
Online Appendix to:

News or Noise? The Missing Link

Ryan Chahrour Kyle Jurado

Boston College Duke University

A Proofs

Proof of Proposition (2). By rational expectations, Ht(x) ⊆ Ht(x̂), and the fact

that {x̂i,t} forms a Gaussian system, it follows that agents’ date−t information is

fully summarized by the random variables x̂i,τ across all i and τ ≤ t.

We can let Ft(x̂) denote the smallest σ-algebra generated by these variables. That

is, Ft(x̂) is generated by cylinder sets of the form

At ≡ {ω ∈ Ω : x̂i1,t1 ∈ G1, . . . , x̂in,tn ∈ Gn},

where Ω denotes the space of elementary events, G1, . . . ,Gn are arbitrary Borel sets

in R, the indices t1, . . . , tn assume values in the set {τ ∈ Z : τ ≤ t}, and the indices

i1, . . . , in assume values in Z. By construction, the sequence of σ-algebras {Ft(x̂)} is

uniquely determined by the forecasts {x̂i,t}. If two representations of fundamentals

and beliefs imply the same dynamics for {x̂i,t}, they imply the same information

structure {Ft(x̂)}. Therefore, the conditional distribution function of any stochastic

process {ct}, such that ct is measurable with respect to Ft(x̂) for each t ∈ Z, is also

the same.

Proof of Proposition (3). As in the proof of Proposition (1), we can equate the

spectral density of {dt} with dt ≡ (xt, x̂t)
′ under each representation. In this case,
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.

This equality holds if and only if the relations in Proposition (3) are satisfied.
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Proof of Proposition (4). Consider an arbitrary noise representation of fundamen-

tals and beliefs and an arbitrary endogenous process {ct}. Using the structure of sig-

nals in a noise representation, H(s) = H(m)⊕H(v). Because vi,t ∈ H(s)	H(x) for

all i ∈ Is, the uniqueness of orthogonal decompositions implies that H(m) = H(x).

Therefore, H(s) = H(x)⊕H(v). Furthermore, the definition of noise shocks implies

that H(εv) = H(v), so

H(s) = H(x)⊕H(εv). (15)

By the endogeneity of {ct} and the rationality of expectations, ct ∈ H(s) for all t ∈ Z.

Combining this with equation (15), it follows that for each ct, there exist two unique

elements at ∈ H(x) and bt ∈ H(εv) such that

ct = at + bt. (16)

To consider variance decompositions at different frequencies, let fy(λ) denote the

spectral density function of a stochastic process {yt}. Then because at ⊥ bt for all

t ∈ Z, it follows that

fc(λ) = fa(λ) + fb(λ),

where the functions fa(λ) and fb(λ) are uniquely determined by the processes {at}
and {bt}. These functions in turn uniquely determine the share of the variance of

{ct} due to noise shocks in any frequency range λ < λ < λ, which is equal to

∫ λ
λ
fb(λ)dλ∫ λ

λ
fc(λ)dλ

.

The share due to fundamentals is equal to one minus this expression.

Proof of Proposition (5). Beginning with the decomposition of H(s) in equation

(15), we can further decompose H(x) uniquely into the sum of subspaces Dt(x) ≡
Ht(x)	Ht−1(x),

H(s) =

(
∞⊕

j=−∞

Dt−j(x)

)
⊕H(εv).

By definition, each fundamental shock εxt ≡ xt − E[xt|Ht−1(x)] forms a basis in the

space Dt(x). Since ct ∈ H(s) for all t ∈ Z, it follows that for each ct, there exists a
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unique sequence of projection coefficients {αj} such that

ct =
∞∑

j=−∞

αjε
x
t−j + bt,

where αj ≡ E[ctε
x
t−j]/var[εxt ] and bt ⊥ H(x). The shares of the variance of {ct} due

to past, present, and future fundamental shocks are therefore uniquely determined,

and are given by∑∞
j=1 α

2
jvar[εxt ]

var[ct]︸ ︷︷ ︸
past

,
α2

0var[εxt ]

var[ct]︸ ︷︷ ︸
present

, and

∑−1
j=−∞ α

2
jvar[εxt ]

var[ct]︸ ︷︷ ︸
future

.

