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Section A introduces the formal de�nitions of equilibria in the dynamic communica-

tion game. Section B presents all supplementary proofs needed for the main results and

contains additional analysis of the communication game, such as selection of equilibria and

comparative statics. Section C presents the formal comparison between centralized decision-

making, once-and-for-all delegation, and time-contingent delegation. Section D discusses

the robustness of the results to alternative versions of the model.

A. Communication game: Equilibrium notion

This section presents the formal de�nition of the Perfect Bayesian equilibrium in Markov

strategies of the dynamic communication game of Section III, as well as the de�nition of a

stationary equilibrium for the case � = 0.

This is a dynamic game with observed actions (messages and the exercise decision) and

incomplete information (type � of the agent). Heuristically, the timing of events over an

in�nitesimal time interval [t; t+ dt] prior to option exercise can be described as follows: (1)

Nature determines the realization of Xt. (2) The agent sends message m (t) 2 M to the

principal. (3) The principal decides whether to exercise the option or not. If the option

is exercised, the principal obtains the payo¤ of �Xt � I, the agent obtains the payo¤ of
�Xt � I + b, and the game ends. Otherwise, the game continues, and the nature draws
Xt+dt = Xt + dXt. Because the game ends when the principal exercises the option, we can

only consider histories such that the option has not yet been exercised. Then, the history

of the game at time t has two components: the sample path of the public state X (t) and

the history of messages of the agent: Ht = fX (s) ; s � t;m (s) ; s < tg.

De�nition A.1. Strategies m� = fm�
t ; t � 0g and e� = fe�t ; t � 0g, beliefs ��, and a

message space M constitute a Perfect Bayesian equilibrium in Markov strategies
(PBEM) if:
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1. For every t, Ht, � 2 �, and strategy m,

E
�
e�r�(e

�) (�X (� (e�))� I + b) jHt; �; �
� (�jHt) ;m

�; e�
�

� E
�
e�r�(e

�) (�X (� (e�))� I + b) jHt; �; �
� (�jHt) ;m; e

�� .(1)

2. For every t, Ht, m (t) 2M , and strategy e,

E
�
e�r�(e

�) (�X (� (e�))� I) jHt; �
� (�jHt;m (t)) ;m

�; e�
�

� E
�
e�r�(e) (�X (� (e))� I) jHt; �

� (�jHt;m (t)) ;m
�; e
�
.(2)

3. Bayes�rule is used to update beliefs �� (�jHt) to �� (�jHt;m (t)) whenever possible:

For every Ht and m (t) 2M , if there exists � such that m�
t (�;Ht) = m (t), then for all �

(3) �� (�jHt;m (t)) =
��(�jHt)1fm�

t (�;Ht) = m (t)gR 1
�
��(~�jHt)1fm�

t (~�;Ht) = m (t)gd~�
,

where �� (�jH0) =
1
1�� for � 2 � and �

� (�jH0) = 0 for � 62 �.
4. For every t, Ht, � 2 �, and m (t) 2M ,

m�
t (�;Ht) = m� (�;X (t) ; �� (�jHt)) ;(4)

e�t (Ht;m (t)) = e� (X (t) ; �� (�jHt;m (t))) :(5)

The �rst three conditions, given by (1)�(3), are requirements of the Perfect Bayesian

equilibrium. Inequalities (1) require the equilibrium strategy m� to be sequentially optimal

for the agent for any possible history Ht and type realization �. Similarly, inequalities

(2) require equilibrium strategy e� to be sequentially optimal for the principal. Equation

(3) requires beliefs to be updated according to Bayes�rule. Finally, conditions (4)�(5) are

requirements that the equilibrium strategies and the message space are Markov.

When we focus on the case � = 0 in Section IV, we restrict attention to stationary

equilibria, which are de�ned as follows.

De�nition A.2. Suppose � = 0. An equilibrium (m�; e�; ��;M) is stationary if whenever
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posterior belief �� (�jHt) is uniform over [0; �̂] for some �̂ 2 (0; 1), then for all � 2 [0; �̂]:

m� (�;X (t) ; �� (�jHt)) = m�
�
�

�̂
; �̂X (t) ; �� (�jH0)

�
;(6)

e� (X (t) ; �� (�jHt;m (t))) = e�
�
�̂X (t) ; �� (�jH0;m (t))

�
:(7)

Condition (6) means that the message of type � 2 [0; �̂] when the public state is X (t)
and the posterior is uniform over [0; �̂] is the same as the message of type �

�̂
when the

public state is �̂X (t) and the posterior is uniform over [0; 1]. Condition (7) means that the

exercise strategy of the principal is the same when the public state is X (t) and her belief

is that � is uniform over [0; �̂] as when the public state is �̂X (t) and her belief is that � is

uniform over [0; 1].

B. Proofs of lemmas and derivations of auxiliary results

Derivation of the optimal exercise policy for the call and put option. Let V (X) be

the value of the option to a risk-neutral player if the current value of X (t) is X and the player

perfectly knows �. Because the player is risk-neutral, the expected return from holding the option

over a small interval dt, E
�
dV
V

�
, must equal the riskless return rdt. By Itô�s lemma,

dV (X (t)) =

�
V 0 (X (t))�X (t) +

1

2
V 00 (X (t))�2X (t)2

�
dt+ �V 0 (X (t)) dW (t) ;

and hence

E
�
dV (X (t))

V (X (t))

�
= rdt, 1

V (X (t))

�
V 0 (X (t))�X (t) +

1

2
V 00 (X (t))�2X (t)2

�
dt = rdt;

which gives

(8) rV = �X
@V

@X
+
1

2
�2X2 @

2V

@X2
:

This is a second-order linear homogeneous ordinary di¤erential equation. The general solution

to this equation is V (X) = D1X�1+D2X
�2 , where D1 and D2 are the constants to be determined,

and �1 < 0 < 1 < �2 are the roots of
1
2�

2� (� � 1) + �� � r = 0. We denote the negative root by
�� and the positive root by �. To �nd D1; D2, we use two boundary conditions. If exercise of the
option occurs at trigger �X and gives a payo¤ p

�
�X
�
, the �rst boundary condition is V

�
�X
�
= p

�
�X
�
.

For the call option, the second boundary condition is limX!0 V (X) = 0 because zero is an

absorbing barrier for the geometric Brownian motion. Hence, D1 = 0. In addition, if � is known
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to the principal, then pcall
�
�X
�
= � �X � I. Hence,

(9) Vcall
�
X; �X

�
=

�
X
�X

�� �
� �X � I

�
:

Maximizing Vcall
�
X; �X

�
with respect to �X to derive the optimal call option exercise policy of the

principal gives �X = �
��1

I
� , i.e. (2). It also follows that the value of the option to the principal if

the current value of X (t) is X satis�es

V �P (X; �) =

8<:
�

X
X�
P (�)

��
(�X�

P (�)� I) ; if X � X�
P (�)

�X � I; if X > X�
P (�) :

Similarly, for the put option, the second boundary condition is limX!1 V (X) = 0, and hence

D2 = 0. Combining it with V
�
�X
�
= p

�
�X
�
and using pput

�
�X
�
= �I � �X, gives Vput

�
X; �X

�
=�

X
�X

��� �
�I � �X

�
. Maximizing Vput

�
X; �X

�
with respect to �X to derive the optimal put option

exercise policy of the principal gives �X = �
�+1I�.

We next prove two useful auxiliary results, which hold in any threshold-exercise PBEM. The

�rst result shows that in any threshold-exercise PBEM, the option is exercised weakly later if

the agent has less favorable information. The second auxiliary result is that it is without loss

of generality to reduce the message space signi�cantly. Speci�cally, for any threshold-exercise

equilibrium, there exists an equilibrium with a binary message space M = f0; 1g and simple
equilibrium strategies that implements the same exercise times and hence features the same payo¤s

of both players.

Lemma IA.1. �X (�1) � �X (�2) for any �1; �2 2 � such that �2 � �1.

Lemma IA.2. If there exists a threshold-exercise PBEM with thresholds �X (�), then there exists

an equivalent threshold-exercise PBEM with the binary message space M = f0; 1g and the following
strategies of the agent and the principal and beliefs of the principal:

1. The agent with type � sends message m (t) = 1 if and only if X (t) � �X (�):

(10) �mt (�;X (t) ; �� (�jHt)) =
(
1; if X (t) � �X (�) ;

0; otherwise.

2. The posterior belief of the principal at any time t is that � is distributed uniformly over [��t; �̂t]

for some ��t and �̂t (possibly, equal).
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3. The exercise strategy of the principal as a function of the state process and her beliefs is

(11) �et(X (t) ; ��t; �̂t) =

(
1; if X (t) � �X(��t; �̂t);

0; otherwise,

for some threshold �X(��t; �̂t). Function �X(��t; �̂t) is such that on equilibrium path the option is

exercised at the �rst instant when the agent sends message m (t) = 1, i.e., when X (t) hits threshold
�X (�) for the �rst time.

Proof of Lemma IA.1. By contradiction, suppose that �X (�1) < �X (�2) for some �2 > �1.

Using the same arguments as in the derivation of (9) above but for I � b instead of I, it is easy to
see that if exercise occurs at a cuto¤ �X and the current value of X (t) is X � �X, then the agent�s

expected payo¤ is given by
�
X
�X

�� �
� �X � I + b

�
. Hence, because the message strategy of type �1 is

feasible for type �2, the IC condition of type �2 implies:

(12)
�
X (t)
�X (�2)

�� �
�2 �X (�2)� I + b

�
�
�
X (t)
�X (�1)

�� �
�2 �X (�1)� I + b

�
:

Similarly, because the message strategy of type �2 is feasible for type �1,

(13)
�
X (t)
�X (�1)

�� �
�1 �X (�1)� I + b

�
�
�
X (t)
�X (�2)

�� �
�1 �X (�2)� I + b

�
:

These inequalities imply

�2 �X (�1)

�
1�

�
�X(�1)
�X(�2)

���1�
� (I � b)

�
1�

�
�X(�1)
�X(�2)

���
� �1 �X (�1)

�
1�

�
�X(�1)
�X(�2)

���1�
;

which is a contradiction, because �2 > �1 and
�X(�1)
�X(�2)

< 1. Thus, �X (�1) � �X (�2) whenever �2 � �1.

Proof of Lemma IA.2. Consider a threshold exercise equilibrium E with an arbitrary message

spaceM� and equilibrium message strategy m�, in which exercise occurs at stopping time �� (�) =

inf
�
t � 0jX (t) � �X (�)

	
for some set of thresholds �X (�), � 2 �. By Lemma IA.1, �X (�) is weakly

decreasing. De�ne �l (X) � inf
�
� : �X (�) = X

	
and �h (X) � sup

�
� : �X (�) = X

	
for anyX 2 X .

We will construct a di¤erent equilibrium, denoted by �E, which implements the same equilibrium

exercise time �� (�) and has the structure speci�ed in the formulation of the lemma. As we will

see, it will imply that on the equilibrium path, the principal exercises the option at the �rst

informative time t 2 T at which she receives message m (t) = 1, where the set T of informative
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times is de�ned as

T �
�
t : X (t) = �X for some �X 2 X and X (s) < �X 8s < t

	
;

i.e., the set of times when the process X (t) reaches one of the thresholds in X for the �rst time.

For the collection of strategies (10) and (11) and the corresponding beliefs to be an equilibrium,

we need to verify the IC conditions of the agent and the principal.

1 - IC of the agent. The IC condition of the agent requires that any type � is better o¤
sending a message m (t) = 1 when X (t) �rst reaches �X (�) than following any other strategy.

By Assumption 1, a deviation to sending m (t) = 1 at any t =2 T does not lead the principal to

change her beliefs, and hence, her behavior. Thus, it is without loss of generality to only consider

deviations at t 2 T . There are two possible deviations: sending m (t) = 1 before X (t) �rst

reaches �X (�) and sending m (t) = 0 at that moment and following some other strategy after that.

Consider the �rst deviation: the agent of type � can send m (t) = 1 when X (t) hits threshold
�X(�̂), �̂ > �h

�
�X (�)

�
for the �rst time, and then the principal will exercise immediately. Consider

the second deviation: if type � deviates to sending m (t) = 0 when X (t) hits threshold �X (�),

he can then either send m (t) = 1 at one of the future t 2 T or continue sending the message

m (t) = 0 at any future t 2 T . First, if the agent deviates to sending m (t) = 1 at one of the

future t 2 T , the principal will exercise the option at one of the thresholds Ŷ 2 X , Ŷ > �X (�).

Note that the agent can ensure exercise at any threshold Ŷ 2 X such that Ŷ � X (t) by adopting
the equilibrium message strategy of type �̂ at which �X(�̂) = Ŷ . Second, if the agent deviates to

sending m (t) = 0 at all of the future t 2 T , there are two cases. If �X (�) = 1, the principal
will never exercise the option. If �X (�) = �Xmax < 1, then the principal�s belief when X (t) �rst
reaches �Xmax is that � = �, if �X (�) 6= �X (�) 8� 6= �, or that � 2

�
�; �h

�
�Xmax

��
, otherwise. Upon

receiving m (t) = 0 at this moment, the principal does not change her belief by Assumption 1 and

hence exercises the option at �Xmax = �X (�). Finally, note that the agent cannot induce exercise at

Ŷ 2 X if Ŷ < X (t): in this case, the principal�s belief is that the agent�s type is smaller than the

type that could induce exercise at Ŷ and this belief cannot be reversed according to Assumption

1. Combining all possible deviations, at time t, the agent can deviate to exercise at any Ŷ 2 X
as long as Ŷ � X (t). Using the same arguments as in the derivation of (9) above but for I � b
instead of I, it is easy to see that the agent�s expected utility given exercise at threshold �X is�
X(t)
�X

�� �
� �X � I + b

�
. Hence, the IC condition of the agent is that

(14)
�
X (t)
�X (�)

�� �
� �X (�)� I + b

�
� max
Ŷ 2X ;Ŷ�X(t)

�
X (t)

Ŷ

�� �
�Ŷ � I + b

�
:

Let us argue that it holds using the fact that E is an equilibrium. Suppose otherwise. Then,

6



there exists a pair (�; Ŷ ) with Ŷ 2 X such that

(15)
� �X (�)� I + b

�X (�)�
<
�Ŷ � I + b

Ŷ �
:

However, (15) implies that in equilibrium E type � is better o¤deviating from the message strategy

m� (�) to the message strategy m�
�
~�
�
of type ~�, where ~� is any type satisfying �X

�
~�
�
= Ŷ (since

Ŷ 2 X , at least one such ~� exists). This is impossible, and hence (14) holds. Hence, if the principal
plays strategy (11), the agent �nds it optimal to play strategy (10).

Given Lemma IA.1 and the fact that the agent plays (10), the posterior belief of the principal

at any time t is that � is distributed uniformly over [��t; �̂t] for some ��t and �̂t (possibly, equal).

Next, consider the IC conditions of the principal. They are comprised of two parts, as evident

from (11): we refer to the top line of (11) (exercising immediately when the principal �should�

exercise) as the ex-post IC condition, and to the bottom line of (11) (not exercising when the

principal �should�wait) as the ex-ante IC condition.

