. In addition, the cost of effort function is f (e) . Here,

we assume f (e) is increasing and convex. We assume both p and f are twice differentiable.

The ex post problem of the banker (i.e., after Rg
d and d have been set) is

max
0≤e≤emax

βp (e) [Rg (N + d)−Rg
dd]− f (e) .

The solution is:

f ′ (e) = βp′ (e) [Rg (N + d)−Rg
dd] , (6.1)

for e < emax and

f ′ (emax) ≤ βp′ (emax) [Rg (N + d)−Rg
dd] .

At emax a further increase in e is not possible. So, if the left side of the previous equation

is less than the right, the banker has no incentive to adjust e. The banker certainly would

not want to reduce e below emax because doing so would have a smaller marginal benefit,

f ′ (emax) , than the marginal cost, βp′ (emax) [Rg (N + d)−Rg
dd] (at emax the derivatives of f

and g are interpreted as left derivatives). We seek restrictions on f and g which guarantee

that there is a unique value of e that solves (6.1). Define

d

de

(
f ′ (e)

p′ (e)

)
=

f ′′ (e)

p′ (e)
− f ′ (e)

[p′ (e)]2
p′′ (e)

=
f ′ (e)

ep′ (e)

[
ef ′′ (e)

f ′ (e)
− ep′′ (e)

p′ (e)

]
=

f ′ (e)

ep′ (e)
[εf (e)− εp (e)] ,

where

εf (e) =
ef ′′ (e)

f ′ (e)
, εp (e) =

ep′′ (e)

p′ (e)
.
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Following is a set of suffi cient conditions for there to be a unique solution to (6.1):

εf (e) > εp (e) , 0 < e < emax (6.2)
f ′ (0)

p′ (0)
= 0. (6.3)

According to (6.2) there is more curvature in f than there is in p. The simple example in

which f (e) = e2/2 and p (e) is linear obviously satisfies (6.2) and (6.3).

The ex ante problem of the banker is

max
e,d.Rgd

βp (e) [Rg (N + d)−Rg
dd]− f (e) ,

subject to the incentive constraint and the zero profit condition for mutual funds. Let d (e)

denote the value(s) of d for which e is incentive compatible. That is, d (e) solves (6.1) or,

β

[
Rg − R

p (e)

]
d (e) =

f ′ (e)

p′ (e)
− βRgN.

Let ed be defined by

p (ed)R
g −R.

Note that ed < emax because of the assumption, Rg > R. For e > ed, d(e) is single-valued.

For e = ed, d (e) is composed of every d ≥ 0. Replacing d in the banker’s objective with d (e):

V (e) = βp (e)RgN + p (e) β

[
Rg − R

p (e)

]
d− f (e)

= βp (e)RgN + p (e)
f ′ (e)− βp′ (e)RgN

p′ (e)
− f (e)

=
p (e)

p′ (e)
f ′ (e)− f (e) .

The first order condition is:

V ′ (e) = f ′ (e)− f ′ (e) + p (e)
d

de

(
f ′ (e)

p′ (e)

)
= p (e)

f ′ (e)

ep′ (e)
[εf (e)− εp (e)] .

To have a unique interior solution for e, we require that V ′ (e) switch sign exactly one time

on the interior of 0 ≤ e ≤ emax. This is inconsistent with (6.2). If we satisfy (6.2), then the

optimal value of e is e = emax.

We conclude that we cannot find a p function that has the property that we have an

interior solution for e.
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7. Model with Diminishing Returns on Bank Balance Sheet

Here, we explore a version of the model in which the banker has diminishing returns to

investment. This could happen for two reasons: diminishing returns in the technology, or

market power. The example emphasized here assumes diminishing returns in technology.

7.1. Case with Rb = 0

Here, we consider the special case, Rb = 0.We begin with an interpretation of the diminishing

returns according to which it comes from market power. We then consider the case where

it is due to the investment technology itself. We then proceed to do the calculation for that

case.

7.1.1. Market Power

We bring in market power in the usual Dixit-Stiglitz way. The mutual funds are ‘retail

banks’. They collect the deposits and lend them to the investment banks. The investment

banks issue securities to specialized investment projects, which have diminishing returns.

