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1 Introduction

This corrigendum corrects a mistake in proving the optimality of a crowdfunding contract in Strausz
(2017). In particular, the corrigendum proves that there isno loss in assuming that an optimal
mechanism in Strausz (2017) does not leave any (information) rents to consumersconditional on
the project’s cost structure(I, c). As pointed out by Ellman and Hurkens (2017), Lemma 5 in Strausz
(2017) falsely claims a stronger version: consumer rents are zero conditional on(I, c, l), ie, also
conditional on the realization of a randomized contract realization l. The corrigendum corrects this
mistake and thereby shows that it is inconsequential for thepaper’s results concerning the optimality
of crowdfunding contracts.

This corrigendum is to replace subsection III.B and the associated proofs that appeared in the
appendix. The numbering of equations and references in thiscorrigendum follow Strausz (2017).

B. Optimal Allocations and Mechanisms

A (possibly constrained) efficient mechanism̆Γ = {(p̆l, t̆l, x̆l)}l∈L maximizesSΓ̌ subject to con-
straints (21)–(29). In order to solve this maximization problem, we follow the usual approach in
mechanism design to focus first on a relaxed maximization problem. In particular, we replace the
entrepreneur’s truthtelling constraint (27) by

ΠΓ(I, c) ≥
∑

T∈T Γ(I′,c′)

P Γ(T |I ′, c′)αT ∀(I, c, I ′, c′). (30)

The constraint is weaker than (27), because its right-hand side is larger than the right-hand side of
(30), whereas their left-hand sides are identical.1

∗Humboldt-Universität zu Berlin, Institute for Economic Theory 1, Spandauer Str. 1, D-10178 Berlin, Germany
(strauszr@wiwi.hu-berlin.de).

1Referring to (16), it considers only one element within the maximum operator and forx0(I
′, c′, v) = 0, constraint

(22) impliesΠγl(I ′, c′|I, c, v) =
∑

i∈N
[tali(I

′, c′, v) + t
p
li(I

′, c′, v)] ≥ 0.
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Formally, we say thatΓ is weakly feasibleif it satisfies constraints (21)–(26), and (28)-(30), and
an output schedulěx : K×V → ∆X is weakly-implementableif there exists a weakly feasible
mechanism̌Γ that implements it. A weakly feasible mechanismΓ̌ is optimal if it maximizesSΓ over
all weakly feasible mechanisms.

In the following, we derive an optimal weakly feasible mechanismΓ̌ with the feature that it is also
(strictly) feasible. Hence, it also represents a constrained efficient mechanism̆Γ. In particular, we
show that such a mechanism is a crowdfunding mechanism, i.e., there is a threshold functionT (I, c)
so that all the deterministic mechanismsγl in Γ̆ satisfy (10)–(13).

We first derive a series of lemmas that allow us to simplify themaximization problem. The first
lemma establishes the relatively intuitive result that development-efficiency is a necessary feature of
optimal weakly feasible mechanisms.

Lemma 2 A weakly feasible mechanism̌Γ = {(p̌l, ťl, x̌l)}l∈L is optimal only if eacȟxl is development-
efficient.

The next lemma validates the suggestion of the previous section that, in order to optimally con-
trol entrepreneurial moral hazard, a mechanism uses deferred payments and limits the entrepreneur’s
information. In particular, it shows that development-efficiency is a sufficient condition under which
it is optimal to initially provide the entrepreneur only with the investment amountI and, hence, min-
imize the information which she gleans from receiving a recommendation to invest. The result is
an illustration of Myerson’s general observation that, accompanying a recommendation, mediators
should give agents only the minimum information possible, as more information only makes it harder
to satisfy incentive compatibility.

Lemma 3 SupposěΓ = {(p̌l, ťl, x̌l)}l∈L is weakly feasible and{x̌l}l∈L are development-efficient.
Then there are transfer schedules{t̂l}l∈L such that(21)binds and the direct mechanism̂Γ = {(p̌l, t̂l, x̌l)}l∈L
is weakly feasible and payoff equivalent, and(22)simplifies to

∑

i∈N tpli(I, c, v) ≥ c
∑

i∈Nxli(I, c, v) ∀(l, I, c, v) ∈ L×K×V. (31)

Because Lemma 2 shows that an optimal weakly feasible mechanism is development-efficient,
there is no loss of generality in restricting attention to weakly feasible direct mechanisms that give
the entrepreneur exactly the amountI if the entrepreneur is to develop the product.

Combining Lemmas 2 and 3 allows us to considerably simplify the optimization problem. Indeed,
if the feasibility constraint (21) binds thenT Γ(I, c) = {I} so that the obedience constraint (26) has to
hold only with regard toT = I. By defining, for an output schedulex ∈ R

n+1, the set and probability

Vx(I, c) ≡ {v|x0(I, c, v) = 1} andπx(I, c) =
∑

v∈Vx(I,c)π(v),

the obedience constraint (26) simplifies to

∑

l∈L

∑

v∈Vxl(I,c)

∑

i∈Nplπ(v)(t
p
li(I, c, v)− cxli(I, c, v))

≥
∑

l∈Lplπ
xl(I, c)αI ∀(I, c)∈K;

(32)
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and the relaxed truthfulness constraint (30) to

ΠΓ(I, c) ≥ πΓ(I ′, c′)αI ′ ∀(I, c, I ′, c′) ∈ K×K, (33)

whereπΓ(I, c) ≡
∑

l∈L plπ
xl(I, c).

Following the previous two lemmas, there is no loss of generality to focus on weakly feasible
mechanismšγ = (ť, x̌) that satisfy (23), (24), (25), (28), (29), (31), (32), and (33), and (21) in
equality. Given this observation, we next prove that optimal weakly feasible mechanisms do not
produce a product for consumers who do not value them.

Lemma 4 A weakly feasible mechanism̌Γ = {(p̌l, ťl, x̌l)}l∈L is optimal only if it holds that

xil(I, c, 0, v-i) = 0 ∀(l, i, I, c, v-i) ∈ L×N×K×V-i. (34)

The result sounds intuitive, since it implies that an optimal weakly feasible mechanism does not
display any form of artificial inefficiency. It is, however, not immediate because, in general, artificial
inefficiencies may help to relax incentive constraints. Thenext lemma shows that it also implies that
there is no loss of generality in assuming that an optimal weakly feasible mechanism leaves no rents
to consumers.

Lemma 5 Suppose a weakly feasiblěΓ = {(p̌l, ťl, x̌l)}l∈L satisfies constraints(9), (31)–(34), and
(21) in equality. Then there exists a weakly feasible mechanismΓ̂ = {(p̌l, t̂l, x̌l)}l∈L which yields the
same aggregate surplusSΓ̌ and satisfies the additional constraints(9), (31)– (34)and the constraints
(21), (28), and(29) in equality. Moreover if(28) and (29) are satisfied in equality, then(34) implies
(24)and (25).

