The Math Gender Gap: The Role of Culture
Natalia Nollenberger, Nuria Rodriguez-Planas, Almudena Sevilla
Online Appendix

Table A. 1. Sample Size by Country of Ancestry and Destiny

		ARG	AUS	AUT	BEL	CHE	ISR	LUX	NLD	NZL	Total
1	Albania					132					132
2	Australia									36	36
3	Austria					46					46
4	Belgium							159			159
5	Bolivia	131									131
6	Chile	24									24
7	China		410						27	130	567
8	Croatia			77							77
9	Ethiopia						151				151
10	Fiji									35	35
11	France				102	203	67	242			614
12	Germany		21	38	41	176		116			392
13	Greece		46								46
14	India		158								158
15	Italy		88			739		256			1,083
16	Korea		31							15	46
17	Malaysia		34								34
18	Morocco								192		192
19	Netherlands				50						50
20	New Zealand		376								376
21	Paraguay	63									63
22	Philippines		240								240
23	Poland			47							47
24	Portugal					777		2,069			2,846
25	Romania			58							58
26	Russian Fed.						491				491
27	Viet Nam		291								291
28	South Africa		60								60
29	Spain					246					246
30	Suriname								107		107
31	Turkey			509	440	591			222		1,762
32	Macedonia			20							20
33	United		651							168	819
34	United States		29				82				111
35	Uruguay	17									17
	Total	235	2,435	749	633	2,910	791	2,842	548	384	11,527

Notes: Final sample of second-generation immigrants from 2003, 2006, 2009 and 2012 PISA datasets. ARG=Argentina, AUS=Australia, AUT=Austria, BEL=Belgium, CHE=Switzerland, ISR=Israel, LUX=Luxembourg, NLD=Netherlands, NZL= New Zealand.

Table A.2. Gender Gap in Math Scores and Gender Equality by Country of
Ancestry

	Country of ancestry	Math Gender Gap	GGI	N
1	Korea	-78.24	0.61	46
2	Macedonia	-72.64	0.69	34
3	Uruguay	-40.31	0.69	111
4	Fiji	-38.99	0.64	35
5	Greece	-35.53	0.67	46
6	Malaysia	-35.19	0.65	192
7	United States	-34.75	0.72	819
8	Croatia	-31.74	0.69	77
9	Morocco	-31.70	0.59	50
10	Romania	-30.52	0.68	491
11	Spain	-25.55	0.73	246
12	UK	-23.73	0.74	20
13	Italy	-22.65	0.68	1,083
14	China	-21.69	0.69	567
15	Albania	-21.16	0.66	132
16	Poland	-20.11	0.70	2,846
17	Russian Fed.	-16.88	0.70	291
18	India	-16.45	0.62	158
19	Belgium	-15.56	0.72	159
20	Bolivia	-14.36	0.67	131
21	Turkey	-13.77	0.58	1,762
22	Ethiopia	-10.69	0.59	151
23	Suriname	-10.39	0.67	107
24	Philippines	-9.66	0.76	47
25	South Africa	-9.56	0.77	60
26	Portugal	-8.53	0.70	58
27	Germany	-6.96	0.74	392
28	France	-6.43	0.73	614
29	Viet Nam	-6.34	0.68	17
30	New Zealand	2.42	0.79	63
31	Paraguay	12.61	0.69	240
32	Australia	32.26	0.73	36
33	Austria	32.29	0.70	46
34	Chile	33.52	0.69	24
35	Netherlands	47.53	0.75	376
	Mean	-15.70	0.69	11,527
	St. Dev.	26.04	0.05	

Notes: Table A. 1 displays the means of the math gender gap and the GGI by country of ancestry estimated using our sample of second-generation immigrants from 2003, 2006, 2009 and 2012 PISA. Countries are ordered by the gender gap in math scores. It was obtained from estimating a linear regression using the plausible values provided by the PISA data sets as LHS variable and a female indicator as RHS (we estimated one regression for each PV and present the average of the 5 coefficients estimated). See Appendix Table A. 3 for details about gender equality measures. The last two rows of Table A. 1 display the mean and cross-country standard deviation.

Table A. 3. Individual-level variables: Definition and Descriptive Statistics

\begin{tabular}{|c|c|c|c|}
\hline Name \& Definition \& Mean \& St. Dev. across countries of ancestry \\
\hline \multicolumn{4}{|l|}{A. Individual Characteristics} \\
\hline Female \& Dummy variable equal to 1 if the individual is a girl \& 0.52 \& 0.08 \\
\hline Age \& Years and months \& 15.77 \& 0.06 \\
\hline Different grade \& Dummy equal to 1 if the current individual's grade is different from the modal grade at the children age in the host country and 0 otherwise. \& 0.35 \& 0.17 \\
\hline \multicolumn{4}{|l|}{B. Family characteristics} \\
\hline Mother highest level of education (MISCED) \& Index constructed by the PISA program based upon the highest education level of each parent. It has the following categories: (0) None; (1) ISCED 1 (primary education); (2) ISCED 2 (lower secondary); (3) \& 3.66 \& 1.04 \\
\hline Father highest level of education (FISCED) \& ISCED Level 3B or 3C (vocational/pre-vocational upper-secondary); (4) ISCED 3A (upper-secondary) and/or ISCED 4 (non-tertiary post-secondary); (5) ISCED 5B (vocational tertiary); and (6) ISCED 5A, 6 (theoretically-oriented tertiary and post-graduate). \& 3.85 \& 0.85 \\
\hline Mother works
Father works \& Dummy equal to one if the mother (father) works, and zero otherwise. Due to the direct question about parents' labor status is not included in all PISA waves, we use students' responses about what is the mother (father) main work. The dummy takes the value of zero when the answer is housewife, student or social beneficiary (unemployed, retired, sickness, etc.) and one otherwise. \& 0.82

