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Proofs from Section I
Proof of Lemma 1

By assumption Cy < Y;. Therefore, the resource constraint Y; = Cy + I o
ensures Iy > 0. The capital accumulation equation is K; = I} — § K; implying
KL
9K = K, K,
On a BGP gg is constant meaning that since I; > 0 the growth rates of I and
K must be the same. Thus, g; = gk
Differentiating the resource constraint and rearranging gives

It/Qt

=0.
Y;

(9c — gy)C + (91 — 94 — 9v)

Y,

le_ct
Y:

Substituting for ¥+ in this expression and using g; = gk we have

C,
(9 — 9¢ — gc)Y—gK 9g — 9v-
t

If both sides of this expression equals zero we immediately obtain gy = go =
9K —gq as claimed in the lemma. Otherwise, since the growth rates are constant
on a BGP it must be that C' and Y grow at the same rate implying gy = gc.
But then the resource constraint implies M =1- % is constant and, since

g1 = gk, this ensures gy = gk — gq4- Therefore the lemma holds.
Proof of Proposition 1

Since factors are paid their marginal products the capital share is 0 =
K Fg (A4Ky, By Ly, s¢) /Y. Note also that because F' has constant returns to
scale in its first two arguments FK (Ath, BtLt, St) = AtFl (Ath, BtLt, St) =
AyFy(kg, 1, 5;) where k; = AyKy/ByL;.' Therefore, on a BGP where the capital
share is positive and constant we have?

ITo avoid possible confusion, note that we use Fy (-) and Fy, (-) to denote the partial derivatives of
F () with respect to K and L, respectively, while Fi () and F> (-) denote the partial derivatives of F (-)
with respect to its first and second arguments, respectively.

2Instead of assuming constant factor shares, this expression can also be obtained by assuming the
rental price of capital R; declines at rate gq. To see this differentiate Ry = A Fy (kt, 1, s¢).
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)

Ok dlog Fy (ki) 1, s¢) dlog Fy (ki, 1, s¢)
0 = — = — —
P ga+ 9k — gy + 7 Tk + a
where the final equality uses Lemma 1 and yx = ga + gq4-
Taking the derivative of F} and using kF1; + F12 = 0 we have

Fiok Fis 1 Fk  Fié

_ Fuki + P Fok _
VK P F k F  oxLFk B

where the final equality uses o1, = (F1F»)/(FFi2). Since 1 — 0 = Fy/F this

can be rearranged to give

ks Fig8
1 =(1—-0r)= — )
( ) OKLVYK ( K) i OKL 2

To simplify (1) it will be useful to derive an expression for Fi4/F;. Note that

Fr ogr F

(2) FKS 1 FS
OK | Fr(AiKy, BiLy,sy)|  Fr 2 F ‘

0 [Fs(AiKy,BiLy,s¢) |  Frxs FrxlFs Fg (

Bs _ Fis Fy, O[Fs/Fy T i Plugging this into (1)

Rearranging, we have 7= = e = Fe oK Py ot
gives

Ky Fp 0[F,/F). F.3
3 =(1-0g)—— — — )
(3) oxLYr = (1 —0k) Py R

Finally, differentiating the production function Y; = F(A; K, By Ly, s¢) yields

Fss

gv =0k (9a+9x) + (1= 0x) (95 + 1) + —
ke Fib
p— —1_9 I .
ga+ gk — ( K)kt+ fa

Using Lemma 1 and g = g4 + g4 this implies
ke Fisi
=(1-0g)— — .
Tr = ( K) i Ia

Substituting this expression into (3) gives equation (1). This completes the

proof.



Generalization of Proposition 1

Proposition 1 assumes technical change is factor augmenting, but we can
generalize the proposition by relaxing this restriction. Suppose the production
function is Y = F (K, L, s;t) where technical change is captured by the depen-
dence of F on t. We can decompose technical change into a Harrod-neutral
component and a non-Harrod-neutral residual. Technical change is Harrod-
neutral if, holding the capital-output ratio and schooling fixed, it does not
affect the marginal product of capital (Uzawa 1961). Therefore, we can define
the non-Harrod-neutral component of technical change as the change in the
marginal product of capital for a given capital-output ratio and schooling.