2 - �Ex-post�IC of the principal. First, consider the ex-post IC condition: we prove that
the principal exercises immediately if the agent sends message m (t) = 1 at the �rst moment when

X (t) hits threshold Ŷ for some Ŷ 2 X (and sent message m (t) = 0 before). Given this message,

the principal believes that � s Uni[�l(Ŷ ); �h(Ŷ )]. Because the principal expects the agent to

play (10), the principal now expects the agent to send m (t) = 1 if X (t) � Ŷ , and m (t) = 0

otherwise, regardless of � 2 [�l(Ŷ ); �h(Ŷ )]. Hence, the principal does not expect to learn any new
information. This implies that the principal�s problem is now equivalent to the standard option

exercise problem with the option paying o¤ �l(Ŷ )+�h(Ŷ )
2 X (t) upon exercise at time t. Using the

same arguments as in the derivation of (9) above, the principal�s expected payo¤ from exercise

at threshold �X is
�
X(t)
�X

�� �
�l(Ŷ )+�h(Ŷ )

2
�X � I

�
, which is an inverse U-shaped function with an

unconditional maximum at �
��1

2I
�l(Ŷ )+�h(Ŷ )

. Thus, the solution of the problem is to exercise the

option immediately if and only if

(16) X (t) � �

� � 1
2I

�l(Ŷ ) + �h(Ŷ )
:

Let us show that any threshold Ŷ 2 X and the corresponding type cuto¤s �l(Ŷ ) and �h(Ŷ ) in

equilibrium E satisfy (16). Consider equilibrium E. For the principal to exercise at threshold �X (�),

the value that the principal gets upon exercise must be greater or equal than what she gets from

delaying the exercise. The value from immediate exercise equals E [�jHt;m (t)] �X (�) � I, where
(Ht;m (t)) is any history of the sample path of X (t) and equilibrium messages that leads to

exercise at time t at threshold �X (�) in equilibrium E. Because waiting until X (t) hits a threshold
~Y > �X (�) and exercising then is a feasible strategy, the value from delaying exercise is greater or
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equal than the value from such a deviation, which equals
�
�X(�)
~Y

�� �
E [�jHt;m (t)] ~Y � I

�
. Hence,

�X (�) must satisfy

�X (�) 2 arg max
~Y� �X(�)

� �X (�)
~Y

�� �
E [�jHt;m (t)] ~Y � I

�
:

Using the fact that the unconditional maximizer of the right-hand side is ~Y = �
��1

I
E[�jHt;m(t)]

and that function
�
�X(�)
~Y

�� �
E [�jHt;mt] ~Y � I

�
is inverted U-shaped in ~Y , this condition can be

equivalently re-written as
�X (�) � �

� � 1
I

E [�jHt;m (t)]
;

for any history (Ht;m (t)) with X (t) = �X (�) and m (s) = m�
s (Hs; �) for some � 2 [�l(Ŷ ); �h(Ŷ )]

and s � t. Let H�t denote the set of such histories. Then,

�X (�) � �

� � 1 max
(Ht;m(t))2H�t

I

E [�jHt;m (t)]
;

or, equivalently,
�
��1

I
�X(�)

� min(Ht;m(t))2H�t E [�jHt;m (t)]
� E

h
E [�jHt;m (t)] j� 2 [�l(Ŷ ); �h(Ŷ )];H0

i
= E

h
�j� 2 [�l(Ŷ ); �h(Ŷ )]

i
= �l(Ŷ )+�h(Ŷ )

2 ;

where the inequality follows from the fact that the minimum of a random variable cannot exceed

its mean, and the �rst equality follows from the law of iterated expectations. Therefore, when

the principal obtains message m = 1 at threshold Ŷ 2 X , her optimal reaction is to exercise
immediately. Thus, the ex-post IC condition of the principal is satis�ed.

3 - �Ex-ante� IC of the principal. Finally, consider the ex-ante IC condition of the

principal stating that the principal is better o¤ waiting following a history Ht with m (s) = 0,

s � t, and maxs�tX (s) < �X (�). Given that the agent follows (11), for any such history Ht, the
principal�s belief is that � s Uni[�; �l(Ŷ )] for some Ŷ 2 X . If the principal exercises immediately,
her payo¤ is �+�l(Ŷ )2 X (t)� I. If the principal waits, her expected payo¤ is

Z �l(Ŷ )

�

�
X (t)
�X (�)

�� �
� �X (�)� I

� 1

�l(Ŷ )� �
d�:

Suppose that there exists a pair Ŷ 2 X and ~Y < lim�"�l(Ŷ )
�X (�) such that immediate exercise is
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optimal when X (t) = ~Y :

(17)
� + �l(Ŷ )

2
~Y � I >

Z �l(Ŷ )

�

 
~Y
�X (�)

!� �
� �X (�)� I

� 1

�l(Ŷ )� �
d�:

We can re-write (17) as

(18) E�

"�
1
~Y

�� �
� ~Y � I

�
j� < �l(Ŷ )

#
> E�

"�
1
�X (�)

�� �
� �X (�)� I

�
j� < �l(Ŷ )

#
:

Let us show that if equilibrium E exists, then (18) must be violated. Consider equilibrium

E, any type ~� < �l(Ŷ ), time t < ��
�
~�
�
, and any history (Ht;m (t)) such that X (t) = ~Y ,

maxs�t;s2T X (s) = Ŷ , which is consistent with the equilibrium play of type ~�, i.e., with m (s) =

m�
s

�
~�;Hs

�
8s � t. Let H��t (~�; ~Y ; Ŷ ) denote the set of such histories. Because the principal prefers

waiting in equilibrium E, the payo¤ from immediate exercise in equilibrium E cannot exceed the

payo¤ from waiting:

E
h
� ~Y � IjHt;m (t)

i
� E

��
~Y
�X(�)

�� �
� �X (�)� I

�
jHt;m (t)

�
,

E
��

1
�X(�)

�� �
� �X (�)� I

�
�
�
1
~Y

�� �
� ~Y � I

�
jHt;m (t)

�
� 0:

This inequality must hold for all histories (Ht;m (t)) 2 H��t (~�; ~Y ; Ŷ ). In any history (Ht;m (t)) 2
H��t (~�; ~Y ; Ŷ ), the option is never exercised by time t if ~� < �l(Ŷ ) and is exercised before time t if
~� > �l(Ŷ ). Therefore, conditional on ~Y , Ŷ , and ~� < �l(Ŷ ), the distribution of ~� is independent

of the sample path of X (s) ; s � t. Fixing ~Y and Ŷ and integrating over histories (Ht;m (t)) 2
H��t (~�; ~Y ; Ŷ ) and then over ~� 2 [�; �l(Ŷ )), we obtain that

E~�

�
E(Ht;m(t))

��
1
�X(�)

�� �
� �X (�)� I

�
�
�
1
~Y

�� �
� ~Y � I

�
j (Ht;m (t)) 2 H��t (~�; ~Y ; Ŷ )

�
j~� 2 [�; �l(Ŷ )); Ŷ ; ~Y

�
� 0, E�

��
1
�X(�)

�� �
� �X (�)� I

�
�
�
1
~Y

�� �
� ~Y � I

�
j� < �l(Ŷ )

�
� 0;

where we applied the law of iterated expectations and the conditional independence of the sample

path of X (t) and the distribution of ~� (conditional on ~Y , Ŷ , and ~� < �l(Ŷ ) ). Therefore, (18)

cannot hold. Hence, the ex-ante IC condition of the principal is also satis�ed.

Thus, if there exists a threshold exercise equilibrium E where �� (�) = inf
�
t � 0jX (t) � �X (�)

	
for some threshold �X (�), then there exists a threshold exercise equilibrium �E of the form speci�ed

in the lemma, in which the option is exercised at the same time. Finally, let us show that on the

equilibrium path, the option is indeed exercised at the �rst informative time t at which the prin-

cipal receives message m (t) = 1. Because any message sent at t =2 T does not lead to updating
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of the principal�s beliefs and because of the second part of (11), the principal never exercises the

option prior to the �rst informative time t 2 T at which she receives message m (t) = 1. Consider
the �rst informative time t 2 T at which the principal receives m (t) = 1. By Bayes�rule, the

principal believes that � is distributed uniformly over (�l (X (t)) ; �h (X (t))). Equilibrium strategy

of the agent (10) implies X (t) = �X (�) 8� 2 (�l (X (t)) ; �h (X (t))). Therefore, in equilibrium the

principal exercises the option immediately.

For Lemma 1, we prove the following lemma, which characterizes the structure of any incentive-

compatible decision-making rule and is an analogue of Proposition 1 in Melumad and Shibano

(1991) for the payo¤ speci�cation in our model:

Lemma IA.3. An incentive-compatible threshold schedule X̂ (�) must satisfy the following
conditions:

1. X̂ (�) is weakly decreasing in �.

2. If X̂ (�) is strictly decreasing on (�1; �2), then X̂ (�) =
�
��1

I�b
� :

3. If X̂ (�) is discontinuous at �̂, then the discontinuity satis�es

ÛA

�
X̂�(�̂); �̂

�
= ÛA

�
X̂+(�̂); �̂

�
;(19)

X̂ (�) =

8<: X̂�(�̂); 8� 2
h
�
��1

I�b
X̂�(�̂)

; �̂
�
;

X̂+(�̂); 8� 2
�
�̂; �
��1

I�b
X̂+(�̂)

i
;

(20)

X̂(�̂) 2
n
X̂�(�̂); X̂+(�̂)

o
;(21)

where X̂�(�̂) � lim�"�̂ X̂ (�) and X̂
+(�̂) � lim�#�̂ X̂ (�).

Proof of Lemma IA.3. Proof of Part 1. The �rst part of the lemma can be proven

by contradiction. Suppose there exist �1; �2 2 �, �2 > �1, such that X̂ (�2) > X̂ (�1). Note

that ÛA(X̂; �) � X (0)� X̂��(�X̂ � I + b) and ÛP (X̂; �) � X (0)� X̂��(�X̂ � I). The agent�s
IC constraint for � = �1 and �̂ = �2, ÛA

�
X̂ (�1) ; �1

�
� ÛA

�
X̂ (�2) ; �1

�
, can be written in the

integral form:

(22)
Z X̂(�2)

X̂(�1)

�
X (0)

X̂

�� � (� � 1) �1X̂ + � (I � b)
X̂

dX̂ � 0:

Because �2 > �1 and � > 1, (22) impliesZ X̂(�2)

X̂(�1)

�
X (0)

X̂

�� � (� � 1) �2X̂ + � (I � b)
X̂

dX̂ < 0;

10



or, equivalently, ÛA(X̂(�1); �2) > ÛA(X̂(�2); �2). However, this violates the agent�s IC constraint

ÛA(X̂(�2); �2) � ÛA(X̂(�1); �2) for � = �2 and �̂ = �1. Thus, X̂ (�) is weakly decreasing in �.
Proof of Part 2. To prove the second part of the lemma, note that ÛA

�
X̂; �

�
is di¤erentiable

in � for all X̂ 2 (X (0) ;1). Because ÛA(X̂; �) is linear in �, it satis�es the Lipschitz condition
and hence is absolutely continuous in � for all X̂ 2 (X (0) ;1). Also, @ÛA(X̂;�)@� =

�
X(0)

X̂

��
X̂, and

hence supX̂2X

����@ÛA(X̂;�)@�

���� is integrable on � 2 �. By the generalized envelope theorem (Milgrom

and Segal, 2002), the equilibrium utility of the agent in any mechanism implementing exercise at

thresholds X̂(�), � 2 �, denoted VA (�), satis�es the integral condition,

VA (�) = VA (�) +

Z �

�

 
X (0)

X̂ (s)

!�
X̂ (s) ds:

On the other hand, VA (�) = ÛA
�
X̂(�); �

�
. At any point � at which X̂(�) is strictly decreasing,

we have

dVA (�)

d�
=
dÛA(X̂(�); �)

d�
, X (0)�

X̂(�)�
X̂ (�) =

X (0)�

X̂(�)�
X̂ (�)�X (0)

�

X̂(�)�
(� � 1) �X̂ (�)� � (I � b)

X̂ (�)

dX̂ (�)

d�
:

Because dX̂ (�) < 0, it must be that (� � 1) �X̂ (�)�� (I � b)= 0. Thus, X̂ (�) = �
��1

I�b
� , which

proves the second part of the lemma.

Proof of Part 3. Finally, consider the third part of the lemma. Eq. (19) follows from
(20), continuity of ÛA (�), and incentive compatibility of the mechanism. Otherwise, for ex-

ample, if ÛA
�
X̂+(�̂); �̂

�
> ÛA

�
X̂�(�̂); �̂

�
, then ÛA

�
X̂(�̂ � "); �̂ � "

�
= ÛA

�
X̂�(�̂); �̂ � "

�
<

ÛA

�
X̂+(�̂); �̂ � "

�
for a su¢ ciently small ", and hence types close enough to �̂ from below would

bene�t from a deviation to X̂+(�̂), i.e., from mimicking types slightly above �̂.

Next, we prove (20). First, note that, (20) is satis�ed at the boundaries. Indeed, denote ��1 �
�
��1

I�b
X̂�(�̂)

and suppose that X̂(��1) 6= X̂�(�̂). Then, by the �rst part of the lemma, X̂(��1) > X̂
�(�̂).

Because X̂�(�̂) � lim�"�̂ X̂ (�), there exists " > 0 such that X̂(�
�
1) > X̂(�̂ � ") � X̂�(�̂). Because

the function ÛA(x; ��1) has a maximum at X̂�(�̂) and is strictly decreasing for x > X̂�(�̂), this

would imply ÛA(X̂(��1); �
�
1) < ÛA(X̂

�
�̂ � "

�
; ��1), and hence would contradict the IC condition

for type ��1. The proof for the boundary �
�
2 � �

��1
I�b
X̂+(�̂)

is similar.

We next prove (20) for interior values of �. First, suppose that X̂ (�) 6= X̂�(�̂) for some

� 2
�

�
��1

I�b
X̂�(�̂)

; �̂
�
. By part 1 of the lemma, X̂ (�) > X̂�(�̂). By IC, ÛA(X̂ (�) ; �) � ÛA(X̂�(�̂); �),

which can be written in the integral form as:

Z X̂(�)

X̂�(�̂)

�
X (0)

�

�� � (� � 1) �� + � (I � b)
�

d� � 0:

11



The function under the integral on the left-hand side is strictly decreasing in � and the inter-

val (X̂�(�̂); X̂ (�)) is non-empty. Thus, we can replace � by ~� < � under the integral and

get a strict inequality: ÛA(X̂ (�) ; ~�) > ÛA(X̂
�(�̂); ~�) for every ~� 2 [ �

��1
I�b
X̂�(�̂)

; �). However,

this contradicts X̂�(�̂) = argmaxx ÛA(x;
�
��1

I�b
X̂�(�̂)

). Second, suppose that X̂ (�) 6= X̂+(�̂) for

some � 2
�
�̂; �
��1

I�b
X̂+(�̂)

�
. By part 1 of the lemma, X̂ (�) < X̂+(�̂). By incentive compatibility,

ÛA

�
X̂ (�) ; �

�
� ÛA

�
X̂+ (�) ; �

�
, which can be written as

Z X̂+(�)

X̂(�)

�
X (0)

�

�� � (� � 1) �� + � (I � b)
�

d� � 0:

The function under the integral on the left-hand side is strictly decreasing in � and the interval

(X̂ (�) ; X̂+(�̂)) is non-empty. Therefore, we can replace � by ~� > � under the integral and get

a strict inequality, ÛA
�
X̂ (�) ; ~�

�
> ÛA

�
X̂+ (�) ; ~�

�
, for every ~� 2

�
�; �
��1

I�b
X̂+(�̂)

i
. However, this

contradicts X̂+(�̂) = argmaxx ÛA

�
x; �

��1
I�b
X̂+(�̂)

�
.

Finally, (21) follows from the continuity of ÛA (�) and incentive compatibility of X̂ (�). Because
�̂ 2 ( �

��1
I�b
X̂�(�̂)

; �
��1

I�b
X̂+(�̂)

), every policy with thresholds strictly below X̂�(�̂) or strictly above

X̂+(�̂) is strictly dominated by X̂�(�̂) and X̂+(�̂), respectively, and thus cannot be incentive-

compatible. Suppose that X̂(�̂) 2
�
X̂�(�̂); X̂+(�̂)

�
. Incentive compatibility and (19) imply

ÛA

�
X̂(�̂); �̂

�
� ÛA

�
X̂�(�̂); �̂

�
= ÛA

�
X̂+(�̂); �̂

�
. Because ÛA

�
x; �̂
�
is strictly increasing in

x for x< �
��1

I�b
�̂
and strictly decreasing in x for x > �

��1
I�b
�̂
, the inequality must be strict:

ÛA

�
X̂(�̂); �̂

�
> ÛA

�
X̂�(�̂); �̂

�
= ÛA

�
X̂+(�̂); �̂

�
. However, this together with (20) and continuity

of ÛA (�) implies that types close enough to �̂ bene�t from a deviation to threshold X̂(�̂). Hence,

it must be that X̂(�̂) 2
n
X̂�(�̂); X̂+(�̂)

o
.

