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A Alternative local labor market models
The model presented in the main body of the paper is deliberately kept very simple to make
clear the main ideas. The aim is to show that the employment rate can serve as a su�cient
statistic for local economic opportunity - the key claim which underlies our ECM empirical
model. But one might be concerned that this result is not robust to alternative assumptions.
In this appendix, we sketch more elaborate models to address some of these concerns. We
consider a more general production structure (including intermediate goods and a non-traded
goods sector that employs labor), agglomeration e�ects, endogenous amenities, frictional la-
bor markets and heterogeneous skills. We also show how our industry shift-share instrument
can be derived within this framework.

In general, there is a simple explanation why the su�cient statistic result is robust to
these considerations. The basic argument is that utility can be expressed as a function of
the employment rate and the amenity after substituting the wage curve (6) into the utility
equation (7). This is because, for a given labor supply curve or “wage curve”, the welfare
of workers can be summarized by their position on that curve, and this position can be
expressed by either the real wage or employment rate (as long as the curve is somewhat
elastic). The validity of this argument is independent of how labor demand is modeled. And
if amenities are endogenous, this will also be captured to the extent that they depend on
variables that can be reduced to the employment rate. With this in mind, we next sketch
more generalized versions of the simple model in the main text.

A.1 A more general multi-sector model

Assume that each area has S sectors, some of which produce traded goods (demanded by
consumers in other areas) and some of which are non-traded (which are only demanded
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locally). Assume that each sector-area combination produces a distinct good. The stacked
price vector P of all produced goods has dimension SR, where R is the number of areas.
Assume for simplicity that each good is produced with constant returns to scale, possibly
using intermediate goods but also labor and housing. Denote by W the vector of wages
across areas (we assume workers are perfectly mobile across sectors within areas, so there
is no wage variation within areas); and denote by Ph the vector of housing prices. Given
the assumption of constant returns to scale, the vector of cost functions can be written
as Âc

1
P, W, Ph

2
. This is written in completely general form, but the assumption that some

goods are non-traded imposes restrictions on the cost function; e.g. non-traded goods’ prices,
wages and housing prices only a�ect the costs of locally produced goods. Assume that each
good is produced in a perfectly competitive market so that prices are equal to marginal costs:

P = Âc
1
P, W, Ph

2
(A1)

It would be relatively simple to introduce some imperfect competition in goods markets: (A1)
would simply be modified to include a mark-up representing the elasticity of the demand
curve facing the firm. (A1) is a system of equations that can be solved for goods prices as a
function of wages and housing costs, giving us a relationship like:

P = c
1
W, Ph

2
(A2)

where c
1
W, Ph

2
satisfies:

c
1
W, Ph

2
= Âc

1
c

1
W, Ph

2
, W, Ph

2
(A3)

The price for goods, both traded and non-traded will in general depend on wages and housing
prices in all areas because of the presence of traded intermediate goods. If there were no
traded intermediate goods, only own-area wages and housing prices would a�ect the prices
of goods produced in an area. It is useful to di�erentiate (A3) to give:

c� = ÂcPc� + Âc�, � = W, Ph (A4)

We will first look for an equilibrium conditional on
1
W, Ph

2
and assuming the demand-side

of the market determines quantities. And we will then close the model by introducing supply
curves for labor and housing. Denote by XO the vector of gross outputs of all the goods
produced. Given XO, the demand for intermediate inputs can be written as:
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XI = ÂcPXO (A5)

Net output, X = XO ≠ XI, can then be written in terms of gross outputs:

X = [I ≠ ÂcP] XO (A6)

Similarly to (A5), the demand for labor and housing can be written as:

N = ÂcWXO = ÂcW [I ≠ ÂcP]≠1 X = cWX (A7)

H = ÂcPhXO = ÂcPh [I ≠ ÂcP]≠1 X = cPhX (A8)

where the second equality comes from (A6) and the final equality from inversion of (A4).
Now consider the household side of the economy. Assume that the vector of utilities

across areas, U, is given by the following indirect utility function:

U = A } Y } Q≠1 (A9)

where Q
1
P, Ph

2
is the vector of consumer price indices across areas, Y is the vector of in-

comes, A is a vector of amenities, and } denotes a Hadamard (element-by-element) product.
We assume that preferences are homothetic for simplicity, so we do not need to track the
income distribution within areas. Suppose the income vector is given by:

Y = (1 ≠ ·) W } N + B } (L ≠ N) (A10)

so local income derives from labor income (which is taxed) and some benefits, B, paid to
residents who are not in work. Our assumption of constant returns and perfect competition
rules out the existence of profits, and we assume for simplicity that rents from housing are
all taxed.

The use of Roy’s identity together with (A9) and (A10) leads to the following demands
for produced goods:

X = QPY = QP [(1 ≠ ·) W } N + B } (L ≠ N)] (A11)

and for housing:
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Xh = QPhY = QPh [(1 ≠ ·) W } N + B } (L ≠ N)] (A12)

We are now in a position to solve for the equilibrium conditional on
1
W, Ph

2
and local

population, L. (A2) gives us prices. Substituting (A7) into (A11) gives the following equation
to determine the level of employment:

N = cWX = cWQP [(1 ≠ ·) W } N + B } (L ≠ N)] (A13)

We can now close the model by endogenizing
1
W, Ph

2
using equilibrium in the labor and

housing markets. For the labor market, we need a labor supply curve or “wage curve”.
Suppose the employment rate is a function of the local real consumer wage:

N = (W £ Q)◊ } L (A14)

where £ denotes a Hadamard (element-by-element) division. For given local population,
this allows us to solve for the locally-determined variables as a function of the exogenous
variables. For the reasons given in the main text, utility can be expressed as a function of
the employment rate - which can thus be used as a su�cient statistic for utility. This result
is independent of the assumptions made about the structure of production or demands.

For the housing market, one can simply augment the model to include a supply of land for
development that may depend on the price of land, and the housing price is then determined
to equilibrate the demands from firms and households. We do not spell this equation out
here because there is no extra insight from doing so. Note that our main results do not
require us to assume the housing supply elasticity is the same in all areas.

A.2 The Bartik shocks

The general specification of the model does not make clear the assumptions under which the
Bartik shocks can be used as instruments. The idea behind the Bartik shocks is that areas
have a comparative advantage in some sectors but that sectors are also subject to national
shocks. One way of introducing these ideas would be to model the cost function for sector s

in area r at time t, Âcsrt, as:

Âcsrt =
Âcs

1
PT

t
, P NT

rt , Wrt, P h
rt

2

ZsrZst
(A15)
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where PT

t
are the traded goods prices at time t; P NT

rt , Wrt and P h
rt are the non-traded goods

prices, wages and housing prices respectively in area r at time t, Zsr is an area-sector specific
cost shifter that forms the basis of the comparative (and absolute) advantage of a region,
and Zst is a sector-time specific cost shifter that might arise because of technical progress.
This sort of structure for the cost functions will lead to regions having di�erent mixes of
sectors that persist over time. And, changes in Zst will then have di�erent consequences for
di�erent regions, even though the shocks are national in nature.

A.3 Agglomeration e�ects in production

The basic model can easily be modified to allow for the existence of agglomeration e�ects.
There are many ways to model agglomeration e�ects, but the most common is to assume that
the scale of operations (perhaps measured by aggregate employment) a�ects productivity, so
that there is a direct e�ect from the aggregate level of employment on costs. This assumption
can be included in the specification of cost functions, so that an extra term in employment is
introduced into the right-hand side of (A13). This employment term can then be taken to the
left-hand side leaving our basic equation relating utility to the employment rate completely
unchanged; and qualitatively speaking, the determination of employment will look similar
(though if the agglomeration e�ects are very large, there may be stability issues arising from
a potential multiplicity of equilibria).

A.4 Endogenous amenities

It may be that the level of population or activity in an area a�ects the level of the amenities
o�ered, e.g. by a�ecting the range of goods on o�er, the crime rate, the level of social capital
or population density itself (e.g. Glaeser, Kolko and Saiz, 2001; Glaeser and Redlick, 2009;
Glaeser, Resseger and Tobio, 2009). The endogeneity of amenities may also amplify the
impact of a given demand shock on welfare (see Diamond, 2016). But, if these endogenous
responses can be summarized by the employment rate or real wage, this will still lead to
equations similar to the ones we have used. In this case, we should interpret —1 and —2 in
equation (11) as reduced form e�ects - in the sense that the — parameters account for all

e�ects of employment on (utility and) local population growth, both the direct labor market
e�ects and the indirect e�ects due to changes in local amenities such as crime.
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A.5 Labor markets with frictions

Beaudry, Green and Sand (2014b) use a local labor market model with frictions to investigate
issues closely related to the ones we have considered. In this framework, the labor demand
curve is replaced by a vacancy creation curve, and market tightness is measured using the
ratio of vacancies to unemployment. But, there is a one-to-one relationship between the
vacancy-unemployment ratio and the employment rate. So, the wage bargaining curve -
which gives a relationship between the real wage and the vacancy-unemployment ratio - can
simply be translated to a wage curve like the one we have used.

On the labor demand side, the standard non-competitive model imposes constant returns
to scale in production. Vacancies are created up to the point where the hiring cost, suitably
amortized, is equal to the gap between the marginal product and the wage. The hiring cost
is assumed to be a function of the vacancy-unemployment ratio which, as argued above,
can be replaced by the employment rate; so this gives a negative relationship between the
employment rate and the wage. This does di�er from the labor demand curve we presented
in the main body of the paper, as population appears directly in this relationship with an
elasticity of 1 (see Beaudry, Green and Sand, 2014a). But the elasticity will be less than 1
if one introduces some diminishing returns to labor on the production side (perhaps due to
imperfect competition); and we have shown above how, with non-traded goods, population
will have a direct role in any case. So, models with frictions lead to very similar if not
identical conclusions and specifications of empirical equations.

A.6 Heterogeneous labor

Much of the recent urban literature emphasizes di�erences by skill (e.g. Moretti, 2011; No-
towidigdo, 2011; Diamond, 2016). If there are skill-specific labor supply curves, then one can
derive equations for population growth in di�erent skill groups as a function of skill-specific
changes in employment and the lagged employment rate. Our aggregate equations can be
thought of as weighted averages of the responses for the sub-groups. But, the labor demand
curve for one type of labor will depend on the wages of all types of labor, reflecting the
complementarity or substitutability between skill groups. This might alter the specification
of the response of employment to population changes, though this is not our main focus in
this study. In any case, as we show in the main text, our main object of interest - the persis-
tence of local joblessness - cannot be explained by observed local variation in demographic
composition, which includes education among other individual characteristics.
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B Deriving the population growth equation

B.1 The migration response with forward-looking behavior

The specification in (9) assumes local population flows depend solely on current labor market
conditions and amenities, while forward-looking rational agents should also pay attention to
expected future conditions. In this section we show how that leads to an equation that is
identical in form to (9), though the interpretation of the coe�cient on utility needs to be
changed. Our treatment follows Gallin (2004). Assume that agents’ migration decisions
depend on the present discounted value of being in area r at time t, denoted by Vr (t). Like
Gallin, we assume Vr (t) can be written as:

flVr (t) = ur (t) + Et
ˆVr (t)

ˆt
(A16)

where fl is the interest rate and we allow for some uncertainty in the expected utility from
residing in a region. This can be solved to yield:

Vr (t) = Et

⁄ Œ

t
e≠fl(s≠t)ur (s) ds (A17)

To derive an expression for this, one needs to make an assumption about the expected future
path of local utility. Assume that some degree of mean reversion is expected, so the dynamic
path followed by utility can be represented by:

ˆur (t)
ˆt

= ≠› [ur (t) ≠ u (t)] (A18)

where › is a measure of the persistence in unemployment, with a higher value representing
lower persistence. If utility follows (A18), then one can derive:

Etur (s) = e≠›(s≠t)ur (s) + Â� (s, t) (A19)

for some function Â� (s, t), the exact form of which will be irrelevant. Substituting (A19) into
(A17) leads to:

Vr (t) = ur (t)
fl + ›

+ � (t) (A20)

This equation says that - up to a time-varying constant - the present discount value of
being in a region is proportional to the current level of utility. This means that one can
model decisions as being based solely on the current level of utility. However, the coe�cient
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on the current level of utility does not simply come from preferences: it also involves the
parameter measuring the local persistence in the level of utility, ›. If utility is measured
by employment rates and employment rate di�erentials are very persistent, then we would
expect › to be close to zero. However, we do not seek to o�er a deep structural interpretation
of the parameters we estimate in our population growth equation, so this does not a�ect
the validity of what we do. If one is interested in recovering preference parameters, Gallin
(2004) shows how one can derive an Euler equation for the migration decision which includes
future migration as an extra control. But, this approach requires good instruments both for
current labor market conditions and future migration, something which is quite demanding.
In addition, models with forward-looking agents typically struggle to estimate precisely the
discount factor that measures the relative importance of current and future conditions and
often impose a value (see, for example, Gallin, 2004; Kennan and Walker, 2011), when the
assumption of forward-looking behavior is a claim one might wish to test.

