
Appendix to “Do Job-to-Job Transitions Drive Wage Fluctuations Over the Business Cycle?” 
 

A. The “purified” job-to-job transition probability 

Let 𝜆e denote the arrival probability of wage offers to the employed. Define 𝐺 (𝑔) as the distribution 

(density) function of wages over workers, and 𝐹 (𝑓) as the distribution (density) of wage offers. As in 

Burdett and Mortensen, we assume that a worker accepts any job that offers a higher wage. We also assume 

the arrival of wage offers is random, that is, independent of the worker's present wage. The job-to-job 

transition probability, Λe, is then given by 

  Λe = 𝜆e ∫ 𝐺(𝑤)𝑓(𝑤)d𝑤, (1) 

 

where 𝐺(𝑤) = Pr(𝜔 < 𝑤) is the probability that a worker's wage 𝜔 is less than a given wage offer 𝑤. The 

right side of (1) has two parts. The term, 𝜆e, is the probability that an offer arrives. The integral is the 

acceptance probability. 

To infer the offer distribution, we use the map between 𝑔 and 𝑓 implied by Burdett-Mortensen 

under flow balance. With respect to the wage distribution, flow balance means that the outflow of workers 

from any wage 𝑤 equals the inflow of workers to that wage.1 The outflows from 𝑤 include two parts: the 

share of workers with wage 𝑤 that separate to unemployment; and the share that contact, and migrate to, a 

higher-wage firm. Hence, the outflows are given by [𝛿 + 𝜆e(1 − 𝐹(𝑤))](1 − 𝑢)𝑔(𝑤), where 𝛿 is the 

probability that a match is destroyed (after which the worker enters unemployment) and 𝑢 is the 

unemployment rate. The inflows to wage 𝑤 also consist of two parts: the share of unemployed workers that 

contact a firm of wage 𝑤; and the share of employed workers with wage below 𝑤 that contact a firm of 

wage 𝑤. The inflows, then, are [𝜆u𝑢 + 𝜆e(1 − 𝑢)𝐺(𝑤)]𝑓(𝑤), where 𝜆u is the probability that an offer is 

made to an unemployed worker.2 Thus, under flow balance, these flows satisfy,  

   
[𝛿 + 𝜆e(1 − 𝐹(𝑤))](1 − 𝑢)𝑔(𝑤) = [𝜆u𝑢 + 𝜆e(1 − 𝑢)𝐺(𝑤)]𝑓(𝑤). 

(2) 

 

The concept of flow balance also extends to the worker flows. Specifically, under flow balance, 

inflows into, and outflows from, unemployment are equal. This implies 𝛿(1 − 𝑢) = 𝜆u𝑢, which in turn 

yields 𝑢 = 𝛿/(𝛿 + 𝜆u). When we use this to substitute for 𝑢 in (2), we find that the density, 𝑓(𝑤), under 

flow balance satisfies, 

𝑓(𝑤) =
𝛿 + 𝜆e(1 − 𝐹(𝑤))

𝛿 + 𝜆e𝐺(𝑤)
𝑔(𝑤). 

One may then (guess and) verify the solution to this ordinary differential equation, given known 

functions 𝑔 and 𝐺 and parameters 𝛿 and 𝜆e. We obtain, 

                                                           
1 The flow-balance density is not the stationary (i.e., invariant) density. We return to this point a little later.  
2 Since no firm in equilibrium offers a wage below the reservation level, every offer to the unemployed is accepted.  



   

𝑓(𝑤) =
𝛿 + 𝜆e

(𝛿 + 𝜆e𝐺(𝑤))
2 𝛿𝑔(𝑤). (3) 

 

Substituting (3) into (1), one can easily confirm that the right side of (1) is zero when 𝜆e = 0 and increasing 

in 𝜆e. Therefore, there is a single crossing, pinning down a unique solution for 𝜆e. 

 Implementing (3) in the data is straightforward. Using CPS weekly earnings data in the outgoing 

rotation group files, we can measure 𝐺 (and, therefore, 𝑔) in each state in each quarter.3 The density is 

calculated over 25 bins that are equi-distant in logs. The minimum weekly earnings level is $100—

equivalent to weekly earnings on a part-time job earning $5 per hour—and the maximum is the top code of 

$2885 (observations at the top code are dropped). Our choice of bins ensures that even small states, such 

as Maine, have on average 25 respondents per bin. Turning to the separation rate, we use state-level 

estimates of the transition probability into non-employment from the LEHD data public-use files (series 

“ENPersist”). This measures the share of workers who exit employment in quarter t and do not receive 

earnings at the start or end of the subsequent quarter. The LEHD is more attractive than the CPS for 

measuring state-level separation rates from employment, because state-level samples of separations in the 

CPS are small. Having estimates of the earnings density and separation rates, we can calculate the offer 

density, 𝑓, in (3). Then, substituting 𝐺 and 𝑓 into (1), we can solve for 𝜆e, given the LEHD estimate of Λe.  