Proof of Lemma 1. We show that for all parameter values, except the case b = �I and
� = 0, there exists a unique optimal contract, and it takes the form speci�ed in the lemma. When

b = �I and � = 0, the optimal contract is not unique, but the �at contract speci�ed in the lemma
is optimal. To prove the lemma, we consider three cases: b � I, b 2 [�I; I), and b < �I. Denote
the �at contract from the �rst part of the lemma by X̂flat (�), the contract from the second part

by X̂� (�), and the contract from the third part by X̂+ (�).

Case 1: b � I. In this case, all types of agents want to exercise the option immediately. This
means that any incentive-compatible contract must be �at. Among �at contracts, the one that

maximizes the payo¤ to the principal solves

(23) argmax
x

Z 1

�

�x� I
x�

d� =
2�

� � 1
I

1 + �
:
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Case 2: b 2 [�I; I). The proof for this case proceeds in two steps. First, we show that the
optimal contract cannot have discontinuities, except the case b = �I. Second, we show that the
optimal continuous contract is as speci�ed in the lemma.

Step 1: If b > �I, the optimal contract is continuous. Indeed, by contradiction, suppose that
the optimal contract C =

n
X̂ (�) ; � 2 �

o
has a discontinuity at some point �̂ 2 (�; 1). By Lemma

IA.3, the discontinuity must satisfy (19)�(21). In particular, (20) implies that there exist �1 < �̂

and �2 > �̂ such that X̂ (�) = X�
A (�1) for � 2

h
�1; �̂

�
and X̂ (�) = X�

A (�2) for �2 2
�
�̂; �2

i
. For

any ~�2 2 (�̂; �2], consider a contract C1 =
n
X̂1 (�) ; � 2 �

o
, de�ned as

X̂1 (�) =

8>>>>><>>>>>:

X̂ (�) ; if � 2 [�; �1] [ [�2; 1] ;
X�
A (�1) ; if � 2

h
�1; ~�

�
;

X�
A

�
~�2

�
; if � 2

�
~�; ~�2

i
;

X�
A (�) ; if � 2

�
~�2; �2

�
;

where ~� = ~�
�
~�2

�
satis�es

(24)
~�X�

A (�1)� I + b
X�
A (�1)

�
=

~�X�
A

�
~�2

�
� I + b

X�
A

�
~�2

�� :

Because X�� (�X � I + b) is maximized at X�
A (�), the function � (�) �

�X�
A(�1)�I+b
X�
A(�1)

� � �X�
A(~�2)�I+b
X�
A(~�2)

�

satis�es � (�1) > 0 > �
�
~�2

�
, and hence, by continuity of � (�), there exists ~� 2

�
�1; ~�2

�
such that

�
�
~�
�
= 0, i.e., (24) is satis�ed. Intuitively, contract C1 is the same as contract C, except that it

substitutes a subset
h
~�2; �2

i
of the �at region with a continuous region where X̂1 (�) =

�
��1

I�b
� .

Because contract C is incentive-compatible and ~� satis�es (24), contract C1 is incentive-compatible

too. Below we show that the payo¤ to the principal from contract C1 exceeds the payo¤ to the

principal from contract C for ~�2 very close to �2. Because X̂1 (�) = X̂ (�) for � � �1 and � � �2, it
is enough to restrict attention to the payo¤ in the range � 2 (�1; �2). The payo¤ to the principal
from contract C1 in this range, divided by X (0)

� 1
1�� , is

(25)
Z ~�(~�2)

�1

�X�
A (�1)� I
X�
A (�1)

�
d� +

Z ~�2

~�(~�2)

�X�
A

�
~�2

�
� I

X�
A

�
~�2

�� d� +

Z �2

~�2

�X�
A (�)� I
X�
A (�)

�
d�:

The derivative of (25) with respect to ~�2, after the application of (24) and Leibniz�s integral rule,
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is

(26)
Z ~�2

~�

�I � (� � 1) �X�
A

�
~�2

�
X�
A

�
~�2

��+1 X�0
A

�
~�2

�
d� + b

0B@ 1

X�
A

�
~�2

�� � 1

X�
A (�1)

�

1CA d~�

d~�2
:

Because X�0
A (�) = �

X�
A(�)
� , the �rst term of (26) can be simpli�ed to

(27)
(� � 1)X�

A

�
~�2

�
~�
2
2�~�

2

2 � �I
�
~�2 � ~�

�
X�
A

�
~�2

��+1 X�
A

�
~�2

�
~�2

= �
~�2 � ~�
~�2

X�
A

�
~�2

��� "I � b
~�2

~�2 + ~�

2
� I
#
:

From (24), d~�
d~�2

= (
��1
�1
� ~�

�
2
~�2
)�1 (� � 1) ~���22 (~� � ~�2). Using this and (24), the second term of (26)

can be simpli�ed to

(28)
b

X�
A

�
~�2

��
0@1� ~�2

�1

!��1A d~�

d~�2
= �

~�2 � ~�
~�2

X�
A

�
~�2

���  ~�
~�2

!
b:

Adding (27) and (28), the derivative of the principal�s payo¤ with respect to ~�2 is equal to

�� (~�2�~�)
2

2~�
2
2

X�
A

�
~�2

���
(I + b), which is strictly negative for any b > �I. By the mean value the-

orem, if UP
�
~�2

�
stands for the expected principal�s utility from contract C, then

UP (~�2)�UP (�2)
�̂2��2

=

U 0P (�̂2) < 0 for some �̂2 2
�
~�2; �2

�
, and hence a deviation from contract C to contract C1 is

bene�cial for the principal. Hence, contract C cannot be optimal for b > �I.
Next, suppose b = �I. In this case, the derivative of (25) with respect to ~�2 is zero for

any ~�2 2 (�̂; �2]. It can be similarly shown that if, instead, we replace a subset
h
�1; ~�1

i
of the

�at region [�1; �2] with a continuous region where X̂1 (�) =
�
��1

I�b
� , then the derivative of the

principal�s utility with respect to ~�1 is zero for any ~�1 2 [�1; �̂). Combining the two arguments,
contract C gives the principal the same expected utility as the contract where the �at region

[�1; �2] is replaced by a continuous region with X̂1 (�) =
�
��1

I�b
� , and the rest of the contract is

unchanged. Thus, if a discontinuous contract is optimal, then there exists an equivalent continuous

contract, which contains a strictly decreasing region and which is also optimal.

Step 2: Optimal continuous contract. We prove that among continuous contracts satisfying

Lemma IA.3, the one speci�ed in Lemma 1 maximizes the payo¤ to the principal. By Lemma IA.3

and continuity of the contract, it is su¢ cient to restrict attention to contracts that are combinations

of, at most, one downward sloping part X̂ (�) = �
��1

I�b
� and two �at parts: any contract that has

at least two disjoint regions with X̂ (�) = �
��1

I�b
� will exhibit discontinuity. Consider a contract

such that X̂ (�) is �at for � 2 [�; �1], is downward-sloping with X̂ (�) = �
��1

I�b
� for � 2 [�1; �2],
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and is again �at for � 2 [�2; 1], for some �1 2 [0; �2] and �2 2 [�1; 1]. This consideration allows for
all possible cases, because it can be that �1 = � and/or �2 = 1, or �1 = �2). The payo¤ to the

principal, divided by X (0)� 1
1�� , is

(29) P =

Z �1

�

�X�
A (�1)� I
X�
A (�1)

�
d� +

Z �2

�1

�X�
A (�)� I
X�
A (�)

�
d� +

Z 1

�2

�X�
A (�2)� I
X�
A (�2)

�
d�:

Since X�
A (�) =

�
��1

I�b
� , the derivative with respect to �1 is

@P

@�1
=

Z �1

�

�I � (� � 1) �X�
A (�1)

X�
A (�1)

�+1
X�0
A (�1) d� = �

�

X�
A (�1)

�

"
I + b

2
� I �

�1
+

�
�

�1

�2 I � b
2

#
:

First, suppose � > 0. Then x = �
�1
takes values between �

�2
and 1. Since b 2 [�I; I), the

function x2 I�b2 � Ix+ I+b
2 is U-shaped and has two roots, 1 and I+b

I�b , which coincide for b = 0. If

b 2 [0; I), this function is strictly positive for x < 1 because I+b
I�b � 1. Hence,

@P
@�1

< 0 for �1 > �,

which implies that (29) is maximized at �1 = �. If �I < b < 0, then 0 < I+b
I�b < 1 and hence

@P
@�1

< 0 when �
�1
< I+b

I�b or
�
�1
> 1, and @P

@�1
> 0 when �

�1
2
�
I+b
I�b ; 1

�
. Because �

�1
� 1, we conclude

that (29) is increasing in �1 in the range �1 < I�b
I+b� and decreasing in �1 in the range �1 >

I�b
I+b�.

Therefore, if �I < b < 0, (29) reaches its maximum at �1 = min
n
I�b
I+b�; 1

o
. In particular, the

maximum is achieved at �1 = I�b
I+b� if b 2 [�

1��
1+�I; 0), and �1 = �2 if �I < b � �

1��
1+�I. Finally, if

b = �I, then I+b
I�b = 0 and hence

@P
@�1

> 0, i.e., (29) is increasing in �1. Thus, (29) is also maximized

at �1 = �2.

Next, suppose � = 0. Then @P
@�1

< 0 if �I < b < I and @P
@�1

= 0, otherwise. Hence, for

�I < b < I and � = 0, (29) is maximized at �1 = 0 = �. If b = �I and � = 0, the principal�s

utility does not depend on �1.

Next, the derivative of (29) with respect to �2 is

(30)
@P

@�2
=

Z 1

�2

�I � (� � 1) �X�
A (�2)

X�
A (�2)

�+1
X�0
A (�2) d� =

� (1� �2)
2�22X

�
A (�2)

�
(I � b� (I + b) �2) :

1) If b 2 [�I; 0), then I � b � (I + b) �2 � I � b � (I + b) > 0, and hence (30) is positive for
any �2 2 [�; 1). Therefore, (29) is maximized at �2 = 1. Combining this with the conclusions for
�1 above, we get:

1a) For � > 0: If b 2 [�1��
1+�I; 0], then �

�
1 =

I�b
I+b� and �

�
2 = 1, which together with continuity of

the contract gives X̂� (�). If b 2 [�I;�1��
1+�I], then �

�
1 = �2 and �

�
2 = 1, i.e., the optimal contract

is �at. As shown above, among �at contracts, the one that maximizes the principal�s payo¤ is

X̂flat (�). Note that this result implies that the optimal contract is unique among both continuous

and discontinuous contracts even if b = �I. Indeed, Step 1 shows that the principal�s utility
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in any discontinuous contract is the same as in a continuous contract with a strictly decreasing

region. Because the optimal contract among continuous contracts is unique and is strictly �at,

the principal�s utility in any discontinuous contract is strictly smaller than in the �at contract,

which proves uniqueness.

1b) For � = 0: If b 2 (�I; 0), then ��1 = 0 and ��2 = 1, i.e., the optimal contract is X�
A (�)

for all �, consistent with X̂� (�). If b = �I, then ��2 = 1 and ��1 2 [0; 1], i.e., multiple optimal
contracts exist (including some discontinuous contracts, as shown before). The �at contract given

by X̂flat (�) is one of the optimal contracts.

2) If b 2 [0; I), we have shown that ��1 = � for any � � 0, and hence we need to choose

�2 2 [�; 1]. According to (30), @P
@�2

> 0 for �2 < I�b
I+b and

@P
@�2

< 0 for �2 > I�b
I+b . Since b � 0,

I�b
I+b < 1. Also,

I�b
I+b � � , b � 1��

1+�I. Hence, if b �
1��
1+�I, then

@P
@�2

< 0 for �2 > �, and hence (29)

is maximized at �2 = �. Thus, for b � 1��
1+�I, the optimal contract is �at, which gives X̂flat (�).

Finally, if b 2 (0; 1��1+�I], then (29) is increasing in �2 up to
I�b
I+b and decreasing after that. Hence,

(29) is maximized at �2 = I�b
I+b . Combined with �1 = � and continuity of the contract, this gives

X̂+ (�).

Case 3: b < �I. We show that the optimal contract is �at with X̂ (�) = �
��1

2I
�+1 . The

proof proceeds in three steps. First, we show that the optimal contract cannot have any strictly

decreasing regions and hence can only consist of �at regions. Second, we show that any contract

with two �at regions is strictly dominated by a completely �at contract. Third, we show that any

contract with at least three �at regions cannot be optimal. Combined, these steps imply that the

optimal contract can only have one �at region, i.e., is completely �at. Combining this with (23)

gives X̂flat (�) and completes the proof of this case.

Step 1: The optimal contract cannot have any strictly decreasing regions.
Consider a contract with a strictly decreasing region. According to Lemma IA.3, any strictly

decreasing region is characterized by X̂ (�) = X�
A (�) =

�
��1

I�b
� . Consider �1 and �2 such that

X̂ (�) = X�
A (�) for � 2 [�1; �2]. For any �̂2 2 (�1; �2), consider a contract C2 =

n
X̂2 (�) ; � 2 �

o
,

de�ned as

X̂2 (�) =

8>>>>><>>>>>:

X̂ (�) ; if � 2 [�; �1] [ [�2; 1] ;
X�
A (�) ; if � 2

h
�1; �̂2

�
;

X�
A(�̂2); if � 2

�
�̂2; �̂

i
;

X�
A (�2) ; if � 2

�
�̂; �2

�
;

where �̂ = �̂(�̂2) satis�es

(31)
�̂X�

A(�̂2)� I + b
X�
A(�̂2)

�
=
�̂X�

A (�2)� I + b
X�
A (�2)

�
:

(such �̂ always exists and lies between �̂2 and �̂1 for the same reason as in contract C1). Intuitively,
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contract C2 is the same as contract C, except that it substitutes a subset
h
�̂2; �2

i
of the decreasing

region with a piecewise �at region with a discontinuity at �̂. Because contract C is incentive-

compatible and �̂ satis�es (31), contract C2 is incentive-compatible too. Below we show that the

payo¤ to the principal from contract C2 exceeds the payo¤ to the principal from contract C for �̂2
very close to �2. Because X̂2 (�) = X̂ (�) for � � �1 and � � �2, it is enough to restrict attention
to the payo¤ in the range � 2 (�1; �2). The payo¤ to the principal from contract C2 in this range,

divided by X (0)� 1
1�� , is

(32)
Z �̂2

�1

�X�
A (�)� I
X�
A (�)

�
d� +

Z �̂(�̂2)

�̂2

�X�
A(�̂2)� I
X�
A(�̂2)

�
d� +

Z �2

�̂(�̂2)

�X�
A (�2)� I
X�
A (�2)

�
d�:

Following the same arguments as for the derivative of (25) with respect to ~�2 above, we can

check that the derivative of (32) with respect to �̂2 is given by �
(�̂��̂2)

2

2�̂
2
2

X�
A(�̂2)

�� (I + b), which

is strictly negative at any point �̂2 < �2 for b < �I. By the mean value theorem, if UP (�̂2) stands
for the expected principal�s utility from contract C, then UP (�̂2)�UP (�2)

�̂2��2
= U 0P

�
~�2

�
< 0 for some

~�2 2
�
�̂2; �2

�
, and hence a deviation from contract C to contract C2 is bene�cial for the principal.

Hence, contract C cannot be optimal for b < �I. This result implies that any optimal contract
must consist only of �at regions.

