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This appendix is divided into two sections. Appendix A contains proofs for

the results describing the optimal relational contract in the baseline model.

Appendix B contains proofs for the model with public opportunities.

Appendix A: Optimal Relational Contract in the Base-

line Model

LEMMA A1. Without loss of generality, along the equilibrium path, kt = mt

for all t and eit = 1 for i = A,P for all t.

Proof of Lemma A1. Take an equilibrium with kt 6= mt for some t. Consider

another strategy profile in which the agent’s recommendation is kt instead of

mt. This change does not affect any player’s payoffs, so it does not affect any

constraints. It follows that this new strategy profile is an equilibrium.

Consider any strategy profile in which for some t, eAt = 1 and ePt = 0, and

consider an alternative strategy profile that coincides with the original strategy

profile but for which eAt = 0. Under this strategy profile, the Principal’s payoff

is unaffected, the public outcome is unaffected, and the agent’s payoffis strictly

higher. This means that the original strategy profile cannot be an equilibrium.

An identical argument shows that any equilibrium strategy profile cannot have

ePt = 1 and eAt = 0 for any t. Therefore, eAt = ePt for all t in any equilibrium.

Consider a strategy profile in which for some t, eAt = ePt = 0, and con-

sider an alternative strategy profile that coincides with the original strategy

profile but for which kt = D is chosen in that period. This change does not

affect players’payoffs, and it does not affect any constraints, so it is also an

equilibrium.�

We now use the techniques developed by Abreu, Pearce, and Stacchetti

(1990) to characterize the PPE payoff set and, in particular, its frontier. For
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this purpose, we define the payoff frontier as

π (u) ≡ sup {π′ : (u, π′) ∈ E} ,

where E is the PPE payoff set.
We can now state our first lemma, which establishes several properties of

the PPE payoff set.

LEMMA A2. The PPE payoff set E has the following properties: (i.) it

is compact; (ii.) π(u) is concave; (iii.) inf{u : (u, π) ∈ E} = 0 and sup{u :

(u, π) ∈ E} = B.

Proof of Lemma A2: Part (i.): Note that there are finite number of actions
the players can take, and standard arguments then imply that the PPE payoff

set E is compact. Part (ii.): the concavity of π follows immediately from the

availability of the public randomization device. Part (iii.): Notice that 0 is the

agent’s maxmin payoff. Moreover, (0, 0) is an equilibrium payoff for the stage

game, sustained by the strategy that players always choose the default project

or, if they choose any other project, they both choose ei = 0. It then follows

that inf{u : (u, π) ∈ E} = 0. Also notice that B is the maximal feasible payoff

for the agent. Moreover, (B, b) can be sustained as an equilibrium payoff in

which the players choose entrenchment along the equilibrium path in every

period. To see that this can be sustained as an equilibrium, notice that the

agent does not have incentive to deviate since the equilibrium provides him

with the highest feasible payoff. Any deviation by the principal would be an

off-schedule deviation. The deviation can either be the choice of the default

project, in which case the Principal would receive 0 < b, or it can be the

choice not to choose the agent’s recommended project, in which case, it can

be punished with both players choosing ei = 0 in the implementation phase,

in which case again, the Principal would receive 0 < b.�

LEMMA A3. For any payoff (u, π(u)) on the frontier, the equilibrium contin-

uation payoffs remain on the frontier.

Proof of Lemma A3 : To show that for each payoff (u, π(u)) on the frontier,

the equilibrium continuation payoffs remain on the frontier, it suffi ces to show
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that this is true if (u, π(u)) is supported by a pure action. Suppose (u, π(u))

is supported by centralization. Let (uC , πC) be the associated continuation

payoff. Suppose to the contrary of the claim that πC < π (uC). Now consider

an alternative strategy profile that also specifies centralization but in which

the continuation payoff is given by (uC , π̂C) , where π̂C = πC + ε and where

ε > 0 is small enough such that πC + ε ≤ π (uC). It follows from the promise-

keeping constraints PKP
C and PK

A
C that under this alternative strategy profile

the payoffs are given by û = u and π̂C = π(u) + δε > π(u). It can be checked

that this alternative strategy profile satisfies all the constraints and therefore

constitutes a PPE. Since π̂C > π(u), this contradicts the definition of π(u),

thus it must be that πC = π(uC). The argument is identical when (u, π(u))

is supported by other actions. �

LEMMA A4. If any payoff pair (u, π (u)) is supported by a pure action, it is

supported by an action j ∈ {C,ER, EC , EU}.