The lemma provides the insight that optimal weakly feasiblemechanisms extract all rents from
consumers and assign them as revenues to the entrepreneur. The intuition as to why this rent extraction
is optimal follows directly from the moral hazard problem: by giving all rents in the form of deferred
payments to the entrepreneur, she has the least incentives to run with the money.

As we show in the next lemma, the rent extraction result implies that there is no conflict between
maximizing the aggregate surplus and maximizing the entrepreneur’s ex ante expected profits. In
order to make this statement explicit, define for a mechanismΓ = {(pl, γl)}l∈L = {(pl, tl, xl)}l∈L the
entrepreneur’s ex ante expected profits as

ΠΓ =
∑

(I,c)∈K

ρ(I, c)ΠΓ(I, c),

whereΠΓ(I, c) represents the equilibrium profit in cost state(I, c):

ΠΓ(I, c) =
∑

l∈L

plΠ
γl(I, c);

and the aggregate surplus in the cost state(I, c) as

SΓ(I, c) =
∑

l∈L

plS
xl(I, c).
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Lemma 6 It is without loss of generality to assume that an optimal weakly feasible mechanism̌Γ =

{(p̌l, ťl, x̌l)}l∈L maximizes the entrepreneur’s ex ante expected profitsΠΓ, and exhibitsΠΓ̌(I, c) =

SΓ̌(I, c) for all (I, c).

To summarize, Lemmas 2 to 6 imply that, with respect to the optimal weakly feasible mechanism,
it is without loss of generality to replace the constraints (21)–(29) with the following constraints:

∑

i∈N tali(I, c, v) = xl0(I, c, v)I ∀(l, I, c, v); (36)
∑

i∈N tpli(I, c, v) ≥ c
∑

i∈Nxli(I, c, v) ∀(l, I, c, v); (37)

∃i ∈ N : xli(I, c, v) = 1 ⇒ xl0(I, c, v) = 1 ∀(l, I, c, v); (38)

UΓ
i (I, c|1) = 0 ∀(i, I, c); (39)

UΓ
i (I, c|0) = 0 ∀(i, I, c); (40)
∑

l∈L

∑

v∈Vxl(I,c)

∑

i∈N

plπ(v)(t
p
li(I, c, v)− cxli(I, c, v)) ≥ πΓ(I, c)αI ∀(I, c); (41)

xli(I, c, 0, v-i) = 0 ∀(l, i, I, c, v-i); (42)

SΓ(I, c) ≥ πΓ(I ′, c′)αI ′ ∀(I, c, I ′, c′). (43)

Constraint (43) effectively represents the entrepreneur’s incentive constraint (18). The insight that
the mechanism leaves all rents to the entrepreneur in order to optimally deal with the entrepreneur’s
moral hazard problem, enables us to rewrite this constraintas depending only on output schedules
and not on transfers.

Since the deterministic version of this constraint turns out to play a key role for implementability,
we say that an output schedulex ∈ R

n+1 is affluentif for all (I, c) ∈ K it holds:

Sx(I, c) ≥ Φ(x) ≡ max
(Ĩ ,c̃)∈K

απx(Ĩ , c̃)Ĩ . (44)

We moreover denote by(Ī(x), c̄(x)) a maximizer of the right-hand side of (44). Note that for a
deterministic mechanismΓ = (1, γ1) = (1, x1, t1), constraint (43) amounts to the requirement thatx1

is affluent. This leads to the following result.

Proposition 2 The efficient output schedulex∗ is implementable if and only if it is affluent. If imple-
mentable, a crowdfunding mechanism implements it and thereby maximizes both aggregate surplus
and the entrepreneur’s ex ante expected profits.

The proposition identifies affluency as the crucial condition: it is both necessary and sufficient
for the implementability of the efficient output schedule. The intuition behind this result is that the
entrepreneur needs to receive a rent of at leastΦ(x∗) to induce her to invest properly rather than
employing the combined strategy of misreporting her cost structure and, subsequently, taking the
money and running. Since the consumers ultimately pay this rent, the project then has to generate a
surplus of at leastΦ(x∗) so that the consumers’ participation is still individual rational. The efficient
output schedulex∗, however, only guarantees such a surplus if it is affluent.

More generally, we can interpret the required rentΦ(x) as theagency costsof implementing some
output schedulex. To obtain more insights concerning the extent to which moral hazard and private
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cost information are responsible for these agency costs, note that if the entrepreneur cannot falsify her
cost structure, the output schedulex induces the entrepreneur to invest if

Sx(I, c) ≥ Φm(x) ≡ α · πx(I, c)I.

This suggests interpretingΦm(x) as the agency cost associated with moral hazard and the remaining
part,

Φi(x) ≡ Φ(x)− Φm(x) = α ·
[

πx(Ī(x), c̄(x))Ī(x)− πx(I, c)I
]

≥ 0,

as the agency cost associated with private information about the cost structure.
The proposition further shows that if there is no moral hazard problem (α = 0), the efficient output

schedule is implementable even if the entrepreneur has private information about the cost structure.
In this case, agency costsΦm(x) andΦi(x) are both zero. Hence, private cost information alone does
not lead to distortions in crowdfunding. This observation formalizes the insight of Section 2 that
entrepreneurial moral hazard is a first-order problem in crowdfunding while private cost information
is of second order.

It also demonstrates that the presence of private cost information does not alter the intuition be-
hind the inefficiency result of Proposition 1. Effectively,the existence of a tension between the
entrepreneur’s budget constraint and the moral hazard problem remains solely responsible for the
inefficiencies, and prevents the implementability of the efficient output.

Yet, even though private cost information by itself cannot lead to an inefficiency, it does, however,
intensify the moral hazard problem. This is because with private cost information, consumers have to
grant enough rents to prevent thedoubledeviation of the entrepreneur combining lies about the cost
structure with the intent to take the money and run. In the extreme, this multiplier effect destroys all
potential benefits from crowdfunding. In particular, if there is a cost structure(I, c) in K for which
Sx∗

(I, c) = 0, then an affluent output schedule necessarily exhibitsπx(Ĩ , c̃) = 0 for all (Ĩ , c̃) ∈ K.
This means that crowdfunding is ineffective: for any demandrealization and any cost structure, im-
plementability impliesx0 = 0.

We next address the question of which constrained efficient output schedule is optimal when the
efficient output schedule is not affluent. Note that affluencyis a necessary condition for an imple-
mentable output schedulex. Hence, an intuitive approach toward finding the constrained efficient
output level is to start with the efficient outputx∗ and adapt it to make it affluent. Because the effi-
cient outputx∗ maximizesSx(·) and, hence, the left-hand side of (44), such an adaptation requires a
change inx that lowers its right-hand side. That is, the output schedule should decreaseπx(·). Ef-
fectively, this means lowering the likelihood that the entrepreneur will receive a recommendation to
invest when reporting the cost structure(Ī(x), c̄(x)). Intuitively, this change reduces the profitabil-
ity of the double deviation to misreport the cost structure as (Ī(x), c̄(x)) and subsequently take the
money and run.