B.2 Di�erences in utility for employed and unemployed

Equation (9) simply assumes that the average level of utility in an area can explain population
changes, but neglects possible di�erences in incentives to migrate for the employed and
unemployed - and di�erent speeds at which they might respond to di�erences in utility. This
section explains why this distinction may not matter. Modify (9) to take the form:

ˆlr (t)
ˆt

= ar (t) + Nrt

Lrt
“e [V e

r (t) ≠ V e (t)] + Lrt ≠ Nrt

Lrt
“u [V u

r (t) ≠ V u (t)] (A21)

where V e
r is the value of being employed in area r, and V u

r is the value of being unemployed;
and V e and V u without subscripts are the aggregate values. (A21) allows for di�erences in
the extent of disequilibrium for the employed and unemployed and for di�erent degrees of
responsiveness of migration to that disequilibrium. There are di�erent ways in which one
might model the values of being employed and unemployed. The simplest would be that the
employment value is the wage, and the unemployment value the benefits available. Using
our result that the wage can be replaced by the employment rate, this makes (A21) simply
a function of the employment rate - as written in (9). This result carries over to more
complicated frameworks that model transitions between employment and unemployment.
Suppose the value of being employed can be written as:
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flV e
r = W r ≠ ” (V e

r ≠ V u
r ) (A22)

where ” is the rate of job loss. For simplicity, we assume a constant environment, though
the conclusion does not depend on that assumption. Similarly, we have for V u

r :

flV u
r = B + ’ (V e

r ≠ V u
r ) (A23)

where ’ is the rate of finding a job. Taking the di�erence between (A22) and (A23) and
re-arranging leads to:

V e
r ≠ V u

r = Wr ≠ B

fl + ” + ’
(A24)

Since the job finding rate ’ is typically high, the di�erence in the employment and unem-
ployment values is likely to be small. But, even if the gap was large, one would still derive
similar estimation equations. Substituting (A24) into (A22) and (A23) shows that both the
employment and unemployment values depend on wages and the labor market transition
rates that determine employment rates. Again, we can replace the wage with the employ-
ment rate using our su�cient statistic result, so everything on the right-hand side of (A21)
can be written as a function of the employment rate. So a model that pays explicit attention
to the di�erent incentives for the employed and unemployed to migrate would still end up
with an equation like (9).

B.3 Deriving the discrete-time equation for population growth

In this section, we show how the model (9) in continuous time can be converted to discrete
time. (9) can be written as:

ˆe“tlr (t)
ˆt

= “e“tãr (t) + “e“tnr (t) (A25)

which has as a solution:

e“tlr (t) = lr (0) +
⁄ t

0

“e“s [nr (s) + ãr (s)] ds (A26)

which can be re-arranged to give:
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lr (t) ≠ lr (0) =
⁄ t

0

“e“(s≠t) [nr (s) ≠ nr (0) + ãr (s)] ds (A27)

+
1
1 ≠ e≠“t

2
[nr (0) ≠ lr (0)]

which can be written as:

lr (t) ≠ lr (0) = nr (t) ≠ nr (0) + ãr (t) ≠ ãr (0) (A28)

≠
⁄ t

0

e“(s≠t)
Ë
ṅr (s) + ˙̃ar (s) ds

È
ds

+
1
1 ≠ e≠“t

2
[nr (0) ≠ lr (0) + ãr (0)]

If employment nr and the supply shifter ãr change at a constant rate over the period, this
gives:

lr (t) ≠ lr (0) =
C

1 ≠
A

1 ≠ e≠“t

“t

BD

[nr (t) ≠ nr (0) + ãr (t) ≠ ãr (0)] (A29)

+
1
1 ≠ e≠“t

2
[nr (0) ≠ lr (0) + ãr (0)]

which is (10).

C Deriving the employment growth equation
In this appendix, we show how one can derive an error-correction model for the employment
response, i.e. equation (13) in the main text. We begin by deriving an expression for the local
equilibrium level of employment. Based on the general model in Online Appendix A, this
is the solution to (A13). But to keep things simple, we derive the employment equilibrium
using the simple model in the main text.

Housing market equilibrium can be derived by equating (3) and (4):

ph
r ≠ p = 1

‘hs ≠ ‘hd
[wr ≠ p + lr + Ÿ (nr ≠ lr)] (A30)

and labor market equilibrium using (5) and (6):

nr = ‘nd (pr ≠ p) + ‘nd

‘ns
(nr ≠ lr ≠ zs

r) + zd
r (A31)
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Suppose the local price index can be written as:

pr = Âph
r + (1 ≠ Â) p (A32)

Then, equilibrium employment can be expressed as:

nr =
(1 ≠ Ÿ) ‘nd‘nsÂ ≠

1
‘hs ≠ ‘hd

2
‘nd

(‘hs ≠ ‘hd) (‘ns ≠ ‘nd) ≠ Â (1 + Ÿ‘nd) ‘ns
lr (A33)

+ ‘hs ≠ ‘hd ≠ Â

(‘hs ≠ ‘hd) (‘ns ≠ ‘nd) ≠ Â (1 + Ÿ‘nd) ‘ns
‘nszd

r

≠ ‘hs ≠ ‘hd

(‘hs ≠ ‘hd) (‘ns ≠ ‘nd) ≠ Â (1 + Ÿ‘nd) ‘ns
‘ndzs

r

© nú
r

This relates local employment nr to the fundamentals of that region, specifically population
lr, the labor demand shifter zd

r and the supply shifter zs
r . Employment is increasing in

population, since the latter puts downward pressure on local wages. As we have shown in
Online Appendix A, the e�ect of population will be amplified in a world with non-traded
goods - as demand for them will rise with population. This equation for employment is a
static relationship because there are no dynamics of adjustment built into the production
side of the model. Taken literally, this would lead to an employment equation in which
the change in employment is related to the change in population, the labor demand shock
(which might be proxied by the Bartik shift-share) and the supply shock. That is, there is no
error correction term including the lagged employment rate. But it is reasonable to assume
there is gradual adjustment of employment towards its equilibrium level nú

r, i.e. something
analogous to (9) which would take the form of:

ˆnr (t)
ˆt

= ≠ “n [nr (t) ≠ nú
r (t)] (A34)

Using the same technique as in Online Appendix B.3 above, this yields an ECM equation
for decadal changes in employment of the following form:

�nrt = ÷1�lrt + ÷2 (nrt≠1 ≠ ‹lrt≠1) + ÷3�zd
rt + ÷4z

d
rt≠1

+ ÷5�zs
rt + ÷6z

s
rt≠1

(A35)

where ‹ = (1≠Ÿ)‘nd‘nsÂ≠(‘hs≠‘hd)‘nd

(‘hs≠‘hd)(‘ns≠‘nd)≠Â(1+Ÿ‘nd)‘ns
. Holding the labor demand and supply shifters
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fixed, the long run relationship between employment and population is nr = ‹lr. In our
employment ECM equation (13) in the main text, we are e�ectively imposing ‹ = 1. If we
do not impose this assumption, this yields the following estimating equation:

�nrt = –0 + –1�lrt + –2 (nrt≠1 ≠ lrt≠1) + –2 (1 ≠ ‹) lrt≠1 + –3brt + dt + Êrt (A36)

where the Bartik shift-share brt proxies for the demand shock �zd
rt, the dt are time e�ects

which control for supply shifts common to all areas, and there is now a separate lagged
population term on the right-hand side. To test whether our assumption that ‹ = 1 is
reasonable, we re-estimate equation (13) using the same instruments as before, but this time
including lrt≠1 as an exogenous regressor on the right-hand side. Our estimate of –2 (the
coe�cient on the lagged employment rate) is now -0.319, while our estimate of –2 (1 ≠ ‹)
(the coe�cient on the lagged population lrt≠1) is only 0.011. This suggests that ‹ = 1 may
be a reasonable approximation.

D Data manipulation

D.1 Population and employment status

Where possible, we take our population counts and employment rates from the published
county-level aggregates from the census, extracted from the National Historical Geographic
Information System (NHGIS: Manson et al., 2017). Published population counts (by age
and gender) are based on 100 percent samples, while employment and participation rates
are usually based on samples of 15-20 percent (depending on the variable and year). The
US Census Bureau did not implement a long form questionnaire in 2010, so we supplement
data in that year with pooled 2009-11 American Community Survey (ACS) samples; the
ACS covers a 1 percent sample each year.

NHGIS does not report data for all demographic cells of interest, in particular some em-
ployment rates before 1980 and also population disaggregations by education: see Table A1.
However, micro-data samples from the US census and ACS are available for each cross-section
in the Integrated Public Use Microdata Series (IPUMS: Ruggles et al., 2017), accompanied
by sub-state geographical identifiers. Our strategy is to use CZ-specific shares, estimated us-
ing the IPUMS micro-data, to disaggregate the published (NHGIS) local population counts
where necessary. For example, to impute the local population of college graduates aged
16-64 in a given year, we multiply the published local population count (in that age group)
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with the CZ-specific college graduate population share (estimated using IPUMS micro-data).
And to estimate the local employment rate among college graduates, we also use the IPUMS
micro-data. Table A1 describes our sources for all population and employment status data
by census year, and the accompanying notes o�er greater detail on the imputation process.

Unfortunately, it is not possible to perfectly identify CZs in the IPUMS micro-data sam-
ples. Each cross-section does include sub-state geographical identifiers, but these identifiers
vary across years31, and their boundaries do not coincide with those of CZs. Following Autor
and Dorn (2013) and Autor, Dorn and Hanson (2013), we estimate population counts at the
intersections of each CZ and the corresponding geographical identifiers. And we impute CZ
outcomes by appropriately weighting outcomes for the available geographical identifiers with
these population counts.32 We make just one modification to their CZ scheme (based on Tol-
bert and Sizer, 1996) to enable us to construct consistent geographies over time. Specifically,
we incorporate La Paz County (AZ) into the same CZ as Yuma County (AZ). Tolbert and
Sizer allocated La Paz and Yuma to di�erent CZs, but the two counties only separated in
1983.

D.2 Industry shift-shares

To construct the Bartik industry shift-shares, we require detailed local data on industrial
employment composition. We take this data from the IPUMS census extracts and ACS
samples, restricting our sample to workers aged 16-64. To identify industries, we use IPUMS’
consistent classification based on the 1950 census scheme.33 Given the small sample sizes at
the local level, we choose to aggregate our industry data to the 2-digit level34: this leaves
us with 57 codes. We use the same method outlined in the subsection above to impute

31There are 467 State Economic Areas in the continental US in 1940 and 1950, 2,287 “Mini” Public Use
Microdata Areas (PUMAs) in 1960, 405 county groups in 1970, 1,148 county groups in 1980, 1,713 PUMAs
in 1990, 2,057 PUMAs in the 2000 census and the ACS until 2011, and 2,336 PUMAs in the ACS of 2012.

32We estimate intersection population counts in 1940 and 1950 using information from the county-
SEA lookup tables from IPUMS (https://usa.ipums.org/usa/resources/volii/ sea_county_components.xls),
together with the county population counts from NHGIS. We do the same for 1970 and 1980 using
lookup tables for county groups from IPUMS: see https://usa.ipums.org/usa/resources/volii/1970cgcc.xls
and https://usa.ipums.org/usa/resources/volii/cg98stat.xls respectively. At the time of writing, IPUMS had
not yet released population counts for intersections between 1960 Mini PUMAs and counties; so for 1960, we
have relied on a preliminary version kindly shared by Joe Grover at IPUMS. And for the remaining years,
we generate the population counts using the MABLE/Geocorr applications on the Missouri Census Data
Center website: http://mcdc.missouri.edu/websas/geocorr_index.shtml.

33See https://usa.ipums.org/usa/volii/occ_ind.shtml.
34To address some inconsistencies over time, we further aggregate all wholesale sectors into a single cat-

egory, and similarly for public administration and also finance/insurance/real estate. We also exclude the
“Not specified manufacturing industries” code because of inconsistencies.
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employment counts for each CZ (by industry), exploiting the available sub-state geographical
identifiers.

In the group-specific models (by education, sex and age), we construct the industry shift-
share instruments in exactly the same way, but with both the local industry shares and
aggregate-level changes based on group-specific employment counts.

Figure A1 traces out the employment shares by major industry sector since 1940. There
was a large decline in agricultural employment between 1940 and 1970, and manufacturing
employment has been in secular decline since 1970. On the flip-slide, there has been a sus-
tained expansion of professional and financial services. Given the stickiness of local industrial
composition (see Section 5.4 in the main text), these persistent trends in industrial structure
can account for the substantial serial correlation in the Bartik shift-shares.

D.3 Supply controls

We provide some information here on data sources and construction of our supply controls.
We begin with permanent amenities. The data on coastline are borrowed from Rappaport
and Sachs (2003).35 We take county-level data on temperature from the Center for Disease
Control and Prevention, based on the period 1979-2011.36 And our relative humidity data
is taken from the Natural Amenities Scale study by McGranahan (1999)37, for the period
1941-70. All county-level climate data is aggregated to CZ-level using land area weights.
Population density in 1900 is estimated using county-level population and area data from
NHGIS. There have been some changes in county boundaries in the intervening period,
and we impute CZ-level data using land area allocations based on shapefiles made available
by NHGIS. Finally, the log distance to the closest CZ is measured between population-
weighted centroids. The Missouri Census Data Center o�ers population-weighted centroids
for counties in 199038, and we estimate CZ centroids by computing the population-weighted
averages of the latitudes and longitudes of these county centroids.

