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A Proofs and Additional Details for Section 2

This Appendix spells out in more detail the simple RANK and TANK models in Section

2 and proves the results stated there.

A.1 Details for Section 2.1

A representative household has preferences over utility from consumption Ct discounted

at rate ρ ≥ 0 ∫ ∞
0

e−ρtU(Ct)dt, U(C) =
C1−γ

1− γ
, γ > 0. (A.1)

There is a representative firm that produces output using only labor according to the

production function Y = N . Both the wage and final goods price are perfectly rigid

and normalized to one. The household commits to supplying any amount of labor

demanded at the prevailing wage so that its labor income equals Yt in every instant.

The household receives (pays) lump-sum government transfers (taxes) {Tt}t≥0 and can

borrow and save in a riskless government bond at rate rt. Its initial bond holdings are

B0. The household’s budget constraint in present-value form is∫ ∞
0

e−
∫ t
0 rsdsCtdt =

∫ ∞
0

e−
∫ t
0 rsds(Yt + Tt)dt+B0. (A.2)

The government sets the path of taxes/transfers in a way that satisfies its budget

constraint ∫ ∞
0

e−
∫ t
0 rsdsTtdt+B0 = 0. (A.3)

As described in Section 2, the monetary authority sets an exogenous time path for real

rates {rt}t≥0.

An equilibrium in this economy is a time path for income {Yt}t≥0 such that (i)

the household maximizes (A.1) subject to (A.2) taking as given {rt, Yt, Tt}t≥0, (ii) the

government budget constraint (A.3) holds, and (iii) the goods market clears

Ct({rt, Yt, Tt}t≥0) = Yt, (A.4)
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where Ct({rt, Yt, Tt}t≥0) is the optimal consumption function for the household.

The overall effect of a change in the path of interest rates on consumption is de-

termined from only two conditions. First, household optimization implies that the

time path of consumption satisfies the Euler equation Ċt/Ct = 1
γ
(rt − ρ). Second, by

assumption, consumption returns back to its steady state level Ct → C̄ = Ȳ as t→∞.

Therefore, we have

Ct = C̄ exp

(
−1

γ

∫ ∞
t

(rs − ρ)ds

)
⇔ d logCt = −1

γ

∫ ∞
t

drsds. (A.5)

A.2 Proof of Proposition 1

The proof covers both the case B0 = 0 as in Proposition 1 and the case B0 > 0 as

in (7). A key virtue of the simple model we consider is that it admits a closed-form

solution for the household’s optimal consumption function.

Lemma A.1 For any time paths {rt, Yt, Tt}t≥0, initial consumption is given by

C0({rt, Yt, Tt}t≥0) =
1

χ

(∫ ∞
0

e−
∫ t
0 rsds(Yt + Tt)dt+B0

)
, (A.6)

χ =

∫ ∞
0

e−
γ−1
γ

∫ t
0 rsds−

1
γ
ρtdt. (A.7)

The derivatives of the consumption function evaluated at (rt, Yt, Tt) = (ρ, Ȳ , T̄ ) are:62

∂C0

∂rt
= −1

γ
Ȳ e−ρt + ρB0e

−ρt ∂C0

∂Yt
=
∂C0

∂Tt
= ρe−ρt. (A.8)

Proof of Lemma A.1 Integrating the Euler equation forward in time, we have

logCt − logC0 =
1

γ

∫ t

0

(rs − ρ)ds ⇒ Ct = C0 exp

(
1

γ

∫ t

0

(rs − ρ)ds

)
Substituting into the budget constraint (A.2):

C0

∫ ∞
0

e−
∫ t
0 rsds+

1
γ

∫ t
0 (rs−ρ)dsdt =

∫ ∞
0

e−
∫ τ
0 rsds(Yτ + Tτ )dτ +B0,

or, equivalently, (A.6) with χ defined in (A.7).

62In our continuous-time model the interest rate rt and income Yt are functions of time. Strictly
speaking, the consumption function C0({rt, Yt, Tt}t≥0) is therefore a functional (i.e. a “function
of a function”). The derivatives ∂C0/∂rt, ∂C0/∂Yt and ∂C0/∂Tt are therefore so-called functional
derivatives rather than partial derivatives.
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Next, consider the derivatives ∂C0/∂rt, ∂C0/∂Yt and ∂C0/∂Tt. Differentiating C0

in (A.6) with respect to Yt yields ∂C0/∂Yt = 1
χ
e−

∫ t
0 rsds. Evaluating at the steady state,

we have
∂C0

∂Yt
= ρe−ρt. (A.9)

The derivative with respect to Tt is clearly identical.

Next consider ∂C0/∂rt. Write (A.6) as

C0 =
1

χ

(
Y PDV + T PDV +B0

)
,

Y PDV =

∫ ∞
0

e−
∫ τ
0 rsdsYτdτ, T PDV =

∫ ∞
0

e−
∫ τ
0 rsdsTτdτ.

(A.10)

We have

∂C0

∂rt
=

1

χ

(
∂Y PDV

∂rt
+
∂T PDV

∂rt

)
− 1

χ2

∂χ

∂rt

(
Y PDV + T PDV +B0

)
. (A.11)

We calculate the different components in turn. From (A.10)

∂Y PDV

∂rt
=

∂

∂rt

∫ ∞
0

e−
∫ τ
0 rsdsYτdτ =

∂

∂rt

∫ ∞
t

e−
∫ τ
0 rsdsYτdτ (A.12)

where we used that e−
∫ τ
0 rsdsYτ does not depend on rt for τ < t. Next, note that for

τ > t
∂

∂rt
e−

∫ τ
0 rsds = −e−

∫ τ
0 rsds

∂

∂rt

∫ τ

0

rsds = −e−
∫ τ
0 rsds

where the second equality uses ∂
∂rt

∫ τ
0
rsds = 1 for t < τ . Substituting into (A.12), we

have
∂Y PDV

∂rt
= −

∫ ∞
t

e−
∫ τ
0 rsdsYτdτ.

Similarly
∂T PDV

∂rt
= −

∫ ∞
t

e−
∫ τ
0 rsdsTτdτ, (A.13)

and
∂χ

∂rt
=

∂

∂rt

∫ ∞
t

e−
γ−1
γ

∫ τ
0 rsds− 1

γ
ρτdτ = −γ − 1

γ

∫ ∞
t

e−
γ−1
γ

∫ τ
0 rsds− 1

γ
ρτdτ.

Plugging these into (A.11)

∂C0

∂rt
= − 1

χ

∫ ∞
t

e−
∫ τ
0 rsds(Yτ+Tτ )dτ+

1

χ2

γ − 1

γ

∫ ∞
t

e−
γ−1
γ

∫ τ
0 rsds− 1

γ
ρτdτ

(
Y PDV + T PDV +B0

)
.
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Evaluating at the steady state and using χ̄ = 1/ρ, Y PDV = Ȳ /ρ, T PDV = T̄ /ρ and∫∞
t
e−ρτdτ = e−ρt/ρ:

∂C0

∂rt
= −(Ȳ + T̄ )e−ρt +

γ − 1

γ
e−ρt

(
Ȳ + T̄ + ρB0

)
. (A.14)

The government budget constraint is T PDV +B0 = 0, so that in steady state T̄ = −ρB0

and hence (A.14) reduces to the expression in (A.8).�

Conclusion of Proof Plugging (A.8) into (6), we have

dC0 =

(
−1

γ
Ȳ + ρB0

)∫ ∞
0

e−ρtdrtdt+ ρ

∫ ∞
0

e−ρtdYtdt+ ρ

∫ ∞
0

e−ρtdTtdt. (A.15)

It remains to characterize dYt and dTt and to plug in. First, from (A.5) in equilibrium

d log Yt = −1

γ

∫ ∞
t

drsds. (A.16)

Next, totally differentiate the government budget constraint∫ ∞
0

∂

∂rt

(∫ ∞
0

e−
∫ τ
0 rsdsTτdτ

)
drtdt+

∫ ∞
0

e−
∫ τ
0 rsdsdTτdτ = 0.