Proof of Lemma A4. It is without loss of generality to show that if a payoff
pair (u, π) is supported by mt = A when P yields (−∞,∞) and by mt = D

when P yields (b, B), then either π < π (u) or there is a payoff-equivalent

equilibrium in which the players randomize between choosing C or EU . To see

this, suppose that (u, π) is supported in this way. Define u1 = (1− δ) 0 + δuD

and u2 = (1− δ)B+ δuA, where uD is the continuation payoff associated with

kt = D and uA is the payoff associated with kt = A. The agent’s equilibrium

utility is therefore

u = pu1 + (1− p)u2,

and the principal’s is

π = p ((1− δ) 0 + δπ (uD)) + (1− p) ((1− δ) b+ δπ (uA))

≤ pπ (u1) + (1− p) π (u2) .

Therefore, either π < π (u) or (u, π) can be supported by randomization

between (u1, π (u1)), where C is chosen in period t with probability 1, and

(u2, π (u2)), where A is chosen in period t with probability 1.�
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For any action in j ∈ {C,ER, EC , EU}, define uj (u) as the agent’s con-

tinuation payoff when the equilibrium gives the agent payoff u. Note that

for j ∈ {C,EU}, the agent’s continuation payoff is deterministic and is given
by the corresponding promise-keeping constraints. The next lemma describes

the agent’s continuation payoffunder restricted empowerment and cooperative

empowerment.

LEMMA A5. The following hold.

(i.) If (u, π (u)) is supported by restricted empowerment, there exists a

payoff-equivalent equilibrium in which the agent’s continuation payoffs are

δuER,h (u) = δuER,` (u) = (u− (1− δ) pb) ≡ δuER (u).

(ii.) If (u, π(u)) is supported by cooperative empowerment, there exists a

payoff-equivalent equilibrium in which the agent’s continuation payoffs are:

δuEC ,h (u) = u− (1− δ) b;
δuEC ,` (u) = u− (1− δ)B.

Proof of Lemma A5: For part (i.), let (u, π (u)) be associated with the

continuation payoffs (uER,h, π (uER,h)) and (uER,`, π (uER,`)). Suppose to the

contrary that uER,h 6= uER,`. Consider an alternative strategy profile with

continuation payoffs given by (ûER,h, π (ûER,h)) and (ûER,`, π (ûER,`)), where

ûER,h = ûER,` = puER,h + (1− p)uER,`.

Under this new strategy profile, PKAER and ICER still hold. This new profile

gives the principal a payoff of

π̂ = p [(1− δ)B + δπ (ûER,h)] + (1− p) δπ (ûER,`)

≥ p [(1− δ)B + δπ (uER,h)] + (1− p) δπ (uER,`) ,

where the inequality holds because π is concave. By PKAER , it then follows

that δuER,h = δuER,` = u− (1− δ) pb. We define this value to be δuER .
For part (ii.), let (u, π (u)) be associated with the continuation payoffs

4



(uEC ,h, π (uEC ,h)) and (uEC ,`, π (uEC ,`)). Suppose that for this PPE, ICEC is

slack. That is, (1− δ) b + δuEC ,h > (1− δ)B + δuEC ,`. Now consider an

alternative strategy profile with continuation payoffs given by (ûEC ,h, π (ûEC ,h))

and (ûEC ,`, π (ûEC ,`)), where ûEC ,h = uEC ,h − (1− p) ε and ûEC ,` = uEC ,` + pε

for ε > 0. It follows from the promise-keeping constraints PKPEC and PK
A
EC

that, under this strategy profile, the payoffs are given by û = u and

π̂ = p [(1− δ)B + δπ (ûEC ,h)] + (1− p) [(1− δ) b+ δπ (ûEC ,`)] .

From the concavity of π it then follows that

π̂ ≥ (1− δ) b+ δ [(1− p) π (uEC ,`) + pπ (uEC ,h)] = π (u) .

It can be checked that for suffi ciently small ε this alternative strategy

profile satisfies all the constraints and therefore constitutes a PPE. Since

π̂ ≥ π (u) this implies that for any PPE with payoffs (π, u(π)) for which IC

is not binding there exists another PPE for which ICEC is binding and which

gives the parties weakly larger payoffs. Notice that when ICEC is binding, we

have uEC ,h (u) = (u− (1− δ) b) /δ and uEC ,` (u) = (u− (1− δ)B) /δ. This

proves part (ii.). �

Next, let πj (u) for j ∈ {C,ER, EC , EU} be the principal’s highest equilib-
rium payoff given action j and agent’s payoff u. We then have

πC (u) = δπ (uC (u)) ,

πER (u) = p [(1− δ)B] + δπ (uER (u)) ,

πEC (u) = p [(1− δ)B + δπ (uEC ,h (u))] + (1− p) [(1− δ) b+ δπ (uEC ,` (u))] ,

πEU (u) = (1− δ) b+ δπ (uEU (u)) .

