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1. Introduction

Firms and workers are, on average, more productive in larger markets. For cities, this fact —
first suggested by Adam Smith (1776) and Alfred Marshall (1890) — is now firmly established
empirically (see Rosenthal and Strange, 2004, for a review and Henderson, 2003, and Combes,
Duranton, and Gobillon, 2008, for recent contributions). Estimates of the magnitude of this effect
range between a two and eight percent productivity increase from a doubling of city size for a large
range of city sizes, depending on the sector and details of the estimation procedure (Rosenthal and
Strange, 2004, Combes, Duranton, Gobillon, and Roux, 2007). The evidence is also mounting when
considering spatial markets at higher levels of aggregation, such as regions and even countries
(Head and Mayer, 2004, Redding and Venables, 2004, Amiti and Cameron, 2007).

For a long time, the higher average productivity of firms and workers in larger markets has been
attributed to ‘agglomeration economies’. These agglomeration economies are thought to arise from
a variety of mechanisms such as the possibility of similar firms sharing suppliers, the existence of
thick labour markets ironing out firm-level shocks or facilitating matching, or the possibility to
learn from the experiences and innovations of others (see Duranton and Puga, 2004, for a review).
All these mechanisms share a common prediction: the concentration of firms and workers in space
makes them more productive.

More recently, an alternative explanation has been offered based on ‘firm selection’. The argu-
ment builds on work by Melitz (2003), who introduces product differentiation and international
or inter-regional trade in the framework of industry dynamics of Hopenhayn (1992). Melitz and
Ottaviano (2005) incorporate endogenous price-cost mark-ups in this framework and show that
larger markets attract more firms, which makes competition tougher.1 In turn, this leads less
productive firms to exit. This suggests that the higher average productivity of firms and workers
in larger markets could instead result from a stronger Darwinian selection of firms.

Our main objective in this paper is to distinguish between agglomeration and firm selection in
explaining why average productivity is higher in larger markets. To do so, our first step is to gener-
alise the framework of Melitz and Ottaviano (2005) to many markets and free it from distributional
assumptions. We then combine this model with a fairly general model of agglomeration in the
spirit of Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002). This nested model allows
us to parameterise the relative importance of agglomeration and selection. The main prediction
of our model is that stronger selection effects in larger markets should lead to an increased left
truncation of the distribution of firm log productivities whereas stronger agglomeration effects
should lead to a rightwards shift of the distribution of firm log productivities. Put differently, we
exploit the idea that although agglomeration and selection share the same prediction about average
log productivity, they differ regarding higher moments of the log productivity distribution across
markets.

We then use this prediction to assess the relative importance of agglomeration and firm selection
for different sectors using data for all French firms. Our structural estimation is in two steps. We

1Bernard, Eaton, Jensen, and Kortum (2003) also develop a model with heterogenous firm productivity levels and
endogenous mark-ups but, unlike in Melitz and Ottaviano (2005), this mark-ups are not affected by market size.
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first estimate total factor productivity at the plant level. Next, we develop a new quantile approach
to compare the distribution of plant log productivities for each sector across metropolitan areas of
different size. As stipulated by the model, we estimate the extent to which the log productivity
distribution in large markets is left truncated and right shifted compared to the log productivity
distribution in small markets.

Our main finding is that productivity differences between French metropolitan areas are ex-
plained mostly by agglomeration.

[[Further details on results to be added here.]]
Our paper is related to the large agglomeration literature surveyed in Duranton and Puga

(2004), Rosenthal and Strange (2004) and Head and Mayer (2004), which it extends by considering
an entirely different reason for the higher average productivity in larger markets. It is also related
to the pioneering work of Syverson (2004) who examines the effect of market size on firm selection
in the ready-made concrete sector and the emerging literature that follows (Del Gatto, Mion, and
Ottaviano, 2006, Del Gatto, Ottaviano, and Pagnini, 2008). A first difference with Syverson’s work
is that we jointly estimate agglomeration and selection effects rather than considering only selec-
tion. Our results below show that, unless we consider both simultaneously, we risk confounding
the effects of selection with those of agglomeration. The second difference is that our procedure
uses information from the entire distribution of productivities instead of its second moment only.
This is important because predictions regarding the second moment are not general and depend
crucially on distributional assumptions.2 A final difference is that we consider firms in different
sectors.

The rest of this paper is organised as follows. The next section proposes a generalisation of
Melitz and Ottaviano (2005) and combines it with an agglomeration model. Section 3 describes our
econometric approach. Section 4 discusses the data and the details of our empirical implementa-
tion. The main results are then presented in section 5. In section ?? we explore the robustness of
our empirical results. Finally, section 6 concludes.

2. A nested model of selection and agglomeration

To motivate our empirical approach, we nest a generalised version of the firm selection model of
Melitz and Ottaviano (2005) and a model of agglomeration economies in the spirit of Fujita and
Ogawa (1982) and Lucas and Rossi-Hansberg (2002).

An individual consumer’s utility is given by

U = q0 + α
∫

i∈Ω
qidi − 1

2
γ

∫
i∈Ω

(qi)
2di − 1

2
η

(∫
i∈Ω

qidi
)2

, (1)

where q0 denotes the individual’s consumption of a homogenous numéraire good, and qi her
consumption of variety i of a set Ω of differentiated goods. The three positive demand parameters

2Like in our model, tougher competition in Syverson (2004) leads to a left-truncation of the distribution of pro-
ductivities in larger markets. In turn, in his model this implies a decrease in the variance of productivities, a result
that depends crucially on distributional assumptions. It holds in Syverson’s model and will hold more generally for
productivity distributions with log-concave density. However, the result would be reversed if one considered instead a
productivity distribution with log-convex density, such as the popular Pareto distribution (on the relationship between
the variance of a left-truncated distribution and log-concavity and log-convexity, see Heckman and Honore, 1990).
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α, γ, and η are such that a higher α and a lower η increase demand for differentiated goods relative
to the numéraire, while a higher γ reflects more product differentiation between varieties.3

Utility maximisation subject to the budget constraint yields the following inverse demand for
differentiated variety i by an individual consumer:

pi = α − γqi − η
∫

i∈Ω
qidi , (2)

where pi denotes the price of variety i. It follows from (2) that varieties with too high a price are
not consumed. This is because, by (1), the marginal utility for any particular differentiated variety
is bounded. Let Ω̄ denote the set of varieties with positive consumption levels in equilibrium, M

the measure of Ω̄, and P ≡ 1
M

∫
i∈Ω̄ pidi the average price of varieties with positive consumption.