Using (A.13) and evaluating at the steady state −1
ρ

∫∞
0
T̄ e−ρtdrtdt +

∫∞
0
e−ρtdTτdτ .

Using that T̄ = −ρB0, ∫ ∞
0

e−ρtdTτdτ = −B0

∫ ∞
0

e−ρtdrtdt (A.17)

Plugging (A.16) and (A.17) into (A.15), we have

d logC0 =

(
−1

γ
+ ρ

B0

Ȳ

)∫ ∞
0

e−ρtdrtdt︸ ︷︷ ︸
direct response to r

− ρ

γ

∫ ∞
0

e−ρt
∫ ∞
t

drsdsdt︸ ︷︷ ︸
indirect effects due to Y

− ρB0

Ȳ

∫ ∞
0

e−ρtdrtdt.︸ ︷︷ ︸
indirect effects due to T

(A.18)

Equation (4) in Proposition 1 is the special case with B0 = 0.

To see that this decomposition is additive, consider the second term in (A.18) and

4



integrate by parts:

ρ

γ

∫ ∞
0

e−ρt
∫ ∞
t

drsdsdt = −ρ
γ

∫ ∞
t

e−ρsds

∫ ∞
t

drsds

∣∣∣∣∞
0

− ρ

γ

∫ ∞
0

∫ ∞
t

e−ρsdsdrtdt

= −ρ
γ

1

ρ
e−ρt

∫ ∞
t

drsds

∣∣∣∣∞
0

− ρ

γ

1

ρ

∫ ∞
0

e−ρtdrtdt

=
1

γ

∫ ∞
0

drsds−
1

γ

∫ ∞
0

e−ρtdrtdt.

Therefore it is easy to see that the first, second and third terms in (A.18) sum to

− 1
γ

∫∞
0
drsds.�

Remark: The fact that second term in (4) scales with 1/γ —and therefore the re-

sult that with B0 = 0 the split between direct and indirect effects is independent of

1/γ— is an equilibrium outcome. In particular, without imposing equilibrium, the

decomposition with B0 = 0 (4) is

d logC0 = − 1

γ

∫ ∞
0

e−ρtdrtdt︸ ︷︷ ︸
direct response to r

+ ρ

∫ ∞
0

e−ρtd log Ytdt︸ ︷︷ ︸
GE effects due to Y

.

But in equilibrium d log Yt = − 1
γ

∫∞
t
drsds which scales with 1/γ. Also see footnote 8.

Derivation of (5): In the special case (1), we have drt = e−ηtdr0. Hence
∫∞

0
e−ρtdrtdt =∫∞

0
e−(ρ+η)tdtdr0 = 1

ρ+η
dr0. Similarly

∫∞
0
e−ρt

∫∞
t
drsdsdt =

∫∞
0
e−ρt

∫∞
t
e−ηsdsdtdr0 =

1
η

∫∞
0
e−(ρ+η)tdtdr0 = 1

η
1

ρ+η
dr0. Plugging these into (4) yields (5).

A.3 Details for Section 2.2

In the environment described in Section 2.2, aggregate consumption is given by

Ct = ΛCsp
t + (1− Λ)Csa

t . (A.19)

Savers face the present-value budget constraint∫ ∞
0

e−
∫ t
0 rsdsCsa

t dt =

∫ ∞
0

e−
∫ t
0 rsds(Yt + T sat )dt+Bsa

0 ,
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The government budget constraint is∫ ∞
0

e−
∫ t
0 rsds(ΛT spt + (1− Λ)T sat )dt+B0 = 0, (A.20)

where Bt is government debt. The market clearing condition for government debt is

Bt = (1− Λ)Bsa
t . (A.21)

We additionally assume that the economy starts at a steady state in which Csp
t =

Csa
t = C̄ = Ȳ (and hence T̄ sp = 0). As before, we also assume that the economy ends

up in the same steady state (and hence in particular T spt → T̄ sp = 0 as t→∞).

We now show how to derive the results of Section 2.2. First, consider the overall

effect of interest rate changes on aggregate consumption. As before, the consumption

response of savers is given by Csa
t = C̄ exp

(
− 1
γ

∫∞
t

(rs − ρ)ds
)

. From (A.19) and

because spender consumption equals Csp
t = Yt + T spt , therefore

Ct = Λ(Yt + T spt ) + (1− Λ)C̄ exp

(
−1

γ

∫ ∞
t

(rs − ρ)ds

)
.

Using that in equilibrium Ct = Yt:

Ct =
Λ

1− Λ
T spt + C̄ exp

(
−1

γ

∫ ∞
t

(rs − ρ)ds

)
(A.22)

We first show how (9) is derived. The government budget constraint (A.20) can be

written in flow terms as Ḃt = rtBt + ΛT spt + (1 − Λ)T sat . Under the assumption that

the government keeps debt constant at its initial level, Bt = B0, we need

Λ(T spt − T̄ sp) + (1− Λ)(T sat − T̄ sa) + (rt − ρ)B0 = 0

Alternatively, denoting by ΛT the fraction of income gains that is rebated to spenders

and using the assumption that T̄ sp = 0:

ΛT spt = −ΛT (rt − ρ)B0

Substituting into (A.22) and totally differentiating

d logCt = − ΛT

1− Λ

B0

Ȳ
drt −

1

γ

∫ ∞
t

drsds (A.23)
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Equation (9) is obtained by specializing to the interest rate time path (1). When

B0 = 0, the total response of aggregate consumption and income in this simple TANK

model is therefore identical to that in the RANK version above.

Finally, we show how equation (8) is derived. Because the savers in our TANK

model solve the same problem as the representative agent in the RANK model above,

their consumption satisfies the analogue of (A.15):

dCsa
0 =

(
−1

γ
Ȳ + ρBsa

0

)∫ ∞
0

e−ρtdrtdt+ ρ

∫ ∞
0

e−ρtdYtdt+ ρ

∫ ∞
0

e−ρtdT sat dt

From (A.23) and using Yt = Ct and (A.20), their income satisfies d log Yt = −ΛT B
sa
0

Ȳ
drt−

1
γ

∫∞
t
drsds. Since spenders receive a fraction ΛT of the government’s income gains

from expansionary monetary policy, savers receive the rest and hence (1 − Λ)T sat =

−(1 − ΛT )(rt − ρ)B0 or from (A.20) T sat = −(1 − ΛT )(rt − ρ)Bsa
0 and hence dT sat =

−(1− ΛT )Bsa
0 drt. Therefore∫ ∞

0

e−ρtdT sat dt = −(1− ΛT )Bsa
0

∫ ∞
0

e−ρtdrtdt

Substituting these expressions into the one for saver consumption:

d logCsa
0 =

(
−1

γ
+ ρ

Bsa
0

Ȳ

)∫ ∞
0

e−ρtdrtdt− ρ
∫ ∞

0

e−ρt
(

1

γ

∫ ∞
t

drsds+ ΛT B
sa
0

Ȳ
drt

)
dt

− ρ(1− ΛT )
Bsa

0

Ȳ

∫ ∞
0

e−ρtdrtdt

Next, characterize spenders’ consumption response

dCsp
0

C0

=
dY0 + dT sp0

Y0

= − ΛT

1− Λ

B0

Ȳ
dr0 −

1

γ

∫ ∞
0

drtdt−
ΛT

Λ

B0

Ȳ
dr0

= − ΛT

Λ(1− Λ)