LEMMA A6. The PPE frontier π (u) is the unique function that solves the
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following problem. For all u ∈ [0, B] ,

π (u) = max
αj≥0,uj∈[0,B]

∑
j∈{C,ER,EC ,EU}

αjπj (uj)

such that ∑
j∈{C,ER,EC ,EU}

αj = 1

and ∑
j∈{C,ER,EC ,EU}

αjuj = u.

Proof of Lemma A6: Since the frontier is Pareto effi cient, by the APS

bang-bang result, for any effi cient payoff pair, only using the extreme points

of the payoff set is suffi cient. Replacing the sup with max is valid since the

payoff set is compact. To establish the uniqueness, we just observe that the

problem is now a maximization problem on a compact set, so that even if the

maximizers are not unique, the maximum is. �

LEMMA A7. There exists a cutoff value ūEC < B such that π (u) is a straight

line for u ≥ ūEC and πEU (u) = π (u) if and only if u ∈ [(1− δ)B + δūEC , B] .

Proof of Lemma A7: First, notice that πEU (B) = π (B) . Next, recall that

πEU (u) = (1− δ) b+ δπ (uEU (u)) . Taking the right derivative, we have

π+
EU

(u) = δπ+ (uEU (u))u+
EU

(u) = π+ (uEU (u)) ≥ π+ (u) ,

where we used the fact that if u < B, uEU (u) < u, and therefore π+ (uEU (u)) ≥
π+ (u) by concavity of the frontier. Since π+

EU
(u) ≥ π+ (u) for all u < B,

there exists u∗ such that πEU (u) = π (u) if and only if u ∈ [u∗, B].

Next, we show that u∗ < B. That is, there exists some u < B such that

πEU (u) = π (u) . We prove this by contradiction. Suppose to the contrary

that πEU (u) < π (u) for all u < B. Choose a small enough ε > 0 such that

(B − ε, π (B − ε)) cannot be supported by pure actions. Notice that such ε
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exists, because by assumption (B − ε, π (B − ε)) is not supported by EU , and
if it were supported by any other pure action, the agent’s continuation payoff

must exceedB, leading to a contradiction. This implies that (B − ε, π (B − ε))
must be supported by randomization, and therefore the frontier is a straight

line between B − ε and B. Denote the slope of the payoff frontier between

(B − ε, π (B − ε)) and (B, b) as s. It then follows that for all u ∈ [B − δε, B)

(i.e. uEU (u) ≥ B − ε), we have

πEU (u) = π (u) = b+ s(u−B).

This contradicts the assumption that πEU (u) < π (u) for all u < B.

The above shows that πEU (u) = π (u) for u ∈ [u∗, B], where u∗ < B. It

follows that for all u ∈ (u∗, B], π−EU (u) = π− (uEU (u)) = π− (u) . Since π

is concave, this implies that the slope of π is constant for all u ∈ (u∗, B).

That is, π (u) is a straight line on [u∗, B]. Define (ūEC , π (ūEC )) to be the left

endpoint of the line segment.�

LEMMA A8. π (u) is a straight line for u ∈ [0, pb] and π (u) = Bu/b.

Proof of Lemma A8. Both (0, 0) and (pb, pB) are stage-game equilibrium

payoffs. Moreover, recall that the agent will never choose e = 1 for any project

if the principal chooses e = 0. This implies that all payoffs fall weakly below the

line that includes (0, 0) and (pb, pB) . As a result, the line segment connecting

(0, 0) and (pb, pB) is on the frontier of the convex hull of the expected stage-

game payoffs, which includes the PPE payoff set.�

LEMMA A9. πC (u) = π (u) if and only if u ∈ [0, δpb].

Proof of Lemma A9. First, note that πC (0) = π (0). Clearly, for all u ∈
[0, δpb], πC (u) = π (u), because we have established that π (u) is a straight

line between (0, 0) and (pb, pB). If there exists u > δpb, then uC (u) > pb.

Then π−C (u) = π− (uC (u)) < B/b since π (u) < Bu/b for u/pb. If so, then for

ε > 0 small enough, πC (pb− ε) > π (pb− ε), which is a contradiction. We
therefore have that πC (u) = π (u) only in [0, δpb].�

LEMMA A10. There exists a cutoff value uEC such that π (u) is a straight line
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on
[
pb, uEC

]
and πER (u) = π (u) for all u ∈

[
(1− δ) pb, (1− δ) pb+ δuEC

]
.