0.93 \& 0.14
0.05 \\
\hline Index of home possessions (homeposs) \& The index of home possessions comprises all items on the indices of wealth, cultural possessions and home educational resources, as well as books in the home recoded into a four-level categorical variable ($0-10$ books, $11-25$ or 26-100 books, 101-200 or 201500 books, more than 500 books). The index of wealth is based on the students' responses on whether they had a room of their own, a link to the Internet, a dishwasher, a DVD player, and three other countryspecific items; and their responses on the number of cellular phones, televisions, computers, cars and the rooms with a bath or shower. The index of cultural possessions is based on the students' responses to whether they had the following at home: classic literature, books of poetry and works of art. The index of home educational resources is based on the items measuring the existence of educational resources at home including a desk and a quiet place to study, a computer, educational software, books to help with students' school work, technical reference books and a dictionary. \& -0.04 \& 0.53 \\
\hline \multicolumn{4}{|l|}{C. School characteristics} \\
\hline Percentage of girls \& PISA index of the proportion of girls enrolled in each school derived from school principals' responses regarding the number of girls divided by the total of girls and boys at a school. \& 0.49 \& 0.04 \\
\hline Private school \& Dummy equal to 1 if school is private and 0 otherwise. \& 0.24 \& 0.18 \\
\hline School location \& Dummy equal to 1 if the school is in a metropolis (one million or more inhab.) and 0 otherwise. \& 0.29 \& 0.27 \\
\hline
\end{tabular}

Table A.4. Robustness Checks

	Math scores
A. Baseline	
GGI \times Female	149.55**
	[62.62]
N	11,527
R^{2}	0.35
B. Controlling for ancestry-country HDI and its interaction with female	
GGI \times Female	158.79**
	[66.52]
N	11,527
R^{2}	0.35
C. Host-country regional FE	
GGI \times Female	133.98**
	[62.69]
N	11,527
R^{2}	0.36
D. Gender equality measures from 90s	
$\operatorname{FLFP}(1990) \times$ Female	35.46
	[31.23]
N	11,527
R^{2}	0.35
Parliament seats held by women (1990-97) \times Female	$\begin{aligned} & 77.60^{*} \\ & {[42.79]} \end{aligned}$
N	11,507
R^{2}	0.35
E. Adding Year FE \times Female	
GGI \times Female	150.13**
	[64.12]
N	11,527
R^{2}	0.35
F. Cluster SE at country of ancestry level	
GGI \times Female	149.55***
	[45.98]
N	11,527
R^{2}	0.35

Notes: Results from estimating equation 1 using alternative specifications. In panel B we replace the GDP per capita in the country of ancestry by a better proxy of the human capital level in the country of ancestry (the Human Development Index). In panel C, host-country regional fixed effects are used instead of host-country fixed effects. Panel D uses alternative measures of gender equality in the country of ancestry, measured in the 1990s. Panel E presents a more flexible specification in which PISA fixed effects are interacted with the gender indicator. Panel F presents estimates with standard errors clustered at the country of ancestry level. In all cases we use the five plausible values of math test scores provided by PISA datasets and report the average coefficient (Stata command pv). Except for Panel F, standard errors are adjusted following the Fay's BRR methodology using the 80 alternative weights provided by the PISA datasets.

* $\mathrm{p}<0.1$, ** $\mathrm{p}<0.05, * * * \mathrm{p}<0.01$

Table A.5. Sensitivity to Sample Selection

	Math scores
Baseline	
GGI \times Female	149.55**
	[62.62]
N	11,527
R^{2}	0.35
A. Dropping the most important country of ancestry (Portugal)	
GGI×Female	144.52**
	[65.15]
N	8,681
R^{2}	0.36
B. Dropping the most important host country (Switzerland)	
GGI \times Female	148.77**
	[74.20]
N	8,617
R^{2}	0.38
C. Keeping only one host country	
Switzerland	163.12
	[136.34]
N	2910
R^{2}	0.13
Australia	199.01**
	[91.00]
N	2,450
R^{2}	0.16
D. Dropping those countries that send immigrants to only one host country	
GGI \times Female	228.01**
	[101.93]
N	8,240
R^{2}	0.29
Notes: Results from estimating our preferred specification (Baseline) with different samples. In panel A we drop those second-generation immigrants whose ancestries come from Portugal (the country of origin with more observations in our sample). In panel B, we drop the host country with more observations in our sample (Switzerland). In panel C, we replicate our analysis using only one host country (Switzerland or Australia). In panel D, we drop those countries that send immigrants to only one host country. In all cases we use the five plausible values of math test scores provided by PISA datasets and report the average coefficient (Stata command $p v$). Standard Errors are adjusted following the Fay's BRR methodology using the 80 alternative weights provided by the PISA datasets.$* \mathrm{p}<0.1, * * \mathrm{p}<0.05, * * * \mathrm{p}<0.01$	