B0

Ȳ
dr0 −

1

γ

∫ ∞
0

drtdt

From (A.19) d logC0 = (1−Λ)d logCsp
0 +Λ

dY0+dT sp0
Y0

. Therefore, the analogue of Propo-
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sition 1 is

d logC0 =

(
−1− Λ

γ
+ ρ

B0

Ȳ

)∫ ∞
0

e−ρtdrtdt

− ρ(1− Λ)

γ

∫ ∞
0

e−ρt
∫ ∞
t

drsdsdt− ρΛT B0

Ȳ

∫ ∞
0

e−ρtdrtdt−
ΛΛT

1− Λ

B0

Ȳ
dr0

− ρ(1− ΛT )
B0

Ȳ

∫ ∞
0

e−ρtdrtdt−
Λ

γ

∫ ∞
0

drtdt− ΛT B0

Ȳ
dr0

(A.24)

The first line is the direct response to r, the second line are indirect effects due to Y ,

and the third line are indirect effects due to T . An instructive special case is the one

without government debt, Bt = 0 for all t. In that case

d logC0 = − 1− Λ

γ

∫ ∞
0

e−ρtdrtdt︸ ︷︷ ︸
direct response to r

− ρ(1− Λ)

γ

∫ ∞
0

e−ρt
∫ ∞
t

drsdsdt−
Λ

γ

∫ ∞
t

drsds︸ ︷︷ ︸
indirect effects due to Y

.

Equation (8) then follows from the fact that in the special case (1), drt = e−ηtdr0.

For completeness, we also derive the split between direct and indirect effects for

our analytic example drt = e−ηtdr0 in the case with both hand-to-mouth agents Λ > 0

and government debt B0 > 0. Collecting some of the indirect effects on the second and

third lines of (A.24) and specializing to drt = e−ηtdr0, we have

−d logC0

dr0

=
1

γη

[
η

ρ+ η

(
1− Λ− ργB0

Ȳ

)
︸ ︷︷ ︸

direct response to r

+(1−Λ)
ρ

ρ+ η
+Λ+

η

ρ+ η
ργ
B0

Ȳ

]
+

ΛT

1− Λ

B0

Ȳ
.

(A.25)

A.4 Details on Medium-Scale DSGE Model (Section 2.3)

The Smets-Wouters model is a typical medium-scale DSGE RANK model with a variety

of shocks and frictions. The introduction of Smets and Wouters (2007) provides a useful

overview and a detailed description of the model can be found in the paper’s online

Appendix.63 We here only outline the ingredients of the model that are important for

the purpose of our decomposition exercise (reported in Table 1) as well as some details

on the implementation of this exercise.

An important difference relative to the stylized model of Section 2.1 is that the

63Available at https://www.aeaweb.org/aer/data/june07/20041254_app.pdf
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representative household’s utility function features external habit formation:

E0

∞∑
t=0

βt
1

1− σc
(Ct(j)− hCt−1)1−σc exp

(
σc − 1

1 + σl
Lt(j)

1+σl

)
(A.26)

where Ct(j) is consumption of one of a continuum of individual households and Ct

is aggregate consumption (in equilibrium the two are equal). The parameter h ∈
[0, 1] disciplines the degree of external habit formation. As mentioned in the main

text, the model also features investment with investment adjustment costs and capital

utilization, as well as partially sticky prices and wages.

Our starting point for the decomposition are the impulse response functions (IRFs)

to an expansionary monetary policy shock in a log-linearized, estimated version of

the model. We set each of the model’s parameters to the mode of the corresponding

posterior distribution (see Table 1 in Smets and Wouters (2007) for the parameter

values). The IRFs are computed in Dynare using an updated version of the replication

file of the published paper.64 For our purposes, the relevant IRFs are the sequences

{Ct, Rt, Yt, It, Gt, UCt, Lt}∞t=0 for consumption Ct, interest rates Rt, labor income Yt,

investment It, government spending Gt, capital utilization costs UCt = a(Zt)Kt−1 and

labour supply Lt. We further denote consumption at the initial steady state by C̄.

Given these IRFs, we decompose the overall consumption response to an expan-

sionary monetary policy shock into direct and indirect effects as follows. Suppressing

j-indices for individual households, the budget constraint of households is

Ct +
Bt

RtPt
+ Tt ≤

Bt−1

Pt
+Mt (A.27)

Mt =
W h
t Lt
Pt

+
Rh
tKt−1Zt
Pt

− a(Zt)Kt−1 +
Divt
Pt

+
Πt

Pt
− It (A.28)

where the reader should refer to the online Appendix of Smets and Wouters (2007)

for an explanation of each term (the budget constraint is their equation (9)).65 In

present-value form
∞∑
t=0

1

Πt−1
k=0R̃k

Ct =
∞∑
t=0

1

Πt−1
k=0R̃k

(Mt − Tt)

where R̃t = Rt
Πt

denotes the real interest rate. Households maximize (A.26) subject to

64Available at http://www.dynare.org/phpBB3/viewtopic.php?f=1&t=3750.
65Note that Smets and Wouters’ budget constraint features some typos: it does not include dividends

from firm ownership Πt and there is a “minus” in front of Tt suggesting it is a transfer even though
it enters as a tax in the government budget constraint (equation (24) in their online Appendix).
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this budget constraint. For any price sequences, initial consumption C0 then satisfies:

C0 =
1

χ

(
X +

B−1

P0

+
∞∑
t=0

1

Πt−1
k=0R̃k

(Mt + Tt)

)
(A.29)

χ =
∞∑
t=0

1

Πt−1
k=1R̃k

(
t∑

k=0

xt−k

(
h

g

)k)

X =
∞∑
t=0

1

Πt−1
k=1R̃k

t−1∑
k=0

xt−k

(
h

g

)k+1

C̄

xs =
(
β̄sΠs−1

k=0R̃k

)1/σc
exp

(
σc − 1

σc(1 + σl)
(Ls − L0)

)
where β̄ = β

gσc
and g is the gross growth rate of the economy. The direct effect

of consumption to interest rate changes is then computed from (A.29) by feeding in

the equilibrium sequence of real interest rates {R̃t}∞t=0 while holding {Mt, Tt, Lt}∞t=0 at

their steady state values. When computing this direct effect in practice, we simplify

the right-hand side of (A.29) further taking advantage of the fact that most terms are

independent of the sequence of real interest rates {R̃t}∞t=0. In particular, in equilibrium,

profits and labor union dividends are Πt = PtYt − WtLt − Rh
t ZtKt−1 and Divt =

(Wt −W h
t )Lt and therefore, substituting into (A.28)

Mt = Yt − a(Zt)Kt−1 − It. (A.30)

Further, the government budget constraint in present-value form is

∞∑
t=0

1

Πt
k=0R̃k

Tt =
∞∑
t=0

1

Πt
k=0R̃k

Gt. (A.31)

Substituting (A.30) and (A.31) into (A.29), we have

C0 =
1

χ

(
X + Y PDV − IPDV −GPDV − UCPDV

)
(A.32)

where Y PDV , IPDV , GPDV and UCPDV are the present values of {Yt, It, Gt, UCt}∞t=0

discounted at {R̃t}∞t=0.

Note that although the series {Ct, R̃t, Yt, It, Gt, UCt, Lt}∞t=0 are generated using a

log-linearized approximation around the trend, our decomposition uses a non-linear

solution. In particular, both the overall and direct elasticities of consumption to interest

rate changes in Table 1 are computed using the exact non-linear Euler equation but
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evaluated at the equilibrium prices from the linearized models – see the formula (A.32).