Step 2: Any contract with two �at regions is dominated by a contract with one �at region.
Consider a contract with two �at regions: Types

h
�; �̂
i
pick exercise at X̂L, and types

h
�̂; 1
i

pick exercise at X̂H < X̂L. Type �̂ 2 (�; 1) satis�es

(33)
�̂X̂L � I + b

X̂�
L

=
�̂X̂H � I + b

X̂�
H

:

Consider an alternative contract with X̂ (�) = X̂H for all �. The di¤erence between the principal�s

value under this pooling contract and her value under the original contract, divided by X (0)�, is

given by

(34)
�U =

R 1
�
�X̂H�I
X̂�
H

d�
1�� �

�R �̂
�
�X̂L�I
X̂�
L

d�
1�� +

R 1
�̂
�X̂H�I
X̂�
H

d�
1��

�
=
R �̂
�

�
�X̂H�I
X̂�
H

� �X̂L�I
X̂�
L

�
d�
1��

= �̂��
1��

�
�̂+�
2
X̂H�I
X̂�
H

�
�̂+�
2
X̂L�I
X̂�
L

�
= �̂��

1��

�
�̂
2
X̂H�I
X̂�
H

�
�̂
2
X̂L�I
X̂�
L

+ �
2

�
1

X̂��1
H

� 1

X̂��1
L

��
Using (33) and the fact that b � �I,

�̂X̂H � I
X̂�
H

� �̂X̂L � I
X̂�
L

= b

 
1

X̂�
L

� 1

X̂�
H

!
� I

 
1

X̂�
H

� 1

X̂�
L

!
,

�̂
2X̂H � I
X̂�
H

�
�̂
2X̂L � I
X̂�
L

� 0;
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and the inequalities are strict if b < �I. Combining this with X̂H < X̂L and using (34), implies
that �U � 0 and �U > 0 if at least one of b < �I or � > 0 holds. Thus, the contract with two
�at regions is dominated by a contract with one �at region.

Step 3: Any contract with at least three �at regions cannot be optimal.
The proof of this step is similar to the proof of Step 3 in Proposition 4 in Melumad and Shibano

(1991) for the payo¤ speci�cation in our model. Suppose, on the contrary, that the optimal

contract X (�) has at least three �at regions. Consider three adjacent steps, XL > XM > XH , of

the assumed optimal contract. Types
�
�̂0; �̂1

�
pick exercise at XL, types

�
�̂1; �̂2

�
pick exercise

at XM , and types
�
�̂2; �̂3

�
pick exercise at XH , where � � �̂0 < �̂1 < �̂2 < �̂3 � 1. Incentive

compatibility implies that types �̂1 and �̂2 satisfy

�̂1XL � I + b
X�
L

=
�̂1XM � I + b

X�
M

, �̂1 =
(I � b)

�
X��
M �X��

L

�
X1��
M �X1��

L

;(35)

�̂2XM � I + b
X�
M

=
�̂2XH � I + b

X�
H

, �̂2 =
(I � b)

�
X��
H �X��

M

�
X1��
H �X1��

M

:(36)

Consider an alternative contract with ~X (�) = XL for types (�̂0; y), ~X (�) = XH for types (y; �̂3),

and ~X (�) = X (�) otherwise, where y 2 (�̂1; �̂2) satis�es

(37)
yXL � I + b

X�
L

=
yXH � I + b

X�
H

, y =
(I � b)

�
X��
H �X��

L

�
X1��
H �X1��

L

:

This contract is incentive-compatible. The di¤erence between the principal�s value under this

contract and the original contract, divided by X (0)� 1
1�� , is given by

R y
�̂1

�
�XL�I
X�
L

� �XM�I
X�
M

�
d� +

R �̂2
y

�
�XH�I
X�
H

� �XM�I
X�
M

�
d�

=
�
y � �̂1

�� y+�̂1
2
XL�I
X�
L

�
y+�̂1
2
XM�I
X�
M

�
+
�
�̂2 � y

�� y+�̂2
2
XH�I
X�
H

�
y+�̂2
2
XM�I
X�
M

�
:

Using the left equalities of (35) and (36), we can rewrite this as

�
y � �̂1

��
y
2

�
XL
X�
L

� XM
X�
M

�
+ �I+b

2X�
M

� �I+b
2X�

L

� I
�

1

X�
L

� 1

X�
M

��
+
�
�̂2 � y

��
y
2

�
XH
X�
H

� XM
X�
M

�
� I

�
1

X�
H

� 1

X�
M

�
+ �I+b

2X�
M

� �I+b
2X�

H

�
:
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Plugging in the values for y, �̂1, and �̂2 from the right equalities of (35), (36), and (37), we get

I�b
X1��
M �X1��

L

�

X1��
H �X1��

L

 
(I�b)
2

�
X��
H �X��

L

��
X1��
L �X1��

M

�
X1��
H �X1��

L

+ b+I
2

�
X��
M �X��

L

�!

+ I�b
X1��
H �X1��

M

�

X1��
H �X1��

L

 
(I�b)
2

�
X��
H �X��

L

��
X1��
H �X1��

M

�
X1��
H �X1��

L

+ b+I
2

�
X��
M �X��

H

�!
;

where � = X��
H X��

M (XM �XH) + X��
L X��

H (XH �XL) + X��
M X��

L (XL �XM ). Rearranging,
we obtain

� (I � b) (b+ I)
2(X1��

H �X1��
L )

 
X��
M �X��

L

X1��
M �X1��

L

+
X��
M �X��

H

X1��
H �X1��

M

!

=
1
2�
�
I2 � b2

�
(X1��

H �X1��
L )

��
(X1��

M �X1��
L )(X1��

H �X1��
M )

;

which is strictly positive because I2 � b2 < 0 and X1��
L < X1��

M < X1��
H . Thus, contract X (�) is

strictly dominated by contract ~X (�) and hence cannot be optimal.

Supplementary analysis for the proof of Proposition 1. Proof that the principal�s
ex-ante IC constraint is satis�ed. Let V cP

�
X; �̂; �̂

��
denote the expected value to the principal

in the equilibrium with continuous exercise (up to a cuto¤) if the current value of X (t) is X and

the current belief is that � 2
h
�; �̂
i
for some �̂ > �̂

�
. If the agent�s type is � > �̂

�
, exercise occurs

at threshold �
��1

I�b
� , and the principal�s payo¤ upon exercise is

�
��1 (I � b)�I. If � < �̂

�
, exercise

occurs at threshold X�. Hence,

�
�̂ � �

�
V cP

�
X; �̂; �̂

��
=

�
X

X�

�� Z �̂
�

�
(�X� � I) d�

+X�

Z �̂

�̂
�

�
�

� � 1
I � b
�

��� � �

� � 1 (I � b)� I
�
d�:

Given belief � 2
h
�; �̂
i
, the principal can either wait and get V cP

�
X; �̂; �̂

��
or exercise immediately

and get X �+�̂
2 � I. The current value of X (t) satis�es X (t) � X�

A(�̂) because otherwise, the

principal�s belief would not be that � 2
h
�; �̂
i
. Hence, the ex-ante IC condition requires that for

any �̂ > �̂
�
, V cP

�
X; �̂; �̂

�� � X �+�̂
2 � I for any X � X�

A(�̂). Because X
��V cP

�
X; �̂; �̂

��
does not

depend on X, this condition is equivalent to

(38) X��V cP

�
X; �̂; �̂

�� � max
X2(0;X�

A(�̂)]

1

X�

 
X
� + �̂

2
� I
!
:

19



The function 1
X�

�
X �+�̂

2 � I
�
is inverse U-shaped in X and has an unconditional maximum at

�
��1

2I
�+�̂
, which is strictly greater than X�

A(�̂) for any �̂ >
I�b
I+b� = �̂

�
. Because X��V cP

�
X; �̂; �̂

��
does not depend on X, (38) is equivalent to

X��V cP

�
X; �̂; �̂

�� � X�
A(�̂)

��

 
X�
A(�̂)

� + �̂

2
� I
!
:

Suppose there exists �̂ for which the ex-ante IC constraint is violated, i.e.,

Z �̂
�

�
(X�)�� (�X� � I) d� +

Z �̂

�̂
�

�
�

� � 1
I � b
�

��� � �

� � 1 (I � b)� I
�
d�(39)

<
�
�̂ � �

�
X�
A(�̂)

��

 
X�
A(�̂)

� + �̂

2
� I
!
:

We show that this implies that the contract derived in Lemma 1 cannot be optimal, which is a

contradiction. In particular, denote the contract from the second part of Lemma 1 by X̂� (�).

Then (39) implies that the contract X̂� (�) is dominated by the contract with continuous exercise

at X�
A (�) for � � �̂ and exercise at X�

A(�̂) for � � �̂. Indeed, the principal�s expected utility under
the contract X̂� (�), divided by X (0)

�, is

(40)
Z �̂

�

�
(X�)�� (�X� � I) d� +

Z 1

�̂
�

�
�

� � 1
I � b
�

��� � �

� � 1 (I � b)� I
�
d�:

Similarly, the principal�s expected utility under the modi�ed contract (also divided by X (0)�),

where I�b
I+b� in X̂� (�) is replaced by �̂, and the cuto¤

�
��1

I+b
� in X̂� (�) is replaced by X�

A(�̂) =
�
��1

I�b
�̂
, is given by

(41)
Z �̂

�
X�
A(�̂)

��
�
�X�

A(�̂)� I
�
d� +

Z 1

�̂

�
�

� � 1
I � b
�

��� � �

� � 1 (I � b)� I
�
d�:

Combining (40) and (41), it is easy to see that the contract with continuous exercise up to the

cuto¤ �̂ dominates the contract X̂� (�) if and only if (39) is satis�ed. Hence, the ex-ante IC

constraint is indeed satis�ed.

Supplementary analysis for the proof of Proposition 2. Part 1. Derivation of the
principal�s value function in the !-equilibrium, VP (X (t) ; 1;!).

The principal�s value function VP (X (t) ; 1;!) satis�es

(42) rVP (X; 1;!) = �XVP;X (X; 1;!) +
1

2
�2X2VP;XX (X; 1;!) :
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The value matching condition is:

(43) VP (Y (!) ; 1;!) =

Z 1

!
(�Y (!)� I) d� + !VP (Y (!) ; !;!) :

The intuition behind (43) is as follows. With probability 1 � !, � is above !. In this case, the
agent recommends exercise, and the principal follows the recommendation. The payo¤ of the

principal, given �, is �Y (!) � I. With probability !, � is below !, so the agent recommends

against exercise, and the option is not exercised. The continuation payo¤ of the principal in this

case is VP (Y (!) ; !;!). Solving (42) subject to (43), we obtain

(44) VP (X; 1;!) =

�
X

Y (!)

�� �Z 1

!
(�Y (!)� I) d� + !VP (Y (!) ; !;!)

�
:

By stationarity,

(45) VP (Y (!) ; !;!) = VP (!Y (!) ; 1;!) :

Evaluating (44) at X = !Y (!) and using the stationarity condition (45), we obtain:

VP (!Y (!) ; 1;!) = !
�

�
1

2

�
1� !2

�
Y (!)� (1� !) I

�
+ !�+1VP (!Y (!) ; 1;!) :

Therefore,

(46) VP (!Y (!) ; 1;!) =
!� (1� !)
1� !�+1

�
1

2
(1 + !)Y (!)� I

�
:

Plugging (46) into (44), we obtain the principal�s value function (A8).

Part 2. Existence of !-equilibria for b < 0:

2a. Proof that G (!) > 0, where G (!) � (1�!�)(I�b)
!(1�!��1)

� �
��1

2(I�b)
1+! . Note that G (!) =

2(I�b)
1+! g (!), where g (!) �

(1�!�)(1+!)
2(!�!�)

� �
��1 . We have:

lim
!!1

g (!) = lim
!!1

1�!���!��1(1+!)
2(1��!��1)

� �
��1 = 0;

g0 (!) =
�(!��1�!�+1)+!2��1

2(!�!�)
2 ;

where the �rst limit holds by l�Hopital�s rule. Denote the numerator of g0 (!) by h (!) � !2� �
�!�+1 + �!��1 � 1. Function h (!) is a generalized polynomial. By an extension of Descartes�
Rule of Signs to generalized polynomials (Laguerre, 1883),17 the number of positive roots of h (!),

17See Theorem 3.1 in Jameson (2006).
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counted with their orders, does not exceed the number of sign changes of coe¢ cients of h (!), i.e.,

three. Because ! = 1 is the root of h (!) of order three and h (0) < 0, then h (!) < 0 for all

! 2 [0; 1), and hence g0 (!) < 0 for all ! 2 [0; 1). Combined with lim!!1 g (!) = 0, this implies
g (!) > 0 and hence G (!) > 0 for all ! 2 [0; 1).
2b. Proof of Step 1: If b < 0, VP (X; 1;!) is strictly increasing in ! for any ! 2 (0; 1).

Because VP (X; 1;!) is proportional to X� , it is enough to prove the statement for X = 1. We

can re-write VP (1; 1;!) as 2��f1 (!) f2 (!), where

(47) f1 (!) �
(1� !) (1 + !)�

1� !�+1 and f2 (!) �
1
2 (1 + !)Y (!)� I�
1
2 (1 + !)Y (!)

�� :
Since, as shown above, Y (!) > �

��1
2I
1+! for ! < 1, then

1
2 (1 + !)Y (!) >

�
��1I > I, and hence

f2 (!) > 0 for ! < 1. Because f1 (!) > 0 and f2 (!) > 0 for any ! 2 (0; !�), a su¢ cient condition
for VP (1; 1;!) to be increasing is that both f1 (!) and f2 (!) are increasing for ! 2 (0; !�).

First, consider f2 (!). As an auxiliary result, we prove that (1 + !)Y (!) is strictly decreasing

in !. This follows from the fact that

@ ((1 + !)Y (!))

@!
= (I � b) �1 + �!

��1 � �!�+1 + !2�

(! � !�)2

and that as shown above, the numerator, h (!), is strictly negative for all ! 2 [0; 1). Next,

f 02 (!) =
(� � 1) (1 + !)

4
�
1
2 (1 + !)Y (!)

��+1 � �

� � 1
2I

1 + !
� Y (!)

�
@ ((1 + !)Y (!))

@!
:

Because Y (!) > �
��1

2I
1+! for ! < 1 as shown above, and because (1 + !)Y (!) is strictly decreasing

in !, f 02 (!) > 0 for any ! 2 (0; !�).
Second, consider f1 (!). Note that

f 01 (!) =
(1 + !)��1

1� !�+1
� � 1� (� + 1)! + (� + 1)!� � (� � 1)!�+1

1� !�+1 :

Denote the numerator of the second fraction by d (!) � � (� � 1)!�+1+(� + 1)!� � (� + 1)!+
� � 1. By an extension of Descartes�Rule of Signs to generalized polynomials, the number of
positive roots of d (!) does not exceed the number of sign changes of coe¢ cients of d (!), i.e.,

three. It is easy to show that d (1) = d0 (1) = d00 (1) = 0. Hence, ! = 1 is the root of d (!) = 0 of

order three, and d (!) does not have roots other than ! = 1. Since d (0) = � � 1 > 0, this implies
that for any ! 2 (0; 1), d (!) > 0. Hence, f 01 (!) > 0, which completes the proof of this step.
2c. Proof of Step 2: lim!!1 VP (X; 1;!) = V cP (X; 1).

According to (47), VP (X; 1;!) = 2��X�f1 (!) f2 (!). By l�Hopital�s rule, lim!!1 f1 (!) =
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2�

�+1 , lim!!1 Y (!) =
�
��1 (I � b), and hence lim!!1 f1 (!) = (

�
��1 (I � b)�I)(

�
��1 (I � b))

��:Using

(A1), it is easy to see that lim!!1 VP (X; 1;!) = 2��X� lim!!1 f1 (!) lim!!1 f1 (!) = V cP (X; 1).

2d. Proof of Step 3. Suppose �I < b < I. For ! close enough to zero, the ex-ante IC condition
(A12) does not hold.

The function X�� �1
2X � I

�
is inverse U-shaped and has a maximum at �Xu =

�
��12I. When

! is close to zero, Y (!) = (1�!�)(I�b)
!(1�!��1)

! +1, and hence maxX2(0;Y (!)]X�� �1
2X � I

�
=

�X��
u

�
1
2
�Xu � I

�
. Hence, we can rewrite (A12) as X��VP (X; 1;!) � �X��

u

�
1
2
�Xu � I

�
, and it is

easy to show that it is equivalent to

(48)
�
! � !�

���1
H (!) � (I � b)�

�
1� !�+1

��
1� !�

��
;

where

H (!) � 2��1��
�

I

� � 1

���1
(1� !)

�
I (1� !)

�
1 + !�

�
� b (1 + !)