Proof of Lemma A10. We first argue that if πER (u) = π (u) for any u > pb,

then π is linear on [pb, u]. We define uEC as the right endpoint of this line

segment and then show that for u ∈
[
pb, (1− δ) pb+ δuEC

]
, πER (u) = π (u)

and for any u′ > (1− δ) pb + δuEC , πER (u) < π (u). Finally, we show that

πER (u) = π (u) for all u ∈ [(1− δ) pb, pb].
For the first step, suppose π (u) = πER (u) for some u > pb. Then uER (u) >

u and

π−ER (u) = π− (uER (u)) ≤ π− (u)

since π is concave. This implies that for all u′ ∈ [pb, u], πER (u′) ≥ π (u′) and

therefore πER (u′) = π (u′). Moreover, it must be the case that π− (uER (u)) =

π− (u), so π must be linear on [pb, u]. Define the right endpoint of this line

segment as uEC . For any u ∈
[
pb, uEC

]
such that uR (u) ≤ uEC , since π is

linear between
[
pb, uEC

]
, we can write π (u) = pB + s (u− pb) for some s.

Moreover,

πER (u) = (1− δ) pB + δπ (uER (u)) = (1− δ) pB + δ (pB + s (uER (u)− pb))
= pB + s (u− pb) = π (u) .

Next, suppose that uER (u) > uEC and πER (u) = π (u). Then, since uER (u) >

uEC ,

π−ER (u) = π− (uER (u)) < π− (u) .

Now, consider û = u− ε for ε small. Then πER (û) > π (û), so it must be the

case that πER (u) < π (u) for all u such that uER (u) > uEC .

Finally, since π (u) = Bu/b on [0, pb] and 0 ≤ uER (u) ≤ pb whenever

(1− δ) pb ≤ u ≤ pb,

πER (u) = (1− δ) pB + δπ (uER (u)) = Bu/b = π (u) .

This establishes that πER (u) = π (u) on [(1− δ) pb, pb].�

LEMMA A11. For all u ∈
[
uEC , ūEC

]
, πEC (u) = π (u).
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Proof of Lemma A11. By Lemmas A7, A9, and A10, for all u ∈
[
uEC , ūEC

]
,

which is a subset of
[
(1− δ) pb+ δuEC , (1− δ)B + δūEC

]
, if (u, π (u)) is sup-

ported by a pure action, then it must be supported by cooperative empower-

ment. Next, since uEC and ūEC are extremal points, they must be supported

by a pure action, and therefore πEC (u) = π (u) for u = uEC and u = ūEC .

Take any u ∈
(
uEC , ūEC

)
. If (u, π (u)) is supported by randomization, it is

supported by randomization between two points (u1, π (u1)) and (u2, π (u2)),

u1 < u2, which are each supported by pure actions. If either u1 < uEC or

u2 > ūEC , we can replace the left (right) endpoint of this randomization with(
uEC , π

(
uEC

))
((ūEC , π (ūEC ))), and this new randomization generates higher

payoffs for the principal. Thus, if (u, π (u)) is supported by randomization, it

is supported by randomization between two points that are each supported by

cooperative empowerment.

Define the function f (u) = π (u) − πEC (u) on
[
uEC , ūEC

]
. f (u) is con-

tinuous and therefore achieves a maximum on
[
uEC , ūEC

]
. Suppose f (u∗) =

maxu∈[uEC ,ūEC ] f (u) > 0. Then at u = u∗, π (u∗) > πEC (u∗), and therefore

(u∗, π (u∗)) is supported by randomization between two points (u1, π (u1)) , (u2, π (u2)),

each of which is supported by cooperative empowerment. But then f (u∗) =

αf (u1) + (1− α) f (u2) = 0, which implies that π (u∗) = πEC (u∗).�

LEMMA A12. ūEC = (1− δ) b+ δB.

Proof of Lemma A12. Suppose uEC ,h (ūEC ) < B. Then, since by Lemma

A11, πEC (ūEC ) = π (ūEC ), we have that

π+ (ūEC ) = π+
EC

(ūEC ) = (1− p)π+ (uEC ,` (ūEC )) + ps,

where s is the slope of the line segment between (ūEC , π (ūEC )) and (B, b).

Since uEC ,` (ūEC ) < ūEC , π
+ (uEC ,` (ūEC )) > s. Take û = ūEC + ε for ε >

0 small. Then πEC (û) > π (û), which is a contradiction. Finally, since

uEC ,h (ūEC ) = B, we have that ūEC = (1− δ) b+ δB.�

LEMMA A13. uEC ∈ [(1− δ)B, (1− δ)B + δpb].

Proof of Lemma A13. Suppose that uEC ,`
(
uEC

)
> pb. Then, since by

Lemma A9, πEC
(
uEC

)
= π

(
uEC

)
, we have that π−

(
uEC

)
= π−EC

(
uEC

)
=
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(1− p) s+pπ−
(
uEC ,h

(
uEC

))
, where s is the slope of the line segment between

(pb, pB) and
(
uEC , π

(
uEC

))
. Since uEC ,h

(
uEC

)
> uEC , π

− (uEC ,h (uEC)) < s.