The fraction due to direct effects is the ratio of this direct elasticity to the overall

elasticity, with both numerator and denominator computed in this non-linear fashion.

In our baseline exercise in Table 1 this fraction equals 99 percent. For small shocks the

overall elasticity of consumption computed with the exact formula is very close to the

elasticity computed using the linearized output from Dynare. For larger shocks, the

two can differ somewhat. We have also recomputed the share of direct effects as the

ratio of the direct elasticity computed in a non-linear fashion and the overall elasticity

computed in a linear fashion. For the baseline exercise in Table 1, this yields a share

of direct effects of 91%.

As already stated in the main text, our main result is that – at the estimated

parameter values of Smets and Wouters (2007) – the direct effect amounts for 99 percent

of the total response of initial consumption to an expansionary monetary policy shock.

We have conducted a number of robustness checks with respect to various parameter

values, and in particular with respect to the habit formation parameter h. The results

are robust. In the case without habit formation h = 0, 95.1 percent of the overall effect

are due to direct intertemporal substitution effects. Finally, note that a difference

between (A.26) and the specification of preferences in textbook versions of the New

Keynesian model is the non-separability between consumption and labor supply. We

have conducted an analogous decomposition exercise with a separable version of (A.26).

The decomposition is hardly affected.

A.5 Details on the Two-Asset RANK and TANK Models

A.5.1 Model

We begin by outlining the two-agent, spender-saver version of the model (TANK). The

representative agent is a special case with the fraction of spenders equal to zero. The

model is written and solved in discrete time.

Households. A fraction Λ of households are spenders indexed by “sp” and a fraction

1− Λ are savers indexed by “sa”.

Savers . Savers derive utility from consuming csat and have disutility from supplying

labor `sat . Savers are able to borrow and save in a liquid government bond at rate rbt .

They also have access to an illiquid asset at with rate of return rat . Assets of type

a are illiquid in the sense that households need to pay a cost for depositing into or

withdrawing from their illiquid account. Let dt denote the deposit decision and χ(dt)

11



the cost of depositing dt. The saver’s problem in its sequential formulation is therefore

given by

max
{csat ,`sat ,dt,bt+1,at+1}

∞
t=0

∞∑
t=0

βtu(csat , `
sa
t )

S.t. csat + bt+1 + dt + χ(dt, at) = (1− τ)(wt`
sa
t + Γsat ) + T sat + (1 + rbt )bt (λ)

at+1 = (1 + rat )at + dt (η)

where

u(c, `) = log c− ϕ `1+ν

1 + ν

χ(d) = χ1|d|χ2 , χ1 > 0, χ2 > 1.

The first-order conditions for the consumer’s problem can be written as

1 =

{
λt,t+1

(
1 + rbt+1

)}
(A.33)

ηt =

{
λt,t+1

[
ηt+1

(
1 + rat+1

)]}
(A.34)

ηt = 1 + sign(dt)× χ̃
∣∣dt∣∣χ2−1

, χ̃ = χ1χ2 (A.35)

ϕ
(
`sat
)ν
csat = (1− τ)wt (A.36)

where

λt,t+1 :=
λt+1

λt
= β

(
csat+1

csat

)−1

. (A.37)

Note that, by combining (A.33) and (A.34), one obtains that in steady state rb = ra.

Spenders . Spenders are hand-to-mouth, i.e. consume their labor income every period.

Their only margin of adjustment is labor supply `sp. The spender’s problem is

max
cspt ,`

sp
t

u(cspt , `
sp
t ) s.t.

cspt = (1− τ)(wt`
sp
t + Γspt ) + T spt

12



with first-order conditions

cspt = (1− τ)(wt`
sp
t + Γspt ) + T spt (A.38)

wt =
ϕ

1− τ
(
`spt
)ν
cspt . (A.39)

Firms. There is a continuum of intermediate-goods monopolistic firms, each produc-

ing a variety j using a constant returns to scale production function

yt(j) = kt(j)
αnt(j)

1−α. (A.40)

Each intermediate producer chooses its price pt(j) and inputs kt(j), nt(j) to maximize

pt(j)

Pt
yt(j)− wtnt(j)− rkt kt(j)−Θ

(
pt(j)

pt−1(j)

)
(A.41)

taking into account that the demand for its product depends on the price pt(j) charged.

The function Θ(·) is a quadratic adjustment cost for the price change and is expressed

as a fraction of final good output Yt

Θt

(
pt
pt−1

)
=
θ

2

(
pt
pt−1

− 1

)2

Yt.

We divide the problem of the firm in two parts. First, the cost minimization problem

of producing y units of variety j delivers the following optimality conditions

wt = (1− α)mt
y

nt(j)
(A.42)

rkt = αmt
y

kt(j)
(A.43)

where marginal cost mt is the same across firms

mt =

(
rkt
α

)α(
wt

1− α

)1−α

.

Since all firms face the same marginal cost, we drop the j subscript from now on-

wards. Taking cost minimization decisions as given, each intermediate producer chooses

13



{pt}∞t=0 to maximize discounted profits

max
{pt}∞t=0

∞∑
t=0

(λtηt)

{(
pt
Pt
−mt

)
yt −Θt

(
pt
pt−1

)}
(A.44)

s.t. yt =

(
pt
Pt

)−ε
Yt (A.45)

where the discount factor used by the firm reflects that dividends will accrue to the

illiquid account of savers. In a symmetric equilibrium, all firms will choose the same

price, which will be also the aggregate price Pt. That gives rise to the following Phillips

curve relating aggregate inflation πt = Pt
Pt−1
− 1 and marginal costs

1− θπt
(
1 + πt

)
+ θ

(
λt+1η+1

λtηt

)
πt+1

(
1 + πt+1

)Yt+1

Yt
=
(
1−mt

)
ε. (A.46)

Note that, from equation (A.34), effectively firm discount at rate ra, which is also

the discounting that appears in the Phillips curve, exactly as in our HANK model.

Moreover, since in equilibrium all firms choose the same price, they all produce the

same quantity and hire the same amount of input on factor markets. Hence we can

aggregate production function of each firm to get

yt(j) = kt(j)
αnt(j)

1−α ⇒ Yt = Kα
t N

1−α
t .

Finally, profits are then given by

Πt = Yt

(
(1−mt)−

θ

2
π2

)
. (A.47)

Illiquid Assets. As in HANK, illiquid assets at consist of both capital holdings (ksat )

and equity claims (st) to a fraction ω of profits. Since there is no aggregate uncertainty,

no arbitrage dictates that the return to capital must be equal to the return on equity.

We denote this return by rat

rat ≡
ωΠt +

(
qt − qt−1

)
qt−1

= rkt − δ (A.48)

which restricts how asset prices qt evolves over time:

qt =
1

1 + rat+1

(
ωΠt+1 + qt+1

)
.
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In the event of an unexpected shock, however, the realized returns between capital

and shares do not need to be equalized at the moment of impact. What no-arbitrage

pricing requires, in such a circumstance, is for the stock price to jump so as to make

the return from holding shares the same as the return from holding capital from that

period onwards. Realized returns at impact, though, need not to be equalized, since

asset positions are pre-determined. Hence, it is useful to write the law of motion of

illiquid assets by keeping track of portfolio composition

at+1 ≡ ksat+1 + st+1qt

=
(
1 + rat

)
at + dt

=
(
1 + rkt − δ

)
ksat + st

(
ωΠt + qt

)
+ dt. (A.49)

By combining (A.48) and (A.49), it is easy to see that, in steady-state, savers withdraw

from the illiquid account an amount d = −raa.