Proof of Corollary (1). Consider an arbitrary noise representation of fundamentals

and beliefs, and an endogenous process {ct}. By the rationality of expectations,

agents’ best forecast of ct+h as of date t is equal to

ĉh,t = E[ct+h|Ht(s)] = E[ct+h|Ht(x̂)].

Therefore, ĉh,t ∈ Ht(x̂). This means that the forecast error wht ≡ ct − ĉh,t−h also

satisfies wh,t ∈ Ht(x̂). Therefore, {wht } is an endogenous process. By Proposition

(4), the variance decomposition of this process in terms of noise and fundamentals is

uniquely determined over any frequency range. Moreover, this result is true for any

forecast horizon h ∈ Z because h was chosen arbitrarily.

Lemma 1. Any news representation in which each process {ai,t} is i.i.d. over time

is observationally equivalent to a noise representation with xt
iid∼ N (0, σ2

x) and

si,t = xt+i + vi,t, vi,t
iid∼ N (0, σ2

v,i),

where vi,t ⊥ xτ and vi,t ⊥ vj,τ for any i 6= j ∈ Is and t, τ ∈ Z, if and only if

σ2
x =

∑
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)
for all i ∈ Is.

Proof of Lemma (1). The proof of this result is a straightforward generalization of
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the proof of Proposition (1). In a news representation with i.i.d. news processes, the

joint spectral density of any two forecast processes {x̂j,t} and {x̂k,t} for j, k ∈ Z+ is

equal to

fj,k(λ) =
1

2π

∑
m∈M

σ2
a,me

−iλ(k−j), (17)

whereM is defined as the set of indices m ∈ Ia such that m ≥ |k− j|+ j. In a noise

representation of the type described in the proposition, the joint spectral density of

any two forecast processes {x̂j,t} and {x̂k,t} for j, k ∈ Z+ is equal to

f0,0(λ) =
1

2π
σ2
x (18)

fj,k(λ) =
1

2π
σ2
x

[
1 +

1/σ2
x∑

m∈M 1/σ2
v,m

]−1

e−iλ(k−j) for j, k > 0.

Equating the densities in (17) with those in (18), and recursively solving for the

parameters of the noise representation delivers the relations stated in the lemma.

Proof of Proposition (6). Define the composite shock

εxt ≡ εa0,t + εa4,t−4 + εa8,t−8. (19)

The process {εxt } is i.i.d. because {εai,t} is i.i.d. for each i ∈ Ia ≡ {0, 4, 8}. agents’

date-t information set in representation (11) is Ht(ε
a). But based on this information

set, equation (19) defines a news representation for {εxt } with i.i.d. news processes.

Therefore, we can apply Lemma (1) to the composite shock process, which gives the

relations stated in the proposition.

Proof of Proposition (7). According to representation (12), the two signals ob-

served by agents in the economy are s0,t ≡ xt and s1,t ≡ µt+ξt. BecauseH(x) ⊂ H(s),

there exist two unique elements mt ∈ H(x) and vt ⊥ H(x) such that:

s1,t = mt + vt for all t ∈ Z. (20)

The spectral density of {xt} is non-zero for almost all λ ∈ [−π, π], which means that

{mt} can be obtained from {xt} by a linear transformation of the form

mt =

∫ π

−π
eiλtϕ(λ)Φx(dλ), (21)
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where Φx is the random spectral measure of {xt}, and ϕ(λ) = fs,x(λ)/fx(λ) is the

spectral characteristic of the transformation. Using the restrictions in the system