Take û = uEC − ε for ε > 0 small. Then πEC (û) > π (û), which is a contradic-

tion. Since uEC ,`
(
uEC

)
∈ [0, pb], we have that uEC ∈ [(1− δ)B, (1− δ)B + δpb].

LEMMA A14. b ≤ uEC ≤ max {b, (1− δ)B + δpb}.

Proof of Lemma A14. First, suppose that uEC < b. Then we have uEC ,`
(
uEC

)
<

uEC ,h
(
uEC

)
< uEC . Since by Lemma A11, πEC

(
uEC

)
= π

(
uEC

)
, we have that

π+
(
uEC

)
= π+

EC

(
uEC

)
= (1− p)π+

(
uEC ,l

(
uEC

))
+ pπ+

(
uEC ,h

(
uEC

))
≥ s,

where s is the slope of the line segment between (pb, pB) and
(
uEC , π

(
uEC

))
.

Take ũ = uEC + ε for ε > 0 small. It then follows that π (ũ) ≥ πEC (ũ) ≥
π (u) + sε. This contradicts the definition of uEC as the right end point of

the line segment that includes (pb, pB) and
(
uEC , π

(
uEC

))
. This proves that

uEC ≥ b.

Next, suppose (1− δ)B + δpb > b and suppose that uEC ,`
(
uEC

)
> pb.

Then, since by Lemma A11, πEC
(
uEC

)
= π

(
uEC

)
, we have that

π−
(
uEC

)
= π−EC

(
uEC

)
= (1− p) s+ pπ−

(
uEC ,h

(
uEC

))
,

where recall again that s is the slope of the line segment between (pb, pB)

and
(
uEC , π

(
uEC

))
. Since uEC ,h

(
uEC

)
> uEC , which follows from the agent’s

promise-keeping constraint and that (1− δ)B+δpb > b, we have π−
(
uEC ,h

(
uEC

))
<

s. Take û = uEC − ε for ε > 0 small. Then πEC (û) > π (û), which is a con-

tradiction. This proves that if (1− δ)B + δpb > b, we have uEC ,`
(
uEC

)
≤ pb,

and therefore, we have that uEC ≤ (1− δ)B + δpb.

Finally, suppose (1− δ)B + δpb ≤ b, and suppose that uEC > b. Then

we have uEC ,`
(
uEC

)
∈
(
pb, uEC

)
and uEC ,h

(
uEC

)
> uEC . The same argument

above implies that π−
(
uEC

)
= π−EC

(
uEC

)
= (1− p) s + pπ−

(
uEC ,h

(
uEC

))
.

Again take û = uEC − ε for ε > 0 small, we have πEC (û) > π (û), which is a

contradiction.�

PROPOSITION 1. The optimal relational contract satisfies the following:

First period: The agent’s and the principal’s payoffs are u∗ ∈
[
uEC , ūEC

]
and π (u∗) = πEC (u∗). The parties engage in cooperative empowerment. If
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the agent chooses the principal’s preferred project, his continuation payoff in-

creases, and it falls otherwise.

Subsequent periods: The agent’s and the principal’s expected payoffs are given

by u ∈ {0}∪{pb}∪
[
uEC , ūEC

]
∪{B} and π (u). Their actions and continuation

payoffs depend on what region u is in:

(i.) If u = 0, the parties choose centralization. The agent’s continuation

payoff is given by uC (0) = 0.

(ii.) If u = pb, the parties choose restricted empowerment. The agent’s

continuation payoff is given by uER (pb) = pb.

(iii.) If u ∈
[
uEC , ūEC

]
, the parties choose cooperative empowerment. If

the agent chooses the principal’s preferred project, his continuation payoff is

given by uEC ,h (u) > u. If, instead, he chooses his own preferred project, his

continuation payoff is given by uEC ,` (u) < u.

(iv.) If u = B, the parties engage in unrestricted empowerment. The

agent’s continuation payoff is given by uEU (B) = B.

Proof of Proposition 1. The preceding lemmas characterize the payoff

frontier, the associated actions, and their continuation payoffs. It remains

only to show that in the first period, parties engage in cooperative empower-

ment. Given our assumption that b > pB, it suffi ces to show that there exists

an equilibrium payoff, sustained by cooperative empowerment, that gives the

principal a payoff that exceeds b. In particular, consider π (ūEC ), where recall

that ūEC = (1− δ) b + δB. Notice that uEC ,` is decreasing in δ. It suffi ces

to show that if π (ūEC ) ≥ b when uEC ,` (ūEC ) < pb for any δ̂, then π (ūEC ) ≥ b

for all δ ≥ δ̂. By Lemma A11,

π (ūEC ) = p [(1− δ)B + δb] + (1− p)
[
(1− δ) b+ δ

B

b

(
B − 1− δ

δ
(B − b)

)]
It follows that

π (ūEC )− b
b

=
B − b
b

[
p (1− δ) + δ (1− p) + (2δ − 1)

B

b
(1− p)

]
.