Integrating equation (2) over all varieties in Ω̄, solving for
∫

i∈Ω qidi, and substituting this back into
equation (2), we can solve for an individual consumer’s demand for variety i as:

qi =

 1
γ+ηM (α + η

γ MP) − 1
γ pi if pi 6 1

γ+ηM (γα + ηMP) ,

0 if pi > 1
γ+ηM (γα + ηMP) .

(3)

The price threshold in equation (3) follows immediately from the restriction qi > 0.
The numéraire good is produced under constant returns to scale using one unit of labour per

unit of output and (when we consider more than one location) freely traded. This implies that the
cost to firms of hiring one unit of labour is always unity.4 Differentiated varieties are produced
under monopolistic competition. By incurring a sunk entry cost s, a firm is able to develop a
new variety that can be produced using h units of labour per unit of output. The unit labour
requirement h differs across firms and for each of them it is randomly drawn from a distribution
with known probability density function g(h) and cumulative G(h). Melitz and Ottaviano (2005)
derive most of their results under the assumption that g(h) is a Pareto distribution. For the results
in our paper, no such assumption is needed, so we do not adopt any particular distribution for
g(h). Given the unit cost of each unit of labour, h is also the marginal cost. Firms with a marginal
cost higher than the price at which consumer demand becomes zero are unable to cover their
marginal cost and exit. The set of goods that end up being produced in equilibrium is therefore

Ω̄ = {i ∈ Ω | h 6 h̄} , where h̄ ≡ 1
γ + ηM

(γα + ηMP) . (4)

Since all varieties enter symmetrically into utility, we can index firms by their unit labour
requirement h instead of by the specific variety i they produce. Using (4) to re-write the individual
consumer demand of (3) in terms of h̄ and multiplying this by the mass of consumers C yields the
following expression for the total sales of an individual firm:

Q(h) = Cq(h) =

C
γ [h̄ − p(h)] if p(h) 6 h̄ ,

0 if p(h) > h̄ .
(5)

3The specification in (1) is often referred to as the quadratic utility model of horizontal product differentiation. It has
been used in industrial organization by, for instance, Dixit (1979) and Vives (1990) and has become popular in location
modelling following Ottaviano, Tabuchi, and Thisse (2002).

4The unit cost for labour holds provided there is some production of the numéraire good everywhere. Given the
quasi-linear preferences, this requires that income is high enough, which is easy to ensure.
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Given that the entry cost is sunk when firms draw their value of h, active firms set prices to
maximise operational profits given by

π(h) = [p(h) − h]Q(h) . (6)

Maximising π(h) in (6) subject to (5) yields the optimal pricing rule

p(h) =
1
2
(h + h̄) . (7)

Substituting (5) and (7) into (6) we obtain equilibrium operational profits:

π(h) =
C
4γ

(h̄ − h)2 . (8)

Entry into the monopolistically competitive industry takes place until ex-ante expected profits are
driven to zero. The operational profits expected prior to entry must therefore be exactly offset by
the sunk entry cost:

C
4γ

∫ h̄

0
(h̄ − h)2g(h)dh = s . (9)

The free entry condition (9) implicitly defines the marginal cost cutoff h̄ as a function of the
distribution g(h), the sunk entry cost s, and the degree of product differentiation parameter γ.

We now turn to the agglomeration components of the model. Workers are endowed with
a single unit of working time each that they supply inelastically. Each worker is made more
productive by interactions with other workers, so that the effective units of labour supplied by
an individual worker in their unit working time is a(I), where I is the population that a worker
interacts with, a′ > 0 and a′′ < 0. We can think of such interactions as exchanges of ideas
between workers, where being exposed to a greater diversity of ideas makes each worker more
productive. This motivation for agglomeration economies based on interactions between workers
can be found in, amongst others, Fujita and Ogawa (1982) and Lucas and Rossi-Hansberg (2002)
— we introduce a discrete version of their spatial decay for interactions below. Duranton and
Puga (2004) review micro-foundations of numerous alternative agglomeration mechanisms, which
also result in a reduced form like a(I). We assume that such interactions benefit workers across
occupations, i.e., regardless of whether they produce any particular variety of the differentiated
goods or the numéraire good. This, given the unit payment per effective unit of labour supplied,
implies that the total income earnings of each worker in any occupation is a(I). A firm with unit
labour requirement h hires l(h) = Q(h)h/a(I) workers at a total cost of a(I)l(h) = Q(h)h. The
natural logarithm of the firm’s productivity is then given by

φ = ln
(

Q
l

)
= ln [a(I)] − ln(h) . (10)

The probability density function of firms’ log productivities is then

f (φ) =

0 for φ < A − ln(h̄) ,
eA−φ g(eA−φ)

G(h̄) for φ > A − ln(h̄) ,
(11)
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where
A ≡ ln [a(I)] . (12)

The numerator of f (φ), eA−φ g
(
eA−φ

)
follows from using equation (10) and the change of vari-

ables theorem, while the denominator G(h̄) takes care of the fact that firms with a unit labour
requirement above h̄ exit. The model can now be solved sequentially by first using the free entry
condition of equation (9) to solve for the equilibrium cut-off unit labour requirement h̄. We can
then substitute h̄ into (11) to obtain the equilibrium distribution of firm productivities.