�
1� !�

� �
:

Since H (0) > 0, then as ! ! 0, the left-hand side of (48) converges to zero, while the right-hand

side converges to (I � b)� > 0. Hence, for ! close enough to 0, the ex-ante IC condition is violated.
2e. Proof of Step 4. Suppose �I < b < I. Then (A12) is satis�ed for any ! � �!, where

�! is the unique solution to Y (!) = �Xu. For any ! < �!, (A12) is satis�ed if and only if

X��VP (X; 1;!) � �X��
u

�
1
2
�Xu � I

�
.

Note that for any b > �I, lim!!1 Y (!) = �(I�b)
��1 < �

��12I =
�Xu, and hence there exists a

unique �! such that Y (!) � �Xu , ! � �!. Hence, (A12) becomes

X��VP (X; 1;!) � �X��
u

�
1

2
�Xu � I

�
for ! � �!;(49)

X��VP (X; 1;!) � Y (!)��
�
1

2
Y (!)� I

�
for ! � �!:(50)

Suppose that (50) is satis�ed for some ~! � �!. Because Y (!) is decreasing, Y (~!) � Y (!) for
! � ~!. BecauseX�� �1

2X � I
�
is increasing forX � �Xu and because Y (!) � Y (~!) � Y (�!) = �Xu

for ! � ~! � �!, we have Y (!)��
�
1
2Y (!)� I

�
� Y (~!)��

�
1
2Y (~!)� I

�
for any ! � ~!. On the

other hand, according to Step 1, X��VP (X; 1; ~!) � X��VP (X; 1;!) for any ! � ~!. Hence, if

(50) is satis�ed for ~! � �!, it is also satis�ed for any ! 2 [~!; 1). Hence, to prove that (A12) is
satis�ed for any ! � �!, it is su¢ cient to prove (50) for ! = �!. Using (A8) and the fact that
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Y (�!) = �Xu, (50) for ! = �! is equivalent to

1� �!
1� �!�+1

�X��
u

�
1

2
(1 + �!) �Xu � I

�
� �X��

u

�
1

2
�Xu � I

�
, 1

2
�Xu

�
1� �!2
1� �!�+1 � 1

�
� I

�
1� �!

1� �!�+1 � 1
�

, 1

2I
�Xu �

�! � �!�+1
�!2 � �!�+1 ,

�

� � 1 �
�! � �!�+1
�!2 � �!�+1(51)

Consider the function Q (!) � !�!�+1
!2�!�+1 . Note that Q

0 (!) < 0, q (!) � (� � 1)!���!��1+1 >
0. By an extension of Descartes�Rule of Signs to generalized polynomials (Laguerre, 1883), the

number of positive roots of q (!), counted with their orders, does not exceed the number of sign

changes of coe¢ cients of q (!), i.e., two. Since q (1) = q0 (1) = 0, q (!) does not have any roots on

(0;1) other than 1. Since q00 (1) > 0, we have q (!) > 0 for all ! 2 (0; 1), and hence Q0 (!) < 0.
By l�Hopital�s rule, lim!!1Q (!) =

�
��1 , and hence

�
��1 � Q (!) for any ! 2 (0; 1), which proves

(51).

Part 3. Existence of !-equilibria for b > 0:
3a. Proof that in the range [0; 1], equation Y (!) = �

��1
2I
!+1 has a unique solution

!� 2 (0; 1), where !� decreases in b, limb!0 !� = 1, and limb!I !� = 0.
The equality Y (!) = �

��1
2I
!+1 is equivalent to

(52) ! =
1

�
��1

1�!��1
1�!�

2I
I�b � 1

:

We next show that if 0 < b < I, then in the range [0; 1], equation (52) has a unique solution

!� 2 (0; 1), where !� decreases in b, limb!0 !� = 1, and limb!I !� = 0. We can rewrite (52) as

! =
(� � 1)

�
1� !�

�
(I � b)

� (1� !��1) 2I � (� � 1) (1� !�) (I � b)

,
2�I

�
! � !�

�
+ (� � 1) (I � b)

�
!�+1 � ! � 1 + !�

�
� (1� !��1) 2I � (� � 1) (1� !�) (I � b) = 0:

Denote the left-hand side of the second equation as a function of ! by l (!). The denominator of

l (!), ld (!), is nonnegative on ! 2 [0; 1] and equals zero only at ! = 1. This follows from ld (0) =

2�I � (� � 1) (I � b) > 0, ld (1) = 0, and l0d (!) = � (� � 1)!��2 (�2I + ! (I � b)) < 0:Therefore,
l (!) = 0 if and only if the numerator of l (!), ln (!), equals zero at ! 2 (0; 1). Since b 2 (0; I),
then ln (0) = � (� � 1) (I � b) < 0,

l0n (!) = 2�I
�
1� �!��1

�
+ (� � 1) (I � b)

�
(� + 1)!� � 1 + �!��1

�
;

l00n (!) = �2�2 (� � 1) I!��2 + (� � 1) (I � b)
�
� (� + 1)!��1 + � (� � 1)!��2

�
;
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and

l00n (!) < 0, (I � b) ((� + 1)! + � � 1) < 2�I , ! <
(� + 1) I + (� � 1) b
(� + 1) (I � b) :

Since (�+1)I+(��1)b
(�+1)(I�b) > 1, l00n (!) < 0 for any ! 2 [0; 1]. Since l0n (0) = 2�I � (� � 1) (I � b) > 0 and

l0n (1) = �2� (� � 1) b < 0, there exists !̂ 2 (0; 1) such that ln (!) increases to the left of !̂ and
decreases to the right. Since lim!!1 ln (!) = 0, then ln (!̂) > 0, and hence ln (!) has a unique

root !� on (0; 1).

Since the function ln (!) increases in b and is strictly increasing at the point !�, then !�

decreases in b. To prove that limb!0 !� = 1, it is su¢ cient to prove that for any small " > 0,

there exists b (") > 0 such that ln (1� ") < 0 for b < b ("). Since ln (!) > 0 on (!�; 1), this would
imply that !� 2 (1� "; 1), i.e., that !� is in�nitely close to 1 when b is close to zero. Using the
expression for ln (!), ln (!) < 0 is equivalent to

(53)
2�

� � 1
!

! + 1

1� !��1
1� !� < 1� b

I
:

Denote the left-hand side of (53) by L (!). Note that L (!) is increasing on (0; 1). Indeed,

di¤erentiating L (!) and simplifying, L0 (!) > 0 , � (!) � 1 � !2� � �!��1 + �!�+1 > 0. The
function � (!) is decreasing on (0; 1) because �0 (!) < 0, ' (!) � �2!�+1�(� � 1)+(� + 1)!2 <
0, where '0 (!) > 0 and '(1) = 0. Since � (!) is decreasing and � (1) = 0, then, indeed, � (!) > 0

and hence L0 (!) > 0 for all ! 2 (0; 1). In addition, by l�Hopital�s rule, lim!!1 L (!) = 1. Hence,
L (1� ") < 1 for any " > 0, and thus ln (1� ") < 0 for b 2 [0; I (1� L (1� "))).

Finally, to prove that limb!I !� = 0, it is su¢ cient to prove that for any small " > 0, there

exists b (") such that ln (") > 0 for b > b ("). Since ln (0) < 0, this would imply that !� 2 (0; ") for
b > b ("), i.e., that !� is in�nitely close to zero when b is close to I. Based on (53), ln (!) > 0,
L (!) > 1� b

I . Then, for any " > 0, if b > I (1� L (")), we get 1�
b
I < L ("), ln (") > 0, which

completes the proof.

3b. Proof that Y (!) is strictly decreasing in ! for ! 2 (0; 1). Note that

@Y (!)

@!
=

(I � b)
! (! � !�)2

h
� (� � 1)!�+1 + �!� � !

i
;

where (I�b)
!(!�!�)

2 > 0. Thus, we need to show that k (!) � � (� � 1)!�+1+�!��! < 0. According

to an extension of Descartes�Rule of Signs to generalized polynomials (Laguerre, 1883), the number

of positive roots of k (!) = 0, counted with their orders, does not exceed the number of change of

signs of its coe¢ cients, i.e., two. Since k (1) = 0, k0 (1) = 0, and k" (1) = �� (� � 1) < 0, ! = 1 is
a root of order two, and there are no other positive roots. Further, k (0) = 0 and k0 (0) = �1 < 0.
It follows that k (0) = k (1) = 0 and k (!) < 0 for all ! 2 (0; 1), and hence, indeed, @Y (!)@! < 0.

3c. Proof of Step 5: If b > 0, VP (X; 1;!) is strictly increasing in ! for any ! 2 (0; !�).
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The proof of this step is the same as the proof of Step 1 for the case b < 0 with the only

di¤erence: instead of relying on the inequality Y (!) > �
��1

2I
1+! for all ! 2 (0; 1) as for the case

b < 0 (which holds for b < 0), we rely on the inequality Y (!) > �
��1

2I
1+! for all ! 2 (0; !

�).

3d. Proof of Step 6: If 0 < b < I, then the ex-ante IC condition (A12) holds as a strict

inequality for ! = !�.
Using (A8) and Y (!) = �

��1
2I
1+! , we can rewrite VP (X; 1;!

�) as X�K (!�), where

K (!) � 1� !
1� !�+1

�
�

� � 1
2I

! + 1

��� I

� � 1 :

Note that K (0) = �X��
u

�
1
2
�Xu � I

�
and that

K 0 (!) > 0, � (!) � � (� � 1)!�+1 + (� + 1)!� � (� + 1)! + � � 1 > 0:

By an extension of Descartes�Rule of Signs to generalized polynomials, the number of positive roots

of � (!), counted with their orders, does not exceed the number of change of signs of its coe¢ cients,

i.e., three. Note that ! = 1 is the root of � (!) of order three: � (1) = �0 (1) = �00 (1) = 0, and

hence there are no other roots. Since � (0) = � � 1 > 0, it follows that � (!) > 0 and hence

K 0 (!) > 0 for all ! 2 [0; 1). Therefore, K (!) is strictly increasing in !, which implies

(54) X��VP (X; 1;!
�) = K (!�) > K (0) = �X��

u

�
1

2
�Xu � I

�
:

Because the function X�� �1
2X � I

�
achieves its global maximum at the point �Xu, (54) implies

that (A12) holds as a strict inequality for ! = !�, which completes the proof of this step.

Figure B.1 illustrates the equilibria with partitioned exercise characterized in Proposi-

tion 2. We next compare the equilibria in Proposition 2 in terms of Pareto e¢ ciency and

derive some comparative statics results.

Proposition B.1. If b < 0, the equilibrium with continuous exercise from Proposition 2

dominates all other possible equilibria in the Pareto sense: both the agent�s expected payo¤

for each realization of � and the principal�s expected payo¤ are higher in this equilibrium

than in any other equilibrium. If b > 0, the !�-equilibrium dominates other stationary equi-

libria with partitioned exercise in the following sense: both the principal�s expected payo¤ and

the ex-ante expected payo¤ of the agent before � is realized are higher in the !�-equilibrium

than in the !-equilibrium for any ! < !�.
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Intuitively, when b < 0, the equilibrium with continuous exercise both implements the

optimal mechanism for the principal and ensures that exercise occurs at the unconstrained

optimal time of any type � of the agent. When b > 0, the !�-equilibrium is the only

equilibrium in which exercise is unbiased: since the principal�s ex-post IC condition holds

as an equality, the exercise rule maximizes the principal�s payo¤ given that the agent�s type

lies in a given partition. In all other equilibria, there is both loss of information and delay

in option exercise, which is detrimental for both the principal and the agent with a bias

towards early exercise. Interestingly, delay in exercise in these equilibria occurs despite the

fact that the agent is biased towards early exercise.
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 P’s optimal trigger if θ~[ω,1]

(a) (b)

Figure B.1. Equilibria with partitioned exercise. The �gures present the partition equilibria
characterized in Proposition 2 for � = 0, r = 0:15, � = 0:05, � = 0:2, and I = 1. The agent�s bias
is b = �0:25 in �gure (a) and b = 0:1 in �gure (b). In both �gures, the black line represents the
agent�s IC condition, i.e., the function Y (!), and the blue line represents the function �

��1
2I
!+1 ,

i.e., the principal�s optimal exercise trigger if � is uniform on [!; 1].

Proof of Proposition B.1. 1. Proof for b < 0. In the equilibrium with continuous exercise,

exercise occurs at the unconstrained optimal time of any type � of the agent. Therefore, the

payo¤ of any type of the agent is higher in this equilibrium than in any other possible equilibrium.

In addition, as Proposition 1 shows, the exercise times implied by the optimal mechanism if the

principal could commit to any mechanism, coincide with the exercise times in the equilibrium with

continuous exercise. Thus, the principal�s expected payo¤ in this equilibrium exceeds her expected

payo¤ under the exercise rule implied by any other equilibrium.

2. Proof for b > 0. The expected utility of the principal in the !-equilibrium is VP (X; 1;!),

given by (A8). As shown in Step 1 of the proof of Proposition 2, VP (X; 1;!) is strictly increasing
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in ! for ! 2 (0; !�). Hence, VP (X; 1;!�) > VP (X; 1;!) for any ! < !�. Denote the ex-ante

expected utility of the agent (before the agent�s type is realized) by VA (X; 1;!). Repeating the

derivation of the principal�s value function VP (X; 1;!) in the Online Appendix, it is easy to see

that

VA (X; 1;!) =
1� !

1� !�+1

�
X

Y (!)

�� �1
2
(1 + !)Y (!)� (I � b)

�
:

The only di¤erence of this expression from the expression for VP (X; 1;!) given by (A8) is that

I in the second bracket of (A8) is replaced by (I � b). To prove that VA (X; 1;!�) > VA (X; 1;!)
for any ! < !�, we prove that VA (X; 1;!) is strictly increasing in ! for ! 2 (0; !�). The proof
repeats the arguments behind Step 1 in the proof of Proposition 2. In particular, we can re-write

VA (X; 1;!) as 2��X�f1 (!) ~f2 (!), where

f1 (!) �
(1� !) (1 + !)�

1� !�+1 and ~f2 (!) �
1
2 (1 + !)Y (!)� (I � b)�

1
2 (1 + !)Y (!)

�� :

As shown in Step 1 in the proof of Proposition 2, f1 (!) > 0 and f 01 (!) > 0. In addition,
~f2 (!) > 0 because Y (!) > �

��1
2I
1+! > 2(I�b)

1+! for any ! < !�, and ~f 02 (!) > 0 for the same

reasons why f 02 (!) > 0 in Step 1 in the proof of Proposition 2. Hence, VA (X; 1;!) is increasing

in ! 2 (0; !�).

Focusing on the most informative (!�) equilibrium in the early exercise bias case, the

informativeness of communication exhibits interesting comparative statics.

Proposition B.2. Consider the case of an agent biased towards early exercise, b > 0.

Then, !� decreases in b and increases in �, and hence decreases in � and �, and increases

in r.

The result that !� decreases in the agent�s bias is in line with the result of Crawford and

Sobel (1982) that less information is revealed if the misalignment of preferences is bigger.

More interesting are the comparative statics results in �, �, and r. The proposition shows

that communication is less e¢ cient when the option to wait is more valuable. For example,

there is less information revelation (!� is lower) if the environment is more uncertain (� is

higher). Intuitively, higher uncertainty increases the value of the option to delay exercise

and thus e¤ectively increases the con�ict of interest between the principal and the agent

biased towards early exercise. Similarly, communication is less e¢ cient in lower interest

rate and higher growth rate environments.
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Proof of Proposition B.2. The fact that !� decreases in b has been proved in the supplement-

ary analysis for the proof of Proposition 2 in the Online Appendix. We next show that !� increases

in �. From Y (!) = �
��1

2I
!+1 , !

� solves F (!; �) = 0, where F (!; �) = �
��1

1�!��1
1�!�

2I
I�b � 1 �

1
! .

Denote the unique solution by !� (�). Function F (!; �) is continuously di¤erentiable in both

arguments on ! 2 (0; 1), � > 1. Di¤erentiating F (!� (�) ; �) in �, @!
�

@� = �F�(!
�(�);�)

F!(!�(�);�)
. Since

F (0; �) < 0, F (1; �) = 2b
I�b > 0, and !