 One concern with our approach is that the earnings distribution, 𝐺, that we measure using CPS data, 

and “feed” into (3), is not necessarily the distribution that emerges under flow balance. Hence, the internal 

coherence of our approach—and the quality of our measurement of 𝜆e—hinges on whether flow balance is 

a reasonable approximation to observed wage outcomes.4 From (2), note that, under flow balance, the 

density of wages across workers, 𝑔(𝑤), can be represented as 

   

𝑔(𝑤)  =  
[𝜆u𝑢 + 𝜆e(1 − 𝑢)𝐺(𝑤)]𝑓(𝑤)

[𝛿 + 𝜆e(1 − 𝐹(𝑤))](1 − 𝑢)
 =  

Share of workers that flow 𝑡𝑜 𝑤

Share of workers that flow 𝑜𝑢𝑡 𝑜𝑓 𝑤
. 

 

(4) 

The term on the far right can be calculated using CPS earnings data from the matched outgoing rotation 

group (ORGs) files. The ORGs include the one-quarter of the CPS sample that is asked about earnings (if 

employed). The rotating panel structure of the CPS then allows us to match one-half of the ORG sample in 

any given month to their responses 12 months later. We can thus track workers, including the non-

employed, across the wage distribution, enabling us to measure the share of workers that move to and from 

a given wage. Accordingly, we can measure 𝑔(𝑤) under flow balance. We want to compare this to the 

observed density of earnings. For the sake of illustration, we carry out this exercise by pooling all data 

across states, rather than producing densities for each state.  

                                                           
3 Our use of weekly earnings is the closest analogue to the monthly earnings concept in the QWI that we use elsewhere 

in our analysis. 
4 It is well known that flow balance in worker flows approximately holds, insofar as the implied unemployment rate, 

𝑢 = 𝛿/(𝛿 + 𝜆u), very closely tracks the actual rate (Hall 2005). Relatedly, Elsby, Michaels, and Ratner (2016) 

calculate the analogue to (4) where the flows refer to the flows of workers across firm sizes. They find that the flow-

balance firm-size density of firm size is an excellent approximation to the actual firm-size density. 



 Figure A presents our findings. Each panel shows the c.d.f.s implied by the flow-balance and 

observed densities. (Recall that we use the c.d.f., 𝐺, in (1).) The left panel shows the distribution functions 

averaged over the period 2001-03, a time when the labor market was relatively slack, whereas the right 

panel presents the results for a period, 2004-06, when the market was tighter. The critical observation here 

is that the c.d.f.s in any one panel are never that far apart. The biggest discrepancy in each panel is roughly 

1.25 percentage points. 

Intuitively, what accounts for the closeness between the flow-balance and observed densities? A 

key observation from (4) is that the flow-balance density is not the stationary density, but rather is 

conditioned on the current realization of the flows of workers across wage levels. If these flows remained 

fixed at their current level, the distribution of wages would converge to its flow-balance counterpart. Hence, 

the observed and flow-balance densities only diverge to the extent that it takes time for the wage distribution 

to adjust toward flow balance. If the sizes of these flows are substantial, this adjustment takes little time. 

The message of Figure A is that, at an annual frequency, these flows are substantial enough to bring the 

actual, observed distribution nearly in line with its flow-balance counterpart. 

 

Figure A: The observed and flow-balance cumulative distribution functions 
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B. Adjusting for time aggregation 

We have quarterly data on job-to-job transitions. These measurements suffer from a time 

aggregation bias. In this section, we illustrate a way to correct the published series for this bias.  

We will take the month to be the frequency at which labor market activities unfold. In what follows, 

let Λ𝑡
e(𝑚) denote the probability of a job-to-job transition in month 𝑚 = {1,2,3} of quarter 𝑡; 𝜎𝑡(𝑚) the 

probability of a transition from employment to non-employment; and 𝑓𝑡(𝑚) the probability of a transition 

from non-employment to employment.  