Next, we turn to the shift-share predictor for the contribution of foreign migration to
local population growth, as popularized by Altonji and Card (1991) and Card (2001). We

35https://www.kansascityfed.org/~/media/files/publicat/research/journalarticles/coast_variables.zip
36http://wonder.cdc.gov
37https://www.ers.usda.gov/data-products/natural-amenities-scale
38http://mcdc.missouri.edu/websas/geocorr90.shtml
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construct this shift-share in the following way:

mrt =
q

o „o
rt≠1

LF
o(≠r)t

Lrt≠1

(A37)

where „o
rt≠1

is the share of population in area r at time t ≠ 1 which is native to origin o; and
LF

o(≠r)t is the stock of new origin-specific foreign migrants (excluding those living in area r)
who arrived in the US between t ≠ 1 and t. The numerator of equation (A37) then gives the
predicted inflow of all migrants over those ten years to area r. This is scaled by Lrt≠1, the
initial population of area r. Similarly to the Bartik industry shift-shares, the exclusion of area
r from LF

o(≠r)t helps allay concerns over the endogeneity of mrt to the dependent variable,
local population growth �lrt. For the aggregate-level models, the sample is composed of
individuals aged 16-64. For the group-specific models (by education and age), we estimate
the migrant inflows LF

o(≠r)t and initial population Lrt≠1 using group-specific counts; though
we always estimate the local origin shares „o

rt≠1
using the full 16-64 sample.

We use the IPUMS micro-data to construct the migrant shift-share controls. This exercise
requires a panel of CZ-origin-year cells. We include 77 origin countries in this panel. For all
census years t since 1970 (inclusive), we estimate the inflow of new migrants LF

o(≠r)t using
the stock of foreign-born individuals (aged 16-64) in year t who report arriving in the US in
the previous ten years (i.e. since t ≠ 1).

However, migrants in the 1960 census do not report year of arrival. For that year, we
impute LF

o(≠r)t using cohort changes. For example, for the aggregate-level models, we take the
di�erence between (i) the origin-specific stock of migrants in 1960 aged 16-64 (excluding area
r) and (ii) the origin-specific stock of migrants in 1950 aged 6-54 (again, excluding r). For
age subgroup models, the cohort changes are constructed using appropriate age categories in
the equivalent way. For education subgroup models, we derive the 1960 values of LF

o(≠r)t using
the product of (i) the aggregate-level cohort change (i.e. the di�erence between 16-64s and
6-54s) and (ii) the national-level education share (i.e. the college graduate or non-graduate
share) of the origin o population in 1960.

D.4 Residualized house prices and housing supply elasticity

Finally, we describe how we construct the data underlying the analysis in Section 4.3. To
construct residualized house prices, we use data from the IPUMS census extracts of 1960,
1970, 1980, 1990 and 2000, as well as pooled ACS cross-sections of 2009, 2010 and 2011 (for
the 2010 observations). The census does not include house price data in 1950.
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We restrict our sample to owner-occupied houses and apartments; and we exclude farms,
units with over 10 acres of land, and units with commercial use. We further restrict attention
to price observations between the 1st and 99th percentiles, within each (sub-state) geograph-
ical unit. Within each cross-section, we extract log price residuals from a hedonic regression
on a range of housing characteristics, and we then estimate average log residuals within each
CZ.39 Our regression controls consist of number of rooms (9 indicators); number of bedrooms
(6 indicators); an interaction between number of rooms and bedrooms; building age (up to 9
indicators, depending on cross-section); and indicators for kitchen, complete plumbing and
condominium status. We also control for a house/apartment dummy, as well as interactions
between this and all previously mentioned variables. These controls are similar to those used
by Albouy (2008) to derive fixed-quality local housing cost measures.

We take local estimates of the elasticity of housing supply from Saiz (2010). His estimates
are based on Metropolitan Statistical Areas (MSAs). We impute CZ values by weighting the
MSA estimates using appropriate population allocations.40 Since MSAs only cover a fraction
of the continental US (unlike CZs which o�er complete coverage), this method only yields
elasticity estimates for 248 of the 722 CZs in our data.

E Further graphical illustrations of persistent jobless-
ness

In this section, we o�er further graphical illustrations of the persistence of joblessness across
CZs, beyond that of Figure 1 in the main text. Figure A2 depicts the persistence over 1980-
2010 of employment-population ratios, participation rates (ratio of labor force to population)
and unemployment rates (unemployment to labor force), separately for men and women. And
in Figure A3, we repeat this exercise for 1950-1980.

There is large persistence in joblessness in both periods, driven by both men and women
and by both the unemployed and economically inactive. As Table 1 in the main text shows,
the magnitude of persistence in aggregate employment rates is similar in 1980-2010 and 1950-
1980. Having said that, Figure A2 shows that persistence is greater for men than women

39As explained in Online Appendix D.1, sub-state geographical identifiers vary by census cross-section. In
general, these cannot precisely identify the CZ boundaries. As above, our strategy is to weight these log
residuals using appropriate population allocations between these identifiers and the CZs.

40For the purposes of this exercise, we generate population counts in MSA-county interacted cells us-
ing the MABLE/Geocorr application (for 2000 geography) on the Missouri Census Data Center website:
http://mcdc.missouri.edu. And we then aggregate up from county to CZ level.
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between 1980 and 2010, and Figure A3 shows the reverse is typically true in the earlier
period.

F The ACF for the local log employment rate

F.1 Construction of Table 1

Here, we provide additional information on the construction of rows 9-16 of Table 1. For
row 9, we purge local employment rates of observable demographic characteristics in the
following way. For each cross-section of the IPUMS micro-data (using the census for 1950-
2000 and the ACS of 2009-11 for 2010), we run a logit regression of employment on a range of
characteristics (age and age squared; four education indicators, each interacted with age and
age squared; a gender dummy, interacted with all the earlier-mentioned variables; and black,
Hispanic and foreign-born indicators) and a set of location fixed e�ects (where “locations”
are the finest geographical indicator available in each census cross-section). Based on these
estimates, we then predict the average employment rate in each location - assuming the local
demographic composition in each location is identical to the national composition. We then
estimate CZ-level data by weighting the location data by appropriate population allocations
(see Online Appendix D.1). Just as in the other rows of Table 1, these composition-adjusted
employment rates are time-demeaned before reporting the ACFs.

For row 10, we regress the log employment rate on year e�ects and the supply controls
described in Section D.3 in the main text: climate, coastline, population density and a CZ
isolation index, each of which are interacted with the full set of year e�ects, as well as the
migrant shift-share. The purged employment rate observations are the residuals from this
regression.

For row 11, we regress the log employment rate on a full set of state fixed e�ects, together
with the usual year e�ects. The reported ACF corresponds to the residuals of this regression.
Some CZs straddle state boundaries, so we allocate these to the state accounting for the
largest population share of the CZ. In row 12, we estimate ACFs for the (time-demeaned)
log employment rate of the 48 states of the continental US (rather than the 722 CZs). The
Washington DC CZ is allocated to Maryland.

Row 13 purges the log employment rate of CZ fixed e�ects (in the same way that row
11 removes state fixed e�ects), together with the year e�ects. But given the short panel
(there are only 7 observations for each CZ), these estimates are biased. We correct for this
bias by following the procedure described in the section that follows. As explained below,
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this procedure requires one identifying assumption: we fix the ratio fi of the sixth to fifth
autocorrelation, and report estimates for di�erent fi in rows 14-16.

F.2 Unbiased estimator for the fixed e�ect ACF

In this appendix, we show how we derive an unbiased autocorrelation function for the time-
demeaned log employment rate, xrt, controlling for CZ fixed e�ects. Our data is limited to
7 time observations (over the period 1950-2010) and 722 areas, which we generalize in this
exposition to T periods and R areas respectively. Suppose xrt in area r is stationary with
mean µr, which we allow to vary across areas. We are interested in modeling the average
ACF across areas; so for simplicity, we assume that Cn, the nth order covariance, does not
vary with area r, i.e. we have:

Cn = E [(xrt ≠ µr) (xrt≠n ≠ µr)] (A38)

for all r. But, Cn cannot be estimated directly because µr is unknown.
Suppose we estimate µr using the sample mean:

µ̂r = 1
T

Tÿ

t=1

xrt (A39)

We can then use µ̂r to form a sample estimate of the covariance for area r :

Ĉn
r = 1

T ≠ n

Tÿ

t=n+1

(xrt ≠ µ̂r) (xrt≠n ≠ µ̂r) (A40)

for n Æ T ≠ 1. Since T is small, Ĉn
r is a biased estimator for Cn. But, we can derive the

form of the bias. Specifically, taking expectations of (A40):
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E
1
Ĉn

r

2
= E

I
1

T ≠ n

Tÿ

t=n+1

[(xrt ≠ µr) ≠ (µ̂r ≠ µr)] [(xrt≠n ≠ µr) ≠ (µ̂r ≠ µr)]
J

(A41)

= E (µ̂r ≠ µr)2 + E

I
1

T ≠ n

Tÿ

t=n+1

(xrt ≠ µr) (xrt≠n ≠ µr)
J

≠E

I
1

T ≠ n
(µ̂r ≠ µr)

C
Tÿ

t=n+1

(xrt ≠ µr) +
Tÿ

t=n+1

(xrt≠n ≠ µr)
DJ

= Cn + E (µ̂r ≠ µr)2

≠ 1
T ≠ n

E

I

(µ̂r ≠ µr)
C

Tÿ

t=1

(xrt ≠ µr) ≠ I [n > 0] ·
nÿ

t=1

(xrt ≠ µr) +
T ≠nÿ

t=1

(xrt ≠ µr)
DJ

= Cn ≠ n

T ≠ n
E (µ̂r ≠ µr)2

+ 1
T ≠ n

E

I

(µ̂r ≠ µr)
C

I [n > 0] ·
nÿ

t=1

(xrt ≠ µr) ≠
T ≠nÿ

t=1

(xrt ≠ µr)
DJ

where I [n > 0] takes 1 for n > 0 and 0 otherwise. It is useful to express (A41) as:

E
1
Ĉn

r

2
= Cn ≠ n

T ≠ n
E (µ̂r ≠ µr)2 + 1

T ≠ n

Ó
�n ≠ �T ≠n

Ô
(A42)

where

�n = E

I

(µ̂r ≠ µr)
nÿ

t=1

(xrt ≠ µr)
J

= 1
T

E

I
Tÿ

s=1

(xrs ≠ µr)
nÿ

t=1

(xrt ≠ µr)
J

(A43)

for n Ø 1, and we define �0 = 0. As it happens, E
1
Ĉn

r

2
can be expressed as a function of

the true covariances, Cn. This can be seen by analysing the E (µ̂r ≠ µr)2 and �n terms in
(A42) in turn. First, consider E (µ̂r ≠ µr)2. Notice that from (A39), we have:

µ̂r ≠ µr = 1
T

Tÿ

t=1

(xrt ≠ µr) (A44)

so that
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E (µ̂r ≠ µr)2 = 1
T 2

E

C
Tÿ

t=1

(xrt ≠ µr)
D2

(A45)

= 1
T 2

E

C
Tÿ

t=1

(xrt ≠ µr)2 + 2
T ≠1ÿ

s=1

Tÿ

t=s+1

(xrt ≠ µr) (xrt≠s ≠ µr)
D

= 1
T

C0 + 2
T 2

T ≠1ÿ

s=1

(T ≠ s) Cs

is a linear function of the true covariances. Next, notice the �n term in (A42) follows the
recursion:

�n+1 = �n + 1
T

E

I
Tÿ

s=1

(xrs ≠ µr) (xrn ≠ µr)
J

= �n + 1
T

E

I
Tÿ

s=1

C |s≠n|
J

(A46)

for n > 0. And given Z0 = 0, it follows that Zn is also a linear function of the the true
covariances for all n Ø 0. So the same must be true of E

1
Ĉn

r

2
in (A42).41 That is, there

exists a T ◊ T square matrix G such that:

E
1
Ĉr

2
= GC (A47)

where Ĉr is a T -length vector of the sample covariances for area r, Ĉn
r ; and similarly, C is

a vector of the true covariances Cn. In the context of (A47), a natural way to derive an
unbiased estimator for C would be to invert the matrix G. The problem is that G does
not have full rank. It is easiest to see the intuition for this if T = 2. In this case, one
cannot separately identify the variance and the first-order covariance, since the only useful
information is contained in xr2 ≠ xr1. Similarly, T observations are insu�cient to identify
T ≠ 1 variance/covariance parameters. One further restriction on the covariances is required
for identification. We impose that CT ≠1 = fiCT ≠2, with fi < 1. This implies:

41Notice that E

1
Ĉ

0
r

2
= T ≠1

T
C

0 if observations are independent, from which the standard formula for
deriving an unbiased estimate of the variance follows.

20



Q

ccca

E
Ë
Ĉ0
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where

G1 =

Q

ccca

G [0, 0] · · · G [0, T ≠ 2]
... . . . ...

G [T ≠ 2, 0] · · · G [T ≠ 2, T ≠ 2]

R

dddb

(T ≠1)◊(T ≠1)

(A49)

is the top left submatrix of G, excluding the final column and final row. And

g1 =

Q

ccca

G [0, T ≠ 1]
...

G [T ≠ 2, T ≠ 1]

R

dddb

(T ≠1)◊1

(A50)

is the final column of G, excluding the final row. And so:
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which implies:
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È
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T

XXXV
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CT ≠2

R

dddb

(T ≠1)◊1

(A52)
where the square matrix in (A52) is the sum of (i) G1 and (ii) a (T ≠ 1)◊(T ≠ 1) square ma-
trix with fig1 in the final column and 0s in the remaining columns. Inverting this expression
then suggests a set of unbiased estimators C̃n for the true covariances:
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which is a linear function of the biased covariances, averaged across areas r. The highest
order covariance estimator C̃T ≠1 is set to fiC̃T ≠2. The nth order ACF can then be estimated
as:

ACF n = C̃n

C̃0
(A54)

For large R and small T , this is a consistent estimate of the true ACF.