The required adaptation ofx∗ implies a downward distortion of the output schedule: the con-
strained efficient mechanism has to recommend the entrepreneur not to invest for some demand reve-
lations that yield a positive surplus. Hence, loweringπx comes at the cost of underinvestment. These
costs are minimized when the mechanism makes the inefficientrecommendation not to invest for
those demand realizations that yield the least surplus. In terms of crowdfunding, this means that the
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crowdfunding targetT is raised above the efficient one, as the demand realizationsclosest to target
yield the least.

The reasoning to adaptx∗ toward some affluent output schedule suggests that also the constrained
efficient mechanism is a crowdfunding mechanism, but with aninefficiently high targetT . Since
the adaptation away fromx∗ comes at a cost, the crowdfunding target should be raised such that
the affluency constraint (44) is just met. Due to the discreteness of the problem, this is generally not
possible with deterministic output schedules. As a consequence, we cannot exclude the possibility that
the optimal mechanism is stochastic and displays the minor form of randomness in that it randomizes
between two crowdfunding schemes such that the affluency constraint is satisfied with equality.

In two steps, we formally confirm that the heuristic arguments presented above are correct. In
a first lemma, we show that optimal weakly feasible mechanisms necessarily exhibit a single cut-
off T for each cost structure(I, c). This implies that crowdfunding mechanisms implement them.
Proposition 3 then shows that these weakly feasible mechanisms are actually (strictly) feasible.

Lemma 7 A weakly feasible mechanism̌Γ = {(p̌l, ťl, x̌l)}l∈L that satisfies(36)–(43) is optimal only
if for each(I, c) ∈ K there exists someT ∈ N such that for all(l, i, v) ∈ L×N×V it holds:

x̌l0(I, c, v) =

{

1 if n(v) > T,

0 if n(v) < T ;
and x̌li(I, c, v) =

{

vi if n(v) > T,

0 if n(v) < T.
(45)

The next proposition shows that any output schedule that satisfies (45), is actually implementable
by a (strictly) feasible mechanism that, in addition to (36)–(43), also satisfies properties (11)–(13).

Proposition 3 If the efficient outputx∗ is not affluent, the optimal allocation is constrained efficient.
A crowdfunding mechanism implements it and thereby also maximizes the entrepreneur’s ex ante
expected profits.

A Appendix

Proof of Lemma 2 Consider a weakly feasible mechanismΓ̌ = {(p̌l, ťl, x̌l)}l∈L with somex̌l that is
not development-efficient. That is,Γ̌ satisfies (21)–(26), and (28)-(30), and there exists a combination
(Ĩ , c̃, v̄) such thaťxl0(Ĩ , c̃, v̄) = 1 and x̌li(Ĩ, c̃, v̄) = 0 for all i ∈ N . Lowering x̌l0(Ĩ , c̃, v̄) to zero
raises the objectiveSΓ by plρ(Ĩ , c̃)π(v̄)Ĩ. We show that this change yields a weakly feasibleΓ′,
and as a resulťΓ is not optimal. To show thatΓ′ is weakly feasible, we show that it satisfies (21)–
(26), and (28)-(30), given thaťΓ satisfies these constraints. Note first that the change does not affect
any of the constraints (24), (25), (28), and (29), while it affects (21) and (22) only for(l, Ĩ , c̃, v̄)
by lowering the right-hand side bỹI. Hence, these constraints remain satisfied. Note further that
becausěxli(Ĩ , c̃, v̄) = 0 for all i ∈ N , (23) is vacuous for(l, Ĩ , c̃, v̄) so that the change does not
affect it. Moreover, the change only affects (26) for(Ĩ , c̃, v̄) by raising the left-hand side and, hence,
it remains satisfied. Finally, the change also keeps (30) satisfied, because it raisesΠΓ̌(I, c), i.e., the
left-hand side, while it lowersP Γ̌(T |Ĩ, c̃), i.e., the right-hand side. Q.E.D.
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Proof of Lemma 3 Fix a weakly feasiblěΓ = {(p̌l, ťl, x̌l)}l∈L with x̌1, . . . , x̌L development-efficient.
Define for each(l, I, c, v):

Kl(I, c, v) ≡
∑

i∈N

ťali(I, c, v)− Ix̌l0(I, c, v).

SinceΓ̌ is weakly feasible, (21) implies thatKl(I, c, v) ≥ 0 for all (l, I, c, v). For any(l, I, c, v),
let nl(I, c, v) ≡

∑

i∈N x̌li(I, c, v) represent the total number of consumers withxi = 1. For any
(l, I, c, v) with x̌l0(I, c, v) = 0, define t̂ali(I, c, v) ≡ 0 and t̂pli(I, c, v) ≡ ťali(I, c, v) + ťpli(I, c, v).
Similarly, for x̌l0(I, c, v) = 1 definet̂ali(I, c, v) ≡ ťali(I, c, v) − x̌li(I, c, v)Kl(I, c, v)/nl(I, c, v) and
t̂pli(I, c, v) ≡ ťpli(I, c, v) + x̌li(I, c, v) Kl(I, c, v)/nl(I, c, v). SinceΓ̌ is weakly feasible anďxl is
development-efficient, it holdsnl(I, c, v) > 0 if and only if x̌l0(I, c, v) = 1. Hence, the transformed
transfer schedulêt is well defined.

By construction,
∑

i∈N t̂ali(I, c, v) = 0 for any(l, I, c, v)with x̌l0(I, c, v) = 0, and
∑

i∈N t̂ali(I, c, v) =
∑

i∈N ťali(I, c, v) − x̌li(I, c, v)Kl(I, c, v)/nl(I, c, v) =
∑

i∈N ťali(I, c, v) − Kl(I, c, v) = I for any
(l, I, c, v) with x̌l0(I, c, v) = 1. Hence,(t̂, x̌l) satisfies (21) in equality. We show that, because
Γ̌ is weakly feasible,̂Γ = {(p̌l, t̂l, x̌l)} is weakly feasible. To see this, note first that—because
t̂ali(I, c, v) + t̂pli(I, c, v) = ťali(I, c, v) + ťpli(I, c, v) for all (l, I, c, v)—the change from̌Γ to Γ̂ leaves all
constraints (22)–(25) and (28)–(29) unaffected. We therefore only have to check that̂Γ remains to
satisfy (26) and (30).

In order to show that̂Γ satisfies (26), first note that, by construction oft̂l, for all (l, I, c) we have

v ∈ V γ̂l(I|I, c) ⇔ ∃T ∈ T Γ̌(I, c) :v ∈ V γ̌l(T |I, c).

Hence, for all(l, I, c) we have

{(v, l)|v ∈ V γ̂l(I|I, c)} = {(v, l)|∃T ∈ T Γ̌(I, c) :v ∈ V γ̌l(T |I, c)}, (A7)

which for all (l, I, c) implies
∑

v∈V γ̂l (I|I,c)

π(v) =
∑

T∈T Γ̌(I,c)

∑

v∈V γ̌l (T |I,c)

π(v).

