Incomplete Disclosure: Evidence of Signaling and Countersignaling Online Appendix

Benjamin B. Bederson, Ginger Zhe Jin, Phillip Leslie, Alexander J. Quinn, Ben Zou

Appendix Figures and Tables

Figure A: Examples of Offline Posting

Figure B: Mean Number of Violations by Year-Quarter

Note: Each line represents the mean number of violations for inspections that took place in a specific year-quarter for each letter grade.

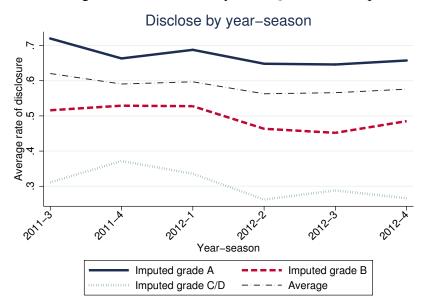


Figure C: Average Disclosure Status by Year-Quarter and Imputed Grade

Note: Each line represents the average disclosure rate for inspections with a specific imputed grade.

Table A: Disclosure by Imputed Grade - Half Grades Defined within ZIP Code

depvar = disclosure in current inspection (1) (2) (3) (4) (5) (6) $A+$ in current inspection (β_{A+}) 0.335*** 0.254*** 0.227*** 0.265*** 0.298*** 0.321* (0.050) (0.037) (0.036) (0.037) (0.034) (0.03 $A-$ in current inspection (β_{A-}) 0.380*** 0.293*** 0.250*** 0.307*** 0.326*** 0.363* (0.027) (0.040) (0.038) (0.039) (0.037) (0.02 $B+$ in current inspection (β_{B+}) 0.193*** 0.116*** 0.084** 0.131*** 0.169*** 0.185* (0.028) (0.038) (0.036) (0.037) (0.036) (0.028) $B-$ in current inspection (β_{B-}) 0.139*** 0.076** 0.044 0.089** 0.124*** 0.138*
$A - \text{ in current inspection } (\beta_{A-}) $ $B + \text{ in current inspection } (\beta_{B+}) $ $(0.050) (0.037) (0.036) (0.037) (0.034) (0.034) (0.038) (0.037) (0.036) (0.038) (0.039) (0.037) (0.028) (0.038) (0.038) (0.037) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) $
A – in current inspection (β_{A-}) 0.380*** 0.293*** 0.250*** 0.307*** 0.326*** 0.363* (0.027) (0.040) (0.038) (0.039) (0.037) (0.028) (0.028) (0.038) (0.036) (0.037) (0.036) (0.037)
$B + \text{ in current inspection } (\beta_{B+}) $ $(0.027) (0.040) (0.038) (0.039) (0.037) (0.028) (0.038) (0.038) (0.039) (0.037) (0.028) (0.038) (0.036) (0.037) (0.036) (0.038) (0.037) (0.038) (0.038) (0.037) (0.038) ($
$B+$ in current inspection (β_{B+}) $0.193*** 0.116*** 0.084** 0.131*** 0.169*** 0.185* (0.028) (0.038) (0.036) (0.037) (0.036) (0.028)$
(0.028) (0.038) (0.036) (0.037) (0.036) (0.028)
B- in current inspection (β_{B-}) 0.139*** 0.076** 0.044 0.089** 0.124*** 0.138
(0.025) (0.035) (0.033) (0.034) (0.035) (0.025)
$C/D+$ in current inspection $0.087***$ 0.039 0.033 $0.054*$ $0.086***$ 0.077^{5}
(0.021) (0.030) (0.029) (0.029) (0.029) (0.029)
mean WSUMVIOL of own -0.015*** -0.010** -0.011*** 0.002
past inspections (0.002) (0.004) (0.003) (0.002)
stdev WSUMVIOL of own 0.003 -0.001 0.009 0.015***
past inspections (0.007) (0.003) (0.006) (0.005)
mean WSUMVIOL of ZIP -0.043***
restaurants (0.010)
fraction of ZIP restaurants 0.050
in first batch (0.105)
of restaurants in ZIP (\times 1,000) -0.304***
(0.019)
A in previous inspection 0.107***
(0.020)
B in previous inspection 0.040**
(0.016)
latest disclosing grade is <i>A</i> 0.417***
(0.011)
$A+$ in previous inspection (ϕ_{A+}) 0.137
(0.03)
$A-$ in previous inspection (ϕ_{A-}) 0.151
(0.02)
$B+$ in previous inspection (ϕ_{B+}) 0.085°
(0.02)
$B-$ in previous inspection (ϕ_{B-}) 0.048
(0.02)
C/D+ in previous inspection 0.061
(0.03
year-season FE X X X X X X X
N 19097 17915 17915 17864 16534 1816
R^2 0.054 0.054 0.086 0.057 0.209 0.06
$\beta_{A+} > \beta_{A-} (p-\text{value})$ 0.106 0.070 0.057 0.048 0.057 0.04
$\beta_{B+} > \beta_{B-} (p-\text{value})$ 1.000 0.997 0.998 0.998 0.998
$\phi_{A+} > \phi_{A-} \ (p-\text{value})$ 0.29
$\phi_{B+} > \phi_{B-} \ (p-\text{value}) $