To understand how selection and agglomeration forces contribute to determining the distribu-
tion of firms’ log productivities it is instructive to think of what is the relevant mass C of consumers
that each firm sells to and what is the relevant mass I of people that each worker interacts with.
For clarity, consider two polar possibilities for each (to be generalised to intermediate cases below)
in an economy with two markets (to be generalised to multiple markets below). In terms of
demand, at one extreme we can think of firms selling only to consumers in their location and
thus competing with other local firms only (local product-market competition). At the other extreme,
firms can sell with equal ease to consumers anywhere and thus compete with firms everywhere
(global product-market competition). In terms of interactions, at one extreme we can think of workers
interacting exclusively with other workers living in the same location (local interactions). At the
other extreme, workers can interact with equal ease with workers living anywhere (global interac-

tions). The combination of these possibilities gives us four cases. We now compare in each of the
four cases the distribution of firms’ log productivities across two locations of different population
size (a large location 1 where C = C1 and I = I1 and a small location 2 where C = C2 and I = I2).

Case 1 (local product-market competition and global interactions). Panel (a) in figure 1 plots the dis-
tribution of firms’ log productivities in a location with a large population (continuous line) and
in a location with a small population (dashed line) in the case where firms only sell in their local
market and workers enjoy interactions with the same intensity with workers from everywhere
(i.e., C1 > C2 and I1 = I2). Compared with the distribution in the small location, the large-location
distribution is left-truncated as a consequence of firm selection (this left-truncation implies that
the peak of the large location distribution is higher than that of the small location distribution and
that the two peaks occur at the same level of productivity). To understand this greater truncation
in the large location note that if the number of active firms in the large location was the same as
in the small location, every large-location firm would sell proportionately more. Formally, using
equations (5) and (7), total sales for an individual firm can be expressed as C

2γ (h̄ − h), which, for
a given number of firms M and hence for a given h̄, increase proportionately with the population
of consumers C. However, the larger individual firm sales associated with a larger C make further
entry profitable and, by equation (9), they must be offset by a lower h̄ to restore zero ex-ante

expected profits. To understand how firms in different ranges of the productivity distribution
are affected by location size, note that from (5) and (7), the price elasticity of demand faced at
equilibrium by a firm with unit labour requirement h can be written as follows:

ε(h) ≡ − p(h)
Q(h)

dQ(h)
dp(h)

=
h̄ + h
h̄ − h

. (13)
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Panel (a) Panel (b)
(stronger selection and same agglomeration (same selection and stronger agglomeration

at large location) at large location)

Panel (c) Panel (d)
(stronger selection and stronger agglomeration (same selection and same agglomeration

at large location) at large location)

Figure 1. Log-productivity distributions in a large (continuous line) and small location (dashed)

Demand becomes more price-elastic as h increases or as h̄ decreases. Thus, each firm in the large
location (where h̄ is lower) faces a more elastic demand, and hence charges a lower markup,
[p(h) − h]/h, than a firm with the same h in the small location. The combination of more con-
sumers, entry, and the ensuing lower markups in the large location affects firms’ sales differently
depending on their h.5 Firms with high productivity, and hence high markups, enjoy smaller
profit margins but larger sales than their small-location counterparts. Low productivity firms,
however, have both smaller profit margins and smaller sales in the large location than in the
small location. In short, product market competition is tougher in a large location than in a small
location, and this affects firm with low productivity and hence low price-cost margins the most.
Some low-productivity firms that would have been able to survive in a small market cannot lower
their prices any further and must exit in the large market. It is this exit at the low-productivity
end that leads to the large-location log productivity distribution being a left-truncated version of
the small-location distribution (this can be seen from equation 11, given the lower h̄ in the large

5This is best seen by considering the effect on a firm’s sales Q(h) of a small increase in C. From (5) and (7),
dQ(h)

dC = 1
2γ

[
h̄ − h + C dh̄

dC

]
. From the free entry condition of (9), dh̄

dC = −2γs/[C2 ∫ h̄
0 (h̄ − h)g(h)dh]. It follows that

dQ(h)
dC > 0 if and only if (h̄ − h) C

2γ

∫ h̄
0 (h̄ − h)g(h)dh > s. The expression on the left-hand side of this inequality is

twice the firm’s markup times ex-ante expected sales. Since there are zero expected ex-ante profits, for firms near the top
of the productivity distribution (those with the lowest values of h and thus highest markups) this inequality necessarily
holds, so their sales increase as market size increases. For firms near the bottom of the productivity distribution (those
with a value of h close to the cutoff h̄) the inequality necessarily fails to hold, so their sales fall as market size increases.
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location).

Case 2 (global product-market competition and local interactions). Panel (b) in figure 1 plots the distri-
bution of firms’ log productivities in a location with a large population (continuous line) and in a
location with a small population (dashed line) in the case where every firm competes with the same
intensity with firms from everywhere and workers only interact with workers in their location (i.e.,
C1 = C2 and I1 > I2).6 Compared with the distribution in the small location, the large-location
distribution is right-shifted. Since interactions are local, workers in the larger location benefit from
being exposed to a wider range of ideas than workers in the small location and this makes them
more productive. As a result, all large-location firms achieve higher log productivity than their
small-location counterparts (i.e., log productivity φ is higher in the large location for every h).
Since product-market competition is global, all firms can sell to consumers everywhere and this
eliminates the firm selection mechanism of the previous case. Hence, the log productivity cut-off
ln [a(I)] − ln(h̄) simply moves rightwards to the same extent as every point of the log productivity
distribution. Consequently the large-location log productivity distribution is simply a right-shifted
version of the small-location distribution (this can be seen from equation 11, given the higher I in
the large location and the fact that a′ > 0). Thus, agglomeration acts like the tide that lifts all boats.

Case 3 (local product-market competition and local interactions). Panel (c) in figure 1 plots the distri-
bution of firms’ log productivities in a location with a large population (continuous line) and in a
location with a small population (dashed line) in the case where firms only sell in their local market
and workers only interact with workers in their location (i.e., C1 > C2 and I1 > I2). Compared
with the distribution in the small location, the large-location distribution is both left-truncated
and right-shifted. With local product-market competition, large-location markups are lower and
this left-truncates the distribution of firms’ log productivities to exactly the same extent as under
case 2. With local interactions, large-location workers are more productive and this right-shifts the
distribution of firms’ log productivities (truncated by firm selection) to exactly the same extent as
under case 3.7

Case 4 (global product-market competition and global interactions). When every firm competes with the
same intensity with firms from everywhere and every worker enjoys interactions with the same

6To facilitate visual comparisons, we re-scale the combined size of the large and small locations from panel to panel to
keep the sets C and I for the small location constant across cases, thus making the distribution of firms’ log productivities
in the small location identical in all four panels. This is done for the purpose of plotting the graph only, and does
not change the qualitative comparison between the small-location and large-location distributions. These graphs are
drawn using a Fisher distribution, but recall that our analytical results are distribution-independent. We use a Fisher
distribution for the graphs because it matches well the empirically-observed distributions presented later in the paper.