Multiplying by pl, summing overl, and rearranging terms yields

P Γ̂(I|I, c) =
∑

l∈L

∑

v∈V γ̂l (I|I,c)

plπ(v) =
∑

T∈T Γ̌(I,c)

∑

l∈L

∑

v∈V γ̌l (T |I,c)

plπ(v)

=
∑

T∈T Γ̌(I,c)

P Γ̌(T |I, c).
(A8)

Note that, by definition ofΠΓ
o ,

P Γ̌(T |I, c)ΠΓ̌
o (T |I, c, I, c) =

∑

l∈L

∑

v∈V γ̌l(T |I,c)

plπ(v)Π
γ̌l(I, c|I, c, v).

BecausěΓ satisfies (26), a multiplication of (26) byP Γ̌(T |I, c) yields
∑

l∈L

∑

v∈V γ̌l(T |I,c)

plπ(v)Π
γ̌l(I, c|I, c, v) ≥ P Γ̌(T |I, c)αT ∀T ∈ T Γ̌(I, c).
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Summing overT ∈ T Γ̌(I, c) and noting thatT ≥ I yields after an exchange of sums,
∑

l∈L

∑

T∈T Γ̌(I,c)

∑

v∈V γ̌l (T |I,c)

plπ(v)Π
γ̌l(I, c|I, c, v) ≥

∑

T∈T Γ̌(I,c)

P Γ̌(T |I, c)αI.

Using (A7),Πγ̂l(I, c|I, c, v) = Πγ̌l(I, c|I, c, v), and (A8) yields
∑

l∈L

∑

v∈V γ̂l(I|I,c)

plπ(v)Π
γ̂l(I, c|I, c, v) ≥ P Γ̂(I|I, c)αI.

Dividing both sides byP Γ̂(I|I, c) shows that̂Γ satisfies (26), sinceT Γ̂(I, c) = {I}.
Moreover, sincěΓ satisfies (30) and, for anyT ∈ T Γ̌(I, c), we haveT ≥ I andT Γ̂(I, c) = {I},

it follows for all (I, c, I ′, c′) ∈ K×K that, by (A8),

ΠΓ̂(I, c) = ΠΓ̌(I, c) ≥
∑

T∈T Γ̌(I′,c′)

P Γ̌(T |I ′, c′)αT

≥
∑

T∈T Γ̌(I′,c′)

P Γ̂(T |I ′, c′)αI ′ = P Γ̂(I ′|I ′, c′)αI ′,

which shows that̂Γ satisfies (30).
We conclude that̂Γ is weakly feasible. Because for all(l, I, c, v)we havêxl0(I, c, v) = x̌l0(I, c, v),

x̂li(I, c, v) = x̌li(I, c, v), andt̂ali(I, c, v) + t̂pli(I, c, v) = ťali(I, c, v)+ ťpli(I, c, v), Γ̂ is payoff equivalent
to Γ̌. Finally, because (21) holds in equality forΓ̂, (22) reduces to (31). Q.E.D.

Proof of Lemma 4 To see that any maximizeřΓ = {(p̌l, ťl, x̌l}l∈L of SΓ subject to the constraints (23),
(24), (25), (28), (29), (31), (32), and (33), and (21) in equality, exhibits (34), suppose to the contrary
that it is violated for some(I, c, 0, v-i) ∈ K×V, i.e., for somel, we havěxli(I, c, 0, v-i) = 1. But then
lowering it to 0 and lowerinǧtpli(I, c, 0, v-i) by c raises the objective by̌plρ(I, c)π(0, v-i)c so thatΓ̌
is not optimal if the changed mechanism respects all the constraints. To see that it does so, first note
that the change does not affect (21) and (23) and (29). The combined reduction iňxi(I, c, 0, v-i) and
ťpi (I, c, 0, v-i) also implies that (31) and (32) remain satisfied, while alsoΠ(γ(I ′, c′, v)|I, c) remains
unaffected for any(I, c, I ′, c′) ∈ K2. Hence,Πγ(I, c) remains unaffected and, therefore (33) remains
satisfied. The change further relaxes (24) and (28), since itraises the left-hand side. Finally, the
change also keeps (25) satisfied, because it does not affect its left-hand side, while it lowers the
right-hand side by̌plρ(I, c)πi(v-i)(1− c). Q.E.D.

Proof of Lemma 5 We first prove that if̌Γ = {(p̌l, ťl, x̌l)}l∈L is weakly feasible and satisfies con-
straints (9), (31)–(34), and (21) in equality, then we findt̂l= (t̂al , t̂

p
l ) with t̂al identical to ťal such

that the mechanism̂Γ = {(p̌l, t̂l, x̌l)}l∈L is weakly feasible, satisfies constraints (9), (31)–(34), and
(21) in equality, yields the same surplus, and exhibits (28)binding, ie. U Γ̂

i (I, c|0) = 0 for any
(i, I, c). Define t̂pl as follows: t̂pli(I, c, 0, v-i) = ťpli(I, c, 0, v-i) + U Γ̌

i (I, c|0) and t̂pli(I, c, 1, v-i) =

ťpli(I, c, 1, v-i) + U Γ̌
i (I, c|0). By construction the mechanism̂Γ exhibitsU Γ̂

i (I, c|0) = 0. Because
Γ̂ andΓ̌ exhibit the same output schedules, they generate the same surplus:SΓ̂ = SΓ̌. We next show
that, becausěΓ satisfies (9), (23), (24), (25), (28), (29) (31)–(34), and (21) in equality, so does the
constructed̂Γ. To see this, note first that the change fromΓ̌ to Γ̂ affects only the transferstpi (·) so
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that (9), (21), (23), and (34) remain unaffected and, therefore, satisfied for̂Γ. Becausětpi (I, c, 0, v-i)

andťpi (I, c, 1, v-i) are changed by the same amount, the change lowers the left- and right-hand side of
(24) and (25) also by the same amount so that they remain satisfied. By construction̂Γ satisfies (28),
while (29) follows fromU Γ̂

i (1|1) ≥ U Γ̂
i (0|1) ≥ U Γ̂

i (0|0) =
∑

(I,c)∈K ρ(I, c)U Γ̂
i (I, c|0) = 0, where

the first inequality uses (25), the second inequality usesv1 = 1 > v0 = 0, and the final equality uses
(28). Finally note that, becausěΓ satisfies (28), it holdsU Γ̌

i (I, c|0) ≥ 0 so that the change from̌Γ to
Γ̂ only raises the transfers, i.e.,t̂pi (I, c, v) ≥ ťpi (I, c, v). Hence, the constraints (31), (32), and (33) are
relaxed so that̂Γ remains to satisfy them.

