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On-line Appendix
Proof of Proposition II.1

PRELIMINARIES

Here we collect some results on time-scales, and use them to establish a 3-tiered time-
scale hierarchy among (βt(0), βt(1), πt).

A1. Dynamics of βt (0) and βt (1)

To simplify notation, write the Kalman gains as

λt(i) =
6t(i)

σ 2 +6t(i)z2
t

for i = 1, 2. Define ∀τ > 0

mi (τ ) = inf{K |
K∑

k=1

λk(i) > τ }

as the first time that
∑K

k=1 λk(i) exceeds τ . Since λk(i) > 0 and
∑K

k=1 λk(i)→∞ with
probability 1, mi (τ ) is well defined with probability 1. Similarly, define

τK (i) =
K∑

k=1

λk(i)

as the magnitude of the sum
∑K

k=1 λk(i) after K iterations. Note that m(τK (i)+τ)−K is
the number of iterations necessary for

∑
λk(i) to move from τK to τK (i)+ τ . Therefore

m(τK (i) + τ) − K is an inverse measure of the speed of evolution of the associated
recursive formula: if the evolution speed is slow, then it takes many periods to move
from τK to τK + τ . We are particularly interested in the speed of evolution when K is
large.

To compare the speed of evolution, we calculate

lim
K→∞

m(τK (1)+ τ)− K
m(τK (0)+ τ)− K

.

If this ratio converges to 0, we say that βt(0) evolves on a slower time-scale than βt(1).
Given σv > 0, note that

lim
K→∞

m(τK (1)+ τ)− K

1
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remains finite with probability 1. On the other hand,

lim
K→∞

m(τK (0)+ τ)− K = ∞.

Thus, βt(0) evolves on a slower time-scale than βt(1). As a result, the right way to take
limits is

lim
σv→0

lim
t→∞

because in order to move τ distance for a large K , βt(0) needs infinitely many more
observations than βt(1). One can therefore regard our exercise as calculating the long
run dynamics of (πt , βt(0), βt(1)) for an arbitrarily small σv > 0.

In order to move from τK (1) to τK (1)+ τ , λk(1) needs only a finite number of obser-
vations, K1(τ ). However,

lim
K→∞

K+K1(τ )∑
k=K

λk(0) = 0.

As a result, ∀τ > 0,
lim

K→∞
βK+K1(τ )(0)− βK (0) = 0

with probability 1. Therefore, when investigating the asymptotic dynamics of βt(1), we
can treat βt(0) as fixed. By the same token, when investigating the asymptotic properties
of βt(0), we can assume that βt(1) has converged to its own stationary distribution (which
depends on βt(0)).

A2. Dynamics of πt

To study the dynamics of πt it is useful to rewrite

(A1)
1
πt+1
− 1 =

At+1(0)
At+1(1)

(
1
πt
− 1

)
as follows

(A2) πt+1 = πt + πt(1− πt)

[
At+1(1)/At+1(0)− 1

1+ πt(At+1(1)/At+1(0)− 1)

]
which has the familiar form of a discrete-time replicator equation, with a stochastic, state-
dependent, fitness function determined by the likelihood ratio. Equation (A2) reveals
a lot about the model averaging dynamics. First, it is clear that the boundary points
π = {0, 1} are trivially stable fixed points, since they are absorbing. Second, we can also
see that there could be an interior fixed point, where E(At+1(1)/At+1(0)) = 1. However,
we shall also see there that this fixed point is unstable. So we know already that πt will
spend most of its time near the boundary points.

PROPOSITION A.1: As long as the likelihoods of M0 and M1 have full support, the
boundary points πt = {0, 1} are unattainable in finite time.
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PROOF:
With two full support probability distributions, you can never conclude that a history

of any finite length couldn’t have come from either of the distributions. Slightly more
formally, if the distributions have full support, they are mutually absolutely continuous,
so the likelihood ratio in eq. (A2) is strictly bounded between 0 and some upper bound
B. To see why πt < 1 for all t , notice that πt+1 < πt + πt(1 − πt)M for some M < 1,
since the likelihood ratio is bounded by B. Therefore, since π + π(1 − π) ∈ [0, 1] for
π ∈ [0, 1], we have

πt+1 ≤ πt + πt(1− πt)M < πt + πt(1− πt) ≤ 1

and so the result follows by induction. The argument for why πt > 0 is completely
symmetric.