7The absence of interactions between selection and agglomeration mechanisms is a consequence of having kept the
assumption of quasi-linear preferences of Melitz and Ottaviano (2005), which eliminates income effects in the market
for differentiated goods. The introduction of income effects would create an interaction between agglomeration and
firm selection that would result in further left-truncation of the large-location log productivity distribution. This is
because, with income effects, the log productivity advantages of agglomeration would translate into a larger market
for differentiated goods in the large location. This would reinforce the increase in local product-market competition
caused by the larger population, and strengthen firm selection. Thus, with income effects, agglomeration would
appear as a right shift in the log productivity distribution, while selection as well as interactions between selection and
agglomeration would appear as a left truncation. More complicated interactions between selection and agglomeration
mechanisms would appear if the benefits from agglomeration for each worker varied depending on which firm they
were working for.
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intensity with workers from everywhere (i.e., C1 = C2 and I1 = I2), the distribution of firms’ log
productivities in a location with a large population is exactly the same as in a location with a small
population. Panel (d) in figure 1 plots the probability density function of the distribution of firms’
log productivities, f (φ), in this final case where it is independent of location size. Note that the fact
that the distribution of firms’ log productivities does not depend on location size in this case does
not imply that there are no selection or agglomeration effects. It simply implies that selection and
agglomeration effects are equally strong everywhere. If there were no selection or agglomeration
effects, the distribution of firm productivities would be given by f (φ) = e−φ g

(
e−φ

)
, plotted as

a dotted line in panel (d). Relative to this underlying distribution, the actual distribution of firm
productivities is both left-truncated and right-shifted.

Parameterising the strength of selection and agglomeration

For expositional clarity, we have so far focused on the polar possibilities of either local or global
product-market competition and either local or global interactions. We now generalise our analysis
to also consider intermediate cases for both. We do so by parameterising both the spatial decay of
product market competition, creating differences in firm selection across locations, and the spatial
decay of interactions, creating differences in agglomeration economies across locations. As before,
we compare the distribution of productivities across locations of different size. Suppose we have
K locations. Let us denote the population of location i by Ni and order locations from largest to
smallest in terms of population: N1 > N2 > · · · > NK−1 > NK.

In the case of product-market competition, we can introduce transport costs for differentiated
goods. Suppose that markets are segmented and that selling outside the location where a firm is
located involves iceberg transport costs so that τ (> 1) units need to be shipped for one unit to
arrive at the destination. Since firms now potentially sell in all locations, the free entry condition
of equation (9) becomes

Ni

4γ

∫ h̄i

0
(h̄i − h)2g(h)dh + ∑

k 6=i

Nk

4γ

∫ h̄k/τ

0
(h̄k − τh)2g(h)dh = s , (14)

for location i. The first term on the left-hand side captures operational profits from local sales
and the second-term summation the operational profits from out-of-location sales. Note that only
location i firms with marginal costs h < h̄k/τ sell in location k, where h̄k is the cutoff for local firms
in k, since location i firms must be able to cover not just production but also trade costs. Note also
that the cases of purely local or purely global product-market competition discussed above can
still be captured as particular cases. The case of local product-market competition corresponds to
τ = ∞, which turns equation (14) into equation (9) with C = Ni. The case of global product-market
competition corresponds to τ = 1, which turns equation (14) into equation (9) with C = ∑K

k=1 Nk.
In addition, we can now also consider intermediate cases where 1 < τ < ∞.

Regarding interactions, we can think of these as being subject to some spatial decay. Specific-
ally, let us redefine the relevant argument for the interactions function a(·) as the sum of local
population and outside population, with the latter adjusted by some decay factor as in Fujita
and Ogawa (1982) and Lucas and Rossi-Hansberg (2002). This implies that the effective labour
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supplied by an individual worker in location i is a(Ni + δ ∑k 6=i Nk), where the decay parameter
δ measures the strength of across-location relative to within-location interactions (0 < δ < 1).
From equation (10), the log productivity of a firm with marginal cost h in location i is given by
φ = ln

[
a(Ni + δ ∑k 6=i Nk)

]
− ln(h). Thus, the gain in log productivity across the board due to

interactions in location i (a local measure of the strength of agglomeration) of equation (12) can be
redefined as

Ai ≡ ln

[
a(Ni + δ ∑

k 6=i
Nk)

]
. (15)

The case of local interactions discussed above corresponds to δ = 0, which implies Ai = ln[a(Ni)].
The case of global interactions discussed above corresponds to δ = 1, which implies that Ai =
ln[a(∑K

k=1 Nk)]. In addition, we can now also consider intermediate cases where 0 < δ < 1.
The distribution of firms’ log productivities still has its probability density function given by

equation (11), which using subindex i to specify the location becomes

fi(φ) =

0 for φ < Ai − ln(h̄i) ,
eAi−φ g(eAi−φ)

G(h̄i)
for φ > Ai − ln(h̄i) ,

(16)

In anticipation of the econometric approach developed in the next section, it will be useful to also
write the corresponding cumulative density function, Fi(φ). To do that compactly, we need to
introduce some additional notations. Let

Si ≡ 1 − G(h̄i) (17)

denote the proportion of firms that fail to survive product-market competition in location i (a local
measure of the strength of selection). To further simplify notation, let us define

F̃(φ) ≡ 1 − G
(
e−φ

)
(18)

as the underlying cumulative density function of log productivities we would observe in all
locations in the absence of any selection (h̄i = ∞, ∀i) and in the absence of any agglomeration
(Ai = 0, ∀i). Without selection (h̄i = ∞, ∀i) all entrants survive regardless of their draw of h.
Without agglomeration (Ai = 0, ∀i), φ = − ln(h). Equivalently, h = e−φ. Using the change of
variables theorem then yields (18) above. We can then write the cumulative density function of the
distribution of log productivities for active firms in location i as