Notice that this expression is always positive if 2δ ≥ 1. When 2δ < 1, As-
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sumption (iii.) ensures that it is positive. Also, the statement of Proposition

1 is true if we replace Assumption (ii.) with the assumption that B/b > 1/p

and Assumption (iii.) with(
B

b
− 1

)[
p (1− δ) + δ (1− p) + (2δ − 1)

B

b
(1− p)− 1

]
+
B

b
(1− p) > 0,

since this value is positive if and only if π (ūEC ) > pB > b, which again implies

that play begins with cooperative empowerment.�

PROPOSITION 2. In the optimal relational contract, the principal chooses

cooperative empowerment for the first τ periods, where τ is random and fi-

nite with probability one. For t > τ , the relationship results in unrestricted

empowerment, restricted empowerment, or centralization forever. Both un-

restricted empowerment and restricted empowerment are chosen with positive

probability on the equilibrium path. Specifically, if B/b < (1− δp) / (1− δ),
only restricted empowerment and unrestricted empowerment are chosen, and

if ūEC < (1− δ)B+ δpb, restricted empowerment, unrestricted empowerment,

and centralization are chosen with positive probability.

Proof of Proposition 2. Let u∗ = argmaxu∈[0,B] π (u) denote the agent’s

equilibrium utility when the principal’s equilibrium utility is maximized. By

Proposition 1, the relationship begins with cooperative empowerment, and

therefore u∗ ≥ uEC ≥ b.

First, we will show that relationship settles in unrestricted empowerment

with positive probability. To see this, first notice that u∗ > b. Suppose to the

contrary that u∗ = b. Denote by s the slope of the payoff frontier between

(pb, pB) and (b, π (b)). Then

π+ (b) = π+
EC

(b) = (1− p) π+ (uEC ,` (b)) + pπ+ (b) .

As a result, π+ (b) = π+ (uEC ,` (b)) ≥ s > 0, which contradicts the assumption

that π is maximized at b. Next, given that u∗ > b, we have that uh (u)− u >
1−δ
δ

(u∗ − b) for all u ∈ [u∗, ūEC ]. Then there exists an N > 0 such that if

the principal’s preferred project is available in the first N periods, the agent’s
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continuation payoff has to exceed ūEC with probability, and therefore, with

positive probability, the relationship settles in unrestricted empowerment.

Next, we provide conditions for which centralization is never chosen on

the equilibrium path. Suppose B/b < [1− δp] / [1− δ]. Then, uEC ,` (b) > pb,

which means that for all u ≥ uEC , uEC ,` (b) > pb. It follows that if u is ever

below uEC , it will be above pb, and therefore centralization is reached with

probability zero.

We now provide conditions for which centralization is chosen with pos-

itive probability on the equilibrium path. If ūEC < (1− δ)B + δpb, then

uEC ,` (ūEC ) < pb, which implies that wherever cooperative empowerment is

used, the agent’s continuation payoff falls below pb with positive probability,

and therefore centralization is reached with positive probability.

Finally, by standard arguments, the agent’s continuation payoff converges

with probability one.�

Appendix B: Optimal Relational Contract with Public

Opportunities

Just as in the main section, we solve the game recursively by characterizing

the PPE payoff sets. Define Epre as the PPE payoff set of the pre-opportunity
phase and Epost as the PPE payoff set of the post-opportunity phase. Let

πi (u) , i ∈ {pre, post} , be the associated payoff frontier. As in the baseline
model, we can simplify our analysis by noting the following.

LEMMA B0. Without loss of generality, along the equilibrium path, kt = mt

for all t and eit = 1 for i = A,P for all t.

LEMMA B1. For i ∈ {pre, post} , the PPE payoff set Ei has the following
properties: (i.) it is compact; (ii.) πi(u) is concave; (iii.) inf{u : (u, π) ∈ E} =

0 and sup{u : (u, π) ∈ E} = B.

The proofs for these results are essentially the same as in the baseline

model, and they are omitted here. Next, we list the actions that are used to

sustain the equilibrium payoff set and the associated constraints.
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Constraints in the Post-Opportunity Phase

We first list the set of constraints for supporting the PPE payoff set Epost.
Consider a PPE payoff pair (u, π) ∈ Epost. As in the baseline model, we

can restrict attention to the following arrangements: centralization, restricted

empowerment, cooperative empowerment, unrestricted empowerment, oppor-

tunity, and strategic opportunity. As we will show, the optimal relational

contract can be sustained without making use of any other arrangement. The

first four arrangements are the same as in the baseline model.