Since the distributions here are Gaussian, they obviously have full support, so Propo-
sition A.1 applies. Although the boundary points are unattainable in finite time, the
replicator equation for πt in (A2) makes it clear that πt will spend most of its time near
these boundary points, since the relationship between πt and πt+1 has the familiar logit
function shape, which flattens out near the boundaries. As a result, near its stable limits
πt evolves very slowly. In fact, we shall show that it evolves even more slowly than the
t−1 time-scale of βt(0). This means that when studying the dynamics of the coefficient
estimates near the boundaries, we can treat πt as fixed.

Although πt can evolve faster than βt(1) for small t , as t →∞, that πt must stay in a
small neighborhood of 1 or 0, slowly converging to the limit.

LEMMA A.2: Let 5 be the collection of all sample paths of {πt}, and define the subset

50 = {{πt} | there is no subsequence converging to 0 or 1 }

We then have

P
(
∃{πtk }k, and ∃π∗ ∈ (0, 1), lim

k→∞
πtk = π

∗

)
= 0

and πt evolves at a slower time scale than βt(0).

PROOF:
Fix a sequence {πt} in 50. Since the sequence is a subset of a compact set, it has a

convergent subsequence. After renumbering the subsequence, let us assume that

lim
t→∞

πt = π
∗
∈ (0, 1)

since {πt} ∈ 50. Depending upon the rate of convergence (or the time scale according
to which πt converges to π∗), we treat πt as already having converged to π∗.1

1 If πt evolves at a slower time scale than βt (0), then we fix πt while investigating the asymptotic properties of βt (0).
As it turns out, we obtain the same conclusion for all cases.
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We only prove the case in which πt → π∗ according to the fastest time scale, in
particular, faster than the time scale of βt(1). Proofs for the remaining cases follow the
same logic.

Since πt evolves on the fastest time-scale, assume that

πt = π
∗.

Since βt(1) evolves on a faster time scale than βt(0), we first let βt(1) reach its own limit,
and then let βt(0) go to its limit.

Fix σv > 0. Let pe
t (i) be Mi ’s period-t forecast of pt+1,

pe
t (i) = βt(i)zt .

Since
pt = αρ[(1− πt)βt(0)+ πtβt(1)]zt + δzt + σεt ,

model 1’s forecast error is

pt − pe
t (1) = [αρ(1− πt)βt(0)+ (αρπt − 1)βt(1)+ δ] zt + σεt .

We know,
lim

t→∞
E [αρ(1− πt)βt(0)+ (αρπt − 1)βt(1)+ δ] = 0

in any limit point of the Bayesian learning dynamics.2 Define

β(1) = lim
t→0

Eβt(1)

Note that its value is conditioned on πt and βt(0). Since

lim
t→0

E
[
αρ(1− πt)βt(0)+ (αρπt − 1)β(1)+ δ

]
+ E(αρπt − 1)(βt(1)− β(1)) = 0.

we have

(A3) β(1) =
αρ(1− πt)βt(0)+ δ

1− αρπt

for fixed πt , βt(0). Define the deviation from the long-run mean as

ξt = βt(1)− β(1).

Model 1’s mean-squared forecast error is then

lim
t→0

E(pt − pe
t (1))

2
= lim

t→0
Ez2

t (αρπt − 1)2σ 2
ξ + σ

2

2Existence is implied by the tightness of the underlying space.
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Note that σ 2
ξ > 0 if σv > 0, and

lim
σ 2
v→0

σ 2
ξ = 0.