Fi(φ) = max
{

0,
F̃(φ − Ai) − Si

1 − Si

}
. (19)

Relative to the underlying distribution we would observe in any location in the absence of ag-
glomeration and selection, given by (18), selection eliminates a share Si of entrants (those with
lower productivity values) while agglomeration shifts the distribution rightwards by Ai. The
next section will develop an econometric approach to estimate the relative magnitude across
locations of agglomeration, as measured by Ai, and selection, as measured by Si. The following
proposition contains our main theoretical result, with predictions for how these expressions vary
across locations of different sizes.
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Proposition 1. Suppose there are K locations ranked from largest to smallest in terms of population:
N1 > N2 > · · · > NK−1 > NK, there are positive trade costs τ across locations, where 1 < τ < ∞,
and a decay δ for interactions across locations, where 0 < δ < 1. Firm selection left truncates
the distribution of firm log productivities, and this truncation is greater the larger a location’s
population: h̄1 < h̄2 < . . . < h̄K−1 < h̄K and thus S1 > S2 > . . . > SK−1 > SK. Agglomeration
leads to the distribution of firm log productivities (once truncated) being right shifted, and this
right shift is greater the larger a location’s population: A1 > A2 > . . . > AK−1 > AK.

Proof Consider any two areas i and j such that i < j (and thus Ni > Nj). Writing the free entry
condition of equation (14) for locations i and j gives:

Ni

4γ

∫ h̄i

0
(h̄i − h)2g(h)dh +

Nj

4γ

∫ h̄j/τ

0
(h̄j − τh)2g(h)dh + ∑

k 6=i,k 6=j

Nk

4γ

∫ h̄k/τ

0
(h̄k − τh)2g(h)dh = s ,

(20)

Nj

4γ

∫ h̄j

0
(h̄j − h)2g(h)dh +

Ni

4γ

∫ h̄i/τ

0
(h̄i − τh)2g(h)dh + ∑

k 6=i,k 6=j

Nk

4γ

∫ h̄k/τ

0
(h̄k − τh)2g(h)dh = s .

(21)

Subtracting equation (21) from (20) and simplifying yields:

Ni ν(h̄i,τ) = Nj ν(h̄j,τ) . (22)

where

ν(z,τ) ≡
∫ z

0
(z − h)2g(h)dh −

∫ z/τ

0
(z − τh)2g(h)dh . (23)

It follows from (22) and Ni > Nj that

ν(h̄i,τ) < ν(h̄j,τ) . (24)

We wish to show that h̄i < h̄j. It is therefore enough to prove that ν(z,τ) is an increasing function
of its first argument. This can be shown easily by differentiating (23) with respect to z:

∂ν(z,τ)
∂z

= 2
[∫ z

0
(z − h)g(h)dh −

∫ z/τ

0
(z − τh)g(h)dh

]
= 2

[
(τ − 1)

∫ z/τ

0
hg(h)dh +

∫ z

z/τ
(z − h)g(h)dh

]
> 0 .

(25)

By equation (19), the distribution of firm log productivities is left truncated relative to the distribu-
tion F̃ we would observe without firm selection or agglomeration. The proportion of truncated
values of F̃ is Si in location i and Sj in location j. Since h̄i < h̄j, by equation (17), Si > Sj.
Incorporating h̄i < h̄j into (19) implies that the distribution of firm log productivities (once left
truncated) is right-shifted relative to F̃. The extent of this right shift is Ai in locations i and Aj in
location j (with the shift applied to the respective left truncated distributions). By equation (15),
Ai > Aj.
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3. Econometric specification

We now develop an econometric approach to estimate the parameters that quantify the importance
of selection and agglomeration in the theoretical model for locations of different market sizes.
Denote λ̃(y) ≡ F̃−1(y) the yth quantile of F̃ and λi(y) ≡ F−1

i (y) the yth quantile of Fi. Inverting
(19), we can write

λi (y) = λ̃ (Si + (1 − Si)y) + Ai , for y ∈ [0,1] , (26)

We cannot work with equation (26) directly since we do not observe the quantiles of the underlying
distribution, λ̃(y), in the data. However, the following lemma tells us we can easily relate the
quantiles of the distribution of log productivities in location i with the quantiles of the distribu-
tion of log productivities in a smaller location j. Note that, while the theory predicts that the
distribution of log productivities in location i will be more left truncated than the corresponding
distribution in the smaller location j (i.e., Si > Sj), in our empirical approach we also need to allow
for the reverse possibility (i.e., Si 6 Sj).

Lemma 1. Consider two distributions with cumulative density functions Fi and Fj. Suppose Fi

can be obtained by left-truncating a share Si of the values of some underlying distribution with
cumulative density function F̃ and then shifting the truncated distribution rightwards by Ai:

Fi(φ) = max
{

0,
F̃(φ − Ai) − Si

1 − Si

}
.

Suppose Fj can be obtained by left-truncating a different share Sj 6= Si of the values of the same
underlying distribution and then shifting the truncated distribution rightwards by a different value
Aj 6= Ai:

Fj(φ) = max

{
0,

F̃(φ − Aj) − Sj

1 − Sj

}
.

Let

S ≡
Si − Sj

1 − Sj
,

A ≡ Ai − Aj .

If Si > Sj, then Fi can also be obtained by left-truncating a share S of the values of Fj and then
shifting the truncated distribution rightwards by A:

Fi(φ) = max
{

0,
Fj(φ − A) − S

1 − S

}
.

If Si < Sj, then Fj can also be obtained by left-truncating a share S
S−1 of the values of Fi and then

shifting the truncated distribution rightwards by −A:

Fj(φ) = max

{
0,

Fi(φ + A) − S
S−1

1 − S
S−1

}
.