To see that for a weakly feasiblěΓ that satisfies (9), (23), (24), (25), (28), (29) (31)–(34), and
(21) in equality, we can also find such a weakly feasibleΓ̄ for which, in addition, both (28) and
(29) bind, note first that we already established that givenΓ̌, there exists such a mechanism̂Γ for
which (28) binds, yielding the same aggregate surplus asΓ̌. It therefore remains to show that given
this Γ̂ there exists such āΓ for which, in addition, (29) is binding, ie.U Γ̄

i (I, c, |1) = 0 for all
(i, I, c), and which yields the same surplus. To construct such aΓ̄, takeΓ̄ as identical tôΓ except
that t̄pli(I, c, 1, v-i) = t̂pli(I, c, 1, v-i) + U Γ̂

i (I, c, |1). By construction,̄Γ satisfies (29). Note moreover
that, becausêΓ satisfies (29), it holdsU Γ̂

i (I, c|1) ≥ 0 so thatΓ̄ differs from Γ̂ only in that the ex post
transferstp are higher. Hence, if̂Γ satisfies (9), (23), (31)–(34), and (21) in equality, then alsoΓ̄.

Finally, note that (34) impliesU Γ̄
i (0|1) = U Γ̄

i (0|0). Together with (28) and (29) binding, this
implies U Γ̄

i (1|1) = 0 andU Γ̄
i (0|1) = U Γ̄

i (0|0) = 0, and therefore (25) is satisfied (in equality).
Moreover, (24) follows fromU Γ̄

i (0|0) = 0 = U Γ̄
i (1|1) ≥ U Γ̄

i (1|0). Hence, (34), with (28) and (29)
binding, implies (24) and (25). Q.E.D.

Proof of Lemma 6 Following Lemma 5, we may assume without loss of generality that an optimal
weakly feasible mechanism̌Γ satisfies (28) and (29) in equality. That is, for all(i, I, c) it holds
U Γ̌
i (I, c|0) = 0 andU Γ̌

i (I, c|1) = 0. It then follows for any(I, c) that

ΠΓ̌(I, c) =
∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌l[ť
a
li(I, c, v) + ťpli(I, c, v)]

−
∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌lx̌li(I, c, v)c−
∑

v∈V

∑

l∈Lπ(v)p̌lx̌0l(I, c, v)I

=
∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌lx̌li(I, c, v)vi

−
∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌lx̌li(I, c, v)c−
∑

v∈V

∑

l∈Lπ(v)p̌lx̌0l(I, c, v)I = SΓ̌(I, c);

where the second equality follows from

∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌l[ť
a
li(I, c, v) + ťpli(I, c, v)]

=
∑

i∈N

∑

(vi,v-i)∈V
π(vi, v-i){

∑

l∈Lp̌l[ť
a
li(I, c, v) + ťpli(I, c, v)]}

=
∑

i∈N

[

∑

(0,v-i)∈V
π(0, v-i)

{
∑

l∈Lp̌l[ť
a
li(I, c, 0, v−i) + ťpli(I, c, 0, v−i)]

}

+
∑

(1,v-i)∈V
π(1, v-i)

{
∑

l∈Lp̌l[ť
a
li(I, c, 1, v−i) + ťpli(I, c, 1, v−i)]

}

]

=
∑

i∈N

[

πi(0)
∑

v-i∈V-i
πi(v-i)

{
∑

l∈Lp̌l[ť
a
li(I, c, 0, v−i) + ťpli(I, c, 0, v−i)]

}

+πi(1)
∑

v-i∈V-i
πi(v-i)

{
∑

l∈Lp̌l[ť
a
li(I, c, 1, v−i) + ťpli(I, c, 1, v−i)]

}]

=
∑

i∈N

[

πi(0)
{

∑

v-i∈V-i

∑

l∈Lπi(v-i)p̌lx̌li(I, c, 0, v−i) · 0− U Γ̌
i (I, c|0)

}
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+πi(1)
{

∑

v-i∈V-i

∑

l∈Lπi(v-i)p̌lx̌li(I, c, 1, v−i) · 1− U Γ̌
i (I, c|0)

}]

=
∑

i∈N

[

∑

(0,v-i)∈V
π(0, v-i)

∑

l∈Lp̌lx̌li(I, c, 0, v−i) · 0

+
∑

(1,v-i)∈V
π(1, v-i)

∑

l∈Lp̌lx̌li(I, c, 1, v−i) · 1
]

=
∑

i∈N

∑

(vi,v-i)∈V
π(vi, v-i)

∑

l∈Lp̌lx̌li(I, c, vi, v−i)vi

=
∑

v∈V

∑

i∈N

∑

l∈Lπ(v)p̌lx̌li(I, c, v)vi.

Q.E.D.

Proof of Proposition 2 If the efficient output schedulex∗ is implementable, then the optimal feasible
mechanism̆Γ must implement it, because, by definition, no other output schedule yields a larger
surplus. Moreover, the proof of Proposition 1 already notedthat, becausex∗ is deterministic, it is
implementable if and only if there exists a transfer schedule t̆ such that the deterministic mechanism
Γ̆ = (1, γ̆) = (1, t̆, x∗) is feasible.

Note that for deterministic mechanisms, constraint (43) simplifies to

Sx∗

(I, c) ≥ πx∗

(I ′, c′)αI ′ ∀(I, c, I ′, c′) ∈ K×K.

It is therefore immediate that affluency is a necessary condition for the implementability ofx∗ by a
weakly feasible mechanism̌Γ and, hence, also for the implementability by a (fully) feasible mecha-
nismΓ̆.

It remains to prove that affluency is also a sufficient condition for the implementability ofx∗. We
will do so constructively and, under the assumption thatx∗ is affluent, construct an explicit crowd-
funding mechanism that implements it.

Becausex∗ is development-efficient, it holdsn(v) =
∑

i∈N vi > 0 for anyx∗
0(I, c, v) = 1 so that

definingť = (ťa, ťp) as

(ťai (I, c, v), ť
p
i (I, c, v)) ≡

{

(viI/n(v), vi[1− I/n(v)]) if x∗
0(I, c, v) = 1,

(0, 0) otherwise,

yields a well-defineďt. For T (I, c) = I/(1 − c), the output schedulex∗ and transferšt satisfy
(10)–(13) and the deterministic mechanism̌Γ = (1, γ̌) = (1, ť, x∗) is, therefore, a crowdfunding
mechanism.

As we next show, given thatx∗ is affluent, the crowdfunding mechanism̌Γ satisfies constraints
(36)–(43) so that it is weakly feasible and, moreover, (27) so that it is also feasible.

To see (36), note forx∗
0(I, c, v) = 0, it follows

∑

i∈N ťai (I, c, v) = 0 = x∗
0(I, c, v)I. Moreover,

becausex∗ is development-efficient it follows forx∗
0(I, c, v) = 1 that

∑

i∈N ťai (I, c, v) =
∑

i∈N viI/n(v) =
[
∑

i∈N vi
]

I/
∑

jvj = I = x∗
0(I, c, v)I.