Centralization Under centralization, the agent recommends the default

project, and the principal chooses the default project. A payoff pair (u, π)

can be supported by centralization if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. The continuation payoffs upost,C and πpost,C that the par-

ties realize under centralization therefore have to satisfy the self-enforcement

constraint

(upost,C , πpost,C) ∈ Epost. (SEpost,C)

(ii.) No Deviation: As in the baseline model, the principal and the agent

never want to deviate off schedule, and there are no feasible on-schedule de-

viations. In contrast to off-schedule deviations, on-schedule deviations are

privately observed. Since the principal does not have any private informa-

tion, and the agent does not get to choose a project, there are no on-schedule

deviations under centralization.

(iii.) Promise Keeping: Finally, the consistency of the PPE payoff decom-

position requires that the parties’payoffs are equal to the weighted sum of

current and future payoffs. The promise-keeping constraints

π = δπpost,C (PKPpost,C)

and

u = δupost,C (PKApost,C)

14



ensure that this is the case.

Unrestricted Empowerment Under unrestricted empowerment, the agent

always recommends his own preferred project, and the principal rubberstamps

this recommendation. A payoff pair (u, π) can be supported by unrestricted

empowerment if the following constraints are satisfied.

(i.) Feasibility: We denote by (upost,EU , πpost,EU ) the continuation payoffs

under unrestricted empowerment. The self-enforcement constraint is then

given by

(upost,EU , πpost,EU ) ∈ Epost. (SEpost,EU )

(ii.) No Deviation: As in the baseline model, the principal and the agent

never want to deviate off schedule, and there are no feasible on-schedule devi-

ations.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = (1− δ) b+ δπpost,EU (PKPpost,EU )

for the principal and

u = (1− δ)B + δupost,EU (PKApost,EU )

for the agent.

Cooperative Empowerment Under cooperative empowerment, the agent

recommends the principal’s preferred project when it is available and his own

preferred project otherwise, and the principal rubberstamps the agent’s rec-

ommendation. A payoff pair (u, π) can be supported by cooperative empow-

erment if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. Let (upost,EC ,`, πpost,EC ,`) denote the parties’continuation

payoffs if the agent chooses his own preferred project, and let (upost,EC ,h, πpost,EC ,h)

denote their payoffs if he chooses the principal’s preferred project. The self-
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enforcement constraint is then given by

(upost,EC ,`, πpost,EC ,`) , (upost,EC ,h, πpost,EC ,h) ∈ Epost. (SEpost,EC )

(ii.) No Deviation: The principal and the agent never want to deviate

off schedule, and the principal has no on-schedule deviations. The agent,

however, can deviate on schedule by recommending his preferred project when

the principal’s preferred project is available. The incentive constraint

(1− δ) b+ δupost,EC ,h ≥ (1− δ)B + δupost,EC ,` (ICpost,EC )

ensures that he does not want to do so.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = p [(1− δ)B + δπpost,EC ,h] + (1− p) [(1− δ) b+ δπpost,EC ,`] (PKPpost,EC )

and

u = p [(1− δ) b+ δupost,EC ,h] + (1− p) [(1− δ)B + δupost,EC ,`] . (PKApost,EC )

Restricted Empowerment Under restricted empowerment, the agent rec-

ommends the principal’s preferred project when it is available and the default

project otherwise, and the principal always rubberstamps the agent’s recom-

mendation. A payoff pair (u, π) can be supported by restricted empowerment

if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. Let (upost,ER,`, πpost,ER,`) denote the parties’continuation

payoffs if the agent recommends the default project, and let (upost,ER,h, πpost,ER,h)

denote their payoffs if he recommends the principal’s preferred project. The

self-enforcement constraint is then given by

(upost,ER,`, πpost,ER,`) , (upost,ER,h, πpost,ER,h) ∈ Epost. (SEpost,ER )

(ii.) No Deviation: The principal never wants to deviate off schedule. The
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agent can deviate off schedule by recommending his own project. If he does

so, he receives (1− δ)B this period followed by 0. To prevent the agent from

deviating off schedule, we need that

u ≥ (1− δ)B. (ICOffpost,ER )

The agent can also deviate on schedule by recommending the default project

when the principal’s preferred project is available. The incentive constraint

(1− δ) b+ δupost,ER,h ≥ δupost,ER,` (ICOnpost,ER )

ensures that he does not want to do so.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = p [(1− δ)B + δπpost,ER,h] + (1− p) δπpost,ER,` (PKPpost,ER )

and

u = p [(1− δ) b+ δupost,ER,h] + (1− p) δupost,ER,`. (PKApost,ER )

Definite Adoption Under definite adoption (AD), the agent recommends

the new project, and the principal chooses the new project. Note that a payoff

pair (u, π) can be supported by definite adoption if the following constraints

are satisfied.