� is the unique solution of F (!; �) = 0 in (0; 1), we know

that F! (!� (�) ; �) > 0. As we prove below, F� (!; �) < 0. Hence, !� is strictly increasing in

� > 1. Finally, a standard calculation shows that @�@� < 0,
@�
@� < 0, and

@�
@r > 0. Thus, !

� decreases

in � and � and increases in r.

Proof that F� (!; �) < 0. Di¤erentiating F (!; �) with respect to � and reorganizing the
terms, we obtain that F� (!; �) < 0 is equivalent to�

1� !��1
� �
1� !�

�
!��1 (1� !) + � (� � 1) ln! > 0:

Denote the left-hand side as a function of � by N (�). Because N (1) = 0, a su¢ cient condition

for N (�) > 0 for any � > 1 is that N 0 (�) > 0 for � > 1. Di¤erentiating N (�):

N 0 (�) = ln!

�
�!

1�� � !�
1� ! + 2� � 1

�
:

Because ln! < 0 for any ! 2 (0; 1), conditionN 0 (�) > 0 is equivalent to n (�) � !1���!�
1�! �2�+1 >

0. Note that lim�!1 n (�) = 0 and n0 (�) = �
�
!1�� + !�

�
ln!
1�! � 2 � � (�). Note that

(55) � (�) = � (1) +

Z �

1
�0 (x) dx = �(1 + !) ln!

1� ! � 2 + (ln!)
2

1� !

Z �

1

 �
1

!

�2x�1
� 1
!
!xdx:

The second term of (55) is positive, because
�
1
!

�2x�1 � 1 > 0, since 1
! > 1 and 2x� 1 > 1 for any

x > 1. The �rst term of (55) is positive, because

lim!!1
�
� (1+!) ln!

1�! � 2
�
= lim!!1

�
ln! + 1+!

!

�
� 2 = 0

and
@
�
� (1+!) ln!

1�! �2
�

@! =
�2 ln!� 1

!
+!

(1�!)2 < 0;

where the �rst row is by l�Hopital�s rule, and the second row is because
�
�2 ln! � 1

! + !
�0
=

(1�!)2
!2

> 0 and �2 ln! � 1
! + ! equals zero at ! = 1. Thus, � (�) > 0 and hence n

0 (�) > 0 for

any � > 1, which together with n (1) = 0 implies n (�) > 0, which in turn implies that N (�) > 0

for any � > 1. Hence, F� (!; �) < 0.

Proof of Proposition 4. We start by showing that under the speci�ed restrictions on b, the
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solutions �L and �H indeed exist. First, if b 2 (0; E[�]��E[�] I), then �
I
I�b < E[�] and ��

I
I�b >

��. Since

E
h
~�j~� � �

i
is continuous in �, the equation � I

I�b = E
h
~�j~� � �

i
has at least one solution, and all

solutions are strictly below ��. Hence, �H < ��. Second, if b 2 (�
���E[�]
E[�] I; 0), then

�� I
I�b > E [�] and

� I
I�b < �. Since E

h
~�j~� � �

i
is continuous in �, the equation � I

I�b = E
h
~�j~� � �

i
has at least one

solution. By part (ii) of Assumption 2, the solution is unique and �L > �. In fact, as the proof

below shows, part 1 of Proposition 4 is satis�ed even if part (ii) of Assumption 2 is not satis�ed

and we de�ne �L as the lowest solution to � I
I�b = E

h
~�j~� � �

i
.

Proof of Part 1. We show that if part (i) of Assumption 2 is satis�ed and �L is de�ned

as the lowest solution to � I
I�b = E

h
~�j~� � �

i
, then our problem satis�es the conditions of Pro-

position 1 in Amador and Bagwell (2013), once we introduce a change in process from X (t) to

P (X (t)) � X (t)��+1. Since � > 1, P (X) is strictly decreasing in X with limX!0 P (X) = 1
and limX!1 P (X) = 0. Thus, there is a one-to-one correspondence between X and P , so

any threshold-exercise direct mechanism
n
X̂ (�) ; � 2 �

o
with upper thresholds on process X (t)

can be equivalently written as a threshold-exercise direct mechanism
n
P̂ (�) ; � 2 �

o
with lower

thresholds on process P (X (t)), with P̂ (�) = X̂ (�)��+1. The payo¤s of the principal and the

agent, ~UP
�
P̂ ; �

�
and ~UA

�
P̂ ; �

�
, divided by X (0)� , can be written as:

~UP

�
P̂ ; �

�
=

�P̂
1

1�� � I

P̂
�

1��
= �P̂ � IP̂

�
��1

~UA

�
P̂ ; �

�
=

�P̂
1

1�� � (I � b)

P̂
�

1��
= �P̂ � (I � b) P̂

�
��1

Thus, the optimal mechanism problem (similar to (4)�(5), but for a general distribution) is a

special case of the problem in Amador and Bagwell (2013) without money burning, where  = �,

� = P̂ , !
�
�; P̂

�
= ~UP

�
P̂ ; �

�
, and b

�
P̂
�
= � (I � b) P̂

�
��1 . It is easy to check that the conditions

of Assumption 1 in their paper hold for any b < I. By analogy with Amador and Bagwell (2013),

de�ne � as

� �
@2 ~UP (P̂ ;�)

@P̂ 2

b00
�
P̂
� =

I

I � b :

We next verify that the conditions of Proposition 1 in Amador and Bagwell (2013) hold for these

functions. Since X�
A (�) =

�
��1

I�b
� , the optimal agent�s threshold in terms of P (t) is P

�
A (�) =�

�
��1

I�b
�

�1��
. Then,

@ ~UP (P �A(�);~�)
@P̂

= ~� � I
I�b�.

Condition (c1). Since
@ ~UP (P �A(�);�)

@P̂
= � b

I�b�, (c1) is satis�ed if and only if � (�) +
b
I �� (�) is

non-decreasing for all � 2
�
�; ��
�
.

Condition (c2). This condition is relevant in the case b 2 (0; E[�]��E[�] I), in which case �H < ��. In
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this case, we need to verify

(� � �H)
I

I � b �
Z ��

�

�
~� � I

I � b�H
� �

�
~�
�

1� � (�)d
~� 8� 2

�
�H ; ��

�
with equality at �H . Rearranging the terms, this inequality is equivalent to � I

I�b � E
h
~�j~� � �

i
.

By de�nition of �H , this condition indeed holds as equality at �H . Furthermore, since �H is the

highest � 2 � at which � I
I�b = E

h
~�j~� � �

i
and because �� I

I�b >
��, this inequality holds strictly at

any � 2
�
�H ; ��

�
.

Condition (c2�). This condition is relevant in the case b < 0. In this case, we need to verify
@ ~UP
@P̂

�
P �A
�
��
�
; ��
�
� 0, which is equivalent to �� � I

I�b
�� � 0. It is satis�ed if and only if b < 0.

Condition (c3). This condition is relevant in the case b 2 (����E[�]
E[�] I; 0), in which case �L > �. In

this case, we need to verify

(� � �L)
I

I � b �
Z �

�

�
~� � I

I � b�L
� ��~��
� (�)

d~� 8� 2 [�; �L]

with equality at �L. Rearranging the terms, this inequality is equivalent to � I
I�b � E

h
~�j~� � �

i
.

By de�nition of �L, it holds as equality at �L. Furthermore, since �L is the lowest � 2 � at which
� I
I�b = E

h
~�j~� � �

i
and because � I

I�b < �, this inequality holds strictly at any � 2 (�; �L].

Condition (c3�). This condition is relevant in the case b > 0. We need to verify @
~UP
@P̂

(P �A (�) ; �) � 0,
which is equivalent to �� I

I�b� � 0. It is satis�ed if b 2 (0; I) and hence is satis�ed if b 2 (0;
E[�]��
E[�] I).

Applying Proposition 1 in Amador and Bagwell (2013), we conclude that the optimal threshold-

exercise decision rule is X̂ (�) = X�
A (min f�; �Hg) if b 2 (0;

E[�]��
E[�] I), and X̂ (�) = X

�
A(max f�; �Lg),

if b 2 (����E[�]
E[�] I; 0).

Proof of Part 2. To prove this part, we impose part (ii) of Assumption 2. Given that the
principal plays the strategy stated in the proposition, the strategy of any type � of the agent is

incentive-compatible. Indeed, for any type � � �L, exercise occurs at his most preferred time, so
no type � � �L bene�ts from a deviation. Any type � < �L does not bene�t from a deviation

either because the agent would lose from inducing the principal to exercise earlier, and inducing

exercise later than threshold X�
A (�L) is not feasible given that the principal never exercises later

than X�
A (�L) under her strategy. Next, let us verify the optimality of the principal�s strategy. We

need to check that the principal has incentives to exercise the option immediately when the agent

sends message m = 1 (the ex-post IC constraint), and not to exercise the option before getting

message m = 1 (the ex-ante IC constraint). The ex-post IC constraint follows from the fact that

the principal learns the agent�s type � if the agent sends message m = 1 at �rst-passage time

of any threshold between X�
A

�
��
�
and X�

A (�L), and realizes that it is already too late to exercise
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(X�
P (�) < X�

A (�)), and thus does not bene�t from delaying exercise even further. If the agent

sends a message to exercise when X (t) hits X�
A (�L) =

�
��1

I�b
�L
, the principal infers that � � �L

and that she will not learn any additional information by waiting more. Given the belief that

� 2 [�; �L], the optimal exercise threshold for the principal is given by �
��1

I
E[�j���L] , which equals

�
��1

I�b
�L

by the de�nition of �L. Hence, the ex-post IC constraint is satis�ed. Finally, consider the

ex-ante IC constraint.

Proof that the principal�s ex-ante IC constraint is satis�ed. Let ~Vp
�
X; �̂; �L

�
be the ex-

pected value to the principal from following the strategy of waiting for the agent�s recommendation

m = 1 until X (t) hits X�
A (�L) for the �rst time and exercising at threshold X

�
A (�L) regardless of

the agent�s recommendation, where X is the current value of X (t) and the principal believes that

� is distributed over
h
�; �̂
i
, �̂ � �L with p.d.f. � (�) =�(�̂):

~Vp

�
X; �̂; �L

�
= X�

 Z �̂

�L

�X�
A (�)� I
X�
A (�)

�

� (�)

�(�̂)
d� +

Z �L

�

�X�
A (�L)� I
X�
A (�L)

�

� (�)

�(�̂)
d�

!
:

Because the principal�s belief is that � 2
h
�; �̂
i
, the current value of X (t) satis�es X (t) � X�

A(�̂).

Hence, the ex-ante IC constraint requires ~Vp
�
X; �̂; �L

�
� XE

h
�j� � �̂

i
� I for any �̂ > �L and

X � X�
A

�
�̂
�
, or, equivalently,

(56)
Z �̂

�L

�X�
A (�)� I
X�
A (�)

�

� (�)

�(�̂)
d� +

Z �L

�

�X�
A (�L)� I
X�
A (�L)

�

� (�)

�(�̂)
d� �

XE
h
�j� � �̂

i
� I

X�
:

The right-hand side of (56) is an inverted U-shaped function that reaches its maximum at Xmax �
�
��1

I
E[�j���̂] . Since equation E

h
~�j~� � �

i
= I

I�b� has a unique solution �L 2 � and since E [�] <
I
I�b
��

for b 2 (����E[�]
E[�] I; 0), then E

h
�j� � �̂

i
� I

I�b �̂ for any �̂ � �L. Therefore, Xmax =
�
��1

I
E[�j���̂] �

�
��1

I�b
�̂
= X�

A

�
�̂
�
, and hence the right-hand side of (56) is strictly increasing in X over X �

X�
A

�
�̂
�
. Hence, the ex-ante IC constraint (56) is satis�ed for any X � X�

A

�
�̂
�
if and only if

it is satis�ed at X = X�
A

�
�̂
�
. Finally, suppose that (56) is violated at X = X�

A

�
�̂
�
for some

�̂ > �L. However, this implies that threshold schedule X̂ (�) =
�
��1

I�b
maxf�;�Lg is dominated by

X̂ (�) = �
��1

I�b
maxf�;�̂g , which contradicts part 1 of the proposition. Indeed, violation of (56) means

(57)
Z �̂

�L

�X�
A (�)� I
X�
A (�)

�

� (�)

�(�̂)
d� +

Z �L

�

�X�
A (�L)� I
X�
A (�L)

�

� (�)

�(�̂)
d� <

X�
A

�
�̂
�
E
h
�j� � �̂

i
� I

X�
A

�
�̂
�� :

The principal�s expected utility under the optimal contract in Part 1 of the proposition, divided
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by X (0)�, is

(58)
Z �L

�

�X�
A (�L)� I
X�
A (�L)

�
� (�) d� +

Z ��

�L

�X�
A (�)� I
X�
A (�)

�
� (�) d�:

Consider a modi�ed contract with �L replaced by �̂. The principal�s expected utility under

this modi�ed contract, divided by X (0)�, is

(59)
Z �̂

�

�X�
A

�
�̂
�
� I

X�
A

�
�̂
�� � (�) d� +

Z ��

�̂

�X�
A (�)� I
X�
A (�)

�
� (�) d�:

Rearranging the terms, it is straightforward to see that (58)<(59) is equivalent to (57). Hence,

(57) implies that the contract in Part 1 of the proposition is dominated by another interval

delegation contract, which is a contradiction. Thus, the ex-ante IC constraint is indeed satis�ed,

which completes the proof of Part 2.

Proof of Part 3. Similarly to the argument in the proof of Proposition 1, if b > 0, there is no
equilibrium that features separation of types over some interval. Hence, the mechanism from part

1, which features separation, cannot be implemented in any equilibrium.

The next lemma describes the distributions that satisfy and do not satisfy Assumption 2.

Lemma IA.4. Suppose that �I < b < 0 and 0 < � < ��.

1. If � is uniformly distributed on
�
�; ��
�
, Assumption 2 is satis�ed.

2. If � is distributed according to a truncated standard normal distribution on
�
�; ��
�
, Assump-

tion 2 is satis�ed.

3. Suppose � is distributed according to a power distribution with parameter � on
�
�; ��
�
, i.e.,

� (�) = ( ������� )
�. Then, Assumption 2 is satis�ed if and only if � � 1.

Proof of Lemma IA.4. To prove that � (�) + b
I �� (�) is non-decreasing in �, it is necessary

and su¢ cient to check that

(60)
�
� (�) +

b

I
�� (�)

�0
= � (�) +

b

I
� (�) +

b

I
��0 (�) = � (�)

�
1 +

b

I

�
+
b

I
��0 (�) � 0

for all � 2
�
�; ��
�
.

Proof of Part 1. For a uniform distribution, � (�) = 1
���� , � (�) =

���
���� . First,

� (�) +
b

I
�� (�) =

� � � + b
I �

�� � �
;
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which increases in � since b > �I. Second,

E[~�j~� � �] = I

I � b� ,
� + �

2
=

I

I � b� , �

�
1

2
� I

I � b�
�
+
�

2
= 0;

which has at most one solution because � > 0.

Proof of Part 2. Denote f and F the probability density function (pdf) and the cumulative
distribution function (cdf) of the standard normal distribution N (0; 1). Denote the cdf of the

standard normal distribution truncated on [a; b] by Fa;b and the pdf by fa;b. Then, according to

the properties of normal distribution,

fa;b (�) =
f (�)

F (b)� F (a)

and the conditional expectation is

(61) E [�ja < � < b] = f (b)� f (a)
F (b)� F (a) :

Hence, (60) is satis�ed because � (�) = f(�)

F(��)�F (�)
> 0, 1 + b

I > 0, b < 0, � > 0, and �0 (�) =

f 0(�)

F(��)�F (�)
< 0 for � > 0. Thus, part (i) of Assumption 2 is satis�ed.

Next, using (61),

E[~�j~� � �] = I

I � b� ,
f (�)� f (�)
F (�)� F (�) =

I

I � b�:

The function on the right-hand side is increasing and the function on the left-hand side is decreasing

because f (�) decreases and F (�) increases on � > 0. Hence, this equation can have at most one

solution,which proves part (ii) of Assumption 2.