The ith investment bank earns ri on its assets and receives the following profits:

βp(e) [rili −Rg
ddi]−

1

2
e2, li = n+ di

A fraction, 1 − p, of li turns into zero. This is an unsuccessful project. The li’s that don’t
turn into zero are loaned to an aggregator:

l =

[∫ p

0

l
ε−1
ε

i di

] ε
ε−1

di,

where a fraction, p (e) , of li = 0. The aggregator takes all these funds and lends them for a

profit,

Rll −
∫ p

0

rilidi

The aggregator is competitive and earns Rl on l. The first order conditions are:

Rl

(
l

li

) 1
ε

= ri, i ∈ [0, p] .

or,

li = l

(
Rl

ri

)ε
.
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Then,

l =

[∫ p

0

(
l

(
Rl

ri

)ε) ε−1
ε

di

] ε
ε−1

di

= l
(
Rl
)ε [∫ p

0

(
1

ri

)ε−1

di

] ε
ε−1

di,

or,

(
Rl
)−ε

=

[∫ p

0

(ri)
1−ε di

] ε
ε−1

di

Rl =

[∫ p

0

(ri)
1−ε di

] 1
1−ε

di.

The banker’s ex ante objective is now

βp(e)
[
ri (n+ di)−Rb

ddi
]
− 1

2
e2

or,

max
e,Rbd

βp(e)
[
Rll1/ε (n+ di)

ε−1
ε −Rb

ddi

]
− 1

2
e2

The banker goes to get a loan contract, e, Rb
d, d, just like before. Ex post, the banker chooses

e given Rb
d, d to solve

max
e
βp(e)

[
Rll1/ε (n+ di)

ε−1
ε −Rb

ddi

]
− 1

2
e2,

which implies a first order condition:

e = βb̄
[
Rll1/ε (n+ di)

ε=1
ε −Rb

ddi

]
.

It is understood that the banker will do this, and so ex ante the banker’s problem must take

the previous equation as given.

7.1.2. Diminishing Return on Investment

7.1.2.1.Lagrangian Approach The ex ante problem of the banker is

max
e,Rbd

β
(
p(e)A (n+ d)θ −Rd

)
− 1

2
e2

+η

(
βb̄

[
A (n+ d)θ − R

p (e)
d

]
− e
)
,

in Lagrangian form. In terms of the market power interpretation of the previous subsection,

A ≡ Rll1/ε, θ ≡ ε− 1

ε
.
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The first order conditions are:

e : βb̄A (n+ d)θ − e+ η

(
β

(
b̄

p (e)

)2

Rd− 1

)
= 0

d : β

[
1 + η

b̄

p (e)

] [
p(e)θA (n+ d)θ−1 −R

]
= 0

η : βb̄

[
A (n+ d)θ − R

p (e)
d

]
− e = 0

These equations at first appear to have two solutions, each corresponding to setting one of

the two objects in square brackets in the d equation to zero. As it turns out, the first object

cannot be zero, for to suppose so entails a contradiction. In particular, suppose it is zero.

Substitute out for e in the e equation from the η equation:

βb̄
R

p (e)
d = −η

[
β

(
b̄

p (e)

)2

Rd− 1

]

According to the first solution, η = −p (e) /b̄, so multiplying the above by p (e) /b̄ :

βRd =

(
p (e)

b̄

)2
[
β

(
b̄

p (e)

)2

Rd− 1

]
= βRd−

(
p (e)

b̄

)2

,

or,

0 =

(
p (e)

b̄

)2

.

But, p (e) ≥ ā > 0, contradiction. So, we cannot solve the first order conditions of the

Lagrangian problem by setting the first object in brackets in the d equation to zero. Now

consider setting the second object in d to zero:

p(e)θA (n+ d)θ−1 = R. (7.1)

We can solve this equation for e :

e =
R− āθA (n+ d)θ−1

b̄θA (n+ d)θ−1
.

Using this to substitute out for e in the η equation, that equation reduces to a nonlinear

equation in d and R.We want a general equilibrium, so R is replaced by R = 1/ (β (Y − d))

so that the η equation is still an equation in d alone. With d and e in hand, η can then be

solved from the e equation:

η =
βb̄A (n+ d)θ − e

1− β
(

b̄
p(e)

)2

Rd
=

β b̄
p(e)

Rd

1− β
(

b̄
p(e)

)2

Rd
.
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We now check whether the solution to e and d we have found satisfy the second order

conditions for e and d to be a (local) maximum for the banker’s deposit problem. The banker

problem holds R fixed at its equilibrium value. Define

V (e, d;R) = β
(
p(e)A (n+ d)θ −Rd

)
− 1

2
e2 + η

(
βb̄

[
A (n+ d)θ − R

p (e)
d

]
− e
)

g (e, d;R) = βb̄

[
A (n+ d)θ − R

p (e)
d

]
− e.

We construct the bordered Hessian in the usual way: Vee Ved ge
Ved Vdd gd
ge gd 0

 .
Here, Vi,j denotes the derivative of V with respect to i, j, where i = e, d and j = e, d.