Note that (38) holds, becausex∗ is development-feasible. To see (39) and (40), note that, because
x∗ is development-efficient,

U γ̌
i (vi|I, c, vi) =

∑

v-i∈V-i

πi(v-i)[vix
∗
i (I, c, 1)− ťai (I, c, 1)− ťpi (I, c, 1)] = 0.
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To see (37), note that, sincex∗ is development-efficient, forx∗
0(I, c, v) = 0we have

∑

i∈N ťpi (I, c, v) =

0 =
∑

i∈N x∗
i (I, c, v)c. Moreover, becausex∗ is development-efficient andx∗

0(I, c, v) = 1 implies
n(v) ≥ I/(1− c), for x∗

0(I, c, v) = 1 it follows that

∑

i∈N ťpi (I, c, v) =
∑

i∈N vi[1− I/n(v)] = n(v)− I ≥ cn(v) = c
∑

i∈Nx∗
i (I, c, v).

To see (39), note

U Γ̌
i (I, c|1) = U γ̌

i (1|I, c, 1)

=
∑

v-i∈V-i

πi(v-i)Ui(γ̌(I, c, 1, v-i)|1)

=
∑

v-i∈V-i

πi(v-i)[x
∗
i (I, c, 1, v-i)− ťai (I, c, 1, v-i)− ťpi (I, c, 1, v-i)]

=
∑

v-i:x∗

0
(I,c,1,v-i)=1

πi(v-i)x
∗
i (I, c, 1, v-i)[1− 1] = 0,

while (40) follows directly from the observation thatťai (I, c, 0, v−i) = ťpi (I, c, 0, v−i) = 0.
To see (41), note that sincex∗ is development efficient and affluent, we have

∑

v∈Vx∗(I,c)

∑

i∈N

π(v)(ťpi (I, c, v)− cx∗
i (I, c, v))

=
∑

v∈Vx∗(I,c)

π(v)
[

∑

i:x∗

i (I,c,v)=1

(1− I/n(v)− c)
]

=
∑

v∈Vx∗(I,c)

π(v)[n(v)(1− c)− I]

=
∑

v∈V

π(v)
[

n
∑

i∈N

(vi − c)x∗
i (I, c, v)− Ix∗

0(I, c, v)
]

= Sx∗

(I, c) ≥ πx∗

(I, c)αI.

Finally, (43) follows becausex∗ is affluent andx∗ satisfies (42) by definition. Sincex∗ is efficient,
it also satisfies (42). Hence,γ̌ satisfies all constraints (36)–(43) and, therefore, is weakly feasible.

To see (27), note that, becausex∗
0(I

′, c′, v) = 0 impliesΠγ̌(I ′, c′|I, c, v) = 0, (27) holds if

ΠΓ̌(I, c) ≥ πx∗

(I ′, c′)max{ΠΓ̌
o (T |I, c, I

′, c′), αI ′}.

That is, it holds if

ΠΓ̌(I, c) ≥ πx∗

(I ′, c′)ΠΓ̌
o (I

′|I, c, I ′, c′) andΠΓ̌(I, c) ≥ πx∗

(I ′, c′)αI ′.

The latter follows, since, by Lemma 6,ΠΓ̌(I, c) = Sx∗

(I, c) andx∗ is affluent. To see also the former
inequality, note, becausex∗

0(I
′, c′, v) = 0 impliesΠγ̌(I ′, c′|I, c, v) = 0, we have

πx∗

(I ′, c′)ΠΓ̌
o (I

′|I, c, I ′, c′) = πx∗

(I ′, c′)
∑

v∈V

ηΓ̌(v, 1|I ′, I ′, c′)Πγ̌(I ′, c′|I, c, v)

=
∑

v∈Vx∗(I′,c′)

π(v)Πγ̌(I ′, c′|I, c, v) =
∑

v∈V

π(v)Πγ̌(I ′, c′|I, c, v)

=
∑

v∈V

π(v)Π(γ̌(I ′, c′, v)|I, c)
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=
∑

v∈V

π(v)
{

∑

i∈N

[ťai (I
′, c′, v) + ťpi (I

′, c′, v)− x∗
i (I

′, c′, v)c]− Ix∗
0(I

′, c′, v)
}

=
∑

v∈V

π(v){x∗
0(I

′, c′, v)[n(v)(1− c)− I]}

≤
∑

v∈V

π(v){x∗
0(I, c, v)[n(v)(1− c)− I]} = S γ̌(I, c) = Πγ̌(I, c) = ΠΓ̌(I, c),

where the inequality follows becausex∗ is efficient. Q.E.D.

Proof of Lemma 7 The proof consists of 3 steps. We first prove that, for an optimal Γ̌ = {(p̌l, ťl, x̌l)}l∈L
satisfying (36)–(43), for all(l, I, c, v) ∈ L×K×V, it holds

x̌l0(I, c, v) = 1 ⇒ x̌li(I, c, v) = vi. (A9)

Second, we prove that if̌Γ is optimal, then for each(l, I, c) ∈ L×K there exists aT ∈ N such that
(10) holds. In a final step, we prove thatT is independent ofl so that for each(I, c) ∈ K there exists
aT ∈ N such that (10) holds for anyl ∈ L.

Step 1: Consider ǎΓ = {(p̌l, ťl, x̌l)}l∈L that satisfies (36)–(43), but for which condition (A9)
is not satisfied. Hence, it holds that for some(l, I, c, v) ∈ L×K ×V that x̌l0(I, c, v) = 1 but
x̌li(I, c, v) 6= vi ∈ {0, 1}. Constraint (42) then impliesvi = 1 so thatx̌li(I, c, v) = 0. It then
follows that by raisinǧxli(I, c, v) to 1, the objectiveSΓ̌ is increased by̌plρ(I, c)π(v)(1 − c). By
accompanying the raise iňxli(I, c, v) by a raise iňtpli(I, c, v) of 1 a changed mechanism obtains that
remains to respect all constraints (36)–(43). It is therefore also weakly feasible, and henceΓ̌ is not
optimal.

Step 2: Next we show that if̌Γ is optimal then i)̌xl0(I, c, v̂) = 1 implies x̌l0(I, c, v̄) = 1 for any
v̄ such thatn(v̄) > n(v̂), and ii) x̌l0(I, c, v̂) = 0 implies x̌l0(I, c, v̄) = 0 for anyn(v̄) < n(v̂). From
this it then directly follows that, for any(l, I, c) ∈ L×K, there is aT ∈ N such that, for allv ∈ V, it
holdsx0l(I, c, v) = 1 if n(v) > T andx0l(I, c, v) = 0 if n(v) < T .

To see i) and ii), assume to the contrary that one of the two conditions does not hold, meaning
there exists an(l̄, Ĩ , c̃) ∈ L×K and v̄, v̂ ∈ V with n(v̄) < n(v̂) such thatx̌l̄0(Ĩ , c̃, v̄) = 1 and
x̌l̄0(Ĩ, c̃, v̂) = 0. Sincen(v̄) < n(v̂) there exists a bijectionj : N → N such that̄vi = 1 implies
v̂j(i) = 1. To show thaťΓ is not optimal, we distinguish three cases: 1.π(v̄) = π(v̂); 2. π(v̄) < π(v̂),
and 3.π(v̄) > π(v̂).