11



Proof We have seen that (26) follows from (19). With the change of variables y → y−Si
1−Si

, (26) turns
into

λi

(
y − Si

1 − Si

)
= λ̃(y) + Ai , for y ∈ [Si,1] . (27)

Subtract from (27) the corresponding equation for j to get:

λi

(
y − Si

1 − Si

)
− λj

(
y − Sj

1 − Sj

)
= Ai − Aj , for y ∈

[
max(Si,Sj),1

]
. (28)

Because of the max operator in equation (28), it is convenient to consider two cases separately:
Si > Sj and Si 6 Sj. Let us start with the case where Si > Sj. With the change of variables
y−Si
1−Si

→ y, equation (28) becomes

λi (y) − λj

(
Si − Sj

1 − Sj
+

1 − Si

1 − Sj
y
)

= Ai − Aj , for y ∈ [0,1] . (29)

Defining

S ≡
Si − Sj

1 − Sj
, (30)

A ≡ Ai − Aj , (31)

we can write equation (29) more compactly as

λi (y) = λj (S + (1 − S)y) + A , for y ∈ [0,1] . (32)

Notice the similarity between equations (32) and (26). Inverting (32), we obtain

Fi(φ) = max
{

0,
Fj(φ − A) − S

1 − S

}
. (33)

Consider now the case where Si 6 Sj. With the change of variables y−Sj
1−Sj

→ y, equation (28)
becomes

λi

(
Sj − Si

1 − Si
+

1 − Sj

1 − Si
y
)

− λj (y) = Ai − Aj , for y ∈ [0,1] . (34)

Using (30) and (31), equation (34) can be rewritten as

λj (y) = λi

(
S

S − 1
+

1
1 − S

y
)

− A , for y ∈ [0,1] . (35)

Notice also the similarity between equations (35) and (26). Inverting (35), we obtain

Fj(φ) = max

{
0,

Fi(φ + A) − S
S−1

1 − S
S−1

}
. (36)

Our econometric approach will work from Lemma 1, and in particular from equations (32) and
(35) in the proof. The advantage of this approach is that we do not need to specify an ad-hoc un-
derlying distribution of log productivities F̃, which one cannot observe empirically. An important
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limitation is that in the data we will not be able to separately identify Si, Sj, Ai and Aj, but only
S = (Si − Sj)/(1 − Sj) and A = Ai − Aj. S measures how much stronger is the left-truncation
(induced by firm selection in the theoretical model) in location i than in the smaller location j.
In particular, it corresponds to the difference between locations i and j in the share of entrants
eliminated by selection, relative to share of surviving entrants in location j. A measures how
much stronger is the right-shift (induced by agglomeration economies in the theoretical model)
in location i than in the smaller location j. In particular, it corresponds to the difference between
locations i and j in the strength of agglomeration-induced productivity gains. In other words, we
will be able to make statements about the strength of firm selection and agglomeration economies
in large locations compared to small locations, but not about the absolute strength of firm selection
and agglomeration economies.

Since quantiles are measured with error, equations (32) and (35) do not hold exactly. Denote
λ̂i(y) the yth sample quantile of Fi which, if there is no specification error and only a sampling
error, is a consistent estimator of λi(y). Likewise, denote λ̂j(y) the yth sample quantile of Fj. In the
case where Si > Sj (S > 0), we are going to look for values of S and A that minimise the mean
square error for equation (32) in the sample, by solving the following minimisation programme

min
S>0,A

DS>0(S, A) , (37)

with
DS>0(S, A) =

∫ 1

0

[
λ̂i (y) − λ̂j (S + (1 − S)y) − A

]2
dy . (38)

In the case where Si 6 Sj (S 6 0), we are going to look for values of S and A that minimise the mean
square error for equation (35) in the sample, by solving the following minimisation programme

min
S60,A

DS60(S, A) , (39)

with

DS60(S, A) =
∫ 1

0

[
λ̂j (y) − λ̂i

(
S

S − 1
+

1
1 − S

y
)

+ A
]2

dy . (40)

Finally, we combine the minimisation programmes of (37) (for S > 0) and (39) (for S 6 0) into the
following global minimisation programme:

min
S,A

D(S, A) , (41)

with
D(S,A) =

[
1{S>0}DS>0(S, A) + 1{S60}DS60(S, A)

]
. (42)

If S > 0 (the distribution in location i is more truncated), the value of A that solves (42) for any
given S is the average of the differences between the quantiles of the distribution in location i and
quantiles of the distribution in location j after a share S of values have been truncated from the
latter. This can be seen by minimising DS>0(S, A), as given by equation (38), with respect to A to
obtain

Â(S) =
∫ 1

0

[
λ̂i (y) − λ̂j (S + (1 − S)y)

]
dy , if S > 0 . (43)
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If S 6 0 (the distribution in location j is more truncated), the value of A that solves (42) for any
given S is the average of the differences between the quantiles of the distribution in location i and
quantiles of the distribution in location j after a share S/(S − 1) of values have been truncated from
the former. This can be seen by minimising DS60(S, A), as given by equation (40), with respect to
A to obtain

Â(S) =
∫ 1

0

[
λ̂i

(
S

S − 1
+

1
1 − S

y
)

− λ̂j (y)
]

dy , if S 6 0 . (44)

Note that if quantile functions are continuous, Â(S) is a continuous function of S, especially at
S = 0. The value of S that minimises (42), denoted Ŝ, is found by replacing the expression of Â(S)
given by (43) or (44) into (42) and using a grid search. We deduce the value of A that minimises
(42) as Â = Â(Ŝ).

In the results below, we report Ŝ and Â, as well as a measure of goodness of fit derived from the
corresponding criterion value R2 = 1 − D(Ŝ,Â)

D(0,0) . We also calculate standard errors and confidence
intervals for the estimated parameters by bootstrapping in the distribution of log productivity8

The advantages of this approach are the following. First, it plainly fits with the theory. We
have an underlying log productivity distribution that we do not observe, and the distributions
in locations of different sizes are transformations of this distribution (with left truncation and
right shift). Second, we do not need to choose a priori a distribution of reference from which the
other distribution would be left truncated and right shifted. Third, we rely on all the moments of
the distributions and yet we do not perform any smoothing of the observed distributions (which
would introduce an extraneous source of variation that would be difficult to deal with).