Let ¢ be the capital-output ratio and define & (¢, s;t) by

i (i, 85t)
F (R (p,s3t),1,851)
R(¢, s;t) is the capital-labor ratio that ensures the capital-output ratio equals
o given s and t. Differentiating this expression with respect to ¢ while holding

s and ¢ constant and using g = /%Fl/ F implies

Fot 1 F
K 1—9KF

When technical change is Harrod-neutral % log F} (R (p,s5t),1,8t) =
r%t% log B+ % log Fy = 0. Thus, we define the non-Harrod-neutral component
of technical change ¥ by

logpl (I%(@?Svt)vlvsvt)—i_aatlogﬁl (’%(%8;75)7178;75) :

_ .0

From this definition we have

U= gy | DAL T ’
P i)

Fll_eKF Fl ’

B Py
5 = = —OKL =,
(5) 7 7
where the second line follows from (4) and the third line uses /%FH = —Flg, the
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definition of o, and 1 — O = FQ / F. Note that in the case where technical
change is factor augmenting we have F(K, L,s;t) = F(AK, B;L,s) which
implies ¥ = (1 — o kp1)g4.

Using the expression for ¥ given in (5) we obtain the following generalization
of Proposition 1.

~

PROPOSITION 3:  Suppose the production function is Y = F (K, L,s;t) and
that investment-specific technological progress occurs at constant rate gq. If there
exists a BGP along which the income shares of capital and labor are constant and
strictly positive when factors are paid their marginal products, then

fy O | B/ Fr]
(1—0okr)ge+ ¥ =0krL S

P K s.

To avoid repetition, we omit the proof of Proposition 3 since it follows the same
series of steps used to prove Proposition 1.
Suppose either s is constant as in Corollary 1 or the production function

can be written in terms of a measure of human capital H(L,s,t) implying
o|Es/E . " .. .
[ a[/( 1] = 0 as in Corollary 2. Then Proposition 3 implies a BGP with constant

and strictly positive factor shares can exist only if (1 —oxr)gy + ¥ = 0. Thus,
a BGP with o <1, g, > 0 and ¥ > 0 is possible only if technical change
that affects the production function is Harrod-neutral and either the elasticity
of substitution between capital and labor equals one or there is no investment-
specific technological change.

Proofs from Section II
Implications of Assumption 1

Taking the partial derivative of the production function with respect to s
gives
D'(s)

F,=— LF; —aKF,
s D(S) [b L—a K]u

and from this we obtain

B, <Fs>__D’(s) [ Fi  KFgg , KFxFrg

oK \Fp, D) | F, I F?
Since F' exhibits constant returns to scale in K and L we have ' = K Fyx + LFT,
and K Frxx = —LFpi. Using these results in the expression above we have
0 [ Fs D'(s) FFrg (1 )
— =] =- a -0
oK \ Fp D(s)~ F? KL
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which is strictly positive under Assumption 1 since a > 0, oy < 1 and
D'(s) <0.

F is strictly log supermodular in K and s if and only if Fx,F — FgFs > 0.
Using Assumption 1 to compute these derivatives gives

D'(s)
Fr ' — FgFy = _D(S) (a—i—b)LFFLK (1 —O'KL).

Since a+b > 0 and D’(s) < 0 it follows that under the functional form restric-
tion in Assumption 1 the production function F' is strictly log supermodular
in K and s if and only if o < 1.

Second Order Condition of the Planner’s Problem

The planner chooses z; to maximize Y; which is equivalent to choosing z; to
maximize z; °h(z). The first order condition is
—Oztfgflh(zt) + zfahl(zt) =0,

and the second order condition is

(z*)fg*lh(z*)dizé’h(z*) < 0.

Since &p(2) is strictly decreasing in z if and only if ok < 1 it follows that the
second order condition is satisfied if and only if ox < 1.