Similarly for gi. Condition (7.1) implies that gd = 0. It then follows that the determinant is:

−g2
eVdd,

where

Vdd = β

(
1 +

ηb̄

p (e)

)
θ (θ − 1) p(e)A (n+ d)θ−2

ge = β

(
b̄

p (e)

)2

Rd− 1.

Note that, using the solution for η provided above,

ge = −
β b̄
p(e)

Rd

η
.

Intuitively, we expect η > 0 for two reasons. First, the incentive constraint is assumed

to be binding. Second, suppose η is zero, then the value of the constraint multiplying η

in the banker’s Lagrangian is negative. So, under a penalty function interpretation of the

multiplier, we need η > 0 to push the Lagrangian down. Still, we have not found a direct

proof that η > 0.

We can see that if we want the second order suffi cient conditions for a local maximum to

be satisfied, then we need to have

1 +
ηb̄

p (e)
> 0.

This does not rule out a negative value of η.

We considered the following model parameters:

A = 1, ā = 0.1, b̄ = 1, β = 0.99, θ = 0.80, Y = 1.396, N = 0.766,
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implying the following solution to the first order conditions:

d = 0.050, R = 0.750, e = 0.80, p = 0.90, η = 0.043.

The bordered Hessian is:  −1.0 0.86 0.95
0.86 −0.19 0.0
0.95 0.0 0

 .
The determinant of this matrix is

0.17,

which is positive. So, the solution to the first order conditions is a local maximum for the

banker’s deposit choice problem.

We have found that the above scenario is not a deposit contract equilibrium. This is

because the return on deposits, 0.40, is dominated by the return on depositing net worth in

the bank, whose an option whose period 1 value is βRN = 0.569. After a not-very-systematic

search, we were not able to find model parameters with the property that the solution to

the banker problem satisfies the determinant condition and dominates the banker’s outside

option.

7.1.2.2.Substituting Out the Constraints We now investigate whether we have a global

maximum. We pursue this by substituting out the incentive constraint. The incentive

constraint is:

f (d; e, R) ≡ βb̄

p (e)

[
p (e)A (n+ d)θ −Rd

]
− e


= 0 0 < e < (1− ā) /b̄
≥ 0 e = (1− ā) /b̄
≤ 0 e = 0

.

We seek d (e;R) , the set of d such that the incentive constraint is satisfied for given e and

R. The set, d (e;R) , could be empty. Then, define

Ṽ (e;R) = max
d∈d(e)

[
β
(
p(e)A (n+ d)θ −Rd

)
− 1

2
e2

]
.

The problem we seek to solve is

max
0≤e≤emax, d(e) non-empty

Ṽ (e;R) .

We can write the objective in terms of f :

p (e)

b̄
[f + e] = β

[
p (e)A (n+ d)θ −Rd

]
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so that

β
(
p(e)A (n+ d)θ −Rd

)
− 1

2
e2

=
p (e)

b̄
[f (d; e, R) + e]− 1

2
e2.

If there is a d that solves the IC constraint for given e, then this reduces to:

Ṽ (e;R) =
p (e)

b̄
e− 1

2
e2 =

ā

b̄
e+

1

2
e2.

Superficially, this suggests that whatever e we have, a higher value of e is superior. Again,

superficially, this suggests that at the solution identified above, where 0 < e < (1− ā) /b̄, a

higher value dominates. This is a mistake, because Ṽ can only be evaluated for an e that

has the property that d (e) is non-empty. The fact that the incentive constraint is satisfied

implies:

f (d, e) = βb̄

[
A (n+ d)θ − R

p (e)
d

]
− e = 0.

At the same time, (7.1) indicates that d is set to the value that makes f as big as possible,

given e. If f = 0 and (7.1) is satisfied, then if e is increased to e+ ε, where ε > 0, then there

is no d such that f (d, e+ ε) = 0. That is, d (e) is empty, no matter how small is ε. Thus,

when we substitute out the banker’s constraint, the solution is on a corner. It is not a corner

where e = (1− ā) /b̄ or d = Y. It is not a corner from the point of view of the Lagrangian

problem.