There are several scenarios that lead to a measured job-to-job transition within a quarter. We detail 

these below. Note that, to simplify the algebra slightly, we shall assume (realistically) that the probability 

of multiple job-to-job transitions in a quarter is negligible.  

i] A worker makes a job-to-job transition in the first month of the quarter. This happens with 

probability Λ𝑡
e(1). The worker may transit out of employment later in the quarter, but this makes 

no difference to the LEHD measurement of job-to-job transitions: the quarterly records will still 

(rightly) show such a transition.  

ii] A worker remains with her employer in the first month but moves to a new employer in the 

second month. This event happens with probability (1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))Λ𝑡

e(2). Again, if the 

probability of a second job-to-job transition in the quarter is negligible, any subsequent transitions 

to (and/or from) non-employment do not affect the LEHD measurement of job-to-job transitions. 

iii]  A worker remains with her employer in the first and second months but transits to a new 

employer in the third month. This event happens with probability  

 (1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))(1 − 𝜎𝑡(2))(1 − Λ𝑡

e(2))Λ𝑡
e(3).  

 

iv]  A worker exits employment in the first month but matches with at least one new employer 

within the quarter. This event occurs with probability  

 𝜎𝑡(1)𝑓𝑡(2)Λ𝑡
e(3) + 𝜎𝑡(1)𝑓𝑡(2)(1 − Λ𝑡

e(3)) + 𝜎𝑡(1)(1 − 𝑓𝑡(2))𝑓𝑡(3).  

 

Note that the first term here involves a genuine job-to-job transition: a worker returns to 

employment in the second month and transits directly (with no intervening spell of non-

employment) to a new employer in the third. The second and third terms, however, do not involve 

a job-to-job move but would be measured as such by the LEHD because the worker is observed to 

switch employers within the quarter. 

 

v]  Lastly, a worker remains with her employer in the first month; exits employment in the second 

month; and matches with a new employer in the third month. This event occurs with probability  

 (1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))𝜎𝑡(2)𝑓𝑡(3).  

 



It follows that the measured quarterly job-to-job transition probability, Λ𝑡
e, is 

 Λ𝑡
e 

= Λ𝑡
e(1)  + (1 − 𝜎𝑡(1))(1 − Λ𝑡

e(1))Λ𝑡
e(2)  

+{(1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))(1 − 𝜎𝑡(2))(1 − Λ𝑡

e(2)) +   𝜎𝑡(1)𝑓𝑡(2)}Λ𝑡
e(3) 

+𝜎𝑡(1)𝑓𝑡(2)(1 − Λ𝑡
e(3)) + 𝜎𝑡(1)(1 − 𝑓𝑡(2))𝑓𝑡(3) 

+(1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))𝜎𝑡(2)𝑓𝑡(3) 

 

 

(5) 

The top two lines involve genuine job-to-job transitions. The bottom two lines involve spurious job-to-job 

transitions. To estimate the true quarterly job-to-job transition probability, denoted by 𝜦𝑡
e, we net off these 

spurious flows from the published figure,  

 𝜦𝑡
e ≡ Λ𝑡

e − 𝜎𝑡(1)𝑓𝑡(2)(1 − Λ𝑡
e(3)) − 𝜎𝑡(1)(1 − 𝑓𝑡(2))𝑓𝑡(3)

− (1 − 𝜎𝑡(1))(1 − Λ𝑡
e(1))𝜎𝑡(2)𝑓𝑡(3) . 

 

(6) 

To calculate 𝜦𝑡
e, we need a few inputs. For starters, we require measurements of the monthly inflow 

rate into non-employment, 𝜎𝑡(𝑚), as well as the monthly outflow rate from non-employment, 𝑓𝑡(𝑚). We 

again use the estimates published by Fallick and Fleischman and derived from the CPS. In addition, we 

need an estimate of the monthly job-to-job transition probability, Λ𝑡
e(𝑚), which is of course unavailable in 

the LEHD.5 In the absence of a better alternative, we take 𝜦𝑡
e/3 as an approximation to Λ𝑡

e(𝑚) for any 𝑚 =

{1,2,3}.6 Plugging this into (6) and rearranging, we solve for 𝜦𝑡
e: 

𝜦𝑡
e ≡ {1 −

𝜎𝑡(1)𝑓𝑡(2)

3
−

(1 − 𝜎𝑡(1))𝜎𝑡(2)𝑓𝑡(3)

3
}

−1

× [Λ𝑡
e − 𝜎𝑡(1)𝑓𝑡(2) − 𝜎𝑡(1)(1 − 𝑓𝑡(2))𝑓𝑡(3) − (1 − 𝜎𝑡(1))𝜎𝑡(2)𝑓𝑡(3)] 

Figure B plots Λ𝑡
e and 𝜦𝑡

e for the U.S. Here, we use the EEHire series from the LEHD, which 

restricts job-to-job transitions to within transitions. The results do not depend on this but the time 

aggregation adjustment above is most applicable to the EEHire series. The figure indicates that the 

corrected estimate runs parallel to the published series, but is shifted below it. In other words, the correction 

does not affect the variance or cyclicality of the job-to-job measure. One reason for this is that products of 

transition probabilities, such as 𝜎𝑡(1)𝑓𝑡(2), are small relative to the published series, Λ𝑡
e. In addition, 𝜎𝑡 

and 𝑓𝑡 move in opposite directions in recessions: the outflow rate from non-employment falls, but the inflow 

rate into non-employment rises. This tends to render the product of the two, 𝜎𝑡(1)𝑓𝑡(2), relatively more 

acyclical.  