As in HANK, the remaining fraction (1−ω) of profits are distributed to households

(both spenders and savers) as a direct transfer Γt to agents liquid budget constraint

(since there is no difference in productivity between the two groups, they are distributed

lump-sum):

Γt = (1− ω)Πt, Γspt = Γsat = Γt. (A.50)

We set ω = α so as to neutralize the role of countercyclical profits as explained in the

main text.

Government. The government issues bonds denoted by Bg, with the convention

that negative values denote government debt. Its budget constraint is therefore given

by

Bg
t+1 =

(
1 + rbt

)
Bg
t + τ

(
wtNt + Γt

)
− Tt −Gt (A.51)

with government transfers Tt given by

Tt = ΛT spt − (1− Λ)T sat (A.52)

ΛTTt = ΛT spt (A.53)

Note that we allow for ΛT 6= Λ, i.e. spenders may receive bigger or smaller share of

transfers than their population share.
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Monetary authority. Monetary policy follows a Taylor rule for the nominal interest

rate

it = r̄bt + φπt + εt, εt+1 = ρεt + ut+1, ut+1 ∼ N (0, σ2
ε ) (A.54)

Given inflation and the nominal interest rate, the real return realized on liquid assets

hold by savers is given by

1 + rbt =
1 + it−1

1 + πt
. (A.55)

Equilibrium. To close the model, we state market clearing conditions

0 = (1− Λ)bsat+1 +Bg
t+1 (A.56)

1 = (1− Λ)st+1 (A.57)

Kt+1 = (1− Λ)ksat+1 (A.58)

It = Kt+1 − (1− δ)Kt (A.59)

Yt = Ct + It +Gt +
(
1− Λ

)
χt + Θt (A.60)

where

Ct = Λcspt +
(
1− Λ

)
csat (A.61)

Nt = Λ`spt +
(
1− Λ

)
`sat . (A.62)

A.5.2 Parameterization

Some parameter values are set exactly as in the simple TANK models of Section 2. In

particular, we set Λ = ΛT = 0.3, risk aversion γ to 1, and the discount rate to 5%

annually. In this model, the liquid real rate also equals 5% in steady state.

Other parameters (Frisch elasticity, transaction cost, demand elasticity, price ad-

justment cost, share of profits paid as dividends, government policy parameters, and

Taylor rule coefficient) are set as in HANK. Only two parameters are calibrated inter-

nally. The disutility of labor is set so that on average 1/3 of the time endowment is

spent working, and the depreciation rate is set to match the same illiquid wealth to

GDP ratio as in HANK (13, quarterly). Table A.1 summarizes the parameterization.

A.5.3 Simulations and decompositions

We use Dynare to solve for the model’s steady state, its transitional dynamics and the

decompositions. The model is solved globally (i.e. without local linearization) from
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Table A.1: Parameter values (period length is one quarter)

Preferences
Fraction of HtM Λ 0.30
Discount factor β 1.0125−1

Risk aversion γ 1.00
Disutility of labor ϕ
Frisch elasticity 1/ν 1.00

Deposit costs
Scaling χ1 0.956
Curvature χ2 1.402

Production
Demand elasticity ε 10
Capital share α 0.33
Depreciation rate δ 0.017
Price adjustment cost θ 100
Share of profit paid as liquid dividends ω 0.33

Government policy
Proportional labor tax τ 0.25
Lump sum transfer (rel GDP) T 0.06
Fraction transfer to HtM ΛT 0.30
Govt debt/annual GDP |Bg|/(4Y ) 0.23

Monetary Policy
Steady state real liquid return (pa) rb 0.05
Taylor rule coefficient φ 1.25
Shock size at impact u0 0.0025
Shock persistence ρ 0.50

the equilibrium system of nonlinear equations. We always analyze monetary shocks of

the same size as in HANK, i.e., 25 basis points, with a quarterly persistence of 0.5. It

is worth emphasizing that η = 0.5 is the correct choice also for discrete time, if we wish

to compare across models. To see this, consider that the cumulative deviation of the

interest rate path from t = 0 is
∫∞

0
(rs − ρ) ds =

∫∞
0

exp (−ηs) ds = 1/η. In discrete

time the cumulative deviation is
∑∞

t=0 ρ
t = 1/(1− ρ). Thus, a proper comparison with

a continuous time model where η = 0.5 requires setting ρ = 0.5.

Figure A.1 reports the IRFs and decomposition in RANK and TANK for the base-

line fiscal policy scenario (T-adjust case). It is the counterpart of Figure 4 for HANK.

The elasticities and share of direct effects for the two-asset RANK and TANK reported

in Table 1 are obtained from these experiments.
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Figure A.1: Impulse Response Functions and Decompositions in RANK and TANK

18



B Additional Details on the HANK Model

B.1 HJB and Kolmogorov Forward Equations for Household’s
Problem

We here present the households’ HJB equation, and the Kolmogorov forward equation

for the evolution of the cross-sectional distribution µ. We focus on the stationary

versions of these equations under the assumption that the logarithm of income yit =

log zit follows a “jump-drift process”

dyit = −βyitdt+ dJit.

Jumps arrive at a Poisson arrival rate λ. Conditional on a jump, a new log-earnings

state y′it is drawn from a normal distribution with mean zero and variance σ2, y′it ∼
N (0, σ2). The stationary version of households’ HJB equation is then given by

(ρ+ ζ)V (a, b, y) = max
c,`,d

u(c, `) + Vb(a, b, y)
[
(1− τ)wey`+ rb(b)b+ T − d− χ(d, a)− c

]
+ Va(a, b, y)(raa+ d) (B.63)

+ Vy(a, b, y)(−βy) + λ

∫ ∞
−∞

(V (a, b, x)− V (a, b, y))φ(x)dx

where φ is the density of a normal distribution with variance σ2.

Similarly, the evolution of the joint distribution of liquid wealth, illiquid wealth and

income can be described by means of a Kolmogorov forward equation. To this end,

denote by g(a, b, y, t) the density function corresponding to the distribution µt(a, b, z),

but in terms of log productivity y = log z. Furthermore, denote by sb(a, b, y) and

sa(a, b, y) the optimal liquid and illiquid asset saving policy functions, i.e. the optimal

drifts in the HJB equation (B.63). Then the stationary density satisfies the Kolmogorov

forward equation

0 =− ∂a(sa(a, b, y)g(a, b, y))− ∂b(sb(a, b, y)g(a, b, y))

− ∂y(−βyg(a, b, y))− λg(a, b, y) + λφ(y)

∫ ∞
−∞

g(a, b, x)dx

− ζg(a, b, y) + ζδ(a− a0)δ(b− b0)g∗(y),

(B.64)

where δ is the Dirac delta function, (a0, b0) are starting assets and income and g∗(y)

us the stationary distribution of y. Achdou et al. (2017) explain in detail how to

solve (B.63) and (B.64), including how to handle the state constraints, using a finite
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difference method.

B.2 Proof of Lemma 1 (Derivation of Phillips Curve)

The firm’s problem in recursive form is

ra(t)J (p, t) = max
π

(
p

P (t)
−m(t)

)(
p

P (t)

)−ε
Y (t)− θ

2
π2Y (t) + Jp (p, t) pπ + Jt(p, t)

where J (p, t) is the real value of a firm with price p. The first order and envelope

conditions for the firm are

Jp (p, t) p = θπY

(ra − π)Jp (p, t) = −
( p
P
−m

)
ε
( p
P

)−ε−1 Y

P
+
( p
P

)−ε Y
P

+ Jpp (p, t) pπ + Jtp(p, t).