4. Data and TFP estimations

Data

To construct our data for 1994-2002, we merge together four large-scale, French, administrative
data sets from the French statistical institute (insee).

The first is the brn (‘Bénéfices Réels Normaux’) which contains the balance sheet of all large
firms in the traded sectors. For tax purpose, firms with a turnover above 730,000 euros report de-
tailed information about their output, intermediate good consumption and materials, productive
and financial assets, and their wage bill. This allows us to construct a reliable measure of value
added for each firm and each year. We also retain information about total employment and the
value of assets. To estimate tfp (see below), we use a measure of capital stock based on the sum
of the reported book values.9 In some tfp estimations we use the cost of capital rather than assets
values. We do this using the detailed procedure developed by Boutin and Quantin (2006).

Our second data set is the rsi (‘Régime Social des Indépendants’) which contains the balance
sheet of all small firms (i.e., those with a turnover below 730,000 euros). Although the details of the

8In a future version, we plan to bootstrap in the sample of observations used to compute the log productivities.
9Evaluating assets at their historical costs is not without problems. We minimise them by estimating tfp at the

sector level, using sometimes highly disaggregated sectors. We also use time dummies. An alternative would be to
deflate assets using economic criteria. However, our panel is rather short which makes it difficult to trace the original
investments. Our procedure also differs from that of Olley and Pakes (1996) who use a permanent inventory method.
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reporting differs from that of brn, for our purpose rsi contains essentially the same information
as the previous data and we thus treat it in the same way. Note that the union of brn and rsi

provides detailed information about nearly all French firms. Because the information about very
small firms tend to be noisy, we retain only firms with more than 6 employees.

This firm level data contains more information than is usually available. For instance, us based
research needs to rely either on sectoral surveys or on five-yearly censuses for which value added
is difficult to compute. Despite their richness, brn and rsi are not enough for our purpose because
our model requires us to work at the establishment level. To comply with this requirement,
we use two further data sets, siren (‘Système d’Identification du Répertoire des ENtreprises’)
and dads (‘Déclarations Annuelles de Données Sociales’). siren is an exhaustive registry of all
establishments in the traded sector. For each establishment and year, siren reports a firm identifier,
a municipality code, and employment by two-digit occupational category. To avoid estimating too
many coefficients for different types of labour, we aggregate two-digit occupational categories
into 3 groups: high-, intermediate- and low-skill workers following the procedure of Burnod and
Chenu (2001).

Since brn and rsi only report total employment and not hours worked, we prefer to use
employee level data from dads, a matched employer-employee data set, which is exhaustive for
1994-2002. In particular, the dads data contains the number of paid hours for each employee in
each establishment.

To merge these four data sets, we extended the procedure of Aubert and Crépon (2003) for brn

and dads to include also rsi and siren. The total number of observations for 1994 is 942,506. The
number of observations rises slowly over the period. Finally, we also allocate each municipality to
its metropolitan area (‘Aire Urbaine’) when there is one or classify it as rural.

To sum up, for each firm between 1994 and 2002, we know its value added, the value of its assets
(with and without financial assets), total employment, and detailed cost share information. For
each establishment within each firm, we know its detailed location, its wage bill, and its number
of paid hours by skill level.

TFP estimation

For a given sector (either at the two-digit level, at the three-digit level, or sometimes using even
more disaggregated sectors), we wish compute tfp at the establishment level. Appendix ? [[to
be added]] shows that, under some assumptions, we can write a firm production function as
if production occurred at the firm level using the capital stock and labour aggregated over all
establishments. Using an approximation to aggregate labor with different skills (see Hellerstein,
Neumark, and Troske, 1999) yields the following specification for the production function:

ln (VAkt) = b0 + b1 ln Kkt + b2 ln Lkt + ∑ csSKILLskt + ∑ diGEOikt + b3SECkt + υt + φkt (45)

where k indexes the firm; VAkt is the value added in year t; b0 is a constant; Kkt is the capital
stock measured by the value of assets; Lkt is employment measured by the total number of paid
hours obtained from the aggregation of the number of paid hours across all of k’s establishments;
SKILLskt is the share of skill, low, intermediate, and high, in employment (also computed from
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the number of paid hours in all the establishments of the firm); GEOikt is the share of the firm’s
employment in establishments located in location i; SECkt is the share of k’s labour not in the
considered sector; υt is a time fixed effect; and φkt is a residual. Finally, the estimation is performed
for each sector separately, the skill reference group is low, and the reference location is the smallest.

Equation (45) can be estimated with ols or with gmm (Blundell and Bond, 1998). This latter
method uses two sets of iv equations: the endogenous explanatory variables in level regressed on
their lagged differences, and the differences of the endogenous explanatory variables regressed
on their lagged levels. The endogenous explanatory variables are: labour, capital, skill shares.
There are also some explanatory variables that are considered to be exogenous: the labour shares
in every type of locations, the labour share in other sectors than the one considered and time
dummies. Note that specification tests (using Sargan statistics) are often rejected. Appendix ??

[[to be added]] describes a variety of other ways to estimate tfp in our context: data envelopment
(with and without instrumenting) and the procedures developed by Olley and Pakes (1996) and
Levinsohn and Petrin (2003).

We then construct establishment tfp in the following way. For single-plant firms, the most
natural measure is d̂i + φ̂kt where i is the firm location, d̂i is estimated from (45) and φ̂kt is the
estimator of the residual of (45). For multi-plant firms, we construct as many measures of pro-
ductivity as there are locations where the firm locates establishments. For a firm with two plants,
one in location i and one in location j, we have two productivity measures: d̂i + φ̂kt and d̂j + φ̂kt.
The productivity measure d̂i + φ̂kt is used to compute the productivity distribution in location i,
and d̂j + φ̂kt is used to compute the productivity distribution in location j.