Transition Dynamics of the Planner’s Problem

After solving for optimal schooling we can write the planner’s problem as

max Nte_p(t_to)tidt
{ei} Jio 1—n
subject to
Ky = q; [Yi(Ky) — Niey] — 0K,

where Y;(K%) is given by (3) with z; = 2*.
Solving this problem we find the planner chooses a consumption path that
satisfies

¢ +4+ Oq: Yi(K,
(6) G __p+o+ge baillG)
Ct Ui n K

Now let Y; = e*gY(t*tO)Y}(Kt), C, = e 9t N,¢; and K; = e 9x(t-t0) [,
where gy is given by part (i) of Proposition 2 and gx = gy + g4. Using (6) and
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the capital accumulation equation together with the fact that ¢, A, By and
N; grow at constant rates gq, g4, v, and n, respectively, we have

Vi=V (Re) = AL (BiyNep)' ™ () (27 K,

: B) Oq;, Y (Ky) | ~
(7) Ci=|—gy +n-— P10+ + o (~ t) t
n n Ky
(8) K, = —(9y +9q + 5)&5 + qty F/ (f(t) — C’t] .

Since consumption and schooling can jump, K; (or, equivalently f(t) is the
economy’s only state variable. The pair of differential equations (7) and (8)
govern the evolution of the economy from any initial condition Kj,.

Figure 3 depicts a familiar phase diagram. The vertical line labeled CC' has
K = K* such that

V(K*) 1
K* 9(]160

Mgy —n)+p+36+gq.

From (7), we see that é’t = 0 along this line. The curve labeled KK has
C =Y (K)—(gy+9gq+0)K /qs,. This curve, which from (8) depicts combinations

of C' and K such that K; = 0, can be upward sloping (as drawn) or hump-
shaped. In either case, the two curves intersect on the upward sloping part of
KK.2 The intersection gives the unique steady-state values of K = K* and
C = C*, which in turn identify the unique BGP. As is clear from the figure, the
BGP is reached by a unique equilibrium trajectory that is saddle-path stable.

Alternative Formulation of Assumption 1

Proposition 4 provides an alternative formulation of Assumption 1 that can
be used whenever the marginal product of schooling is positive as guaranteed
by part (i) of Assumption 2.

PROPOSITION 4:  Assumption 1 holds with Fs(AK,BL,s) > 0 if and only if

the production function can be written as
. b
F(AK,BL,s) = (BL)a+t G |AK, D(s)~ @Y B | **

Kt>

3To see this, note that Y’ ( ) = 0—=t ( . Consequently, the slope of the KK curve is 6

gy +9q+6
atq

Y(Ky)
Ky
which is positive when K = K* by part (iii) of Assumption 2.
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FIGURE 3. TRANSITIONAL DYNAMICS AND STABILITY OF THE BALANCED GROWTH PATH

with a,b > 0, where G(-) is constant returns to scale, strictly increasing in both
its arguments and

(i) G(z,1) is twice differentiable, and strictly concave for all z;
(ii) U?{L = GLGK/GGKL < 1.

PROOQOF:
Suppose Assumption 1 holds with Fs > 0 and define

a+b

b

G [AK,D(S)’(“”)BL] - {D(s)*(‘”b)BL]_Ta P [AK,D(S)*“”)BL}

This definition implies G(+) is constant returns to scale and

b
F(AK,BL,s)=F [D(S)GAK, D(s)_bBL} = (BL)a% G [AK, D(s)—<“+b>BL} o

Differentiating G(-) yields



F >0 irr}plies bLE T — aK F % > 0. Using this result together with F =
KFy + LFy, gives G, > 0.

Next, observe that G(z,1) = F(z, 1)QT+b Therefore

atbp 15t [F )P 1) + 2R (2,17

G..(z,1) =

This expression is negative since zF,,(z,1) = —Fua(z,1),bFy(2,1)—azF,(z,1) >
0 because Fy > 0 and o < 1. It follows that G(z,1) is twice differentiable,
and strictly concave for all z.

Finally, we have

_ Fa+b~al= CLFKFL CLFK
— D)t pr| T LTV pg | e, o SEETL ATK
GkrL [(S) b FrL+ 7 5T |
meaning
¢  FxFp+8FgF,— 45x

O'KL— ~ = ~ ~ FF 9
FFgp + $FFr — =55

which is less than one since oi, < 1.
The converse can be proved in the same manner after defining

_a_ _b_
P D(s)aAK,D(s)_bBL} - [D(s)_bBL} G [D(s)“AK,D(s)_bBL] i
This completes the proof.
Necessity of Functional Form

Consider an economy that satisfies the assumptions required for Lemma 1
to hold and has production function F' (K, L, s;t) which is constant returns
to scale in its first two arguments. Suppose factors are paid their marginal
products and schooling is chosen to satisfy

s = argmax F(Ky, Ly, s;t) subject to Ly = D (s) Ny.