(12), we have

ϕ(λ) =
σ2
µe
iλ

σ2
µ + σ2

η|1− ρe−iλ|2
=

δσ2
µe
iλ

ρσ2
η|1− δe−iλ|2

,

where |δ| < 1 is equal to the expression stated in the proposition. Combining ϕ(λ)

with the spectral density of {xt}, we can use equation (21) to obtain the spectral

density of {mt},

fm(λ) =
1

2π

δσ4
µ

ρσ2
η

∣∣∣∣ 1

(1− ρe−iλ)(1− δe−iλ)

∣∣∣∣2 .
This corresponds to the law of motion presented in the proposition. From equation

(21), it follows that the fundamental process {xt} can be obtained from {mt} by a

linear transformation with spectral characteristic ϕ(λ)−1. Finally, the definition of

the noise process {vt} in equation (20) implies that

fv(λ) =
1

2π

σ2
µσ

2
η

σ2
µ + σ2

η|1− ρe−iλ|2
+ σ2

ξ =
1

2π
σ2
ξ

δ

β

∣∣∣∣1− βe−iλ1− δe−iλ

∣∣∣∣2 ,
where |β| < 1 is equal to the expression stated in the proposition. Because Ht(s) is

unchanged from representation (12) for all t ∈ Z, it follows that x̂j,t ≡ E[xt+j|Ht(s)] is

also unchanged for any j ∈ Z. Therefore these two representations are observationally

equivalent.

Proof of Proposition (8). A complication in this case is that both fundamentals

and the signal of future fundamentals are difference-stationary, rather than stationary

processes. As a result, they do not have finite second moments, which is a prerequisite

for working in L2. We handle this complication by defining a new processes {x̃t(θ)}
as the solution to the difference equation

x̃t(θ) = θx̃t−1(θ) + ∆xt, for all t ∈ Z, (22)

where ∆ is the first-difference operator; ∆xt ≡ xt−xt−1. This new process is station-

ary for each value of θ ∈ [0, 1), and admits the spectral representation

x̃t(θ) =

∫ π

π

eiλt(1− θe−iλ)−1Φ∆x(dλ),
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where Φ∆x is the random spectral measure of {∆xt}. We define a new signal process

{s̃t(θ)} analogously, derive the noise representation in terms of {x̃t(θ)} and {s̃t(θ)}
for an arbitrary value of θ, and then take limits as θ approaches one from below.

The two signals observed by agents in the economy are s̃0,t ≡ x̃t(θ) and s̃1,t ≡
s̃t(θ). Because H(x̃) ⊂ H(s̃), there exist two unique elements m̃t(θ) ∈ H(x̃) and

ṽt(θ) ⊥ H(x̃) such that:

s̃t(θ) = m̃t(θ) + ṽt(θ) for all t ∈ Z. (23)

The spectral density of {x̃t(θ)} is non-zero for almost all λ ∈ [−π, π], which means

that {m̃t(θ)} can be obtained from {x̃t(θ)} by a linear transformation of the form in

equation (21), where in this case the spectral characteristic ϕ(λ) is

ϕ(λ) = ρ
σ2
µ

σ2
η

1

|1− ρe−iλ|2
.

Combining this with the spectral density of {x̃t(θ)}, it follows that the spectral density

of {m̃t(θ)} is

fm̃(λ; θ) =
1

2π
ρ
σ4
µ

σ2
η

∣∣∣∣ 1

(1− θe−iλ)(1− ρe−iλ)2

∣∣∣∣2 .
By writing out the corresponding law of motion for {m̃t(θ)} and then taking limits

as θ approaches one from below, we obtain the law of motion for {mt} stated in the

proposition. In a similar manner, we can obtain the law of motion for {xt} in terms of

{mt} by using the spectral characteristic ϕ(λ)−1. Finally, the definition of the noise

process {ṽt(θ)} in equation (23) implies that

fv(λ; θ) =
1

2π

ρ2σ2
v

|δ|2

∣∣∣∣(1− e−iλ)(1− δe−iλ)(1− δ̄e−iλ)(1− θe−iλ)(1− ρe−iλ)2

∣∣∣∣2 ,
where |δ| < 1 is equal to the expression stated in the proposition. By letting θ tend

to one from below, we obtain the law of motion for {vt}. Because Ht(s̃) is unchanged

from representation (13) for each θ ∈ [0, 1) and all t ∈ Z, it follows that

x̂j,t ≡ lim
θ→1−

Et[x̃t+j(θ)|Ht(s̃)]

is also unchanged for any j ∈ Z. Therefore these two representations are observation-
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ally equivalent.