In a symmetric equilibrium we will have p = P , and hence

Jp (p, t) =
θπY

p
(B.65)

(ra − π)Jp (p, t) = − (1−m) ε
Y

p
+
Y

p
+ Jpp (p, t) pπ + Jtp(p, t). (B.66)

Differentiating (B.65) with respect to time gives

Jpp (p, t) ṗ+ Jpt(p, t) =
θY π̇

p
+
θẎ π

p
− θY

p

ṗ

p
.

Substituting into the envelope condition (B.66) and dividing by θY/p gives(
ra − Ẏ

Y

)
π =

1

θ
(− (1−m) ε+ 1) + π̇.

Rearranging, we obtain equation (19) in the main text.�

B.3 Computation of Marginal Propensities to Consume

In a continuous-time one-asset model, Achdou et al. (2017) define the notion of an

MPC that is directly comparable to the empirical evidence. This Appendix generalizes

their definition to our two-asset environment.

Definition 1 The Marginal Propensity to Consume over a period τ for an individual
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with state vector (a, b, z) is given by

MPCτ (a, b, z) =
∂Cτ (a, b, z)

∂b
, where (B.67)

Cτ (a, b, z) = E
[∫ τ

0

c(at, bt, zt)dt|a0 = a, b0 = b, z0 = z

]
. (B.68)

Similarly, the fraction consumed out of x additional units of liquid wealth over a period

τ is given by

MPCx
τ (a, b, z) =

Cτ (a, b+ x, z)− Cτ (a, b, z)

x
. (B.69)

The conditional expectation Cτ (a, b, z) in (B.68) and, therefore, the MPCs in Defi-

nition 1 can be conveniently computed using the Feynman-Kac formula. This formula

establishes a link between conditional expectations of stochastic processes and solu-

tions to partial differential equations. Applying the formula, we have Cτ (a, b, z) =

Γ(a, b, y, 0), with y = log z, where Γ(a, b, y, t) satisfies the partial differential equation

0 = c(a, b, y) + Γb(a, b, y, t)s
b(a, b, y) + Γa(a, b, y, t)s

a(a, b, y)

+ Γy(a, b, y, t)(−βy) + λ

∫ ∞
−∞

[Γ(a, b, x, t)− Γ(a, b, y, t)]φ(x)dx+ Γt(a, b, y, t)

on [0,∞)× [b,∞)× [ymin, ymax]× (0, τ), with terminal condition Γ(a, b, y, τ) = 0, and

where c, sb and sa are the consumption and saving policy functions that solve (B.63).

B.4 Extension with firms’ profits allocated to both a and b

Under this extension, a fraction ω of aggregate profits is paid into the illiquid accounts

proportionately to the shares owned by each household and the remaining 1− ω frac-

tion is paid in liquid form to every individual i as a lump-sum rescaled by household

productivity, i.e., πbt (zit) = zit
z̄

(1− ω)Πt where z̄ is average productivity. As explained

in the main text, we interpret πbt (zt) as bonuses and commissions and wtzt`t + πbt (zt)

as total compensation. Labor income taxes are levied on total compensation.

Therefore, omitting the subscript i to ease notation, a household’s holdings of liquid

assets bt evolve according to

ḃt = (1− τt)
[
wtzt`t + πbt (zt)

]
+ rbt (bt)bt + Tt − dt − χ(dt, at)− ct (B.70)

The dynamics of illiquid assets are still given by (11).

To solve their optimization problem, households take also as given Πb
t = (1−ω)

z̄
Πt,

the rescaled fraction of aggregate profits that is paid out proportionally to individual
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productivity. It is useful to define Wt = (wt,Π
b
t), the vector of aggregates that charac-

terizes worker’s compensation. Then, in the vector Γt, wt should be replaced by Wt.

Similarly, in our decomposition, the term capturing the indirect effects from changes

in labor income induced by the monetary shock —the third term of equation (30)—

becomes: ∫ ∞
0

(
∂C0

∂Wt

)′
dWtdt =

∫ ∞
0

(
∂C0

∂wt
dwt +

∂C0

∂Πb
t

dΠb
t

)
dt. (B.71)

Finally, the arbitrage condition between shares of the intermediate producers and cap-

ital and the government budget constraint become

ωΠt + q̇t
qt

= rkt − δ. (B.72)

and the government budget constraint reads

Ḃg
t +Gt + Tt = τt

∫ (
wtz`t (a, b, z) + πbt (z)

)
dµt + rbtB

g
t (B.73)

C Details on 2004 SCF and FoF data

Our starting point is the balance sheet for U.S. households in 2004 (Flow of Funds

Tables B.100, and B100e for the value of market equity). An abridged version of this

table that aggregates minor categories into major groups of assets and liabilities is

reproduced in Table C.1 (columns labelled FoF).

The columns labelled SCF in Table C.1 report the corresponding magnitudes, for

each asset class, when we aggregate across all households in the 2004 Survey of Con-

sumer Finances (SCF). The comparison between these two data sources is, in many

respects, reassuring. For example, aggregate net worth is $43B in the FoF and $49B

in the SCF, and the FoF ranking (and order of magnitude) of each of these major cat-

egories is preserved by the SCF data.66 Nevertheless, well known discrepancies exist

across the two data sources.67

On the liabilities side, credit card debt in FoF data is roughly half as large as in

SCF data. The reason is that SCF measures outstanding consumer debt, whereas the

FoF measures consumer credit, which includes current balances, whether or not they

66This is remarkable, since the underlying data sources are entirely different. The SCF is a household
survey. The macro-level estimates of U.S. household sector net worth in the FoF are obtained as a
residual with respect to all the other sectors of the economy, whose assets and liabilities are measured
based on administrative data derived from aggregate government reports, regulatory filings as well as
data obtained from private vendors and agencies such as the Bureau of Economic Analysis (BEA),
the Census Bureau, and the Internal Revenue Service (IRS).

67For systematic comparisons, see Antoniewicz (2000) and Henriques and Hsu (2013).
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Assets Liabilities
FoF SCF Liquid FoF SCF Liquid

Real estate 21,000 27,700 N Mortgage Debt 7,600 8,500 N
Consumer Durables 4,100 2,700 N Nonrev. Cons. Credit 1,400 1,200 N

Revolving Cons. Credit 800 400 Y
Deposits 5,800 2,800 Y
Treasury Bonds 700 200 Y
Corporate Bonds 900 500 Y

Corporate Equity 12,600 14,200 N
Equity in Noncorp. Bus. 7,300 11,100 N
Total 52,400 59,200 Total 9,800 10,100

Table C.1: Balance sheet of US households for the year 2004.

Sources: Flow of Funds (FoF) and Survey of Consumer Finances (SCF). Values are in Billions of
2004 US$. Y/N stands for Yes/No in the categorization of that asset class as liquid.

get paid in full. Thus, the SCF estimate seems more appropriate, given that a negative

value of b in the model means the household is a net borrower.

On the asset side, real estate wealth in the SCF is 30 pct higher than in the FoF.

The SCF collects self-reported values that reflects respondents’ subjective valuations,

whereas the FoF combines self-reported house values, from the American Housing

Survey (AHS) with national housing price index from CoreLogic and net investment

from the BEA. However, during the house-price boom, AHS owner-reported values

were deemed unreliable and a lot more weight was put on actual house price indexes,

an indication that SCF values of owner-occupied housing may be artificially inflated

by households’ optimistic expectations.

The valuation of private equity wealth is also much higher in the SCF, by a factor

exceeding 1.5. Once again, the FoF estimates appear more reliable, as it relies on

administrative intermediary sources such as SEC filings of private financial businesses

(security brokers and dealers) and IRS data on business income reported on tax returns,

whereas, as with owner-occupied housing, the SCF asks non-corporate business owners

how much they believe their business would sell for today.68

Finally, deposits and bonds are more than twice as large in the FoF.69 Antoniewicz

(2000) and Henriques and Hsu (2013) attribute this discrepancy to the fact that the

FoF “household sector” also includes churches, charitable organizations and personal

trusts (that are more likely to hold wealth in safe instruments) and hedge-funds (that

68According to Henriques and Hsu (2013), another reason why the SCF data on private business
values is problematic is the combination of a very skewed distribution and the small sample size of
the survey that make the aggregate value obtained in the SCF very volatile.