Case 1: Adapt the mechanism̌Γ to the mechanism̂Γ by only replacingγ̌l̄ by the mechanism
γ̂ = (t̂, x̂), which is identical tǒγl̄ for all (I, c, v) ∈ K×V except for(Ĩ , c̃, v̄) and(Ĩ , c̃, v̂). Hence,
for all (I, c, v) ∈ (K×V)\{(Ĩ , c̃, v̄), (Ĩ , c̃, v̂)}, it holds t̂(I, c, v) = ťl̄(I, c, v) ∈ R

2n andx̂(I, c, v) =
x̌l̄(I, c, v) ∈ {0, 1}n+1. For all i ∈ N , let x̂0(Ĩ , c̃, v̄) = x̂i(Ĩ, c̃, v̄) = 0, t̂ai (Ĩ , c̃, v̄) = ťa

l̄i
(Ĩ , c̃, v̄) −

x̌l̄i(Ĩ , c̃, v̄)Ĩ/n(v̄), andt̂pi (Ĩ, c̃, v̄) = ťp
l̄i
(Ĩ , c̃, v̄)− x̌l̄i(Ĩ , c̃, v̄)[1− Ĩ/n(v̄)]. Moreover, for alli ∈ N , let

x̂0(Ĩ , c̃, v̂) = 1 andx̂j(i)(Ĩ, c̃, v̂) = x̌l̄i(Ĩ, c̃, v̄), t̂
a
j(i)(Ĩ , c̃, v̂) = ťa

l̄j(i)
(Ĩ , c̃, v̂) + x̂j(i)(Ĩ , c̃, v̂)Ĩ/n(v̄), and

t̂p
j(i)(Ĩ, c̃, v̂) = ťp

l̄j(i)
(Ĩ , c̃, v̂) + x̂j(i)(Ĩ , c̃, v̂)[1 − Ĩ/n(v̄)]. Becauseπ(v̄) = π(v̂), it holdsπx̌l̄(Ĩ , c̃) =

πx̂(Ĩ, c̃) and, therefore,πΓ̌(Ĩ , c̃) = πΓ̂(Ĩ , c̃).
Case 2: Consider the mechanismΓ̂ = {(p̂l, γ̌l)}l∈{0,...,L}, which, in addition to the same collec-

tion of deterministic mechanismšγl as Γ̌ but with γ̌l̄ exchanged by the deterministic mechanismγ̂
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as defined in Case 1, also contains the deterministic mechanism γ̌0 = (ť0, x̌0). This deterministic
mechanism is identical tǒγl̄ for all (I, c, v) ∈ K×V except for(Ĩ , c̃, v̄). Hence, for all(I, c, v) ∈

K×V\{(Ĩ , c̃, v̄)}, let ť0(I, c, v) = ťl̄(I, c, v) ∈ R
2n and x̌0(I, c, v) = x̌l̄(I, c, v) ∈ {0, 1}n+1. For

all i ∈ N , let x̌00(Ĩ , c̃, v̄) = x̌0i(Ĩ, c̃, v̄) = 0, ťa0i(Ĩ, c̃, v̄) = ťa
l̄i
(Ĩ , c̃, v̄) − x̌l̄i(Ĩ, c̃, v̄)Ĩ/n(v̄), and

ťp0i(Ĩ, c̃, v̄) = ťp
l̄i
(Ĩ, c̃, v̄) − x̌l̄i(Ĩ , c̃, v̄)[1 − Ĩ/n(v̄)]. For Γ̂ we further set̂pl = p̌l for all l ∈ L\{l̄},

p̂l̄ = p̌l̄π(v̄)/π(v̂) < p̌l̄ and p̂0 = p̌l̄[π(v̂) − π(v̄)]/π(v̂) ∈ (0, 1). Hence,
∑L

l=0 p̂l = 1. Note that
πΓ̌(Ĩ , c̃) =

∑

l∈L p̌lπ
x̌l(Ĩ , c̃) =

∑

l∈{0,...,L} p̂lπ
x̂l(Ĩ , c̃) = πΓ̂(Ĩ , c̃).

Case 3: Consider the mechanismΓ̂ = {(p̂l, γ̌l)}l∈{0,...,L}, which, in addition to the same collec-
tion of deterministic mechanismšγl as Γ̌ but with γ̌l̄ exchanged by the deterministic mechanismγ̂
as defined in Case 1, also contains the deterministic mechanism γ̌0 = (ť0, x̌0). This deterministic
mechanism is identical tǒγl̄ for all (I, c, v) ∈ K×V except for(Ĩ , c̃, v̂). Hence, for all(I, c, v) ∈

(K×V)\{(Ĩ , c̃, v̂)}, let ť0(I, c, v) = ťl̄(I, c, v) ∈ R
2n and x̌0(I, c, v) = x̌l̄(I, c, v) ∈ {0, 1}n+1.

For all i ∈ N , let x̌00(Ĩ , c̃, v̂) = 1 and x̌0j(i)(Ĩ, c̃, v̂) = x̌l̄i(Ĩ , c̃, v̄), ť
a
0j(i)(Ĩ , c̃, v̂) = ťa

l̄j(i)
(Ĩ , c̃, v̂) +

x̌0j(i)(Ĩ , c̃, v̂)Ĩ/n(v̄), andťp0j(i)(Ĩ , c̃, v̂) = ťp
l̄j(i)

(Ĩ , c̃, v̂) + x̌0j(i)(Ĩ , c̃, v̂)[1 − Ĩ/n(v̄)]. For Γ̂, we further

setp̂l = p̌l for all l ∈ L\{l̄}, p̂l̄ = p̌l̄π(v̂)/π(v̄) < p̌l̄ andp̂0 = p̌l̄[π(v̄)− π(v̂)]/π(v̄) ∈ (0, 1). Hence,
∑L

l=0 p̂l = 1. Note thatπΓ̌(Ĩ, c̃) =
∑

l∈L p̌lπ
x̌l(Ĩ, c̃) =

∑L

l=0 p̂lπ
x̂l(Ĩ , c̃) = πΓ̂(Ĩ , c̃).

In all 3 cases, we obtain an adapted mechanismΓ̂ that satisfies (36)–(43), but, because
∑

i∈N xi(Ĩ, c̃, v̂) =

n(v̄) < n(v̂), it does not satisfy (A9). According to step 1, the mechanismΓ̂ is not optimal. Since
SΓ̌ = SΓ̂, this means that alsǒΓ is not optimal.

Step 3: Due to step 2, if̌Γ is optimal, then, for any(l, I, c) ∈ L×K, there exists an integer
Tl(I, c) ∈ N such that ifxl0(I, c, v1) 6= xl0(I, c, v2) andn(v1) = n(v2), thenn(v1) = n(v2) =

Tl(I, c). Moreover,Tl(I, c) is a cutoff in the sense thatxl0(I, c, v) = 0 for all v ∈ V such that
n(v) < Tl(I, c), andxl0(I, c, v) = 1 for all v ∈ V such thatn(v) > Tl(I, c).