There are a number of fundamental issues pertaining to the estimation of production functions.
The literature has long been concerned by a possible correlation between the residual, that is the
tfp, and factor usage. A number of solutions have been proposed for this problem (in particular,
Olley and Pakes, 1996, Levinsohn and Petrin, 2003). Adding to this, a number of things such as
factor quality and output prices are not observed. The level of aggregation at which the estimation
is performed is also an issue. Finally there is some uncertainty about the particular functional form
that should be estimated. Before going any further it is important to note that those issues matter to
us only to the extent that they affect the estimation differently across locations. A geographically-
uniform bias is differenced out by our estimation approach.

In the above list, three issues are of particular concern. First, labour quality varies across
locations. As shown by Combes et al. (2008), more productive workers tend to locate in more
productive locations, arguably working for more productive firms. To avoid confounding this
sorting of workers with the effects of agglomeration, we need to control for workers’ skills as
precisely as possible. For this reason we consider several labour types in our estimating equation
(45). The second issue is that land prices vary considerably across locations. Since a satisfactory
modelling of the land market is beyond the scope of our model, we leave this issue for future work.
Nonetheless, we note that we get very similar results when using factor quantities and factor costs
in estimating tfp. This suggests that differences in unobserved factor quality or in unobserved
factors do not play any significant role. The third major issue relates to the price of final output
which differs across locations. [[More to be written about this]]
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Table 1. Estimation results (based on gmm tfp estimates)

Agglomeration Agglomeration Selection
and selection only only

Sector A S R2 A R2 S R2 obs.

(1) (2) (3) (4) (5) (6) (7) (8)

Food, beverages and tobacco -0.11 0.02 0.50 -0.07 0.42 -0.01 0.06 25853
Clothing and leather 0.39 -0.10 0.87 0.25 0.72 0.08 0.09 5964
Publishing and printing 0.27 -0.01 0.97 0.24 0.96 0.10 0.44 10493
Pharmaceuticals products 0.35 -0.01 0.91 0.33 0.91 0.11 0.39 1831
Domestic equipment 0.20 -0.01 0.99 0.18 0.98 0.04 0.32 6880
Motor vehicles 0.31 -0.09 0.80 0.17 0.53 0.02 0.02 1816
Ships, locomotives and rolling stock 0.34 0.03 0.97 0.40 0.94 0.19 0.67 1143
Machinery and equipment 0.40 -0.02 0.90 0.35 0.89 0.12 0.35 16332
Electric and electronic equipment 0.22 -0.00 0.98 0.22 0.98 0.07 0.46 7735
Textiles 0.16 0.00 0.96 0.17 0.96 0.07 0.52 3718
Wood, pulp and paper 0.18 0.00 0.99 0.19 0.99 0.06 0.51 5985
Chemicals 0.26 -0.01 0.98 0.24 0.97 0.08 0.40 6987
Basic metals and fabricated metal products 0.12 0.01 0.97 0.14 0.96 0.04 0.52 15161
Electric and electronic components 0.10 0.02 0.96 0.13 0.92 0.05 0.67 3337
Construction 0.28 -0.01 0.91 0.26 0.91 0.06 0.36 78511
Vehicle sale and maintenance 0.22 -0.00 0.96 0.22 0.96 0.07 0.41 32052
Wholesale and commission trade 0.30 -0.02 0.98 0.27 0.96 0.09 0.39 70242
Transportation 0.26 -0.01 0.86 0.24 0.85 0.06 0.42 39948
Consultancy and assistance activities 0.36 -0.01 0.99 0.34 0.99 0.11 0.53 56129
Average 0.26 -0.01 0.92 0.24 0.90 0.07 0.39

5. Main results

Columns (1) and (2) in Table 1 show our baselines estimates for two-digit manufacturing and busi-
ness service sectors of A and S, estimated by comparing the distribution of firm log-productivities
in large locations (urban areas with over 200,000 people) with the distribution of firm log-
productivities in small locations (urban areas with less than 200,000 people and rural areas). Firm
log-productivities are tfp computed using gmm. Recall that S ≡ 1−Si

1−Sj
, where i corresponds to large

locations and j corresponds to small locations. If S < 1, then Si > Sj, i.e., the strength of selection
increases with location size. Recall also that A ≡ Ai − Aj. If A > 0, then Ai > Aj, i.e., the strength
of agglomeration increases with location size. [[Standard errors are yet to be computed (this will
require several more weeks of computation time)]]. Columns (3) in Table 1 reports a pseudo-R2.

For most sectors, S is very close to 1, which suggests that there is not much difference in the
strength of selection across locations of different size. Note that this does not imply that selection
is not important, it simply suggests that its importance is similar in locations of different size.
Our model showed that the extent to which selection varied across locations of different size was
closely related to the extent to which product market competition is local or global (national in this
case). Our results would be consistent with a situation where French firms compete with similar
intensity on national markets regardless of their location.

For almost all sectors, A is above 0, which suggests that agglomeration economies are stronger
in large locations than in small locations. A back-of-the-envelope calculation suggests that the
average value of A we find (0.26) corresponds to a productivity increase across the board (after
accounting for selection) of roughly 4% for a doubling of city size, which is in line with what is
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found using very different methods in the agglomeration literature (Rosenthal and Strange, 2004,
Combes et al., 2007). Our model showed that the extent to which agglomeration economies varied
across locations of different size was closely related to the extent to which interaction are local or
global (national in this case). Our results would be consistent with a situation where interactions
are quite local, which matches the empirical literature looking at the spatial decay of different types
of agglomeration economies (Rosenthal and Strange, 2004).

Column (4) in Table 1 reports our estimates of A when we impose the restriction S = 1 (no
difference in the strength of selection between large and small areas), and column (5) reports the
corresponding pseudo-R2. The restriction does not change results too much.

Column (6) in Table 1 reports our estimates of S when we impose the restriction A = 0
(no difference in the strength of agglomeration between large and small areas), and column (7)
reports the corresponding pseudo-R2. If we do not allow agglomeration to vary across locations
of different size, then part of this is picked up as variation in selection (the estimates of S are now
clearly below 1), but the fit deteriorates very substantially.

We have also worked with other estimation methods for tfp, such as data envelopment (with
and without instrumenting) and the procedures developed by Olley and Pakes (1996) and Levin-
sohn and Petrin (2003) with similar conclusions.

[[Further results to be added]]

6. Conclusions

[[To be written]]
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