B Quantitative Models

The following subsections provide a sketch of each of the three quantitative models

considered in this paper. For more details, we refer the reader to the original articles

and their supplementary material.

B.1 Model of Schmitt-Grohé and Uribe (2012)

A representative household chooses consumption {Ct}, labor supply {ht}, investment

{It}, and the utilization rate of existing capital {ut} to maximizes its lifetime utility,

E

[
∞∑
t=0

βtζt
(Ct − bCt−1 − ψhθtSt)1−σ

1− σ

]
,

subject to a standard sequence of constraints,

St = (Ct − bCt−1)γS1−γ
t−1

Ct + AtIt +Gt =
Wt

µt
ht + rtutKt + Pt

Kt+1 = (1− δ(ut))Kt + zIt It

[
1− Φ

(
It
It−1

)]
Relative to the standard real business cycle model, this model features investment

adjustment costs Φ(It/It−1); variable capacity utilization, which increases the return

on capital rtut at the cost of increasing its rate of depreciation through δ(ut); one

period internal habit formation in consumption, controlled by 0 < b < 1; a potentially

low wealth effect on labor supply, when 0 < γ < 1 approaches its lower limit; and

monopolistic labor unions, which effectively reduce the wage rate by an amount µt

each period but rebate profits lump sum to the household through Pt.

Output is produced by a representative firm, which combines capital Kt, labor ht,

and a fixed factor of production L using a (potentially) decreasing returns to scale

production function:

Yt = zt(utKt)
αk(Xtht)

αh(XtL)1−αk−αh .
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Market clearing requires that the goods and labor markets clear so that the aggre-

gate resource constraint is satisfied: Ct + AtIt + Gt = Yt. The seven fundamental

processes capture exogenous variation in permanent and transitory neutral produc-

tivity {Xt, zt}, permanent and transitory investment-specific productivity {At, zIt },
government spending {Gt}, wage markups {µt}, and preferences {ζt}.

B.2 Model of Barsky and Sims (2012)

A representative household chooses consumption {Ct}, labor supply {Nt}, and real

holdings of riskless one-period bonds {Bt} to maximize its lifetime utility,

E

[
∞∑
t=0

βt

(
ln(Ct − κCt−1)− N

1+1/η
t

1 + 1/η

)]

subject to a standard flow budget constraint,

Ct +Bt = wtNt − Tt + (1 + rt−1)Bt−1 + Πt,

where rt is the net nominally risk-free interest rate, wt is the wage, Tt denotes lump-

sum taxes, and Πt is aggregate profits.

Final goods producers are competitive and take the price of intermediate goods,

Pt(j), as given and each have a production function of the form:

Yt =

[∫ 1

0

Yt(j)
ξ−1
ξ

] ξ
ξ−1

Intermediate goods firms are monopolistically competitive and take the demands

of final goods firms as given. They each have a production function of the form

Yt(j) = AtKt(j)
αNt(j)

1−α. Each intermediate firm chooses a price for its own good,

subject to the constraint that it will only be able to re-optimize its price each period

with constant probability 1− θ.
A continuum of capital producers produce new capital (to sell to intermediate

firms) according to the production function

Y k
t (ν) = φ

(
It(ν)

Kt(ν)

)
Kt(ν),
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where φ is an increasing and concave function. The aggregate capital stock evolves

according to Kt = φ(It/Kt)Kt−1 + (1 − δ)Kt−1, where 0 < δ < 1 is the depreciation

rate. The aggregate resource constraint is Yt = Ct+It+Gt (ignoring resources lost due

to inefficient price dispersion). The monetary authority sets the one-period nominally

risk-free rate of return according to a feedback rule of the (log-linear approximate)

form:

it = ρiit−1 + (1− ρi)φπ(πt − π∗) + (1− ρi)φy(∆Yt −∆Y ∗) + εi,t.