We next show that for an optimaľΓ there is a cutoffTl(I, c) that is independent ofl. That is,
we show that ifxl̄0(Ĩ , c̃, v̄1) 6= xl̄0(Ĩ , c̃, v̄2), n(v̄1) = n(v̄2) = n(v̄), xl̂0(Ĩ , c̃, v̂1) 6= xl̂0(Ĩ, c̃, v̂2) and
n(v̂1) = n(v̂2) = n(v̂), thenn(v̄) = n(v̂). By step 2 it then follows thatT (Ĩ, c̃) = n(v̄) = n(v̂) is
such anl-independent cutoff.

To see this, suppose to the contrary thatn(v̄) 6= n(v̂) and, without of loss of generality, assume
n(v̄) < n(v̂). This implies a bijectionj : N → N such that̄vi = 1 implies v̂j(i) = 1. By step 1,
optimality of Γ̌ impliesx̌l̄i(Ĩ , c̃, v̄) = vi, andx̌l̂0(Ĩ, c̃, v̂) = 0 impliesx̌l̂i(Ĩ , c̃, v̂) = 0.

Consider the (deterministic) direct mechanismγ̌l̄′ that is identical toγ̌l̄ except for(Ĩ , c̃, v̄) in
that x̌l̄′0(Ĩ , c̃, v̄) = 0 and, for all i ∈ N , it holds x̌l̄′i(Ĩ , c̃, v̄) = 0, ťa

l̄′i
(Ĩ , c̃, v̄) = ťa

l̄i
(Ĩ , c̃, v̄) −

x̌l̄i(Ĩ , c̃, v̄)Ĩ/n(v̄), andťp
l̄′i
(Ĩ , c̃, v̄) = ťp

l̄i
(Ĩ , c̃, v̄)− x̌l̄i(Ĩ , c̃, v̄)[1− Ĩ/n(v̄)].

Consider the (deterministic) direct mechanismγ̌l̂′ which is identical tǒγl̂ except for(Ĩ , c̃, v̂) in that
x̌l̂′0(Ĩ , c̃, v̂) = 1 and, for alli ∈ N , it holdsx̌l̂′j(i)(Ĩ , c̃, v̂) = x̌l̄i(Ĩ , c̃, v̄), ť

a

l̂′j(i)
(Ĩ , c̃, v̂) = ťa

l̂j(i)
(Ĩ , c̃, v̂)+

x̌l̄′j(i)(Ĩ , c̃, v̄)Ĩ/n(v̄), and, similarly,̌tp
l̂′j(i)

(Ĩ , c̃, v̂) = ťp
l̂j(i)

(Ĩ , c̃, v̂) + x̌l̄′j(i)(Ĩ , c̃, v̄)[1− Ĩ/n(v̄)].

Once more, we distinguish three cases: 1.π(v̄) = π(v̂); 2.π(v̄) < π(v̂), and 3.π(v̄) > π(v̂).
Case 1: We adapt the mechanismΓ̌ to Γ̂ by exchanginǧγl̄ by γ̌l̄′ andγ̌l̂ by γ̌l̂′. It then follows that,

becauseπ(v̄) = π(v̂), we haveπΓ̌(Ĩ , c̃) =
∑

l∈L π
x̌l(Ĩ , c̃) =

∑

l∈L π
x̂l(Ĩ , c̃) = πΓ̂(Ĩ, c̃).

Case 2: We adapt the mechanismΓ̌ to Γ̂ by exchanginǧγl̄ by γ̌l̄′ and γ̌l̂ by γ̌l̂′. In addition, we
add to the collection̂Γ the mechanism̌γ0 = (ť0, x̌0) as defined in Case 2 above. ForΓ̂ we further set
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p̂l = p̌l for all l ∈ L\{l̂}, p̂l̂ = p̌l̂π(v̄)/π(v̂) < p̌l̂ andp̂0 = p̌l̂[π(v̂) − π(v̄)]/π(v̂) ∈ (0, 1). Hence,
∑L

l=0 p̂l = 1. Note thatπΓ̌(Ĩ, c̃) =
∑

l∈L p̌lπ
x̌l(Ĩ, c̃) =

∑

l∈{0,...,L} p̂lπ
x̂l(Ĩ , c̃) = πΓ̂(Ĩ , c̃).

Case 3: We adapt the mechanismΓ̌ to Γ̂ by exchanginǧγl̄ by γ̌l̄′ and γ̌l̂ by γ̌l̂′. In addition, we
add to the collection̂Γ the mechanism̌γ0 = (ť0, x̌0) as defined in Case 2 above. ForΓ̂ we further set
p̂l = p̌l for all l ∈ L\{l̂}, p̂l̂ = p̌l̂π(v̄)/π(v̂) < p̌l̂ andp̂0 = p̌l̂[π(v̂) − π(v̄)]/π(v̂) ∈ (0, 1). Hence,
∑L

l=0 p̂l = 1. Note thatπΓ̌(Ĩ, c̃) =
∑

l∈L p̌lπ
x̌l(Ĩ, c̃) =

∑

l∈{0,...,L} p̂lπ
x̂l(Ĩ , c̃) = πΓ̂(Ĩ , c̃).

In all 3 cases, we obtain an adapted mechanismΓ̂ that satisfies (36)–(43), but, because
∑

i∈N xl̂i(Ĩ , c̃, v̂) =

n(v̄) < n(v̂), it does not satisfy (A9). According to Lemma 7, the mechanism Γ̂ is not optimal. Since
SΓ̌ = SΓ̂, alsoΓ̌ is not optimal. Q.E.D.

Proof of Proposition 3 By Lemmas 2–6, we can assume that the optimal weakly feasiblemechanism
Γ̌ = {(p̌l, ťl, x̌l)}l∈L satisfies (36)–(43). By Lemma 7, we can moreover assume that for an optimal
weakly feasible mechanism, there is a functionT :K → N that satisfies (10). Lemma 7 implies that for
any(l, i, I, c, v) ∈ L×N×K×V such thatn(v) = T (I, c), we have(x̌0(I, c, v), x̌li(I, c, v)) = (0, 0) or
(x̌0(I, c, v), x̌li(I, c, v)) = (1, vi). Hence, the optimal weakly feasible mechanism specifies a unique
output schedulex(I, c, v) ∈ {0, 1}n+1 for any(I, c, v) such thatn(v) 6= T (I, c), and it mixes between
at most two output schedules whenn(v) = T (I, c).

With these observations, the proposition then follows by noting that we can complete any col-
lection {(p̂l, x̂l)}l∈L that satisfies the above conditions by a transfers schedule{t̂l}l∈L as defined
by (11)–(13). The resulting mechanism̂Γ = {(p̂l, t̂l, x̂l)}l∈L then satisfies (36)–(43) and the con-
straints (27). It is therefore not only weakly feasible but also (strictly) feasible. We conclude that any
constrained efficient allocation is implementable by a crowdfunding mechanism and maximizes the
entrepreneur’s ex ante profits. Q.E.D.
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