We assume this optimization problem has a unique interior maximum.
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Suppose the economy is on a BGP from time 7" onwards with a constant
capital share 6 € (0,1). With a slight abuse of notation define F' by

F(K, L sit)=F [AtKD (s)*,B,LD (s)*b} —F [AtKD ()%, B,LD ()", s7: 7] .

where b =1+ afg/ (1 — k), while A; and By are defined by

_ _o KK
Ay = eov(t T)D(st) ?::,
— oy (t=T) L
B; = e D(s)”—.
Ly

Since a and b jointly satisfy a single restriction, ' defines a one dimensional
family of functions.

Differentiating the definitions of A; and B; together with the constraint L; =
D(s¢) Ny and using Lemma 1 we obtain

v is the total rate of capital-augmenting technical change, while v; is the
rate of labor-augmenting technical change. When both n and the labor force
growth rate g;, are constant then v, and v; are also constant. Also, provided
schooling is increasing over time n > g7, implying that a > 0 if and only if v,
is strictly positive.

We can now prove the following proposition. Part (i) shows that on the BGP
F' has a one dimensional family of representations of the form

F {AtKD (s)*,BLD (s)_b]. From the expressions for v, and 7; above we

see that each member of this family has a different combination of capital-
augmenting and labor-augmenting technical change. When we say the produc-
tion function can be represented by F we mean that the equilibrium allocation
and the marginal products of capital, labor and schooling on the BGP are
the same under F' as under F. However, this does not imply that counterfac-
tual experiments using F' will necessarily coincide with counterfactuals under
F. The first order impact of some policy changes (e.g., schooling subsidies,
capital taxation) depends on oxy and oxs = (FgFs)/(FrsF'). Therefore, in
part (ii) of the proposition we show that if o, is constant on the BGP then
OKL = ORI = (FKFL)/(FKLF) and that o = (FKFS)/(FKSF) can be writ-
ten as a function of 6k, a and b. Consequently, if ok, and o are constant
9



on the BGP then there exist unique values of a and b such that 6x; = ok,
and Gxs = 0gs. Thus, knowing oi, and ok is sufficient to separate the roles
played by capital-augmenting and labor-augmenting technical change. More-
over, when a and b are chosen appropriately counterfactual analysis using F
instead of F' will, to a first order, give accurate predictions.

PROPOSITION 5:  Suppose for all t > T the economy’s equilibrium trajectory
{Ys, Ky, Ly, s¢} is a BGP with constant and strictly positive factor shares. On the
BGP

(i) The production function F' can be represented by F in the sense that for all

t>T
F(Ky, Ly, siit) = F (Ky, L, si;t)
NK (Kt)LtySt;t) = FK (Ktthvst;t) ’
~L (Kt7Lt78t7t) )
( )

= Fp, (K, Ly, s¢;t)
)

I

(ii) 61 and Gk satisfy

1 1
= _1_(a+b)<~—1)7
OKs OKL

and if o is constant then 6, = oK.

PROOF:
Without loss of generality let 7' = 0. Output at ¢t > 0 is given by

F (K, Ly, sy t) = Yy = e9'Yy = 9" F (Ko, Lo, 50;0) = F (e9" Ko, e9 " L, 50;0) ,
=F <AthD (s¢)*, BeLeD (s1)"", 80;0> )
- F (Kt7 Lt7 St t) .

To show the marginal products of capital are equal, we use the facts that the

capital share is constant over time and capital is paid its marginal product.
Therefore
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K Fr (Ky, Ly, s45t) O = KoFy (Ko, Lo, 50;0) €9 KoF) (9" Ko, 9" Lo, 50; 0)

Yo eIty
AthD (St)a Fl (AthD (St)a s BtLtD (St)—b 5 S0 0)
= Y,t )

Y, K

_ KiFx (K, Lt, s45t)
Y. )

Dividing each side by K,;/Y; gives Fi (Ky, Ly, s¢;t) = ﬁ}g (K4, Ly, s¢;t). Identi-
cal logic using the labor share gives Fr, (Ky, Ly, s¢;t) = Fr, (K¢, Ly, s¢;t).