To investigate the asymptotic properties of βt(0), let us write

βt(1) =
αρ(1− πt)βt(0)+ δ

1− αρπt
+ ξt

We can then write Model 0’s forecast error as

pt − pe
t (0) = zt

[
−

1− αρ
1− αρπt

(
βt(0)−

δ

1− αρ

)
+ αρπtξt

]
+ σεt .

Since βt(0) evolves according to

(A4) βt+1(0) = βt(0)+
(

6t(0)
σ 2 +6t(0)z2

t

)
zt(pt − βt(0)zt),

lim
t→∞

βt(0) =
δ

1− αρ
with probability 1. Thus, the mean-squared forecast error satisfies

lim
t→∞

E(pt − pe
t (0))

2
= lim

t→∞
Ez2

t σ
2
ξ (αρπt)

2
+ σ 2

After substituting βt(0) into (A3), we have

lim
σv→0

lim
t→0

βt(1) =
δ

1− αρ

weakly. Note that

(A5) lim
t→∞

E(pt − pe
t (0))

2

E(pt − pe
t (1))2

> 1

if and only if

lim
t→∞

(
αρπt

1− αρπt

)2

> 1.

Finally, notice that
αρπt

1− αρπt
< 1

if and only if

αρπt <
1
2
.

Note that the left hand side is an increasing function of πt . Hence, if (A5) holds for some
t ≥ 1, then it holds again for t + 1. Similarly, if (A5) fails for some t ≥ 1, then the same
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condition continues to fail for t + 1.

Thus, πt continues to increase or decrease, if the inequality holds in either direction.
Recall that π∗ = limt→∞ πt . Convergence to π∗ can occur only if (A5) holds with
equality for all t ≥ 1, which is a zero probability event. We conclude that π∗ ∈ (0, 1)
occurs with probability 0.

A3. Log odds ratio

As usual, it is more convenient to consider the log odds ratio. Let us initialize the
likelihood ratio at the prior odds ratio:

A0(0)
A0(1)

=
π0(0)
π0(1)

.

By iteration we get
πt+1(0)
πt+1(1)

=
1
πt+1
− 1 =

t+1∏
k=0

Ak(0)
Ak(1)

,

Taking logs and dividing by (t + 1),

1
t + 1

ln
(

1
πt+1
− 1

)
=

1
t + 1

t+1∑
k=0

ln
Ak(0)
Ak(1)

.

Now define the average log odds ratio, φt , as follows

φt =
1
t

ln
(

1
πt
− 1

)
=

1
t

ln
(
πt(0)
πt(1)

)
which can be written recursively as the following stochastic approximation algorithm

φt = φt−1 +
1
t

[
ln

At(0)
At(1)

− φt−1

]
.

Invoking well knowing results from stochastic approximation, we know that the asymp-
totic properties of φt are determined by the stability properties of the following ordinary
differential equation (ODE)

φ̇ = E
[

ln
At(0)
At(1)

]
− φ

which has a unique stable point

φ∗ = E ln
At(0)
At(1)

.
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Note that if φ∗ > 0, πt → 0, while if φ∗ < 0, πt → 1. The focus of the ensuing analysis
is to identify the conditions under which πt converges to 1, or 0. Thus, the sign of φ∗,
rather than its value, becomes the key object of investigation.

A4. Time scale of πt

Given any α ≥ 1, a simple calculation shows

tα(πt − πt−1) =
tα(e(t−1)φt−1 − etφt )

(1+ etφt )(1+ e(t−1)φt−1)
.

As t →∞, we know φt → φ∗ with probability 1. Hence, we have

lim
t→∞

tα(πt − πt−1) = lim
t→∞

tα
(
e−φ

∗

− 1
)

etφ∗

(1+ etφ∗)(1+ e(t−1)φ∗)

= (e−φ
∗

− 1) lim
t→∞

tα

(1+ e−tφ∗)(1+ etφ∗e−φ∗)

Finally, notice that for both φ∗ > 0 and φ∗ < 0 the denominator converges to∞ faster
than the numerator for any α ≥ 1. Note that πt ∝

1
t if

0 < lim inf
t→∞

|t2(πt − πt−1)| ≤ lim sup
t→∞

|t2(πt − πt−1)| <∞.