Note: The sample includes last observed inspections in the post-GC period. Half grades are defined relative to the median WSUMVIOL of all the disclosed inspections in the same letter grade in the same ZIP code. All columns also include a dummy indicating whether the restaurant belongs to the first batch, a dummy indicating whether the restaurant is listed on Yelp, and a dummy indicating whether it belongs to a restaurant chain, and the number of consumer observable violations. Observations for restaurants in ZIP codes that contain fewer than 3 disclosed inspections in any letter grade are dropped. Standard errors reported in parentheses are clustered at the ZIP code level. * p < 0.1, *** p < 0.05, **** p < 0.01.

Table B: Consumer Observable Violations (OBSVIOL=1)

	Table B: Consumer Observable Violations (OBSVIOL=1)
OBSVIOL	Description
1	Food-contact surfaces: cleaned and sanitized
1	Consumer advisory provided for raw or undercooked foods
1	Food properly labeled; original container
1	Insects, rodents and animals not present; no unauthorized persons
1	Personal cleanliness
1	Food and non-food contact surfaces cleanable, properly designed, constructed and used
1	Warewashing facilities: installed, maintained and used; test strips
1	Non-food contact surfaces clean
1	Toilet facilities: properly constructed, supplied, and cleaned
1	Garbage and refuse properly disposed; facilities maintained
1	Physical facilities installed, maintained, and clean
1	Adequate ventilation and lighting; designated areas used
0	Food received at proper temperature
0	Food in good condition, safe, and unadulterated
0	Required records available: shellstock tags, parasite destruction
0	Food separated and protected
0	Proper disposition of returned, previously served, reconditioned, and unsafe food
0	Proper cooking time and temperature
0	Proper reheating procedures for hot holding
0	Proper cooling time and temperature
0	Proper hot holding temperatures
0	Proper cold holding temperatures
0	Proper cold holding temperatures
0	Proper date marking and disposition
0	Time as a public health control: procedures and record
0	Pasteurized foods used; prohibited foods not offered
0	Food additives: approved and properly used
0	Toxic substances properly identified, stored, and used
0	Compliance with variance, specialized process, and HACCP plan
0	Pasteurized eggs used where required
0	Water and ice from approved source
0	Variance obtained for specialized processing methods
0	Proper cooling methods used; adequate equipment for temperature control
0	Plant food properly cooked for hot holding
0	Approved thawing methods used
0	Thermometers provided and accurate
0	Contamination prevented during food preparation, storage, and display
0	Wiping cloths: properly used and stored
0	Washing fruits and vegetables
0	In-use utensils: properly stored
0	Utensils, equipment, and linens: proper stored, dried, and handled
0	Single-use and single-service articles: properly stored and used
0	Gloves used properly
0	Hot and cold water available; adequate pressure
0	Plumbing installed; proper backflow devices
	Sewage and waste water properly disposed
0	sewage and waste water property disposed