To complete the proof of part (i) we show equality of the marginal products
of schooling. Optimal schooling choice implies

D' (s¢) Ly Fy (K, Ly, s¢3t)

D(st)  Fp(Ky Ly, sit)

This means the ratio of the marginal product of schooling to output can be
written as

Fy (K3, Ly, sg5t) D' (s4)

We now show that same equation holds for F. Differentiating F with respect
to s and dividing by output gives

Fo (K¢, Ly, si;t) 1 D' (s1) a a b
}/t = ?t D (St) [aAthD (St) F1 (AthD (St) ,BtLtD (S) ,80,0)
“bBLD (s) " F (AthD (s0)*, BeLiD (s1) ™", s0; 0)} :
D/
= [af0x —b(1 —0k)] i) ((:))7
/

D (st)

To prove part (ii) we start by noting that when ok, is constant on the BGP,
the homogeneity of F' implies

11
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F1 (Ko, Lo, s0;0) F2 (Ko, Lo, s0; 0)
Fi3 (Ko, Lo, 50;0) F (Ko, Lo, 50;0)
B F (ngtKo, egytL(), S0; O) Fy (ngtK(), ngtLg, S0; 0)
 Fip (e9v1 Ky, €97t Ly, 503 0) F (e9v Ko, e9vt Ly, 50;0)
F1 (AthD (St)a s BtLtD (St)_b 5 S0, 0) FQ <AthD (St)a y BtLtD (St)_b , S0, O)
Fis (AthD (s0)", ByLeD (s0) ™", 50; o) F (AthD (s0)", ByLeD (s0) ™", s0; 0)
_ Frc (Ki, Lty s45t) Fr, (K, Ly, 543 t)
Frer, (K, Ly, se;t) F (Ky, Ly, set)

=0KL.

OKL =

)

Next define h(z) = F(z,1, 50;0). Then we have

A K

D(S)a—i-b] .

Taking derivatives of this expression implies

(‘:A [AtKD( )a—l—b} _

OKL = [AtKD( )a+bi|

) as = & | B D)

TKs = 7 A K '
1 ey (4D

On the BGP we also have

KtFK (Kt Lt St; ) Ath b
— ’ » Ol — D a+ )
Y, =% | B,

Combining these expressions and using b = 1+ afg/ (1 — 0 ) we have that on
the BGP

1 1
. —1_(a+b)<—1>
OKs OKL

This completes the proof.

“Time-in-School” Model

A firm that employs K; units of physical capital and hires L; time units from
workers with schooling s; at time ¢ produces
12



F (Ath, BtLt, St) = F Ath (1 — St)a s BtLt (1 — St)_b

units of output. The production technology satisfies Assumption 1 and the
parameter restrictions in Assumption 2 also apply. Aggregate output is simply
the sum of the outputs produced by all firms.

Since F'(-) has constant returns to scale in its first two arguments we can
define the intensive form production function by f(k,s) = F(k, 1, s) where f (+)
is output per effective unit of labor and k = A, K/B;L is the ratio of effective
capital to effective labor. Using Assumption 1 the intensive form production
function can be written as f(k,s) = (1 — s)°h [k(1 — s)*T*].

The competitive firms take the rental rate per unit of capital, R;, and the
wage schedule per unit of time, W; (s), as given. A firm that hires workers with
education s; chooses L; and k; to maximize ByLy [f (ki,st) — rike — wy (s¢)],
where r; = Ry/A; is the rental rate per effective unit of capital and wy (s¢) =
Wi (s¢) /By is the wage per effective unit of labor. Profit maximization implies,
as usual, that

(9) T (kzh St) =T
and*
(10) [ (e, s0) — ke = wy (s¢) -

We define the functions & (s,r) and w (s,r) such that fi [k (s,7),s] = r and
w(s,r) = flr(s,r),s] —re(s,r). Then, in equilibrium, k; = k(s¢, ;) and
wy (8¢) = w (8¢, 7).