7.1.3. Properties of Equilibrium

β
(
p(e)A (n+ d)θ −R (N + d)

)
− 1

2
e2 + βRN

= β
[
p(e)A (n+ d)θ−1 −R

]
(N + d)− 1

2
e2 + βRN

= βp(e) (1− θ)A (n+ d)θ − 1

2
e2 + βRN,

using (7.1). Suppose the bank take on no deposits. Then, its effort is:

e∗ = βb̄AN θ,

and its objective takes on the value,

βp∗Anθ − 1

2
e2
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7.2. Case with Rb > 0

Here, we set up the problem with diminishing returns when Rb > 0. We did not investigate

numerical examples of this case. First, we evaluate the outside option of the banker, which

is to not take a deposit contract at all. In this case the banker solves

max
e
β
[
p(e)RgN θ + (1− p (e))RbN θ

]
− 1

2
e2,

and optimality implies (assuming an interior solution):

e∗ = βp′ (e)
(
Rg −Rb

)
N θ.

The value of the objective is:

V ∗ = β
[
p∗RgN θ + (1− p∗)RbN θ

]
− 1

2
(e∗) e2.

Next, we consider a banker who takes a deposit contract. At the time that the banker

takes out a loan with parameters, e, d, Rg
d, R

b
d, the objective is:

β
[
p(e)

(
Rg (N + d)θ −Rg

dd
)

+ (1− p (e))
(
Rb (N + d)θ −Rb

dd
)]
− 1

2
e2.

Ex post, since effort is not observed the banker selects the best possible e subject to the

given Rg
d, R

b
d, d :

e = βp′ (e)
[(
Rg −Rb

)
(N + d)θ −

(
Rg
d −Rb

d

)
d
]
.

The mutual funds make zero profits:

p (e)Rg
d + (1− p (e))Rb

d = R.

The cash constraints are:

Rg (N + d)θ ≥ Rg
dd, R

b (N + d)θ ≥ Rb
dd.

To solve this model we first assume that the cash and incentive constraints are not binding,

while only the zero profit condition is binding.

Substituting out the zero profit condition from the objective, we conclude that the

banker’s problem is:

max
d,e

β
[
p(e)Rg (N + d)θ + (1− p (e))Rb (N + d)θ −Rd

]
− 1

2
e2.

Optimality implies:

e = βp′ (e)
(
Rg −Rb

)
(N + d)θ

R = θ
[
p(e)Rg + (1− p (e))Rb

]
(N + d)θ−1 .
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The equilibrium can be found by directly replacing R with 1/ (β (Y − d)) . This gives two

equations in the two unknowns, e, d. Now, we need to construct values of Rg
d, R

b
d such that

the incentive and cash constraints are satisfied. The incentive constraint requires Rg
d = Rb

d.

The zero profit condition then implies

Rg
d = Rb

d = R.

We verify that cash constraints are satisfied. For interesting parameter values, they are

not satisfied. In particular, we can expect that the cash constraint in the bad state is not

satisfied. That is, the bank does not have enough net worth to insulate its creditor from a

bad outcome on its balance sheet.

In this case, we move to the case where the cash constraint in the good state is ignored

and the cash constraint in the bad state is binding. This is a constraint on the loan contract

agreed on by the mutual fund and the bank. It is easy to substitute out of the problem,

using

R−Rb
d = p (e)

(
Rg
d −Rb

d

)
.

At the time that the contract, e, d, Rg
d, R

b
d, is agreed on the zero profit condition, the effort

equation and the cash constraint are restrictions that the contract must satisfy. We use the

zero profit condition to solve out for Rg
d and R

b
d in the incentive constraint:

e = βp′ (e)

[(
Rg −Rb

)
(N + d)θ − R−Rb

d

p (e)
d

]
.

Using the cash constraint we simplify this further:

e =
βp′ (e)

p (e)

[
p (e)

(
Rg −Rb

)
(N + d)θ −

(
Rd− (N + d)Rb

)]
.

Let d (e) denote the value of d ∈ [0, Y ] for the incentive constraint is satisfied given a

particular value of e. A value of e for which d (e) is empty is not admissible. If there is more

than one d ∈ [0, Y ] , then d (e) is the d that maximizes

β
[
p(e)Rg (N + d)θ + (1− p (e))Rb (N + d)θ −Rd

]
− 1

2
e2.

Then, the problem is:

max
0≤e≤(1−ā)/b̄, d(e) not empty

β
[
p(e)Rg (N + d (e))θ + (1− p (e))Rb (N + d (e))θ −Rd (e)

]
− 1

2
e2.

This objective can be graphed over all e satisfying the indicated constraint.

The solution to the banker problem provides a mapping from R to e and d (e) . The

household fonc provides a mapping from d to R. The intersection represents an equilibrium.

It is possible to investigate whether a deposit restriction is desirable. Once the equilibrium

is solved, then reduce d by 5% and compute the new R from the household fonc. Feed that

R to the banker who then (taking d as given) solves for e.
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