F.3 Controlling for presence of local colleges

When estimating the autocorrelations in Table 1 in the main text, we control for local
di�erences in a range of observable demographic characteristics - but we find this has little
e�ect. However, there may still be components of human capital quality not captured in
individual education. We attempt to control for this using county-level counts of two-year
and four-year colleges between 1960 and 1996, based on Currie and Moretti (2003), and
kindly shared by the authors. We have taken those observations which are coincidental with
the census years (i.e. 1960, 1970, 1980 and 1990), supplemented these with data for 2000 and
2010 from the Integrated Postsecondary Education Data System42, and aggregated them up
to CZ-level.

In Table A2, we estimate decadal ACFs of the log employment rate (as in Table 1), but
controlling for various indicators for the presence of colleges. Given our college data only
begins in 1960, we are restricted to studying five decadal lags. Row 1 reproduces the results
for the basic (time-demeaned) log employment rate in Table 1, but this time for the shorter
1960-2010 sample (i.e. excluding 1950). Next, we regress the log employment rate on year
e�ects and two dummy variables: one for the presence of a two-year college in the CZ, and the
second for the presence of a four-year college. Row 2 then reports the ACF for the residuals
of this regression. In row 3, we follow the same procedure, but controlling additionally for
the log number of two-year and the log number of four-year colleges, each relative to the

42https://nces.ed.gov/ipeds/datacenter
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population of 16-64s. In rows 4-6, we replicate this exercise for the composition-adjusted
employment rate (see row 9 of Table 1), as described in Online Appendix F.1.

Several CZs have no colleges, and these observations would be lost in the log college
count specifications. Our approach is to replace the log counts with zeros in these cases,
while simultaneously controlling for the zero-one dummies for local presence of colleges. This
ensures we retain the full CZ sample in all specifications.

The autocorrelations in rows 2-3 are slightly smaller than in row 1 (and similarly in rows
5-6 compared to 4), but the di�erence is small. This suggests the presence of colleges cannot
account for the large persistence in local jobless rates. We show further in Online Appendix
G.3 that estimates of the population response equation (11) are robust to the inclusion of
these college presence controls.

G Robustness of population response

G.1 Robustness to weighting and amenity controls

In this appendix, we study the robustness of our IV estimates of the population response
(Table 2 in the main text). We begin by considering the weighting of observations and our
choice of amenity controls. Panel A of Table A3 reports a range of specifications, weighting
the regressions by the lagged local population share (as we do in the main text). Notice that
columns 7, 8 and 9 in Panel A are identical to columns 4, 5 and 6 respectively of Table 2.
Panel B reports unweighted estimates of the same specifications.

The coe�cient on contemporaneous employment growth varies little with the choice of
controls or weighting. For the basic specification in columns 1 to 7, our estimates vary
from 0.62 to 0.74 (across both panels). The coe�cient on the lagged employment rate is
more sensitive to the choice of controls, especially among the weighted estimates of Panel
A. In particular, the estimate in column 1 with no controls is 0.23, compared to 0.39 in our
preferred specification (with no fixed e�ects or first di�erencing). Most of the di�erence is
driven by the inclusion of the climate controls of column 3. The interactions between the
time-invariant amenity controls and year e�ects in column 7 have little e�ect.

In Panel B, when we do not weight by population shares, the coe�cient on the lagged
employment rate also varies somewhat with the choice of controls - but in this case, it
generally becomes smaller as more controls are included. The estimate with no controls
in column 1 is 0.55, and the full set of controls in column 7 yields an estimate of 0.34.
Notice this is very similar to our weighted estimate (0.39) in Panel A. This suggests that,
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conditional on our controls, the response to the employment rate is not markedly di�erent
in larger cities. Interestingly also, including fixed e�ects or first di�erencing (columns 8 and
9) makes less di�erence in the unweighted specifications, with estimates of 0.61 and 0.60
respectively.

In Table A4, we replicate Table A3 but excluding the disequilibrium term (the lagged
employment rate) and its lagged Bartik instrument. For the basic specification (columns 1
to 7), this yields a larger coe�cient on the change in employment - a consequence of the
serial correlation in the Bartik shift-share. For example, when we weight by population and
include the complete set of controls (column 7, Panel A), the coe�cient increases from 0.70
(Table A3) to 0.85 (Table A4); and the associated standard errors are small: 0.03 and 0.02
respectively. In the fixed e�ect and first di�erenced specifications however (columns 8 and 9),
omitting the disequilibrium term yields a smaller coe�cient on the change in employment.

G.2 Robustness to state policy controls

Next, we check whether the population response estimates are robust to controlling for state-
specific welfare and labor policies. Specifically, we study the maximum AFDC/TANF benefit
paid per month for a family of four43, the log minimum wage44 (the largest of the state or
federal levels), and the proportional state supplement to the federal EITC45. We do not have
AFDC data for 1950, so we restrict the sample to 1960-2010 in this exercise.

Table A5 shows that controlling for these policies has little e�ect on our results. Columns
1, 4 and 7 report estimates with no policy controls (for the basic, fixed e�ect and first
di�erenced specifications): these di�er somewhat from those in Table 2 because of the shorter
time sample. Columns 2, 5 and 8 control for lagged levels and changes in the policies. And
columns 3, 6 and 9 do the same, but expressing the ADFC/TANF benefit and minimum
wage as a fraction of the local median wage (see Online Appendix J for details on our wage
data). All these policy variables are di�erenced in the first di�erenced specification.

43Data from Robert Mo�tt: http://www.econ2.jhu.edu/people/mo�tt/datasets.html
44I take data for 1960-1998 from David Neumark: https://www.socsci.uci.edu/~dneumark/datasets.html.

His dataset ends in 1998, and I use the 1998 data for my 2000 observation. I
take TANF data for 2010 from the Committee of Ways and Means: https://greenbook-
waysandmeans.house.gov/sites/greenbook.waysandmeans.house.gov/files/2012/documents/Table%207-
23%20RM%20TANF.pdf.

45Data from Daniel Feenberg, NBER TAXSIM project: http://users.nber.org/~taxsim/state-eitc.html and
http://users.nber.org/~taxsim/state-eitc.2010.html
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G.3 Robustness to college presence controls

The IV population response is also robust to controls for the presence of local colleges, which
might proxy for local variation in human capital not captured by individual education. The
local college control variables are described in Section F.3, and the results are presented in
Table A6. We restrict our sample to the period 1960-2010, as our local college data only
begins in 1960.

Columns 1, 4 and 7 report estimates with no college presence controls (for the basic,
fixed e�ect and first di�erenced specifications); and again, these di�er somewhat from Table
2 because of the restricted sample. Columns 2, 5 and 8 control for both changes and lags
of dummies for the presence of two-year and four-year colleges. Columns 3, 6 and 9 control
for these variables and, in addition, lagged log counts of two and four-year colleges (each
relative to the population of 16-64s) and di�erenced log counts of two and four-year colleges.46

Several CZs have no colleges (see Section F.3), and our approach is to replace missing values
of the di�erenced and lagged log counts with zeros. Note these cases are fully identified by
the di�erenced and lagged college presence dummies. This ensures we retain the full CZ
sample in all specifications.

It is clear from Table A6 that the inclusion of these controls makes little di�erence to the
response to employment shocks.

G.4 Robustness to predicted shifts in local industry rents

One possible concern with our Bartik shift-share instrument is that it treats all industries
equally. But some industries may o�er workers higher rents than others (Krueger and Sum-
mers, 1988), and the population responses may then depend on which industries are a�ected.
To address this concern, we control for what we call a “wage Bartik” - borrowing the idea
from earlier work by Beaudry et al. (2012; 2014a; 2014b). The wage Bartik predicts the
change in average local wages (over one decade), given the fact that some industries (at a
national level) pay more than others, and assuming that each industry in all areas r grows
in line with the national rate:

bw
rt =

ÿ

i

1
„̂i

rt,pred ≠ „i
rt≠1

2
wi

t≠1
(A55)

46We do not control for changes in the per capita college counts, as the change in population is itself on
the left hand side of the empirical specification.
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where wi
t≠1

is industry i’s wage at time t≠1, „i
rt≠1

is industry i’s share of employed individuals
in area r at t ≠ 1, and

„̂i
rt,pred =

„i
rt≠1

Ë
ni(≠r)t ≠ ni(≠r)t≠1

È

q
i „i

rt≠1

Ë
ni(≠r)t ≠ ni(≠r)t≠1

È (A56)

is the predicted employment share of industry i in area r at time t, given the initial industrial
composition of local employment and assuming industries in all areas r grow in line with
the national rate (excluding area r). To attain a closer proxy for wage rents, we base wi

t≠1

on the industry averages of residualized hourly wages, purged of observable variation in age,
education, gender and ethnicity. See Online Appendix J for further details on the wage data
and residualization.

We reproduce the OLS, IV and first stage estimates for the population response (Table
2 in the main text) using the current and lagged wage Bartiks, bw

rt and bw
rt≠1

, on the right
hand side as additional controls. We reports our results in Table A7. These look similar
to those in Table 2 in the main text (without the wage Bartiks). Surprisingly perhaps, the
contemporaneous wage Bartik takes a negative coe�cient in all specifications.

G.5 Robustness to Bartik instrument specification

In this section, we study the robustness of our population response estimates to the spec-
ification of our Bartik instruments. First, we consider what happens when we base our
prediction of local employment growth on industrial composition fixed at 1940, rather than
at the beginning of each decade (as we do in equation (12) in the main text). Table A8
reproduces Table 2 in the main text, but using this modified Bartik instrument. There is no
significant change in the IV coe�cients of interest, though the standard errors are somewhat
larger.

Next, we consider the implications of decomposing our Bartik instruments into broad
industry components, specifically:

bX
rt =

ÿ

iœX

„i
rt≠1

Ë
ni(≠r)t ≠ ni(≠r)t≠1

È
(A57)

where the i œ X are two-digit industries, and X is one of three broad industry groups: (i)
agriculture/mining, (ii) manufacturing and (iii) services. These of course sum up to our
standard Bartik instrument described in (12) in the main text:

bAGR/MIN
rt + bMANUF

rt + bSERV
rt = brt (A58)
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We now re-estimate the IV population response equations, but replacing the current Bartik
instrument brt with its three components bX

rt; and replacing the lagged Bartik instrument
brt≠1 with its three lagged components bX

rt≠1
. The results are reported in Table A9 - which

replicates Table 2 from the main text, but using the new instruments.
The basic IV estimates (column 4, Panel A) are little a�ected. Interestingly, the fixed

e�ect and first di�erenced estimates (columns 5 and 6) now look more similar to the basic
specification (compared to Table 2).

Panel B reports the first stage estimates. It is not the case that one industry component
is uniformly more important than another: this depends on whether one looks at the con-
temporaneous or lagged shift shares. But in any case, the estimates are di�cult to interpret:
there appears to be some di�culty in disentangling the respective e�ects of the contem-
poraneous and lagged shift-shares; but perhaps this is not surprising, given the number of
Bartik components on the right hand side. Broadly speaking though, the coe�cients on
agriculture/mining tend to be larger than the others.

To summarize, these results suggest that di�erent types of sectoral shocks may have
di�erent e�ects on employment growth; but allowing for these di�erences has little e�ect on
our estimates of the population response.

G.6 Outliers

Finally, in Figure A4, we illustrate graphically the IV estimates from our preferred (basic)
specification: column 4 of Panel A in Table 2. This exercise helps demonstrate that our esti-
mates are not driven by outliers. These plots follow the logic of the Frisch-Waugh theorem,
but applied to 2SLS.

The first panel illustrates the coe�cient on employment growth, i.e. —1. To create
this plot, we first generate predictions of the two endogenous variables (the change in log
employment and the lagged log employment rate), with these predictions based on the first
stage regressions. On the y-axis, we then plot the residuals from a regression of population
growth on the predicted lagged employment rate and all the amenity controls and year
e�ects. And on the x-axis, we plot the residuals of a regression of the predicted change in
log employment on the same set of explanatory variables.

The second panel does same the same for the coe�cient on the lagged employment rate,
—2. The y-axis gives the residuals from a regression of population growth on predicted
employment growth and the amenity controls and year e�ects. And the x-axis gives the
residuals of a regression of the predicted lagged employment rate on the same explanatory
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variables. Notice the standard errors of the best-fit slopes do not correspond to those in
Table 2; this is because this naive estimator does not account for sampling error in the first
stage. In any case, it is clear that the result is not driven by outliers.

H Supplementary estimates of heterogeneity in popu-
lation responses

In Table 3 of the main text, we report IV estimates of our population growth equation for
various sub-groups and sub-samples. We now report the corresponding OLS and first stage
estimates - in Tables A10 and A11 respectively.

Table 3 in the main text shows the population responses are somewhat larger for 25-
44s (though perhaps these di�erences are not as large as one might have expected). But
these results do not tell us whether these di�erences are manifested on the margin of local
participation or unemployment rates. This is explored in Table A12, which shows the labor
force response in each age group is similarly large and close to 1 - at least in the basic
specification. This suggests that, for each age group, sluggishness in the population response
is largely manifested in economic inactivity. This might be thought surprising, but there has
been a well-documented decline in the participation rate among prime-age workers in recent
years.

I Population inflows and outflows
This paper has focused on the overall response of population to local shocks, but we have
not considered the relative contribution of migratory inflows and outflows to this response.
To address this question, we exploit the fact that census respondents were asked for their
place of residence 5 years previously.