Proof of Part 3. We �rst show that part (ii) of Assumption 2 is satis�ed for any a. Since
� (�) = �

���� (
���
���� )

��1, we have

E[~�j~� � �] =

Z �

�
x
� (x)

� (�)
dx =

1

� (�)

Z �

�
x�0 (x) dx =

[x� (x)]�� �
R �
� � (x) dx

� (�)

= � �

R �
� (

x��
���� )

�dx

� (�)
= � �

R �
� (x� �)

�dx

(� � �)� = � �
1

�+1

�
(x� �)�+1

��
�

(� � �)� = � � � � �
�+ 1

Hence,

E[~�j~� � �] = I

I � b� , � � � � �
�+ 1

=
I

I � b� , �

�
�

�+ 1
� I

I � b

�
+

�

�+ 1
= 0;
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which has at most one solution because � > 0.

Next, consider part (i) of Assumption 2:

� (�) +
b

I
�� (�) = (

� � �
�� � �

)� +
b

I
�
�

�� � �
(
� � �
�� � �

)��1 =
(� � �)��1

(�� � �)�

�
�

�
1 +

b

I
�

�
� �
�
;

which increases in � if and only if

(� � �)��1
�
1 + b

I�
�
+ (�� 1) (� � �)��2

�
�
�
1 + b

I�
�
� �
�
� 0,

�
�
1 + b

I�+ (�� 1)
�
1 + b

I�
��
� �

�
1 + b

I�+ �� 1
�
, �

�
1 + b

I�
�
� �

�
b
I + 1

�
:

First, if 1 + b
I� � 0 , � � I

�b , then the inequality is violated because the right-hand side is

positive. Suppose 1 + b
I� > 0 , � < I

�b . Then the above inequality is satis�ed for any � � � if
and only if it is satis�ed for � = �, or equivalently, 1 + b

I� �
b
I + 1 , � � 1. Note that I

�b > 1

and hence, if � � 1, then � � 1 < I
�b , and so the inequality is satis�ed for all � � �. On the

other hand, if � > 1, then either � � I
�b > 1 and then the inequality is violated for any �, or

I
�b > � > 1, and then the inequality is violated for � close to �. Thus, the inequality is satis�ed

for all � � � if and only if � � 1.

Proof of Proposition 5. Consider a problem in which the agent is free to choose whether to

exercise the option prior to the arrival of the news, while the principal makes the exercise decision

after the arrival of the news. Let V aA (X; �) be the value of the option to the agent of type � after

the arrival of the news:

V aA (X; �) =

8<:
�

X
X�
P (�)

��
(�X�

P (�)� I + b) ; if X � X�
P (�) ;

�X � I + b; if X � X�
P (�) :

Let V bA (X; �) be the value of the option to the agent before the arrival of the news. Since the

expected return from holding an option over a small interval [t; t+ dt] must be rdt, V bA (X; �)

satis�es

(62) (r + �)V bA (X; �) = �X
@V bA (X; �)

@X
+
1

2
�2X2@

2V bA (X; �)

@X2
+ �V aA (X; �) :

First, we show that waiting is optimal in the range X � X�
P (�). Since the agent can fol-

low the strategy of exercising the option at threshold X�
P (�), it must be that V

b
A (X; �) ��

X
X�
P (�)

��
(�X�

P (�)� I + b). By contradiction, suppose that there exists point X̂ < X�
P (�) at

which it is optimal for the agent to exercise the option. It follows that because V bA (X; �) �
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�
X

X�
P (�)

��
(�X�

P (�)� I + b), it must be that

V bA (X; �) �
�

X

X�
P (�)

��
(�X�

P (�)� I + b) �
�
X

X̂

�� �
�X̂ � I + b

�
;

which is a contradiction since the right-hand side is strictly increasing in X̂ 2 (0; X�
P (�)). Thus,

the exercise threshold is in the range X � X�
P (�). Eq. (62) must be solved subject to the

value-matching and smooth-pasting conditions, we obtain

V bA (X; �) =

8>>><>>>:
BX+ +

�
X

X�
P (�)

��
(�X�

P (�)� I + b) ; if X � X�
P (�) ;

A1X
� +A2X

+ + ��
r+���X � �(I�b)

r+� ; if X 2
h
X�
P (�) ;

~XA (�)
i
;

�X � I + b; if X � ~XA (�) ;

where + > 1 and � < 0 are the roots of 12�
2 ( � 1) + � � r � � = 0, constants A1, A2, and

B are given by

A1 =
X�
P (�)

��

+ � �

 
�X�

P (�)

 
(r � �)

�
+ � 1

�
r + �� � � � + 1

!
� (I � b)

�
r+
r + �

� �
�!

;

A2 =
~XA (�)

�+

+ � �

 
� ~XA (�)

(r � �)
�
1� �

�
r + �� � + (I � b)

r�
r + �

!
;

B = A2 �
X�
P (�)

�+

+ � �

 
�X�

P (�)

 
� � � �

�
�
1� �

�
r + �� �

!
� (I � b)

�
� �

r�
r + �

�!
;

and the optimal exercise threshold ~XA (�) satis�es

(63) � ~XA (�)
(r � �)

�
+ � 1

�
r + �� � �(I � b)

r+
r + �

=

 
~XA (�)

X�
P (�)

!�0B@ I

�
�
��1

(r��)(+�1)
r+��� � r+

r+�

�
�b
�
� � r+

r+�

�
1CA :

The left-hand side is strictly increasing in ~XA (�). Let us see that the right-hand side is strictly

decreasing in ~XA (�). Since � < 0 and b < 0, it is su¢ cient to show that
�
��1

(r��)(+�1)
r+��� >

r+
r+�

and � >
r+
r+� . Using the de�nition of +,

+
+�1

r+���
r+� = 1 +

�2+
2(r+�) . Let us show that

+
r+� is

strictly decreasing in �:

�2+
r + �

=

s�
�

�
�� �

2

2

��2
+ 2��2 � �

�
�� �

2

2

�
;

where � � 1= (r + �). Di¤erentiating with respect to � and using
p
1 + x < 1 + x

2 for x > 0, we
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obtain

��
�
�� �2

2

�2 r
1 + 2�2

�
�
���2

2

�2 � 1
!
+ �2

2

r�
�
�
�� �2

2

��2
+ 2��2

> 0:

Therefore,
+
r+� is indeed strictly decreasing in �. Hence,

+
+�1

r+���
r+� < �

��1
r��
r and

r+
r+� <

r�
r .

The latter inequality proves � >
r+
r+� . Multiplying the former inequality by

r(+�1)
r+��� proves

�
��1

(r��)(+�1)
r+��� >

r+
r+� . Hence, the right-hand side of (63) is strictly decreasing in

~XA (�). There-

fore, there exists a unique ~XA (�) that solves (63). To show that ~XA (�) < X�
A (�), suppose by

contradiction that ~XA (�) > X�
A (�).

18 Since waiting is optimal in X < ~XA (�), V bA (X; �) >

�X � I + b 8X 2
h
X�
A (�) ;

~XA (�)
�
. Since V �A (X; �) = �X � I + b 8X � X�

A (�), we obtain

V bA (X; �) > V
�
A (X; �) 8X 2

h
X�
A (�) ;

~XA (�)
�
, which is a contradiction with V �A (X; �) being the

highest possible value function to the agent across all exercise policies. Thus, ~XA (�) < X�
A (�).

Next, we show that the strategy pro�le stated in the proposition constitutes an equilibrium in

the communication game, where ~XA (�) is de�ned by (63). The IC condition for the agent with

� : ~XA (�) � �X is satis�ed, since it leads to the option being exercised at threshold ~XA (�), which is

the optimal strategy for the agent in the constrained delegation problem, as shown above. The IC

condition for the agent with � : ~XA (�) > �X is satis�ed, since threshold �X is the highest threshold

at which the agent can get the option to be exercised, given the strategy of the principal, and �X

dominates any threshold below it by monotonicity of the agent�s payo¤.

Finally, it remains to derive threshold �X, at which it is optimal for the principal to exercise

without waiting for the agent�s recommendation. Let V bP (X; �; Y
�) denote the value function to

the principal prior to the arrival of the news, conditional on the type of the agent being � and

conditional on the option being exercised at threshold Y � � X prior to the arrival of the news.
~V bP (X; �; Y

�) solves

(64) (r + �) ~V bP (X; �; Y
�) = �X

@ ~V bP (X; �; Y
�)

@X
+
1

2
�2X2@

2 ~V bP (X; �; Y
�)

@X2
+ �V aP (X; �) ;

where

(65) V aP (X; �) =

8<:
�

X
X�
P (�)

��
(�X�

P (�)� I) ; if X � X�
P (�)

�X � I; if X � X�
P (�)

is the value of the option to the principal after the arrival of the news. Eq. (64) is solved subject to

the value-matching condition ~V bP (Y
�; �; Y �) = �Y �� I. Let V bP

�
X; �̂; �X

�
be the principal�s value

18It is easy to see that X�
A (�) does not solve (63), so ~XA (�) 6= X�

A (�).

37



function prior to the arrival of the news, given current state X, posterior belief that � is uniform

over
h
�; �̂
i
, if the principal waits for the agent�s recommendation to exercise until threshold �X:

V bP

�
X; �̂; �X

�
=

Z �̂

�

~V bP

�
X; �;min

n
~XA (�) ; �X

o� 1

�̂ � �
d�:

Di¤erentiating with respect to �X, we obtain the �rst-order condition that determines �X:

(66)
Z ~X�1

A ( �X)

�

@ ~V bP
�
X; �; �X

�
@ �X

d� = 0:

C. Centralized decision-making vs. delegation

In this section, we explore the implications of the results for the optimal allocation of

authority. In particular, we compare centralized decision-making, where the principal keeps

formal authority and plays the communication game analyzed in Sections III and IV, to

delegation, where the principal delegates formal authority to exercise the option to the

agent. We �rst analyze simple, once-and-for-all, delegation, where the principal delegates

authority from the beginning and never takes it back. Next, we consider the problem where

the delegation policy can be time-contingent.

C.1 Once-and-for-all delegation

First, consider the case of the late exercise bias. Because centralized decision-making im-

plements the optimal commitment mechanism when b < 0, the principal is always weaker

better o¤ retaining control and getting advice from the agent rather than delegating the

exercise decision. Moreover, while delegation and communication are equivalent if � = 0,

delegation is strictly inferior to communication if � > 0: Not delegating the decision and

playing the communication game implements constrained delegation (delegation up to a

cuto¤), while delegation implements unconstrained delegation. This result is illustrated in

Figure 1 and summarized in the following corollary.

Corollary to Proposition 1. If b < 0, the principal always weakly prefers retaining

control and getting advice from the agent to delegating the exercise decision. The preference

is strict if � > 0. If � = 0, retaining control and delegation are equivalent.
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This result contrasts with the implications for static decisions, such as choosing the

scale of the project. Dessein (2002) shows that in the leading quadratic-uniform setting of

Crawford and Sobel (1982), regardless of the direction of the agent�s bias, delegation always

dominates communication as long as the agent�s bias is not too high so that at least some

informative communication is possible. For general payo¤ functions, Dessein (2002) shows

that delegation is optimal if the agent�s bias is su¢ ciently small. In contrast, we show that

if the agent favors late exercise, then regardless of the magnitude of his bias, the principal

never wants to delegate decision-making authority once-and-for-all. Intuitively, the inability

to go back in time allows the principal to commit to follow the recommendations of the

agent and ensures that communication is su¢ ciently e¤ective so that delegation has no

further bene�t.

Next, consider the case of the early exercise bias. Because the optimal commitment

mechanism in Lemma 1 features constrained delegation, simple delegation does not imple-

ment the optimal mechanism. However, di¤erently from the case of a late exercise bias,

simple delegation can be preferred to centralization if the agent�s bias is low enough. The

following proposition summarizes our �ndings.

Proposition C.1. Suppose b > 0, � = 0, and consider the most informative equilibrium of
the communication game, !�. There exist b and �b, such that the principal�s expected value

in the !�-equilibrium is lower than her expected value under delegation if b < b, and is

higher than under delegation if b > �b.

The result that delegation is bene�cial when the agent�s bias is small enough is similar

to the result of Dessein (2002) for static decisions. This similarity to the static setting is

expected, given that the !�-equilibrium of the dynamic communication game also exists

in the static communication game (see Proposition 3). Intuitively, the principal faces a

trade-o¤: delegation leads to early exercise due to the agent�s bias but uses the agent�s

information more e¢ ciently. When the agent�s bias is small enough, the cost from early

exercise is smaller than the cost due to the loss of the agent�s information, and hence

delegation dominates.

C.2 Time-contingent delegation

In a dynamic setting, delegation does not need to be once-and-for-all but can instead be

time-contingent: the principal may retain authority for some period of time and delegate

it later, or she may take authority back from the agent. In this section, we show that there
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always exists a time-contingent delegation policy that implements the optimal mechanism.

We �rst focus on the case of an early exercise bias. Consider the following game: The

principal and the agent play the communication game of Section III, but at any time, the

principal may delegate decision-making authority to the agent. After authority is granted,

the agent retains it until the end of the game and thus is free to choose when to exercise the

option. The next result shows that for any � � 0, the principal can implement the optimal
mechanism by delegating the decision at the right time.

Proposition C.2. If b > 0, there exists the following equilibrium. The principal del-

egates authority to the agent at the �rst moment when X (t) reaches the threshold Xd �
min(�(I+b)

��1 ;
�
��1

2I
�+1
) and does not exercise the option before that. For any �, the agent sends

message m = 0 at any point before he is given authority. If � � I�b
I+b
, the agent exercises

the option immediately after he is given authority, and if � � I�b
I+b
, the agent exercises

the option when X (t) �rst reaches his preferred exercise threshold X�
A (�) =

�
��1

I�b
�
. The

exercise threshold in this equilibrium coincides with the optimal exercise threshold under

commitment.

Intuitively, timing delegation strategically ensures that the information of low types

(� � I�b
I+b
) is used e¢ ciently, and that all types above I�b

I+b
exercise immediately at the time

of delegation, exactly as in the optimal contract. The higher is the agent�s bias, the later

will delegation occur.

It can be similarly shown that when the agent favors late exercise, b < 0, the optimal

mechanism from Lemma 1 is implemented by the following delegation policy. The principal

delegates authority to the agent at the beginning, but then takes authority away and exer-

cises the option at the �rst moment when X (t) reaches the threshold max( �
��1

I+b
�
; �
��1

2I
�+1
).

This time-contingent delegation policy is therefore equivalent to centralized decision-making

with communication.
Overall, the analysis in this section implies that in the context of timing decisions, the

direction of the con�ict of interest is the key driver of whether delegating authority adds
value. If the agent favors late exercise, delegation, whether time-contingent or once-and-
for-all, adds no additional value over centralized decision-making. In contrast, if the agent
favors early exercise, once-and-for-all delegation when the agent�s bias is small enough, as
well as time-contingent delegation, are superior to centralized decision-making.

Proof of Proposition C.1. Let V D (X; b) denote the expected value to the principal under

delegation if the current value of X (t) is X. If the decision is delegated to the agent, exercise
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occurs at threshold X�
A (�) =

�
��1

I�b
� , and the principal�s payo¤ upon exercise is

�
��1 (I � b)� I:

Hence,

V D(X; b) =

Z 1

0
X�

�
�

� � 1
I � b
�

��� � �

� � 1 (I � b)� I
�
d�

=
X�

� + 1

�
�

� � 1(I � b)
��� � �

� � 1(I � b)� I
�
:

Let V A (X; b) denote the expected value to the principal in the most informative equilibrium of

the communication game if the current value of X (t) is X. Using (A8) and Y (!) = �
��1

2I
1+! ,

V A(X; b) = X� 1� !�(b)
1� !�(b)�+1

�
�

� � 1
2I

1 + !�(b)

��� I

� � 1 ;

where !� (b) is the unique solution to Y (!) = �
��1

2I
!+1 , given b. Because X

� enters as a multi-

plicative factor in both V D(X; b) and V A(X; b), it is su¢ cient to compare V D (b) and V A (b),

where V D (b) � X��V D (X; b) and V A (b) � X��V A (X; b). First, consider the behavior of

V A (b) and V D (b) around b = I. According to the supplementary analysis for the proof of

Proposition 2 in the Online Appendix, limb!I !� (b) = 0. Hence, limb!I V D(b) = �1 and

limb!I V A(b) =
�

�
��12I

���
I
��1 . By continuity of V D (b) and V A (b) in b, this implies that there

exists �b 2 (0; I), such that for any b > �b, V A (b) > VD (b). In other words, communication

dominates delegation if the con�ict of interest between the agent and the principal is big enough.