An individual alive at time ¢t who seeks to maximize dynastic utility should
choose s to maximize her own wage income, B; (1 — s)w(s,7), taking the
rental rate per unit of effective capital as given. The rental rate will determine,
via (9), how much capital the individual will be allocated by her employer
as a reflection of her schooling choice. The individual’s education decision is
separable from her choice of consumption. The first-order condition for income
maximization at time ¢ requires

(1 — s¢) ws (8¢,74) = w (s¢,74) -

But using w (s,7) = f [k (s,7¢), 8] =7k (s, 7¢) and noting (9), we have ws (s¢, 7¢)
= fs [k (St,7¢), s¢). In other words, the marginal effect of schooling on the wage
reflects only the direct effect of schooling on per capita output; the extra output
that comes from a greater capital allocation to more highly educated workers,

4Equation (10) is the zero-profit condition, which is implied by the optimal choice of L; in an equi-
librium with positive output.
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frrs, just offsets the extra part of revenue that the firm must pay for that
capital, rks. Consequently, we can rewrite the first-order condition as

(1= st) fs [k (stsme) , s¢) = f R (st,70) 8] = fic [ (st.7e) , st k (s¢,78)

Now replace f (k,s) by (1 — s)7"h [k(1 — s)*™*] and use this representation
to calculate fs () and f (). After rearranging terms, this yields

(b—1)h [H (s¢,72) (1 — st)a“’} —(a+b-1)N [ﬁ (s¢,72) (1 — 8,)°+
X K (s,7¢) (1 — st)(wb

or

b—1

En {/{ (st,re) (1 — st)a%] = iro1
Since k(s¢,r¢) = k¢ = Ay K/ BiLy and Ly = Ny(1—s;) this expression is identical
to the first order condition for optimal schooling choice given in the paper.

Dynasties’ intertemporal optimization decisions yield the same consumption
and savings choices as in the planner’s problem. To see this, start from the no
arbitrage condition ¢, = R;/p; + g, — § where ¢; denotes the real interest rate
and p; = 1/q; is the equilibrium price of a unit of capital.? Combining this
with Tt = Rt/At giVGS

1
(11) Tt—m(bt‘f'gq"i_(s)'

Individuals’ optimal schooling choices imply x(sz,7¢)(1 — s4)T? = 2* for all
t > tg where z* takes the same value as in the planner’s problem. Therefore,
aggregate output is given by (3) with z; = z*, just as in the planner’s problem.

Using f (k,s) = (1 — s)7°h [k(1 — 5)*?] the first order condition for profit
maximization (9) yields

re = (1 — s0)%H (2%).

Substituting this expression into the capital market clearing condition k; =
k(st, ) and using (11) implies the real interest rate satisfies

Lt:—gq—5+thf < It{ttz*> h/(z*)

5The no-arbitrage condition states that the real interest rate on a short-term bond equals the dividend
rate on a unit of physical capital plus the rate of capital gain on capital equipment (positive or negative),
minus depreciation.
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Combining this equation with the representative dynasty’s Euler equation ¢;/¢; =
(tt — p)/n and using &, (2*) = 6 and (3) gives

¢ _ _ptotgy  faYi(Ky)
Ct n n K

Noting that this equation is identical to equation (6) we see that consumption

per capita satisfies the same differential equation as in the planner’s problem.

Since the capital accumulation equation is also the same in both cases we

conclude that consumption and the aggregate capital stock follow the same

equilibrium trajectory as in the planner’s problem.

Schooling Choice in the “Manager-Worker” Model

Recall that the production function can be written as
2 [AtKD(s)“, BtLD(s)—b} — B,LD(s)"h [k:D(s)““’}

where s = M/L, k = A,K/B;L and D(s) = [1 +s/(1 —m)]~". Since Wiy =
Fy and Wi, = Fp, differentiating yields

b

D'(St)h [ktD(st)‘”b} {— +&En [ktD(St)aer} } ’

D(st)
Wi = BD(s:)"%h [ktD(st)a“’}

<1 — & [ktp(st)a+b] +(a+b) StDD(/S)t) {a i - =& [ktp(st)m} }) .

Wizt = (a +b)B;D(s) ™" .

Substituting these expressions into (1 — m)Wy = Wi and using D'(s) =
—D(s)?/(1 — m) implies that, in equilibrium

14 )
1—-m a+b—1

The fact that &,(z) is declining in z ensures stability of the equilibrium.

En
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