In our case, the first strict inequality is violated, which implies that πt evolves at a rate
slower than 1/t .

A5. Summary

It is helpful to summarize our findings on the time-scales of our three stochastic pro-
cesses: πt , βt(0) and βt(1). As indicated by (A2), πt evolves quickly in the interior of
[0, 1]. However, no sample path converges to π∗ ∈ (0, 1)with positive probability. Once
πt enters a small neighborhood of {0, 1}, the evolution of πt slows down significantly.
In the neighborhood of {0, 1}, we have a hierarchy of time-scales among three stochastic
processes. βt(1) evolves according to a faster time scale than βt(0), which evolves at a
faster time scale than πt .

PROOF OF PROPOSITION II.1

Although the proof follows the same logic as the proof of Lemma A.2, we sketch it
here as a reference. Along the way, we illustrate the domain of attraction of each locally
stable point, and provide a description of a typical convergent path.

We use standard convergence results from the stochastic approximation literature (Kush-
ner and Yin (1997)), and their large deviation properties (Dupuis and Kushner (1987)).
The analysis requires that all stochastic processes are contained in compact convex sets.
Since we assume Gaussian shocks, βt(i) has full support in R. Following Kushner and
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Yin (1997), we ensure compactness by imposing a projection facility, i.e., ∃B > δ
1−αρ

such that βt(i) ∈ [−B, B] for i = 0, 1. When βt(i) 6∈ [−B, B], βt(i) is projected
back into [−B, B]. Kushner and Yin (1997) show that the asymptotic properties of
(πt , βt(0), βt(1)) are not affected by the projection facility, as long as [−B, B] contains
the stable point of βt(i). Because the Gaussian distribution has thin tails, Dupuis and
Kushner (1987) are able to show that the large deviation properties of (πt , βt(0), βt(1))
are not affected by the projection facility. For the rest of the proof, we presume that
(πt , βt(0), βt(1)) ∈ [0, 1] × [−B, B] × [−B, B]. To simplify notation, however, we
suppress the projection facility.

We first investigate the properties of (πt , βt(0), βt(1)) as t → ∞ for a fixed σv > 0.
Since βt(1) evolves at the fastest time scale, we first investigate the asymptotic properties
of βt(1) for fixed (π, β(0)). As we have shown in the proof of Lemma A.2, βt(1) has a
stationary distribution, and its mean converges to

β(1) =
αρ(1− πt)βt(0)+ δ

1− αρπt
.

For later reference, define

(B1) S =
{
(π, β(0), β(1)) | β(1) =

αρ(1− π)β(0)+ δ
1− αρπt

}
which is a submanifold in R3.

Given the stationary distribution of βt(1), we investigate the asymptotic properties of
βt(0), for a fixed value of πt (in a small neighborhood of {0, 1}). Again, we have shown
that

lim
t→∞

βt(0) =
δ

1− αρ
with probability 1, which implies that

β(1)→
δ

1− αρ

∀πt . Then, observe that πt → 1 if and only if φ∗ < 0, and πt → 0 if and only if φ∗ > 0,
where

φ∗ = E ln
At(0)
At(1)

where the expectation is taken with respect to the stationary distribution. It is conve-
nient to consider the deterministic dynamics on the time-scale of βt(0). The domain of
attraction for (π, β(0), β(1)) = (0, δ/(1− αρ), δ/(1− αρ)) is

D0 =

{
(π, β(0), β(1)) | E log

At(0)
At(1)

> 0
}
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where At(0) and At(1) are the agent’s perceived likelihood functions:

log At(1) = −
[(αρπt − 1)ztξt + σεt ]2

2(6t(1)z2
t + σ

2)
−

1
2

log 2
[
6t(1)z2

t + σ
2]

and

log At(0) = −

[
−zt

[
1−αρ

1−αρπt

(
βt(0)− δ

1−αρ

)]
+ αρπt ztξt + σεt

]2

2(6t(0)z2
t + σ

2)
−

1
2

log 2
[
6t(0)z2

t + σ
2] .