69The SCF does not contain questions on household currency holdings, but SCF data summarized
above contain an imputation for cash. See Kaplan and Violante (2014) for details.
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Figure D.1: Growth Rate Distribution of Estimated Earnings Process

may hold large amount of cash to timely exploit market-arbitrage opportunities).

D Further Details on Calibration

D.1 Earnings Process

Figure D.1 displays histograms of one- and five-year log earnings changes generated

by our estimated earnings process (33)-(34), overlaid with Normal distributions with

the same means and variances. The leptokurtosis of annual income changes is clearly

evident from these figures. For a comparison with the analogous figures from SSA male

earnings data, we refer readers to Figure 1 in Guvenen et al. (2015).

In order to translate the estimated earnings processes (33)-(34) to a form that can

be used in the households’ consumption-saving problem (B.63), we take the following

steps.

First, we approximate the estimated continuous-time continuous-state processes

with continuous-time discrete-state processes. For each of the two components (j =

1, 2) we construct a grid for zj. We use 11 grid points for the persistent component

and 3 grid points for the transitory component. We then construct the associated

continuous time transition matrix based on a finite difference approximation of the

processes in (33)-(34), evaluated at the estimated parameters. We choose the grid

widths and spacing so that the annual moments produced by simulating the combined

discrete-state process are as close as possible to the annual earnings moments from

the combined continuous-state process. These moments are reported in Table D.1.

The Lorenz curves for the ergodic distributions associated with the continuous and

discretized process are shown by the black dashed line and the green dash-dot line in

Figure D.2, respectively. The two Lorenz curves are very close, as are the moments of
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Moment Data Model Model
Estimated Discretized

Variance: annual log earns 0.70 0.70 0.74
Variance: 1yr change 0.23 0.23 0.21
Variance: 5yr change 0.46 0.46 0.49
Kurtosis: 1yr change 17.8 16.5 15.5
Kurtosis: 5yr change 11.6 12.1 13.2
Frac 1yr change < 10% 0.54 0.56 0.63
Frac 1yr change < 20% 0.71 0.67 0.71
Frac 1yr change < 50% 0.86 0.85 0.83

Table D.1: Earnings Process Estimation Fit
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Figure D.2: Earnings Lorenz Curve

earnings changes, which demonstrates that the discrete approximations are accurate.

Second, since earnings in the model are determined by both idiosyncratic produc-

tivity zit and endogenous labor supply decisions `it, we make an adjustment to the pro-

ductivity grid so that the resulting cross-sectional distribution of earnings yit = wtzit`it

is as dispersed as in the data. This adjustment is necessary because with our preference

specification, optimal labor supply decisions `it are positively related to individual pro-

ductivity zit. Hence earnings inequality in the model with labor supply is larger than

productivity inequality. To bring earnings inequality in line with the data we shrink

the log productivity grid by a factor 1 + ζ 1
ν
, where 1

ν
is the Frisch elasticity of labor

supply. We set the constant ζ equal to 0.85, which generates a standard deviation
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Figure D.3: Calibrated Adjustment Cost Function

of log earnings in the model log yit equal to the standard deviation of log household

earnings in the data. To estimate the standard deviation of log household earnings

implied by the SSA data (which we cannot observe directly), we rescale the standard

deviation of log male earnings in the SSA data by the ratio of the standard deviation

of log household earnings to the standard deviation of log male earnings in the Panel

Study of Income Dynamics from 2002 to 2006.

The red dash-dot line in Figure D.2 shows the Lorenz curve for the productivity

distribution once it has been re-scaled in this way. Note that it is less dispersed than

the raw productivity process (green dash-dot line). The blue solid line shows the Lorenz

curve for gross labor income, taking into account the optimal labor supply decisions

of households. Note that gross labor income is more dispersed than the adjusted

productivity process (because of the substitution effect), but is less dispersed than the

raw productivity process (because of the distinction between household earnings and

individual male earnings).

D.2 Adjustment Cost Function

The calibrated transaction cost function is shown in Figure D.3. Consider first panel

(a). The horizontal axis shows the quarterly transaction expressed as a fraction of a

household’s existing stock of illiquid assets, d/a. The vertical axis shows the cost of

withdrawing or depositing this amount in a single quarter expressed as a fraction of the

stock of illiquid assets, χ(d, a)/a. For values of a above the threshold a, this function

does not depend on the level of illiquid assets. From (14) for a > a, χ(d, a)/a =

χ0|d/a| + χ1|d/a|χ2 . The light-blue histogram displays the stationary distribution of

adjustments d/a. Roughly 20% percent of households are inactive and neither deposit

nor withdraw. Of the remaining households, some deposit and some withdraw. The
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histogram shows that, on average, households in the stationary distribution withdraw,

taking advantage of the fact that the income generated by the high return of illiquid

assets replenishes the illiquid account.

Panel (b) provides an alternative view of the adjustment cost function. The hor-

izontal axis shows the quarterly transaction expressed as a fraction of illiquid assets,

d/a, as in panel (a). The vertical axis shows the cost of withdrawing or depositing ex-

pressed as a fraction of the amount being transacted, χ(d, a)/d, i.e. the “fee” for each

transaction. For values of a above the threshold a, this function also does not depend

on the level of illiquid assets. From (14) for a > a, χ(d, a)/d = |d/a| + χ1|d/a|χ2−1.

The overlaid histogram is the same as in panel (a).

These two panels illustrate that, for the most common transaction sizes, the cost is

at most 25 percent of the value of the transaction, or at most 0.05 percent of the stock

of illiquid wealth.
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E Additional Monetary Policy Experiments

In this appendix we report results on the overall effectiveness of monetary policy and

its decomposition between direct and indirect effects, when we vary the key parameters

that govern the “heterogenous agent block” of the model. These features include the

borrowing limit, the cost of borrowing and the parameters of the adjustment cost

function. Unlike the robustness experiments conducted in the main text, changing

these parameters affects the level and distribution of wealth in the steady state. Hence

to maintain comparability across experiments, in each case we re-calibrate the discount

rate ρ so as to keep the mean of the illiquid asset distribution (and hence the equilibrium
K
Y

ratio, wage rate w, interest rates (r, ra), and output Y constant. The distribution of

illiquid wealth, as well as the mean and distribution of liquid wealth, necessarily differ

across the experiments, hence we report these features of the alternative economies

alongside the results of the monetary policy shock

Table E.1 reports robustness analyses on the borrowing environment —the tightness

of the borrowing limit and the wedge between the interest rates on borrowing and

saving in the liquid assets. Reasonable changes in these features of the model have a

significant effect on the level and distribution of liquid wealth holdings, but none of

the main findings about the size and decomposition of the monetary policy shock are

affected by these changes.

Table E.2 reports robustness analyses on the adjustment cost function. As with the

borrowing environment, changes in the adjustment cost function affect the level and

distribution of liquid wealth holdings but none of the main findings about the size and

decomposition of the monetary policy shock are affected.