We have access to gross migratory flows between all county pairs for the periods 1965-
70, 1975-80, 1985-90 and 1995-2000; and we aggregate this data to CZ level. We restrict
attention to individuals aged 15-64: the flow data is generally unavailable for 16-64s (our
usual age sample). We are grateful to Jack DeWaard for sharing the flow data for the 1970
and 1980 census, and to Kin Koerber for sharing the 2000 data47. We take our 1990 data

47See the C2 A1 tables on the Census 2000 Migration DVD:
https://www.census.gov/population/www/cen2000/migration/mig_dvd.html. We also incorporate in-
formation from the B4 A1 tables on counts of individuals remaining in the same county and moving from

28



from the Socioeconomic Data and Application Center at Columbia University48.
Our strategy is to re-estimate the population equation (11), but replacing the dependent

variable with the 5-year migratory inflow or outflow. In particular, our specification is:

Flowrt≠5,t

Lrt≠5

= —0 + —1 (nrt ≠ nrt≠10) + —2 (nrt≠10 ≠ lrt≠10) + —3 (ãrt ≠ ãrt≠10) + —4ãrt≠10 + Árt

(A59)
where the t subscript now designates a year, rather than a decade (as in the main text).
Flowrt≠5,t is the gross migratory flow either into or out of area r, between year t ≠ 5 and
t. Lrt≠5 is the local population at time t ≠ 5; in practice, we base this on census respon-
dents’ reported previous place of residence. The right hand side is identical to our standard
population equation (11): the variables of interest are the 10-year employment change and
10-year lagged employment rate.

Since we do not observe employment outcomes five years before the census cross-sections,
there is necessarily a mismatch in time horizon between the left and right hand side variables.
And without data on place of residence 10 years previously, we cannot address this problem.
But despite this, our estimates can still shed some light on the relative contribution of
migratory inflows and outflows to overall population adjustment.

We report our OLS and IV estimates in Table A13. Given data constraints, we exclude
the 1950s and 2000s from our sample. Columns 1 and 5 re-estimate our standard population
equation (11) using this shorter sample: the coe�cients are little a�ected (compare Table 2
in the main text). If it were not for the mismatch in time horizon, the response of the net
inflow (final column) should closely approximate these estimates. The e�ects on the 5-year
net inflow are uniformly smaller - unsurprisingly, given the shorter horizon. In particular, in
the basic IV specification, the response to the 10-year lagged employment rate is statistically
insignificant. This is not unreasonable: the response to the 10-year lagged employment rate
would presumably have been concentrated in the first five years of each decade (as opposed
to the final five years, which constitute the time horizon for the observed flows).

In any case, the key insight of Table A13 is in the relative contributions of migratory
inflows and outflows to overall adjustment. And the broad message is that the population
response to local shocks is largely driven by variation in inflows (see columns 2, 3, 6 and
7). This is consistent with evidence from Coen-Pirani (2010) and Monras (2015a) and is
an intuitive consequence of large migration costs: though it may be costly to leave a region

abroad.
48See the P1 STP-28 tables at http://sedac.ciesin.columbia.edu/data/set/acrp_enhance-migration-1990
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su�ering an economic downturn, it is not costly not to move to such a region.

J Population response to wages

J.1 Empirical specification and data

We have argued in this study that local economic opportunity can be summarized by either
the employment rate or the real consumption wage. As described in the main text, we have
chosen to use the employment rate for two reasons: (i) measurement issues and (ii) because
the employment rate slots naturally into our ECM framework. For completeness though,
we document here the response of population to estimates of the real consumption wage.
See Kline (2008) for an interesting analysis of wage and employment dynamics in response
to sector-specific demand shocks, though he considers reallocation across industries (rather
than geographical areas) and over shorter frequencies.

An estimating equation can be derived by substituting the real consumption wage (wr ≠ pr)
for the employment rate in the utility equation (7), combining this with the migration re-
sponse in (9), and discretizing the population response following the steps in Online Appendix
B.3. We then have:

�lrt = —w
0

+ —w
1

� (wrt ≠ prt) + —w
2

(wrt≠1 ≠ prt≠1) + —w
3

�ãrt + —w
4

ãrt≠1 + Árt (A60)

where —w
1

and —w
2

measure the response of local population to changes and the lagged level
of real consumption wages respectively. This is no longer an ECM specification, so these
coe�cients are harder to interpret in terms of the speed of adjustment.

But the largest challenge is measurement. Suppose individuals have Cobb-Douglas pref-
erences over tradable and non-tradable goods. Then, the real consumption wage will be
equal to wrt ≠Âph

rt, where wrt is the local wage, ph
rt is the price of non-tradable goods (which

we proxy with housing rents), and the parameter Â should equal the share of non-tradables
in total expenditure. Unfortunately, the appropriate value of Â is the subject of some debate.
Davis and Ortalo-Magne (2011) suggest using the share of housing costs in total expendi-
ture, which they place at 0.24. But Albouy (2008) proposes a much larger value of 0.65. His
calculation takes into account housing’s share of total expenditure (which he estimates at 21
percent), the e�ective federal tax rate on labor income adjusted for homeowner tax benefits
(32 percent), the share of household income that depends on local wages (75 percent), and
the fact that the cost-of-living di�erences across cities amount to a third of di�erences in
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local housing costs (net of homeowner tax benefits).
We construct residualized measures of local wages wrt (purged of observable demographic

characteristics) and housing rents ph
rt (purged of observable housing characteristics) using the

IPUMS census and ACS micro-data samples for every year since 1960: we omit 1950 because
data on housing rents are unavailable. Our wage sample consists of employees aged 16-64,
excluding those living in group quarters. We study hourly wages, estimated by dividing
annual labor earnings by the product of weeks worked and usual hours per week. We restrict
attention to wage observations between the 1st and 99th percentiles, within each (sub-state)
geographical unit. For each cross-section, we extract log wage residuals from a regression
on detailed demographic characteristics.49 We then estimate the average log residual within
each CZ.50 To residualize housing rents, we use exactly the same procedure as described
in Online Appendix D.4 (purging variation in observed housing characteristics), but this
time for housing rents rather than prices; and our sample now consists of rented rather
than owner-occupied accommodation (and again, we restrict attention to rent observations
between the 1st and 99th percentiles, within each geographical unit). Housing rents are
thought to o�er a better approximation of the user cost of housing than prices, since the
latter also account for expected appreciation; see e.g. Moretti (2013).

J.2 Results

We present our results in Table A14. The first three columns report estimates of (A60) using
the nominal residualized wage in place of (wrt ≠ prt). In columns 4-6, we use a measure of
the real consumption wage based on a Â value of 0.24 (“real wage 1”, following Davis and
Ortalo-Magne, 2011); and in columns 7-9, we set Â equal to 0.65 (“real wage 2”, following
Albouy, 2008). The IV estimates of (A60) are presented in Panel A and the associated first
stage estimates in Panels B and C. The natural instruments to use would simply be the
current and lagged Bartik shift-shares. But it turns out these instruments are weak in a
number of specifications - when used alone. Inspection of the data suggests this is because
of the decline of agriculture in the early part of the sample: given that agriculture typically
o�ers low wage rents, this caused wages in rural areas to expand. To address this problem,

49Specifically, we control for age and age squared; four education e�ects, and interactions between these
and the age quadratic; interactions between a gender dummy and all previously mentioned variables; and
black, Hispanic and foreign-born dummies.

50As explained in Online Appendix D.1, sub-state geographical identifiers vary by census cross-section. In
general, these cannot precisely identify the CZ boundaries. As above, our strategy is to weight these log
residuals using appropriate population allocations between these identifiers and the CZs.
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we also include the current and lagged wage Bartiks as two further instruments: as Section
G.4 describes, these variables proxy for exactly this e�ect.

In almost all specifications, the current employment Bartik positively a�ects the current
wage change (Panel B), and the lagged Bartik positively a�ects the lagged wage (Panel C);
the one exception is the basic specification of “real wage 2”. Turning to the wage Bartiks,
the contemporaneous instrument has the expected positive e�ect on the wage change in all
specifications (Panel B), though the e�ect of the lagged instrument on the lagged wage is
usually negative (see Panel C).

Turning to the second stage (Panel A), the basic, fixed e�ect and first di�erenced spec-
ifications all yield significant positive estimates of —w

1
and —w

2
for nominal wages and “real

wage 1”. The basic specification estimates for “real wage 2” however are negative. This may
suggest that a Â value of 0.65 is too high. But in any case, it is clear from this exercise that
it is di�cult to interpret the magnitudes of the coe�cients without knowledge of the true
value of Â. This is one reason why we prefer the employment rate as a su�cient statistic for
local economic opportunity.

One might also be interested in estimates that include both employment and real wages
on the right hand side, as follows:

�lrt = —nw
0

+ —nw
1

�nrt + —nw
2

(nrt≠1 ≠ lrt≠1) + —nw
3

� (wrt ≠ prt) (A61)

+—nw
4

(wrt≠1 ≠ prt≠1) + —nw
5

�ãrt + —nw
6

ãrt≠1 + Árt

We already have four instruments for the four endogenous variables, so no more instruments
are required. The first stages for the wage variables are reported in Panels B and C of Table
A14; and the first stages for the employment variables are the same as in Panel B of Table
A7, though 1950 is omitted from the sample in this case (because of the lack of data on
housing costs).

We report the IV estimates of (A61) in Table A15. The coe�cients on the wage variables
are now mostly negative: this suggests it is di�cult to empirically disentangle the e�ects
of employment and wages. For the most part however, the employment e�ects are well
identified, and the magnitudes of the coe�cients are similar to when the wage variables
are excluded (in Table 2 in the main text). Using a combination of employment and wage
Bartik instruments, Beaudry, Green and Sand (2014b) also find that the population response
to employment is more robust than the response to wages. To summarize, we think these
estimates support our view that, in practice, the employment rate is a better measure of
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economic opportunity than wages.

K Intensive and extensive margins of the employment
response

Our employment equation (13) focuses on total employment and how it responds to popula-
tion and labor demand shocks. But, there is some interest in decomposing the employment
response into the change in the number of establishments (extensive margin) and employ-
ment per establishment (intensive margin). We take data on local establishment counts
from County Business Patterns, though our sample only begins in 1970 because earlier
cross-sections have not been digitized.

We present OLS and IV estimates in Table A16 using our basic specification, without
fixed e�ects or first di�erences. Columns 1 and 4 re-estimate the employment equation (13)
for the smaller sample (excluding the 1950s and 1960s) for OLS and IV respectively. The
results are similar to when we use the full sample in Table 5 in the main text.

In columns 2 and 5, we re-estimate this equation - but replacing the dependent variable
with the change in the log number of establishments. For both OLS and IV, the establishment
count responds positively to population (similarly to total employment) but also to the lagged
employment rate (unlike total employment). There are a number of possible explanations,
but our data does not allow us to discriminate between them. For example, there may
be sizable start-up costs that make entry unattractive in low-employment areas - given
the expectations of future prospects. Or alternatively, prospective entrepreneurs in more
prosperous areas may be wealthier - and thus better able to a�ord these start-up costs.

Log employment per establishment can then be inferred as the di�erence between the
previous two columns. The IV estimate in column 6 shows that establishment size responds
negatively to both population growth and the initial employment rate, but positively to the
Bartik shift-share. The latter e�ect is consistent with recent evidence from Dix-Carneiro and
Kovak (2017), who find that both employment and establishment size declined in Brazilian
regions which su�ered more from trade liberalization. They argue this e�ect is driven by
sluggish capital adjustment.
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Tables and figures

Table A1: Data sources for population counts and employment/participation rates

Year Population Employment rates (i.e. emp-pop ratios) Participation rates
Population College 16-64s Other age By education 16-64s Other age
counts by grad share (overall and groups (16-24, (for 16-64s) (overall and groups (16-24,

age/gender (for 16-64s) by gender) 25-44, 45-64) by gender) 25-44, 45-64)

1950 NHGIS IPUMS IPUMS + NHGIS IPUMS IPUMS IPUMS + IPUMS
(NT7, NT8) (NT28, NT29, NT30) NHGIS (NT28)

1960 NHGIS IPUMS IPUMS IPUMS IPUMS IPUMS IPUMS
(NT3, NT5)

1970 NHGIS IPUMS NHGIS IPUMS IPUMS NHGIS NHGIS
(B58) (A67) (A67) (A67)

1980 NHGIS IPUMS NHGIS NHGIS IPUMS NHGIS NHGIS
(B58) (A70) (A70) (A70) (A70)

1990 NHGIS IPUMS NHGIS NHGIS IPUMS NHGIS NHGIS
(B58) (A70) (A70) (A70) (A70)

2000 NHGIS IPUMS NHGIS NHGIS IPUMS NHGIS NHGIS
(B58) (A70) (A70) (A70) (A70)

2010 NHGIS IPUMS NHGIS NHGIS IPUMS NHGIS NHGIS
(B58) (A70) (A70) (A70) (A70)

This table provides the data source for all county-level population counts and employment/participation rates. Employment and labor force
counts are derived by multiplying the appropriate population counts and rates. NHGIS table references are reported in parentheses. The
aim is to use as much information from the NHGIS as possible, as IPUMS (microdata) estimates are subject to larger sampling error and
geographical mismatch (see Online Appendix D.1). Pre-1980, NHGIS data on employment and participation among 16-64s is relatively limited.
Our approach in these years is the following. 1950: NHGIS reports county-level employment (and participation) rates for individuals aged
14 and over, by gender. We use this information to derive employment (and participation) rates for 16-64s, by exploiting data from IPUMS
on employment (participation) rates among individuals aged 14-15 and 65+. Specifically, for each gender and overall: EmpRate16≠64 =
[(EmpRateNHGIS14plus ◊ PopNHGIS14plus) ≠ (EmpRateIPUMS14≠15 ◊ PopNHGIS14≠15) ≠ (EmpRateIPUMS65plus ◊ PopNHGIS65plus)]
/PopNHGIS16≠64. And we use the same approach to derive participation rates among 16-64s. 1960: Unfortunately, NHGIS does not report
county-level employment or participation rates in 1960, so we rely entirely on IPUMS for that year. 1970: NHGIS reports county-level labor force
by gender and detailed age categories. But in terms of employment, it only o�ers total county counts (by gender), rather than for 16-64s specific-
ally (or any other age category). In practice though, the unemployment rate among 16-64s is almost identical to the overall unemployment rate.
So we impute the employment rate among 16-64s (separately by gender) as: EmpRate16≠64 = LaborF orceNHGIS16≠64