It is helpful to characterize (πt , βt(0)) along the boundary of D0, where φ∗ = 0. To
simplify exposition, we treat zt as deterministic, but the same analysis applies to the
general case with minor modifications.

Since we are interested in the sign of φ∗, which is computed with respect to the asymp-
totic probability distribution as t → ∞, we replace 6t(1) by 6, and 6t(0) by 0. After
a tedious calculation (even with our simplifying assumption that zt is deterministic), we
find that
(B2)

φ∗ = −
α2ρ2π2

t (6z2
t )

2
+ 2σ 2αρπt6z2

t

2σ 2(σ 2 +6z2
t )

−
z2

t

2σ 2

(
1− αρ

1− αρπt

)(
βt(0)−

δ

1− αρ

)2

+
1
2

log

(
1+

6z2
t

σ 2

)
.

Note that the right-hand side is a decreasing function of πt . This reflects the feedback in
the system. A model’s relative performance decreases when the weight on it decreases.

Naturally, the right-hand side also decreases with
(
βt(0)− δ

1−αρ

)2
, i.e., in response to

deviations from the self-confirmin equilibrium. Thus, the contour of (πt , βt(0)) satisfy-

ing φ∗ = 0 is symmetric around β(0) = δ/(1 − αρ), and as
(
βt(0)− δ

1−αρ

)2
decreases

πt must increase, in order to satisfy φ∗ = 0. In particular, if πt = 0, then

(B3) d(σv) =
∣∣∣∣βt(0)−

δ

1− αρ

∣∣∣∣ = σ

|zt |
√

1− αρ

√√√√log

(
1+

6z2
t

σ 2

)

which is a strictly increasing function of 6, and therefore, a strictly increasing function
of σv. In particular,

lim
σv→0

d(σv) = 0.

Among (πt , βt(0)) satisfying φ∗ = 0, πt is maximized if βt(0) = δ/(1− αρ). This πt is
the positive root of

α2ρ26
2
z2

t π
2
t + 2σ 2αρπt − (σ

2
+6z2

t ) log

(
1+

6z2
t

σ 2

)
= 0
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A simple calculation shows that if πt is the positive root of the quadratic equation,

lim
σv→0

πt =
1

2αρ
.

Thus, ∀ε > 0, ∃σ ′v > 0 so that ∀σv ∈ (0, σ ′v),

D0 ⊂

{
(π, β(0), β(1)) | π ≤

1
2αρ
+ ε

}
.

Note that D0 looks like a pipe in R3, since it is independent of β(1). As σv → 0, the
base of D0 on the surface spanned by β(1) and β(0) shrinks, making D0 “thinner.”

It is instructive to visualize a typical sample path of (πt , βt(0), βt(1)) to a locally
stable point. Suppose that π1 ∈ (0, 1), and (π1, β1(0), β1(1)) is outside of D0. Then, for
a small value of t , πt evolves rapidly toward a neighborhood of 1 or 0, with a speed of
evolution that may be comparable to the speed of evolution of βt(1), while πt remains
away from the boundary points. Since βt(1) evolves on a faster time-scale than βt(0),
(πt , βt(0), βt(1)) evolves as if βt(0) = β1(0), while πt stays away from the boundary
points. From the perspective of βt(0), βt(1) instantaneously moves to a neighborhood of
submanifold S. This is why D0 is independent of βt(1).
(πt , βt(0), βt(1)) hits the neighborhood of submanifold S defined by (B1), as the dis-

tribution of βt(1) converges to its stationary distribution, while πt converges to a neigh-
borhood of either 0 or 1. Then, along the surface of S, (πt , βt(0), βt(1)) moves as βt(0)
evolves, converging to δ

1−αρ . After βt(0) reaches δ
1−αρ along the surface of S so that

βt(1) also reaches δ
1−αρ , πt moves. If (πt , βt(0), βt(1)) ∈ S ∩ D0, then it will converge

to the limit point where πt = 0. Otherwise, it converges to another limit point where
πt = 1.

*
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