28



Baseline Loose Low High Very High
Borrow Borrow Borrow Borrow
Limit Costs Costs Costs

b = 4× Y qu κ = 4% pa κ = 8% pa κ = 20% pa
(1) (2) (3) (4) (5)

Mean b (rel. to GDP) 0.23 0.21 0.22 0.24 0.25
Frac with b = 0, a = 0 0.10 0.10 0.07 0.12 0.09
Frac with b = 0, a > 0 0.19 0.17 0.19 0.18 0.15
Frac with b < 0 0.15 0.17 0.25 0.09 0.04
Quarterly $500 MPC 0.16 0.16 0.14 0.16 0.15

Change in rb (pp) -0.28 % -0.29 % -0.28 % -0.27 % -0.27 %

Elasticity of Y -3.96 -3.75 -3.72 -4.17 -4.17
Elasticity of I -9.43 -9.05 -8.94 -9.89 - 9.94

Elasticity of C -2.93 -2.81 -2.75 -3.08 -3.08
Partial Eq. Elast. of C -0.55 -0.64 -0.62 -0.52 -0.52

Component of change in C due to:

Direct effect: rb 19 % 23 % 23 % 17 % 17 %
Indirect effect: w 51 % 50 % 49 % 53 % 53 %
Indirect effect: T 32 % 29 % 30 % 33 % 33 %
Indirect effect: ra q -2 % -1 % -2 % -2 % -2 %

Table E.1: Robustness: borrowing environment

Notes: Average responses over the first year. Column (1) is the baseline specification.Column (2)
loosens the borrowing limit from 1 times quarterly GDP to 4 times quarterly GDP. Column (3)
lowers the wedge between the liquid borrowing and liquid savings rates from 6%pa to 4%pa. Column
(4) raises the wedge between the liquid borrowing and liquid savings rates from 6%pa to 8%pa.
Column (5) raises the wedge between the liquid borrowing and liquid savings rates from 6%pa to
20%pa. All experiments re-calibrate the discount rate ρ so that mean illiquid assets relative to GDP
is held constant.
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Baseline No High Low High
Linear Linear Convex Convex
Cost Cost Cost Cost
χ0 = 0 χ0 = 0.10 χ2 = 0.10 χ2 = 1

(1) (2) (3) (4) (5)

Mean b (rel. to GDP) 0.23 0.22 0.26 0.44 0.11
Frac with b = 0, a = 0 0.10 0.09 0.12 0.22 0.01
Frac with b = 0, a > 0 0.19 0.19 0.18 0.05 0.19
Frac with b < 0 0.15 0.15 0.14 0.12 0.13
Quarterly $500 MPC 0.16 0.16 0.15 0.11 0.14

Change in rb (pp) -0.28 % -0.28 % -0.27 % -0.27 % -0.26 %

Elasticity of Y -3.96 -3.99 -3.94 -3.64 -5.52
Elasticity of I -9.43 -9.68 -9.20 -7.36 -18.64

Elasticity of C -2.93 -2.88 -3.02 -3.47 -2.59
Partial Eq. Elast. of C -0.55 -0.54 -0.55 -0.56 -0.43

Component of change in C due to:

Direct effect: rb 19 % 19 % 18 % 16 % 17 %
Indirect effect: w 51 % 52 % 51 % 43 % 62 %
Indirect effect: T 32 % 31 % 33 % 42 % 26 %
Indirect effect: ra q -1 % -2 % -2 % 0 % -4 %

Table E.2: Robustness: adjustment cost function

Notes: Average responses over the first year. Column (1) is the baseline specification. Column (2)
sets the linear component of the adjustment cost function to zero. Column (3) increases the linear
component of adjustment cost function from 4.4% to 10%. Column (4) reduces the exponent on the
convex component of the adjustment cost function from 0.4 to 0.1. Column (5) increases the
exponent on the convex component of the adjustment cost function from 0.4 to 1. All experiments
re-calibrate the discount rate ρ so that mean illiquid assets relative to GDP is held constant.
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F Decomposition of Direct Elasticity

We here only lay out the relevant result and discuss its interpretation. The derivations

as well as some additional results can be found in Kaplan et al. (2017).

The time-zero direct consumption response d log c0(a, b, z) to small interest rate

deviations {drbt}t≥0 of an individual with asset portfolio (a, b) and labor income z can

be split into substitution and income effects as follows:

d log c0(a, b, z) = −1

γ
E0

[∫ τ

0

e−
∫ t
0 %sdsMtdr

b
tdt

]
︸ ︷︷ ︸

substitution effect

+E0

[∫ τ

0

e−
∫ t
0 %sdsMt

(
∂bct
ct

)
btdr

b
tdt

]
︸ ︷︷ ︸

income effect

where %t := ∂bct + (1 + χd(dt, at))∂bdt − ∂adt and Mt := u′(ct)
u′(c0)

e−
∫ t
0 (ρ−rbs)ds

(F.74)

and where τ := inf{t ≥ 0|%t =∞} is the stopping time at which the effective discount

rate %t becomes infinite (which happens for example if liquid wealth reaches zero or

the borrowing constraint b because ∂bct becomes infinite). Here the expectations are

over sample paths of (at, bt, zt) starting from (a0, b0, z0) = (a, b, z). The term ∂bct is

short-hand notation for ∂bct(at, bt, zt), i.e. the (instantaneous) marginal propensity to

consume (MPC) out of liquid wealth, and similarly for ∂bdt and ∂adt.

The first term in (F.74) is the substitution effect, which is negative and scales with

the intertemporal elasticity of substitution (IES) 1/γ. The second term is the income

effect, which depends on the time paths of both liquid wealth bt and the (instantaneous)

MPC ∂bct.

To better understand (F.74) it is useful to focus on the substitution effect and

consider the corresponding formula in a one-asset model. In this special case, deposits

are zero (dt ≡ 0) so that the effective discount rate simplifies to %t = ∂bct. Because

with uninsurable risk ∂bct is always weakly higher than ρ, the MPC in RANK, the

substitution effect is a dampened version of its counterpart in RANK.70 The first term

in (F.74) is therefore a natural dynamic generalization of Auclert’s expression for the

substitution effect in response to a transitory one-period interest rate change which he

writes as −IES × (1 −MPC). It also captures in a transparent fashion the intuition

of McKay et al. (2016) that a high likelihood of being constrained in the future is

equivalent to a shorter planning horizon.

70Specifically, in RANK the substitution effect can be written as − 1
γ

∫∞
0
e−ρtE0(Mt)dr

b
tdt. In the

one asset model, it can be written as − 1
γ

∫∞
0

[
E0(e−

∫ t
0
∂bcsds)E0(Mt) + cov(e−

∫ t
0
∂bcsds,Mt)

]
drbtdt.

The substitution effect is higher in RANK because ∂bct ≥ ρ and the covariance term is negative by
concavity of the consumption function.
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In our two-asset model, the effective discount rate %t differs from that in a one-asset

model by the term (1 + χd(dt, at))∂bdt− ∂adt. In our computations this term is always

strictly positive and hence the effective discount rate is strictly larger than that in a

one-asset model, which further dampens the intertemporal substitution effect. This

additional effect is linked to portfolio rebalancing between liquid and illiquid asset.

In a one-asset model a fall in the liquid rate is an incentive for households to reduce

savings and consume more. In contrast, in a two-asset model, households also have the

option to shift funds from their liquid to illiquid accounts. If the gap between illiquid

and liquid rates becomes sufficiently large, then households respond to the fall in rb by

rebalancing their portfolios rather than by increasing their consumption. Intuitively,

the fact that individuals may rebalance their portfolios in the future further shortens

their effective time horizon.

The contribution of portfolio reallocation at different points of the liquid wealth

distribution in Figure 6(a) in the main text, i.e. the solid pink line, is defined as

the difference between the sum of income and substitution effects in the two-asset

model and the analogous sum computed ‘as in’ a one-asset model by setting the term

(1 + χd(dt, at))∂bdt − ∂adt to zero.
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