                                                           
5 Fallick and Fleischman also report an estimate of the employer-to-employer transition probability based on CPS 

data. However, we have opted not to use the CPS estimates in this paper because of concern over measurement error 

of this object specifically (see Moscarini and Postel-Vinay, 2016). That said, we have confirmed that Figure B is 

virtually the same if we substitute in the CPS estimates for Λ𝑡
e(𝑚). 

6 This is only exact if 1 − 𝜎𝑡(𝑚) = 1 and 𝜎𝑡(𝑚)𝑓𝑡(𝑛) = 0 for any months 𝑚, 𝑛. Then equation (6) collapses to Λ𝑡
e =

3Λ𝑡
e(𝑚)  − 3Λ𝑡

e(𝑚)2 + Λ𝑡
e(𝑚)3. The higher order terms will be nearly zero, such that Λ𝑡

e ≈ 3Λ𝑡
e(𝑚) = 𝜦𝑡

e. Since 

𝜎𝑡(𝑚) is in fact very small, our approximation should perform quite well.  

 



 

Figure B: The quarterly job-to-job transition probability in the U.S.  

 

 

 Though Figure B pertains to the aggregate series, rather than to the state-specific series used in our 

regression, it strongly suggests that time aggregation is unlikely to play a material role in our regression 

analysis. Estimates of regression (1) in the main text that use our bias-corrected estimate, 𝜦𝑡
e, can be made 

available on request. 

 

C. Additional regression results 

 

The final section of the appendix reports two additional sets of regression results. First, we present 

results from a regression using aggregate earnings and worker flows. The outcome is average monthly 

earnings from the QWI corresponding to “stable” workers and deflated using the Personal Consumption 

Expenditure (PCE) price index.7 The regressors are the aggregate time series for the (headline) job-to-job 

                                                           
7 Deflating is arguably more consistent with our approach in the main text than using nominal earnings. Since we 

remove the aggregate component of earnings growth using quarter fixed effects in our state-level regressions, our 

identification strategy relies on variation in relative earnings growth across states (and its comovement with relative 

worker flows). This has the effect of controlling for the common component of price inflation.  
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transition probability from the LEHD, Λ𝑡
e, and the unemployment-to-employment transition probability 

from the CPS, Λ𝑡
u. A linear time trend is included all regressions, consistent with the specifications used in 

the main text. The time series is quarterly and begins in 2000q3. 

  

Table C.1: Aggregate results 

Regressor 
Outcome: 

Avg. monthly earnings in 2009 dollars 

Λ𝑡
u 

     0.330***    
[0.072] 

0.141 
[0.222] 

Λ𝑡
e  

1.047 
 [0.976] 

No. of obs. 60 60 
     NOTES: [1] Newey-West standard errors are presented.  

    [2] *** indicates significance at p<0.01 level. 

 

The results in Table C.1 echo the theme of the main text. In particular, the job-finding probability, Λ𝑡
u, 

enters significantly on its own, but diminishes in importance when the job-to-job transition probability, Λ𝑡
e, 

is included. However, Λ𝑡
e is lacking in statistical significance, owing to the fact that the aggregate time 

series offers us a very small sample. This indicates the value of using state-level variation.  

The second set of regression results illustrates the robustness of our findings in the main text to multiple 

measures of state-level price deflators. Table C.2 presents results using two deflators. One is the retail price 

index constructed by Beraja et al (2016) using scanner data. These data are available from 2006q1-2011q4. 

The other source is the Bureau of Economic Analysis’ estimates of state-level GDP price deflators. These 

data are available from 2000 through 2015, but only at an annual frequency.  

We re-estimate equation (1) in the main text using a measure of real earnings as the outcome variable. 

We focus here on earnings of “stable” workers in order to conserve on space. The results conform quite 

closely with the baseline analysis.  

 

Table C.2: Different state-level price deflators 

 Deflator: 

Regressor GDP price index Retail price index 

Λ𝑡
u 

0.013  

[0.013] 

-0.002 

[0.005] 

Λ𝑡
e 

      2.288***    

[0.382] 

     2.214*** 

[0.602] 

No. of obs. 690 1044 
      NOTES: [1] Standard errors are clustered at the state level.   [2] Both columns 

       include state-specific time trends.  [3] *** indicates significance at p<0.01 level. 
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