The three fundamental processes capture exogenous variation in permanent neutral

productivity {At}, government spending {Gt}, and monetary policy {εi,t}

B.3 Model of Blanchard, L’Huillier, and Lorenzoni (2013)

Each household j ∈ (0, 1) chooses consumption {Cj,t}, investment {Ij,t}, nominally

risk-free bond holdings {Bj,t}, and the rate of capital utilization {Uj,t} to maximize

its lifetime utility

E

[
∞∑
t=0

βt

(
ln(Cj,t − hCj,t−1)−

N1+ζ
j,t

1 + ζ

)]

subject to a standard flow budget constraint. Each household is the monopoly supplier

of labor type j, and chooses wages {Wj,t} subject to the constraint that it can only re-

optimize its wage each period with constant probability 1− θw. Risk-sharing among

households results in a common budget constraint, which is the same as if each

household were to receive its pro rata share of the economy’s total wage bill:

PtCt + PtIt + Tt + PtC(Ut)K̄t−1 +Bt = Rt−1Bt−1 + Υt +

∫ 1

0

Wj,tNj,tdj +Rk
tUtK̄t−1,

K̄t = (1− δ)K̄t−1 +Dt[1− G(It/It−1)]It.

Pt is the price level, Tt is a lump sum tax, Rt is the gross nominally risk-free rate, Υt

is aggregate profits, Rk
t is the capital rental rate, 0 < δ < 1 is the rate of depreciation,

G(It/It−1) represents investment adjustment costs, C(Ut) represents the marginal cost

of increasing capacity utilization.

Final goods producers are competitive and take the price of intermediate goods
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as given, Pjt, and each have a production function of the form

Yt =

[∫ 1

0

Y
1

1+µpt

jt dj

]1+µpt

.

Intermediate goods firms are monopolistically competitive, each with a production

function of the form Yjt = (Kjt)
α(AtLjt)

1−α. Each intermediate firm chooses a price

for its own good, subject to a 1− θp probability of re-optimization each period.

Labor services are supplied to intermediate goods producers by competitive labor

agencies that take wages as given, Wjt, and have a production function of the form

Nt =

[∫ 1

0

N
1

1+µwt
jt dj

]1+µwt

.

Market clearing in the final goods market requires that Ct+It+C(Ut)K̄t−1 +Gt = Yt,

and in the labor market that
∫ 1

0
Ljtdj = Nt. Monetary policy follows the rule:

rt = ρrrt−1 + (1− ρr)(γππt + γyŷt) + qt.

The six fundamental processes capture exogenous variation in permanent neutral

productivity {At}, transitory investment-specific productivity {Dt}, price markups

{µpt}, wage markups {µwt}, government spending {Gt}, and monetary policy {qt}.

C Estimation Details

We estimate each model using quarterly data on log growth rates of real per-capita

output, consumption, and hours, along with the log-levels of inflation and the nominal

interest rate. The data span 1960:Q1 to 2017:Q2, with observations from 1954:Q3 to

1959:Q4 used to initialize the Kalman filter. Real variables are deflated by the im-

plicit GDP price deflator, and put in per-capita terms using civilian non-institutional

population age 16 and above. Consumption includes expenditure on non-durable

goods and services. Inflation is measured by the log-change in the GDP deflator

while the nominal interest rate is given by the effective federal funds rate. Data were

downloaded from the St. Louis Federal Reserve Database, FRED, on October 25,

2017. Original downloaded data and data transformations can be seen in the online

code accompanying this appendix.
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For each model, we allow for shocks to the same four exogenous processes: pro-

ductivity, noise, monetary policy, and government spending. The productivity and

information blocks are described in Sections (4.2) and (4.3) of the main text. We

allow both the government spending process and the exogenous component of mone-

tary policy to follow first-order autoregressive laws of motion. We follow Barsky and

Sims (2012) in fixing the parameters for the government spending process, ρg = 0.95

and σg = 0.25. (The original estimates of Blanchard et al. (2013) for these parameters

are quite similar.) We estimate the parameters of the monetary policy process.