P opulationNHGIS16≠64
◊ EmploymentNHGIStotal

LaborF orceNHGIStotal
.
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Table A2: ACFs of the log employment rate, controlling for local colleges

Employment rate variant Lag
1 2 3 4 5

(1) Emp rate among 16-64s (time-demeaned) 0.86 0.78 0.72 0.58 0.58
Controlling at CZ-level for:

(2) Dummies for presence of 2yr, 4yr college 0.85 0.76 0.70 0.56 0.53
(3) + Log no. 2yr, 4yr colleges / pop 16-64 0.83 0.74 0.67 0.52 0.48

(4) Composition-adjusted ER (time-demeaned) 0.83 0.73 0.65 0.51 0.42
Controlling at CZ-level for:

(5) Dummies for presence of 2yr, 4yr college 0.83 0.72 0.64 0.51 0.41
(6) + Log no. 2yr, 4yr colleges / pop 16-64 0.81 0.69 0.62 0.48 0.37

This table summarizes autocorrelation functions of the time-demeaned log employment rate,
across five decadal lags, based on data between 1960 and 2010. These are estimated as the
ratio of the lag-specific autocovariance to the product of the current and lagged standard
deviations (weighted by CZ population share), across all CZs. Row 1 reports the ACF for
the basic time-demeaned employment rate. Row 2 reports the ACF after adjusting for two
dummy variables: one for the presence of a two-year college in the CZ, and the second for
the presence of a four-year college. Row 3 adjusts additionally for the log number of two-
year and the log number of four-year colleges, each relative to the population of 16-64s. For
those observations with no colleges, we replace the log college counts with zeros. Rows 4-6
replicate the first three rows, but this time for the composition-adjusted employment rate,
as described in Online Appendix F.1. See Section F.3 for further details on the local college
data. *** p<0.01, ** p<0.05, * p<0.1.
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Table A3: Robustness of IV population response to amenity controls and weighting

PANEL A: Weighted by lagged population share
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.742*** 0.737*** 0.693*** 0.700*** 0.715*** 0.712*** 0.702*** 0.889*** 0.748***
(0.034) (0.038) (0.036) (0.035) (0.030) (0.030) (0.031) (0.052) (0.035)

Lagged log emp rate 16-64 0.225*** 0.138*** 0.323*** 0.360*** 0.425*** 0.411*** 0.392*** 1.223*** 0.782***
(0.049) (0.042) (0.055) (0.058) (0.062) (0.058) (0.056) (0.256) (0.165)

Migrant shift-share 0.216*** 0.021 0.062 0.103* 0.078 0.056 0.529*** 0.366***
(0.055) (0.058) (0.061) (0.057) (0.057) (0.058) (0.157) (0.095)

Max temp January 0.216*** 0.225*** 0.190*** 0.194*** 0.129***
(0.029) (0.030) (0.028) (0.028) (0.033)

Max temp July -0.087** -0.118** -0.154*** -0.149*** -0.097*
(0.040) (0.046) (0.045) (0.044) (0.058)

Mean humidity July -0.072*** -0.064*** -0.030** -0.030** 0.048**
(0.017) (0.018) (0.015) (0.014) (0.021)

Coastline dummy -0.008** -0.007* -0.008** 0.010*
(0.003) (0.003) (0.003) (0.006)

Log pop density 1900 -0.006*** -0.004*** -0.012***
(0.001) (0.001) (0.002)

Log distance to closest CZ 0.013** 0.005
(0.006) (0.012)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenity x year e�ects No No No No No No Yes Yes Yes
CZ fixed e�ects No No No No No No No Yes No
First di�erenced spec No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610

PANEL B: Unweighted
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.651*** 0.636*** 0.620*** 0.633*** 0.633*** 0.622*** 0.663*** 0.737*** 0.675***
(0.027) (0.027) (0.024) (0.024) (0.024) (0.025) (0.031) (0.028) (0.037)

Lagged log emp rate 16-64 0.547*** 0.468*** 0.407*** 0.434*** 0.433*** 0.411*** 0.343*** 0.614*** 0.603***
(0.053) (0.046) (0.037) (0.039) (0.040) (0.039) (0.040) (0.097) (0.114)

Migrant shift-share 0.589*** 0.193** 0.229*** 0.229*** 0.175** 0.078 0.091 0.048
(0.076) (0.079) (0.080) (0.080) (0.077) (0.069) (0.087) (0.098)

Max temp January 0.354*** 0.367*** 0.367*** 0.359*** 0.199***
(0.023) (0.024) (0.023) (0.023) (0.027)

Max temp July -0.476*** -0.509*** -0.509*** -0.473*** -0.275***
(0.042) (0.043) (0.042) (0.041) (0.052)

Mean humidity July -0.029** -0.019 -0.020 -0.007 0.059**
(0.012) (0.013) (0.018) (0.018) (0.026)

Coastline dummy -0.014*** -0.014*** -0.018*** 0.021***
(0.004) (0.004) (0.004) (0.007)

Log pop density 1900 0.000 0.003 -0.005**
(0.002) (0.002) (0.002)

Log distance to closest CZ 0.034*** 0.029***
(0.007) (0.011)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenity x year e�ects No No No No No No Yes Yes Yes
CZ fixed e�ects No No No No No No No Yes No
First di�erenced spec No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610
This table studies the robustness of our IV estimates of the population response in Table 2 to choices of controls and weighting. As before, our
sample covers the 722 CZs and six (decadal) time periods. First, we test robustness of our estimates to the weighting of observations: Panel
A weights observations by the lagged population share, and Panel B applies no weighting. And second, we test robustness to the inclusion of
progessively more controls. Columns 1-7 do not condition on CZ e�ects, and the final two columns report the fixed e�ect and first di�erenced
specifications. Notice that columns 7-9 in Panel A are identical to columns 4-6 of Table 2 above. Errors are clustered by CZ, and robust
standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

38



Table A4: Robustness of IV population response to amenity controls and weighting - ex-
cluding disequilibrium term

PANEL A: Weighted by lagged population share
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.860*** 0.815*** 0.847*** 0.848*** 0.864*** 0.864*** 0.848*** 0.810*** 0.693***
(0.032) (0.036) (0.022) (0.024) (0.019) (0.019) (0.018) (0.027) (0.049)

Migrant shift-share 0.193*** 0.094** 0.096* 0.114*** 0.116*** 0.101*** 0.209*** 0.320***
(0.048) (0.044) (0.052) (0.034) (0.039) (0.030) (0.051) (0.116)

Max temp January 0.087*** 0.087*** 0.064*** 0.063*** 0.019
(0.016) (0.016) (0.013) (0.013) (0.031)

Max temp July -0.017 -0.018 -0.024 -0.024 -0.022
(0.020) (0.023) (0.020) (0.020) (0.059)

Mean humidity July -0.020** -0.019* -0.003 -0.002 0.070***
(0.009) (0.011) (0.009) (0.009) (0.022)

Coastline dummy 0.000 0.001 0.001 0.007
(0.003) (0.003) (0.003) (0.006)

Log pop density 1900 -0.002*** -0.003*** -0.010***
(0.001) (0.001) (0.003)

Log distance to closest CZ -0.001 -0.019*
(0.004) (0.010)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenity x year e�ects No No No No No No Yes Yes Yes
CZ fixed e�ects No No No No No No No Yes No
First di�erenced spec No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610

PANEL B: Unweighted
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.802*** 0.778*** 0.762*** 0.757*** 0.753*** 0.742*** 0.777*** 0.687*** 0.583***
(0.018) (0.018) (0.018) (0.019) (0.020) (0.021) (0.023) (0.032) (0.055)

Migrant shift-share 0.375*** 0.193*** 0.184*** 0.182*** 0.146*** 0.082** -0.012 -0.056
(0.042) (0.038) (0.039) (0.039) (0.037) (0.036) (0.070) (0.116)

Max temp January 0.181*** 0.181*** 0.184*** 0.185*** 0.098***
(0.012) (0.012) (0.012) (0.012) (0.022)

Max temp July -0.243*** -0.239*** -0.241*** -0.225*** -0.164***
(0.021) (0.022) (0.022) (0.021) (0.043)

Mean humidity July -0.010 -0.012 -0.023* -0.014 0.074***
(0.007) (0.008) (0.012) (0.012) (0.023)

Coastline dummy 0.003 0.004 0.000 0.018***
(0.003) (0.003) (0.003) (0.006)

Log pop density 1900 0.001 0.003*** -0.007***
(0.001) (0.001) (0.002)

Log distance to closest CZ 0.024*** 0.015
(0.005) (0.010)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenity x year e�ects No No No No No No Yes Yes Yes
CZ fixed e�ects No No No No No No No Yes No
First di�erenced spec No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610
This table replicates Table A3 above, but excluding the disequilibrium term (the lagged employment rate) and its lagged Bartik instrument.
See notes under Table A3 for further details. Errors are clustered by CZ, and robust standard errors are reported in parentheses. *** p<0.01,
** p<0.05, * p<0.1.
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Table A5: Robustness of IV population response to welfare and labor policies

Basic specification CZ fixed e�ects First di�erences
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.625*** 0.644*** 0.642*** 0.738*** 0.731*** 0.724*** 0.700*** 0.699*** 0.663***
(0.038) (0.035) (0.041) (0.053) (0.050) (0.056) (0.038) (0.036) (0.045)

Lagged log emp rate 16-64 0.380*** 0.389*** 0.370*** 1.362*** 1.357*** 1.247*** 0.921*** 0.919*** 0.839***
(0.056) (0.051) (0.063) (0.333) (0.287) (0.292) (0.209) (0.201) (0.220)

� log max AFDC -0.021*** -0.006 -0.013
(0.007) (0.016) (0.009)

Lagged log max AFDC -0.017*** -0.008 -0.008
(0.006) (0.021) (0.012)

� log max AFDC (ratio) -0.021*** -0.003 -0.014
(0.007) (0.017) (0.009)

Lagged log max AFDC (ratio) -0.020*** -0.009 -0.004
(0.006) (0.020) (0.010)

� log min wage -0.021 -0.100 0.017
(0.045) (0.093) (0.058)

Lagged log min wage -0.094* -0.079 -0.016
(0.049) (0.087) (0.063)

� log min wage (ratio) 0.009 0.032 -0.053**
(0.031) (0.032) (0.027)

Lagged log min wage (ratio) 0.005 -0.007 -0.056*
(0.024) (0.035) (0.033)

� EITC state supp 0.028** 0.034** 0.000 0.001 0.005 0.003
(0.013) (0.016) (0.015) (0.014) (0.012) (0.014)

Lagged EITC state supp -0.008 -0.002 -0.031 -0.026 -0.017 -0.024
(0.013) (0.012) (0.028) (0.027) (0.021) (0.021)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 2,888 2,888 2,888
This table tests the robustness of our IV estimates of the population response to welfare and labor policy controls. Our sample covers 722 CZs for five
(decadal) time periods (1960-2010). We o�er results for the basic, fixed e�ect and first di�erenced specifications. Columns 1, 4 and 7 report the IV
estimates for our standard set of controls: see the notes under Table 2. The results di�er somewhat from those of Table 2 because we have omitted
data before 1970. Columns 2, 5 and 8 control additionally for changes and lags of three policy variables: (i) the maximum AFDC/TANF benefit paid
per month for a family of four, (ii) the log minimum wage (the largest of the state or federal levels), and (iii) the proportional state supplement to
the federal EITC. Columns 3, 6 and 9 repeat this exercise, but for the AFDC and minimum wage, we control for the log ratio of the policy level to
the local median wage. Errors are clustered by CZ, and robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A6: Robustness of IV population response to presence of local colleges

Basic specification CZ fixed e�ects First di�erences
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 16-64 0.625*** 0.618*** 0.617*** 0.738*** 0.737*** 0.727*** 0.700*** 0.698*** 0.685***
(0.038) (0.039) (0.039) (0.053) (0.054) (0.053) (0.038) (0.038) (0.037)

Lagged log emp rate 16-64 0.380*** 0.365*** 0.357*** 1.362*** 1.372*** 1.490*** 0.921*** 0.917*** 0.942***
(0.056) (0.060) (0.061) (0.333) (0.335) (0.347) (0.209) (0.207) (0.190)

� dummy for presence of 2yr college 0.000 -0.001 -0.011* -0.011* -0.001 -0.001
(0.004) (0.005) (0.006) (0.007) (0.003) (0.003)

Lagged dummy for presence of 2yr college 0.001 0.021 -0.005 0.013 0.006 0.072*
(0.005) (0.029) (0.008) (0.053) (0.005) (0.037)

� dummy for presence of 4yr college 0.017** 0.019** -0.009 -0.017 -0.007 -0.008
(0.008) (0.008) (0.011) (0.013) (0.007) (0.008)

Lagged dummy for presence of 4yr college 0.011** -0.026 0.010 0.472*** 0.000 0.490***
(0.005) (0.031) (0.021) (0.172) (0.014) (0.103)