Second, consider the behavior of V A (b) and V D (b) for small but positive b. Below, we prove that

limb!0
V A0(b)
b = �1 and limb!0

V D0(b)
b = � �2

�2�1

�
�
��1I

����1
> �1. By continuity of V A0 (b)

and V D0 (b) for b > 0, there exists b > 0 such that V A0 (b) < VD0 (b) for any b < b. Because

V A (0) = V D (0), V D (b) � V A (b) =
R b
0 (V D

0 (y)� V A0 (y)) dy > 0 for all b 2 (0; b]. Thus,

delegation dominates communication if the agent favors early exercise but the bias is low enough.

Proof that limb!0
V D0(b)
b = � �2

�2�1

�
�
��1I

����1
. By l�Hopital�s rule,

lim
b!0+

V D(b) = lim
b!0+

V A (b) =
1

� + 1

�
�

� � 1I
��� I

� � 1 :

Note that V D0 (b) = � �b
(�+1)(I�b)

�
�
��1(I � b)

���
. In particular, it follows that limb!0+ V D0 (b) =

0 and limb!0
V D0(b)
b = � �2

�2�1

�
�
��1I

����1
.

Proof that limb!0
V A0(b)
b = �1. The derivative of V A (b) with respect to b can be found as

(67) V A0 (b) = C
d!� (b)

db

"
(1� !) (1 + !)�

1� !�+1

#0
j!=!�(b);
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where C �
�

�
��12I

���
I
��1 . Recall that !

� (b) solves (52), which is equivalent to

(68)
2I

I � b
�

� � 1 =
�
1

!
+ 1

�
1� !�
1� !��1 :

Di¤erentiating this equation, we get

2I

(I � b)2
�

� � 1db(69)

=
�
�
1� !�

� �
1� !��1

�
+ (1 + !)!

�
��!��1

�
1� !��1

�
+ (� � 1)!��2

�
1� !�

��
!2 (1� !��1)2

d!:

Because (68) is equivalent to 1
I�b =

1
2I
��1
�

1+!
!

1�!�
1�!��1 , we can rewrite the left-hand side of (69) as

2I
�

� � 1

�
1

2I

�2�� � 1
�

�2 (1 + !)2
!2

�
1� !�

�2
(1� !��1)2

db:

Substituting this into (69) and simplifying, we get

(70)
d!

db
j!=!�(b) =

1

2I

� � 1
�

(1 + !)2
�
1� !�

�2
� (1� !�) (1� !��1) + (1 + !)!��1 (��! + � � 1 + !�) :

Plugging (70) and"
(1� !) (1 + !)�

1� !�+1

#0
=
(1 + !)��1

(1� !�+1)2
h
(� � 1)

�
1� !�+1

�
� (� + 1)

�
! � !�

�i
;

into (67), we get

V A0 (b) = �D
(1 + !)�+1

�
1� !�

�2 �
(� � 1)

�
1� !�+1

�
� (� + 1)

�
! � !�

��
(1� !�+1)2 [(1� !�) (1� !��1)� (1 + !)!��1 (��! + � � 1 + !�)]

;

where D � C
2I
��1
� . To �nd limb!0

V A0(b)
b , we express 1b from (68) as

1

b
=

(� � 1) (1 + !)
�
1� !�

�
I [(� � 1) (1 + !) (1� !�)� 2�! (1� !��1)] ;

and hence

V A0(b)
b = �D (1+!)�+1(1�!�)

2
[(��1)(1�!�+1)�(�+1)(!�!�)]

(1�!�+1)
2
[(1�!�)(1�!��1)�(1+!)!��1(��!+��1+!�)]

(��1)(1+!)(1�!�)
I[(��1)(1+!)(1�!�)�2�!(1�!��1)]

= � (��1)D
I

(1+!)�+2(1�!�)
3

(1�!�+1)
2
[(1�!�)(1�!��1)�(1+!)!��1(��!+��1+!�)]

:
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Hence, limb!0
V A0(b)
b equals

�(� � 1) 2
�+2D

I
lim
!!1

�
1� !�
1� !�+1

�2
lim
!!1

�
1� !�

(1� !�) (1� !��1)� (1 + !)!��1 (��! + � � 1 + !�)

�
:

By l�Hopital�s rule, the �rst limit equals ( �
�+1)

2, and the second limit equals 1, which completes
the proof.

Proof of Proposition C.2. Note that the following three inequalities are equivalent: b �
1��
1+�I ,

I�b
I+b � � , �

��1 (I + b) �
�
��1

2I
�+1 . Hence, there are two cases. If b <

1��
1+�I, delegation

occurs at threshold �
��1 (I + b) = X�

A

�
I�b
I+b

�
, where I�b

I+b > �. If b � 1��
1+�I, then

I�b
I+b � � and

delegation occurs at the principal�s uninformed exercise threshold �
��1

2I
�+1 :

We prove that neither the agent nor the principal wants to deviate from the speci�ed strategies.

First, consider the agent. Given Assumption 1, sending a messagem = 1 is never bene�cial because

it does not change the principal�s belief and hence her strategy. Hence, the agent cannot induce

exercise before he is given authority. After the agent is given authority, his optimal strategy

is to: 1) exercise immediately if b � I, or if b < I and Xd � X�
A (�); 2) exercise when X (t)

�rst reaches X�
A (�) if b < I and Xd < X�

A (�). Consider two cases. If 0 < b < 1��
1+�I (� I),

then Xd = X�
A

�
I�b
I+b

�
, and hence Xd < X�

A (�) if and only if � <
I�b
I+b . Thus, types below

I�b
I+b exercise at X

�
A (�) and types above

I�b
I+b exercise immediately at Xd, consistent with the

equilibrium strategy. Second, if b � 1��
1+�I, the agent �nds it optimal to exercise immediately at

Xd regardless of his type: if b � I, this is always the case, and if 1��1+�I � b < I, this is true because
X�
A (�) � X�

A (�) =
�
��1

I�b
� � �

��1
2I
�+1 = Xd. Since

I�b
I+b � �, this strategy again coincides with the

equilibrium strategy. Hence, the agent does not want to deviate.

Next, consider the principal. The above arguments show that the equilibrium exercise times

coincide with the exercise times under the optimal mechanism in Lemma 1 for all b. Hence,

the principal�s expected utility in this equilibrium equals her expected utility in the optimal

mechanism. Consider possible deviations of the principal, taking into account that the agent�s

messages are uninformative and hence the principal does not learn new information by waiting.

First, the principal can exercise the option himself, before or after X (t) �rst reaches Xd. Because

a mechanism with such an exercise policy is incentive-compatible, the principal�s utility from such

a deviation cannot exceed her utility under the optimal mechanism and hence her equilibrium

utility. Thus, such a deviation cannot be strictly pro�table. Second, the principal can deviate by

delegating authority to the agent before or after X (t) �rst reaches Xd. An agent who receives

authority at some point t will exercise immediately if b � I, or if b < I and X (t) � X�
A (�),

and will exercise when X (t) �rst reaches X�
A (�) otherwise. Because a mechanism with such an

exercise schedule is incentive-compatible, the principal�s utility from this deviation cannot exceed
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her utility under the optimal mechanism and hence her equilibrium utility. Hence, the principal

does not want to deviate either.

D. Robustness

In this section, we show the robustness of the results to several versions of the model.

D.1 Simple compensation contracts

A reasonable question is whether simple compensation contracts, such as paying a �xed

amount for exercise (if b < 0) or for the lack of exercise (if b > 0), can solve the problem

and thus make the analysis less relevant. We show that this is not the case. Speci�cally, we

allow the principal to o¤er the agent the following payment scheme. If the agent is biased

towards late exercise (b < 0), the principal can promise the agent a lump-sum payment

z that he will receive as soon as the option is exercised. A higher payment decreases the

con�ict of interest and speeds up option exercise. For example, if z = �b
2
, the agent�s and

the principal�s interests are aligned because each of them receives �X� I+ b
2
upon exercise.

However, a higher payment is also more expensive for the principal. Because of that, as

the next result shows, it is always optimal for the principal to o¤er z� < �b
2
, and hence

the con�ict of interest will remain. Moreover, if the agent�s bias is su¢ ciently small, the

optimal payment is in fact zero.

Similarly, if the agent is biased towards early exercise (b > 0), the principal can promise

the agent a �ow of payments ẑdt up to the moment when the option is exercised. Higher ẑ

aligns the interests of the players but is expensive for the principal. The next result shows

that if the initial value of the state process is su¢ ciently small, the optimal ẑ is again zero.

In numerical analysis, we also show that similarly to the late exercise bias case, the optimal

payment is smaller than the payment that would eliminate the con�ict of interest.

Proposition D.1. Suppose b < 0 and the principal can promise the agent a payment

z � 0 upon exercise. Then the optimal z is always strictly smaller than �b
2
and equals zero

if b > �I
��1 . Suppose b > 0 and the principal can promise the agent a �ow of payments

ẑdt � 0 up to the moment of option exercise. Then the optimal ẑ equals zero if X (0) is

su¢ ciently small.

Thus, allowing simple compensation contracts often does not change the problem at

all, and at most leads to an identical problem with a di¤erent bias b. We conclude that
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the problem and implications of our paper are robust to allowing simple compensation

contracts.

Proof of Proposition D.1. First, consider b < 0. The payo¤s of the principal and the agent

upon exercise are given by �X � I � z and �X � I + b + z, respectively. Hence, the problem is

equivalent to the problem of the basic model with I 0 � I + z and b0 = 2z+ b. The interests of the
principal and the agent become aligned if b0 = 0, i.e., if z = �b

2 . Note that it is never optimal to

have z > 0 if b0 < �I 0: in this case, the equilibrium will feature uninformed exercise and hence

would give the principal the same expected utility as if she did not make any payments. Similarly,

it is never optimal to have b0 > 0. Hence, we can restrict attention to b0 2 [�I; 0]. Then, the most
informative equilibrium of the communication game features continuous exercise, and according

to (A1), the principal�s expected utility as a function of z is

V (z) =
X (0)�

� + 1

�
�

� � 1(I
0 � b0)

��� I 0 � �b0
� � 1

=
X (0)�

�2 � 1

�
�

� � 1

���
(I � b� z)�� (I � �b+ z (1� 2�)) :

Note that V 0 (z) > 0, z < z�, where z� = �(I�b)(2��1)+�I��2b
(��1)(2��1) . It is easy to show that z� > 0,

b < �I
��1 and that z

� < � b
2 , (� � 1) (b� 2I) < 0, which holds for any b < 0. This completes the

proof of the �rst statement.

Next, consider b > 0. If the principal makes �ow payo¤s ẑdt before exercise, then upon exercise

the agent loses ẑr , which is the present value of continuation payments at that moment. Thus, the

principal�s and agent�s e¤ective payo¤s upon exercise are �X (t) � I + ẑ
r and �X (t) � I + b �

ẑ
r ,

respectively. Hence, we can consider the communication game with I 0 = I � ẑ
r and b

0 = b � 2 ẑr .
The interests of the principal and the agent become aligned if b = 2 zr , i.e., if z =

rb
2 . Similarly to

the case b < 0, it is never optimal to have ẑ > 0 if b0 � I 0 or b0 < 0, and hence we can restrict

attention to b0 2 [0; I 0). Denoting ~z � ẑ
r and using (A8), the payo¤ of the principal at the initial

date is

V (~z) = �~z + 1� !
1� !�+1

�
X (0)

Y (!; ~z)

�� �1
2
(1 + !)Y (!; ~z)� I + ~z

�
;

where by (6), Y (!; ~z) = (1�!�)(I�b+~z)
!(1�!��1)

. By (52), the most informative equilibrium of this game is

characterized by ! = 1
�

��1
1�!��1
1�!�

2(I�~z)
I�b+~z�1

. If X (0) ! 0, V 0 (~z) ! �1, and hence ~z = 0 is optimal,

which completes the proof.
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D.2 Model with di¤erent discount rates

In our basic setup, the con�ict of interest between the agent and the principal is modeled

by the agent�s bias b. Our results are similar in an alternative setup, where the con�ict

of interest arises because the agent and the principal have di¤erent discount rates. This

section presents the summary of this analysis, and the full analysis is available from the

authors upon request.

Suppose that the agent�s discount rate is rA, the principal�s discount rate is rP , and both

players�payo¤ from exercise at time t is �X (t)�I. Similar to the basic model, we can de�ne
�A and �P , where �i is the positive root of the quadratic equation

1
2
�2�i (�i � 1)+��i�ri =

0.

The case where the principal is more impatient than the agent (rP > rA, or equivalently,

�P > �A) is similar to the case b < 0 in the basic model. We show that if � = 0, then as

long as �A >
2�P
1+�P

, there exists an equilibrium with continuous exercise in which exercise

occurs at the agent�s most preferred threshold �A
�A�1

I
�
. If � > 0, the equilibrium features

continuous exercise up to a cuto¤. The case where the agent is more impatient than the

principal (rP < rA) is similar to the case b > 0 in the basic model. We show that the

equilibrium with continuous exercise does not exist and derive the analog of Proposition 2.

Speci�cally, in the most informative stationary equilibrium, exercise is unbiased given the

principal�s information. This equilibrium is characterized by ~!� < 1, which is the unique

solution of �
1� !�A

�
I

! (1� !�A�1) =
�P

�P � 1
2I

! + 1
:

In addition, for any ! 2 [~!; ~!�), where 0 < ~! < ~!�, there is a unique !-equilibrium where

exercise happens with delay.

D.3 Put option

So far, we have assumed that the decision problem is over the timing of exercise of a

call option, such as the decision of when to invest. In this section, we show that if the

decision problem is over the timing of exercise of a put option, such as the decision of when

to liquidate a project, the analysis and economic insights are similar. The nature of the

option, call or put, is irrelevant for the results. What matters is the asymmetric nature

of time: Time moves forward and thereby creates a one-sided commitment device for the

principal to follow the agent�s recommendations.

Consider the model of Section I with the following change. The exercise of the option

leads to the payo¤s �I�X (t) and � (I + b)�X (t) for the principal and the agent, respect-
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ively. As before, � is a random draw from a uniform distribution on [�; 1] and is privately

learned by the agent at the initial date. If � = 0, the model exhibits stationarity. For

example, if the decision represents shutting down a project, I� corresponds to the salvage

value of the project, b� represents the agent�s private cost (if b < 0) or bene�t (if b > 0) of

liquidating the project, and X (t) corresponds to the present value of the cash �ows from

keeping the project a�oat. The solution of this model follows the same structure as the

solution of the model with the call option. We summarize our �ndings below, and the full

analysis is available from the authors upon request.

Suppose that we start with a high enough X (0), so that immediate exercise does not

happen. At the beginning of Online Appendix B, we show that if � were known, the optimal

exercise policy of each player would be given by a lower trigger on X (t): X��
P (�) =

�
�+1
I�,

X��
A (�) =

�
�+1

(b+ I) �, where �� is the negative root of the quadratic equation that de�ned
�. If b > 0, then X��

A (�) > X
��
P (�), i.e., the agent�s preferred exercise policy is to exercise

earlier than the principal. Similarly, if b < 0, the agent is biased towards late exercise.

Suppose that � = 0 and consider the communication game like the one in Section III. If

b 2 (� I
2
; 0), there is an equilibrium with full information revelation: The agent recommends

waiting as long as X (t) exceeds his preferred exercise threshold X��
A (�) and recommends

exercising at the �rst moment when X (t) hits X��
A (�). Upon getting the recommendation

to exercise, the principal realizes it is too late and �nds it optimal to exercise immediately.

Prior to that, the principal prefers to wait because the value of learning � exceeds the

cost of delay. If b > 0, this equilibrium does not exist, and all stationary equilibria are of

the form f(!; 1); (!2; !); :::g, where type � 2 (!n; !n�1) recommends exercise at threshold
!n�1Yput (!), where Yput (!) = !�!+1

1�!+1 (I + b) :
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