Since our approach targets five measured variables with only four fundamental

shocks, we allow for small independent and identically distributed measurement error

shocks in the observation of each series. In our estimation, we bound the variance of

measurement error for each variable at 2.5% of that variable’s unconditional variance

in the data. Since this bound is attained in all six of our estimations, we do not

report those parameters here. Our results are not sensitive to changing this bound.

For each combination of economic environment and information structure, we re-

estimate the model using the method of maximum likelihood. Specifically, we search

for the set of parameters that maximizes the log-likelihood function of the data using

a robust global optimization routine that combines a genetic algorithm to discover

many good initial parameter combinations with a hill-climbing routine that ensures

our final answer is (at least) a local optimum. All of our results are robust to changing

the random seed that underlies the initial points.

The following tables summarize our parameter estimates for each of the estimated

models. In these tables, an asterisk indicates that the estimated parameter lies at, or

very close, to the boundary of the parameter space, which we define before maximizing

the likelihood function.
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Economic parameters BS info BLL info
κ habit 0.3145 0.0252
η Frisch elasticity 4.9976* 4.9999*
γ capital adj. cost 5.2093 3.4670
θ Calvo price 0.9420 0.9309
φπ Taylor inflation 4.8073 4.8897
φy Taylor output growth 0.0042 0.0484
ρi interest smoothing 0.5072 0.4074
σi s.d. policy shock 0.1343 0.1629
ρεi autocorr. policy 0.9989* 0.9892

BS info parameters
ρ autocorr. growth 0.9231
σµ s.d. growth shock 0.2190
ση s.d. surprise* shock 0.8716
σξ s.d. noise* shock 0.0001*

BLL info parameters
ρ autocorr. growth 0.8581
σµ s.d. growth shock 1.3638
σξ s.d. noise* shock 0.0010

Table 5: Estimated parameters for alternative versions of the Barsky and Sims (2012)
model.
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Economic parameters BS info BLL info
BS info +
flex wage

BLL info +
flex wage

h habit 0.8145 0.7066 0.6209 0.4726
ζ inverse Frisch elasticity 0.2000* 0.2000* 0.2000* 0.2000*
ξ cap. util. cost 0.5023 0.0079 0.4628 0.0010*
χ inv. adj. cost 15.0000* 15.0000* 15.0000* 15.0000*
θp Calvo price 0.8771 0.8645 0.8654 0.8929*
θw Calvo wage 0.9013 0.8708 - -
γπ Taylor inflation 4.2259 3.8640 1.0100* 1.0100*
γy Taylor output gap 0.0010* 0.0010* 0.4742 0.4135
ρr interest smoothing 0.4686 0.4540 0.2813 0.1127
σq s.d. policy shock 0.3394 0.2792 0.3089 0.4112
ρq autocorr. policy 0.9990* 0.9990* 0.9425 0.9481

BS info parameters
ρ autocorr. growth 0.9166 0.8980
σµ s.d. growth shock 0.2553 0.4430
ση s.d. surprise* shock 0.9762 1.2358
σξ s.d. noise* shock 0.0001* 0.0001*

BLL info parameters
ρ autocorr. growth 0.8911 0.8068
σµ s.d. growth shock 1.3025 1.8876
σξ s.d. noise* shock 0.0001* 0.0001*

Table 6: Estimated parameters for alternative versions of the Blanchard et al. (2013)
model.
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