� log no. 2yr colleges 0.007** 0.011** 0.011***
(0.003) (0.005) (0.004)

Lagged log no. 2yr colleges / pop 16-64 0.002 0.002 0.006*
(0.003) (0.005) (0.003)

� log no. 4yr colleges 0.004 -0.003 0.016**
(0.005) (0.007) (0.007)

Lagged log no. 4yr colleges / pop 16-64 -0.003 0.041*** 0.043***
(0.003) (0.015) (0.009)

Observations 3,610 3,610 3,610 3,610 3,610 3,610 2,888 2,888 2,888
This table tests the robustness of our IV estimates of the population response to controls for the local presence of colleges. Our sample covers 722 CZs, but just
five (decadal) time periods (1960-2010) - as the local college data only begins in 1960. We o�er results for the basic, fixed e�ect and first di�erenced specifications.
Columns 1, 4 and 7 report the IV estimates for our standard set of controls: see the notes under Table 2. The results di�er somewhat from those of Table 2
because we have omitted data before 1960. Columns 2, 5 and 8 control for both changes and lags of dummies for the presence of two and four-year colleges.
Columns 3, 6 and 9 control for these variables and, in addition, lagged log counts of two and four-year colleges (each relative to the population of 16-64s) and
di�erenced log counts of two and four-year colleges. For those observations with no colleges, we replace the di�erenced and lagged log counts with zeros; note
these cases are fully identified by the di�erenced and lagged college presence dummies. See Section F.3 for further details on the local college data. Errors are
clustered by CZ, and robust standard errors are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A7: Estimates of population response, controlling for wage Bartiks

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log emp 16-64 0.809*** 0.799*** 0.832*** 0.707*** 0.850*** 0.745***
(0.012) (0.014) (0.012) (0.022) (0.049) (0.034)

Lagged log emp rate 16-64 0.173*** 0.500*** 0.953*** 0.291*** 0.990*** 0.694***
(0.014) (0.032) (0.028) (0.044) (0.229) (0.162)

Current wage Bartik -0.629*** -0.464*** -0.226*** -0.707*** -0.336*** -0.231***
(0.088) (0.071) (0.066) (0.075) (0.104) (0.072)

Lagged wage Bartik 0.365*** 0.194** 0.143** 0.343*** 0.134 0.182**
(0.056) (0.080) (0.060) (0.057) (0.090) (0.075)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log emp 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Current Bartik 0.975*** 0.927*** 0.762*** 0.047 -0.107*** -0.003
(0.075) (0.082) (0.076) (0.039) (0.037) (0.029)

Lagged Bartik 0.130** -0.028 -0.090 0.582*** 0.137*** 0.163***
(0.060) (0.059) (0.078) (0.061) (0.031) (0.020)

Current wage Bartik 0.124 0.090 0.477* 0.770*** -0.093 0.053
(0.220) (0.248) (0.281) (0.115) (0.142) (0.116)

Lagged wage Bartik 0.157 -0.165 -0.285 0.248 0.189* 0.379***
(0.236) (0.281) (0.288) (0.159) (0.102) (0.073)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

This table replicates the exercise of Table 2, but controlling for current and lagged "wage Bartiks"
on the right hand side - as described in Section G.4. See the notes under Table 2 for further
details on the empirical specification and the right-hand side controls. Errors are clustered by
CZ, and robust standard errors are reported in parentheses. Each observation is weighted by the
lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A8: Estimates of population response with 1940-based Bartik instrument

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log emp 16-64 0.814*** 0.806*** 0.831*** 0.681*** 0.801*** 0.631***
(0.012) (0.014) (0.012) (0.038) (0.063) (0.075)

Lagged log emp rate 16-64 0.171*** 0.513*** 0.960*** 0.351*** 1.477*** 0.541***
(0.014) (0.031) (0.027) (0.064) (0.427) (0.176)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log emp 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Current Bartik: 1940-based 0.480*** 0.479*** 0.261*** -0.013 -0.018 0.032
(0.057) (0.056) (0.059) (0.042) (0.025) (0.023)

Lagged Bartik: 1940-based 0.088* -0.071 -0.245*** 0.364*** 0.089*** 0.131***
(0.046) (0.053) (0.080) (0.044) (0.028) (0.019)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

This table replicates the exercise of Table 2, but using a modified Bartik instrument. Specific-
ally, we base our prediction of local employment growth on industrial composition in 1940,
rather than at the beginning of each decade - as we do in equation (12) in the main text. See
the notes under Table 2 for further details on the empirical specification and the right-hand
side controls. Errors are clustered by CZ, and robust standard errors are reported in paren-
theses. Each observation is weighted by the lagged local population share. *** p<0.01, **
p<0.05, * p<0.1.
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Table A9: Estimates of population response with disaggregated Bartik instruments

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log emp 16-64 0.814*** 0.806*** 0.831*** 0.714*** 0.829*** 0.773***
(0.012) (0.014) (0.012) (0.025) (0.025) (0.040)

Lagged log emp rate 16-64 0.171*** 0.513*** 0.960*** 0.337*** 0.470*** 0.587***
(0.014) (0.031) (0.027) (0.031) (0.116) (0.159)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log emp 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Current Bartik: agr/mining 1.174*** 1.130*** 1.163*** 0.196*** -0.222*** -0.171***
(0.073) (0.087) (0.088) (0.060) (0.048) (0.034)

Current Bartik: manufac 0.655*** 0.906*** 0.506*** -0.272*** 0.157*** 0.172**
(0.119) (0.136) (0.166) (0.079) (0.056) (0.080)

Current Bartik: services 0.250 -0.034 -0.440* -0.067 -0.082 0.165***
(0.254) (0.282) (0.232) (0.112) (0.096) (0.063)

Lagged Bartik: agr/mining 0.005 -0.098 -0.132* 0.581*** 0.132*** 0.167***
(0.087) (0.087) (0.079) (0.069) (0.038) (0.032)

Lagged Bartik: manufac -0.224*** -0.160 -0.398** 0.152* 0.176*** 0.179***
(0.086) (0.116) (0.194) (0.087) (0.054) (0.033)

Lagged Bartik: services 0.885*** 0.423*** 0.343** 0.568*** 0.021 0.039
(0.149) (0.164) (0.163) (0.126) (0.073) (0.055)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

This table replicates the exercise of Table 2, but using modified Bartik instruments. Specifically,
following equation (A57), we decompose the current and lagged Bartik variables (separately) into
three broad industry groups: (i) agriculture/mining, (ii) manufacturing and (iii) services. See
the notes under Table 2 for further details on the empirical specification and the right-hand side
controls. Errors are clustered by CZ, and robust standard errors are reported in parentheses.
Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, *
p<0.1.
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Table A10: Heterogeneity in population responses - OLS

1950-1980 1980-2010 Lab force Coll grad Non grad 16-24s 25-44s 45-64s
(1) (2) (3) (4) (5) (6) (7) (8)

Basic specification

� log emp 0.839*** 0.771*** 0.947*** 0.979*** 0.780*** 0.658*** 0.878*** 0.770***
(0.010) (0.022) (0.006) (0.003) (0.015) (0.012) (0.009) (0.013)

Lagged log emp rate 0.135*** 0.205*** 0.434*** 0.831*** 0.201*** 0.218*** 0.215*** 0.183***
(0.015) (0.018) (0.023) (0.017) (0.015) (0.013) (0.016) (0.016)

CZ fixed e�ects

� log emp 0.861*** 0.696*** 0.954*** 0.981*** 0.774*** 0.665*** 0.888*** 0.729***
(0.017) (0.024) (0.007) (0.004) (0.016) (0.013) (0.011) (0.017)

Lagged log emp rate 0.788*** 0.714*** 0.921*** 0.912*** 0.584*** 0.448*** 0.606*** 0.529***
(0.040) (0.060) (0.050) (0.015) (0.031) (0.033) (0.039) (0.023)

First di�erences

� log emp 0.882*** 0.758*** 0.955*** 0.991*** 0.803*** 0.734*** 0.898*** 0.699***
(0.014) (0.021) (0.006) (0.003) (0.013) (0.010) (0.009) (0.013)

Lagged log emp rate 1.005*** 0.845*** 1.305*** 1.050*** 1.021*** 0.841*** 1.171*** 0.869***
(0.032) (0.051) (0.037) (0.011) (0.027) (0.030) (0.026) (0.022)

Obs (basic, FE) 2,166 2,166 4,332 4,331 4,332 4,332 4,332 4,332
Each column reports OLS estimates of —1 and —2 in the population response equation (11) for a di�erent subsample. Columns
1 and 2 report estimates for 1950-1980 and 1980-2010 respectively. In column 3, population is replaced by labor force, and
the employment rate is measured as a share of labor force participants only (i.e. excluding the inactive). Columns 4 and 5
split the sample by education, and columns 6-8 by age. In columns 4-8, all variables and instruments are constructed using
group-specific data. For other columns, variables are based on individuals aged 16-64. Observation counts for the basic and
fixed e�ect specifications are given in the final row. The first di�erenced sample is 772 fewer in each case. Column 4 is
missing one observation, because in one largely rural CZ (centered around Mecosta County MI), there were no working-age
employed graduates in the micro-data extract of the 1950 census. See notes under Table 2 for further details on empirical
specification and right hand side controls. Errors clustered by CZ, and robust standard errors reported in parentheses. Each
observation is weighted by lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A11: Heterogeneity in population responses - first stage

1950-1980 1980-2010 Lab force Coll grad Non grad 16-24s 25-44s 45-64s
(1) (2) (3) (4) (5) (6) (7) (8)

� log emp: Basic specification

� log emp 0.965*** 1.049*** 0.972*** 0.699*** 0.930*** 1.028*** 0.942*** 0.726***
(0.083) (0.119) (0.074) (0.147) (0.071) (0.062) (0.064) (0.088)

Lagged log emp rate 0.096 0.126 0.094 0.209** 0.011 0.078 0.084 0.153***
(0.073) (0.141) (0.059) (0.103) (0.057) (0.059) (0.057) (0.056)

� log emp: CZ fixed e�ects

� log emp 0.874*** 0.675*** 0.930*** 0.544*** 0.956*** 1.026*** 0.903*** 0.693***
(0.118) (0.222) (0.079) (0.164) (0.079) (0.075) (0.069) (0.094)

Lagged log emp rate 0.060 -0.637*** -0.024 0.013 -0.020 0.040 -0.038 0.081
(0.110) (0.221) (0.059) (0.114) (0.061) (0.075) (0.049) (0.074)

� log emp: First di�erences

� log emp 0.763*** 0.387** 0.756*** 0.525*** 0.778*** 1.083*** 0.734*** 0.536***
(0.084) (0.181) (0.071) (0.151) (0.071) (0.081) (0.074) (0.078)

Lagged log emp rate 0.175** -0.578*** -0.118* 0.101 -0.175** 0.017 -0.119* 0.050
(0.081) (0.192) (0.072) (0.111) (0.068) (0.073) (0.068) (0.096)

Lagged log emp rate: Basic specification

� log emp 0.035 0.090 0.007 0.071 0.027 -0.034 0.130*** 0.022
(0.033) (0.116) (0.009) (0.045) (0.044) (0.041) (0.028) (0.050)

Lagged log emp rate 0.392*** 0.821*** 0.057*** 0.086*** 0.412*** 0.488*** 0.260*** 0.388***
(0.054) (0.112) (0.011) (0.030) (0.046) (0.045) (0.032) (0.059)

Lagged log emp rate: CZ fixed e�ects

� log emp -0.091** 0.244** -0.029*** 0.175*** -0.084** -0.226*** -0.002 -0.092
(0.040) (0.103) (0.010) (0.049) (0.035) (0.038) (0.022) (0.056)

Lagged log emp rate 0.112** 0.627*** 0.016 0.155*** 0.114*** 0.174*** 0.070** 0.069*
(0.050) (0.082) (0.015) (0.038) (0.039) (0.046) (0.030) (0.037)

Lagged log emp rate: First di�erences

� log emp -0.047 0.256*** 0.005 0.142*** 0.013 -0.163*** 0.066*** 0.002
(0.029) (0.076) (0.014) (0.036) (0.030) (0.031) (0.022) (0.033)

Lagged log emp rate 0.067 0.550*** 0.047*** 0.102*** 0.162*** 0.192*** 0.102*** 0.103***
(0.043) (0.058) (0.014) (0.028) (0.028) (0.035) (0.021) (0.032)

Obs (basic, FE) 2,166 2,166 4,332 4,331 4,332 4,332 4,332 4,332
This table reports first stage results corresponding to the IV estimates in Table 3 of the population response equation (11).
The first three panels report first stage estimates for the contemporaneous employment change, and the final three for the
lagged log employment rate. Each column reports estimates for a di�erent subsample. Bartik instruments are constructed
using individuals aged 16-64 in columns 1-3, and using group-specific data in columns 4-8. Observation counts for the basic
and fixed e�ect specifications are given in the final row. The first di�erenced sample is 772 fewer in each case. Column 4 is
missing one observation, because in one largely rural CZ (centered around Mecosta County MI), there were no working-age
employed graduates in the micro-data extract of the 1950 census. See notes under Table 2 for further details on empirical
specification and right hand side controls. Errors clustered by CZ, and robust standard errors reported in parentheses. Each
observation is weighted by lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A12: IV estimates of labor force response by age

Basic specification CZ fixed e�ects First di�erences
16-24 25-44 45-64 16-24 25-44 45-64 16-24 25-44 45-64
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 0.901*** 0.893*** 0.951*** 1.351*** 1.026*** 0.970*** 0.970*** 0.923*** 1.066***
(0.015) (0.017) (0.020) (0.222) (0.059) (0.118) (0.032) (0.019) (0.090)

Lagged log emp rate 1.084*** 1.441*** 0.870 5.252** 3.511** 0.671 1.869*** 2.073*** 2.023
(0.198) (0.293) (0.785) (2.353) (1.648) (4.540) (0.430) (0.507) (2.051)

Observations 4,332 4,332 4,332 4,332 4,332 4,332 3,610 3,610 3,610
This table reports IV estimates of the labor force response across 722 CZs and six (decadal) time periods, separately by age category. The
estimates are based on the empirical specification (11), except population is replaced by labor force, and the employment rate is measured
as a share of labor force participants only (i.e. excluding the inactive). All variables and instruments (Bartik shift-shares) are constructed
using age group-specific data. See notes under Table 2 for further details on empirical specification and right hand side controls. Errors
clustered by CZ, and robust standard errors reported in parentheses. Each observation is weighted by lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A13: Population inflows and outflows

OLS IV
� log pop Inflow Outflow Net inflow � log pop Inflow Outflow Net inflow

10yr 5yr 5yr 5yr 10yr 5yr 5yr 5yr
(1) (2) (3) (4) (5) (6) (7) (8)

Basic specification

� log emp (10yr) 0.836*** 0.342*** -0.041*** 0.383*** 0.668*** 0.595*** 0.128*** 0.466***
(0.011) (0.019) (0.014) (0.012) (0.042) (0.066) (0.045) (0.033)

Lagged log emp rate (10yr) 0.135*** 0.116*** 0.044* 0.072*** 0.351*** -0.080 -0.141* 0.061
(0.013) (0.034) (0.025) (0.018) (0.066) (0.112) (0.076) (0.055)

CZ fixed e�ects

� log emp (10yr) 0.822*** 0.285*** -0.058*** 0.344*** 0.800*** 0.343*** -0.090*** 0.432***
(0.016) (0.017) (0.009) (0.018) (0.063) (0.039) (0.019) (0.038)

Lagged log emp rate (10yr) 0.583*** 0.109*** 0.027 0.081** 1.467*** 0.335 -0.020 0.355*
(0.036) (0.041) (0.025) (0.038) (0.399) (0.222) (0.124) (0.212)

First di�erences

� log emp (10yr) 0.836*** 0.281*** -0.074*** 0.355*** 0.741*** 0.316*** -0.143*** 0.458***
(0.013) (0.015) (0.008) (0.018) (0.046) (0.039) (0.023) (0.044)

Lagged log emp rate (10yr) 0.920*** 0.141*** 0.023 0.118*** 0.765*** 0.265 -0.198 0.463
(0.032) (0.036) (0.022) (0.043) (0.230) (0.226) (0.159) (0.282)

Observations (basic, FE) 2,888 2,888 2,888 2,888 2,888 2,888 2,888 2,888
This table reports OLS and IV estimates of —1 and —2 in the population flow response equation (A59), separately for the basic, fixed e�ect
and first di�erenced specifications. There is an unfortunate mismatch in time horizons between the left and right hand side variables,
necessitated by data constraints. In columns 1 and 5, the dependent variable is the decadal change in log population (aged 16-64). In
columns 2 and 6, the dependent is the ratio of 5-year population inflows to the lagged population 5 years previously, for individuals aged
15-64 in the current year. Columns 3 and 7 gives the estimates for the population outflows, and columns 4 and 8 the net inflows (the
di�erence between the two). The right hand side is identical to our standard population equation (11), based on a 10-year time horizon.
See the notes under Table 2 for further details on the empirical specification and the right-hand side controls and instruments. The sample
is restricted here to 1960-2000 (given the availability of the flow data). Observation counts for the basic and fixed e�ect specifications are
given in the final row. The first di�erenced sample is 772 fewer in each case. Errors are clustered by CZ, and robust standard errors are
reported in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A14: IV estimates of population response to local wages

PANEL A: IV estimates
Nominal wage Real wage 1 (Â=0.24) Real wage 2 (Â=0.65)

Basic FE FD Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log wage 1.182*** 1.282*** 1.224*** 2.520*** 1.446*** 1.354*** -2.232*** 2.388*** 1.988***
(0.175) (0.178) (0.141) (0.470) (0.197) (0.168) (0.362) (0.594) (0.383)

Lagged log wage 0.753*** 1.193*** 1.226*** 1.485*** 1.115*** 1.111*** -1.140*** 1.201*** 0.829***
(0.095) (0.178) (0.154) (0.259) (0.150) (0.147) (0.226) (0.239) (0.170)

Observations 3,610 3,610 2,888 3,610 3,610 2,888 3,610 3,610 2,888

PANEL B: First stage for � log wage
Nominal wage Real wage 1 (Â=0.24) Real wage 2 (Â=0.65)

Basic FE FD Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Current Bartik 0.288*** 0.455*** 0.515*** 0.156*** 0.327*** 0.411*** -0.069 0.109 0.232***
(0.064) (0.075) (0.098) (0.051) (0.063) (0.079) (0.044) (0.067) (0.061)

Lagged Bartik -0.110* 0.016 0.029 -0.101* 0.027 0.052 -0.085* 0.046 0.092
(0.065) (0.103) (0.125) (0.056) (0.086) (0.101) (0.047) (0.066) (0.070)

Current wage Bartik 3.841*** 4.290*** 4.682*** 2.868*** 3.313*** 3.569*** 1.205*** 1.643*** 1.667***
(0.228) (0.272) (0.319) (0.203) (0.255) (0.281) (0.214) (0.289) (0.277)

Lagged wage Bartik -0.435*** -0.332 -0.180 -0.005 -0.019 -0.002 0.728*** 0.515*** 0.303
(0.142) (0.207) (0.302) (0.133) (0.172) (0.245) (0.153) (0.152) (0.189)

Observations 3,610 3,610 2,888 3,610 3,610 2,888 3,610 3,610 2,888

PANEL C: First stage for lagged log wage
Nominal wage Real wage 1 (Â=0.24) Real wage 2 (Â=0.65)

Basic FE FD Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Current Bartik -0.095 -0.138** -0.067 -0.198*** -0.056 -0.037 -0.374*** 0.086 0.013
(0.070) (0.057) (0.043) (0.058) (0.053) (0.043) (0.065) (0.071) (0.052)

Lagged Bartik 0.628*** 0.227*** 0.160** 0.364*** 0.217*** 0.133** -0.088* 0.200*** 0.087*
(0.057) (0.051) (0.068) (0.040) (0.046) (0.059) (0.048) (0.051) (0.050)

Current wage Bartik -3.792*** -3.837*** -3.856*** -3.703*** -3.396*** -3.396*** -3.552*** -2.643*** -2.610***
(0.301) (0.231) (0.173) (0.243) (0.213) (0.165) (0.235) (0.254) (0.188)

Lagged wage Bartik -0.776*** 0.078 0.189 -0.881*** -0.343** -0.209 -1.061*** -1.063*** -0.888***
(0.196) (0.147) (0.160) (0.163) (0.136) (0.148) (0.160) (0.170) (0.161)

Observations 3,610 3,610 2,888 3,610 3,610 2,888 3,610 3,610 2,888

This table reports estimates of —w
1

and —w
2

in equation (A60). Panel A reports IV estimates, and Panels B and C report the
first stage - for the wage change and lagged wage respectively. We use four instruments for the two endogenous variables: the
standard Bartik shift-share and the "wage Bartik" (see Section G.4), both current and lagged. In the first three columns, we
use residualized wages as the endogenous variables. In columns 4-6, we construct a real wage measure ("real wage 1") based
on the di�erence between the residualized wage and 0.24 times the residualized housing rent. And in columns 7-9, we take
the di�erence between the residualized wage and 0.65 times the residualized housing rent ("real wage 2"). The sample covers
722 CZs and five (decadal) time periods beginning in 1960. We omit 1950 because there is no housing rents data. This yields
3,610 observations for the basic and fixed e�ect specifications and 2,888 observations for the first di�erenced specification. See
the notes under Table 2 for details on the right-hand side controls. Errors are clustered by CZ, and robust standard errors are
reported in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table A15: IV estimates of population response to local employment and wages

Nominal wage Real wage 1 (Â=0.24) Real wage 2 (Â=0.65)
Basic FE FD Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� log emp 0.683*** 0.846*** 0.956*** 0.653*** 0.858*** 0.862*** 0.886*** 1.952 0.927***
(0.040) (0.198) (0.243) (0.043) (0.171) (0.120) (0.119) (4.682) (0.183)

Lagged log emp rate 0.389*** 1.538** 1.530** 0.390*** 1.611** 1.282*** 0.468*** 6.986 1.619**
(0.083) (0.724) (0.671) (0.094) (0.643) (0.340) (0.095) (22.493) (0.646)

� log wage -0.224*** -0.337 -0.499 -0.427** -0.442 -0.380 0.869** -5.978 -0.829
(0.083) (0.413) (0.462) (0.180) (0.403) (0.258) (0.426) (22.037) (0.635)

Lagged log wage -0.089* -0.215 -0.424 -0.193** -0.241 -0.237 0.493** -2.703 -0.268
(0.049) (0.389) (0.453) (0.098) (0.317) (0.210) (0.219) (10.212) (0.250)

Observations 3,610 3,610 2,888 3,610 3,610 2,888 3,610 3,610 2,888

This table reports IV estimates of —nw
1

, —nw
2

, —nw
3

and —nw
4

in equation (A61). The first stage for the employment variables
is the same as in Panel B of Table A7 (though the time sample for this table is smaller). The first stage for the wage
variables are contained in Panels B and C of Table A14. The sample covers 722 CZs and five (decadal) time periods
beginning in 1960. We omit 1950 because there is no housing rents data. This yields 3,610 observations for the basic
and fixed e�ect specifications and 2,888 observations for the first di�erenced specification. See the notes under Table
2 for details on the right-hand side controls. Errors are clustered by CZ, and robust standard errors are reported in
parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.

50



Table A16: Intensive and extensive margins of employment response 1970-2010

PANEL A: OLS and IV
OLS IV

� log � log � log � log � log � log
emp estab emp/estab emp estab emp/estab
(1) (2) (3) (4) (5) (6)

� log pop 1.012*** 0.952*** 0.060*** 0.780*** 1.026*** -0.246***
(0.013) (0.017) (0.021) (0.071) (0.069) (0.085)

Lagged log emp rate -0.120*** 0.093*** -0.213*** -0.197*** 0.423*** -0.621***
(0.014) (0.026) (0.025) (0.055) (0.073) (0.077)

Current Bartik 0.410*** 0.159 0.251*** 0.609*** -0.013 0.622***
(0.043) (0.115) (0.096) (0.074) (0.075) (0.092)

Observations 2,888 2,888 2,888 2,888 2,888 2,888

PANEL B: First stage
� log Lagged log
pop emp rate
(1) (2)

Max temp January 0.672*** -0.034
(0.144) (0.091)

Max temp January * time -0.057*** -0.038**
(0.021) (0.017)

Lagged Bartik 0.297*** 0.653***
(0.078) (0.067)

Current Bartik 0.463*** 0.039
(0.129) (0.131)

Observations 2,888 2,888
This table breaks down the employment response (i.e. equation (13)) in Table 5 into "intensive" and "extensive"
margins. We restrict attention here to the "basic" specification (no fixed e�ects). Since we only have data on
local establishment counts since 1970, we now restrict our sample to 1970-2010. In columns 1 and 4 of Panel A,
we re-estimate the OLS and IV employment responses (basic specification) in Table 5 for the restricted sample.
In columns 2 and 5, we re-estimate this equation, but change the dependent variable to the change in the log
number of establishments (extensive margin). In columns 3 and 6, we change the dependent variable to the
log employment per establishment (i.e. the di�erence between the previous two columns: the intensive margin).
Panel B reports the associated first stage estimates. See the notes under Table 5 for details on the right-hand side
controls. Errors are clustered by CZ, and robust standard errors are reported in parentheses. Each observation
is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Figure A1: Employment shares by industry

We define professional and financial services as census 1950 codes 716-756, 806-808 and 868-899. See https://usa.ipums.org/usa-
action/variables/IND1950 .
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Figure A2: Persistence of joblessness across CZs: 1980-2010

Data-points denote commuting zones (CZs). Sample is restricted to 50 largest CZs in 1980, for individuals aged 16-64. “Par-

ticipation rate” is ratio of labor force to population, and “unemployment rate” is ratio of unemployment to labor force.
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Figure A3: Persistence of joblessness across CZs: 1950-1980

Data-points denote commuting zones (CZs). Sample is restricted to 50 largest CZs in 1950, for individuals aged 16-64. “Par-

ticipation rate” is ratio of labor force to population, and “unemployment rate” is ratio of unemployment to labor force.
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Figure A4: Graphical illustration of 2SLS coe�cients

Following the Frisch-Waugh theorem, this figure graphically depicts the 2SLS coe�cients of the basic specification (column 4,

Table 2). The first panel illustrates the coe�cient on employment growth, —1; and the second panel illustrates the coe�cient

on the lagged employment rate, —2. See Online Appendix G.6 for details on the methodology. Data-points denote CZ-year

observations, with size corresponding to lagged population share. Standard errors for the best-fit slope are robust and clustered

by CZ. Notice the standard errors of the best-fit slopes do not correspond to those in Table 2; this is because this naive estimator

does not account for sampling error in the first stage. A small number of outlying data points (no more than 25 observations

of minor CZs in each panel) have been excluded because of our choice of axis range.
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