(i.) Feasibility: We denote continuation payoffs under opportunity by

(upost,AD , πpost,AD). The self-enforcement constraint is then given by

(upost,AD , πpost,AD) ∈ Epost. (SEpost,AD )

(ii.) No Deviation: As in the case of centralization, the principal and the

agent never wants to deviate off schedule, and there are no feasible on-schedule

deviations.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = (1− δ) ΠN + δπpost,AD (PKPpost,AD )
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for the principal and

u = (1− δ)UN + δupost,AD (PKApost,AD )

for the agent.

Probabilistic Adoption Under probabilistic adoption (AP ), the agent rec-

ommends the principal’s preferred project when it is available and the new

project otherwise, and the principal rubberstamps the agent’s recommenda-

tion. A payoff pair (u, π) can be supported by probabilistic adoption if the

following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. Let (upost,AP ,`, πpost,AP ,`) denote the parties’continuation

payoffs if the agent recommends the new project, and let (upost,AP ,h, πpost,AP ,h)

denote their payoffs if he recommends the principal’s preferred project. The

self-enforcement constraint is then given by

(upost,AP ,`, πpost,AP ,`) , (upost,AP ,h, πpost,AP ,h) ∈ Epost. (SEpost,AP )

(ii.) No Deviation: The principal never wants to deviate off schedule.

The agent can deviate off schedule by recommending his own project. If he

does so, he receives (1− δ)B this period followed by 0. To prevent the agent

from deviating off-schedule, we need that

u ≥ (1− δ)B. (ICOffpost,AP )

The agent can also deviate on schedule by recommending the new project

when the principal’s preferred project is available. The incentive constraint

(1− δ) b+ δupost,AP ,h ≥ (1− δ)UN + δupost,AP ,` (ICOnpost,AP )

ensures that he does not want to do so.

(iii.) Promise Keeping: The promise-keeping constraints are now given
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by

π = p [(1− δ)B + δπpost,AP ,h] + (1− p) [(1− δ) ΠN + δπpost,AP ,`] (PK
P
post,AP

)

and

u = p [(1− δ) b+ δupost,AP ,h] + (1− p) [(1− δ)UN + δupost,AP ,`] . (PK
A
post,AP

)

Randomization Finally, a payoff pair (u, π) can be supported by random-

ization. In this case, there exist at most three distinct PPE payoffs (ui, πi) ∈
Epost, i = 1, 2, 3 such that

(u, π) = α1 (u1, π1) + α2 (u2, π2) + α3 (u3, π3)

for some α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1.

Constraints in the Pre-Opportunity Phase

We now list the set of constraints for supporting the PPE payoffset Epre. Con-
sider a PPE payoff pair (u, π) ∈ Epre. Again as in the baseline model, we can
restrict our attention to the following arrangements: centralization, restricted

empowerment, cooperative empowerment, and unrestricted empowerment. In

contrast to the baseline model, we now need to specify the continuation payoffs

both when the opportunity has arrived and when it has not.

Centralization Under centralization, the agent recommends the default

project, and the principal chooses the default project. A payoff pair (u, π)

can be supported by centralization if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also

need to be PPE payoffs. Let (upre,C , πpre,C) be the associated continuation

payoffs if the opportunity does not arrive next period and (utrans,C , πtrans,C)

be the associated continuation payoffs when the game transitions to the post-

opportunity phase for the first time next period. The continuation payoffs
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therefore have to satisfy the self-enforcement constraint

(upre,C , πpre,C) ∈ Epre and (utrans,C , πtrans,C) ∈ Epost (SEpre,C)

(ii.) No Deviation: As in the baseline model, the principal and the agent

never want to deviate off schedule, and there are no feasible on-schedule de-

viations. Since the principal does not have any private information, and the

agent does not get to choose a project, there are no on-schedule deviations

under centralization.

(iii.) Promise Keeping: Finally, the consistency of the PPE payoff decom-

position requires that the parties’payoffs are equal to the weighted sum of

current and future payoffs. The promise-keeping constraints

π = δ [(1− q)πpre,C + qπtrans,C ] ; (PKPpre,C)

u = δ [(1− q)upre,C + qutrans,C ] . (PKApre,C)

Unrestricted Empowerment Under unrestricted empowerment, the agent

always recommends his own preferred project, and the principal rubberstamps

this recommendation. A payoff pair (u, π) can be supported by unrestricted

empowerment if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also

need to be PPE payoffs. Let (upre,EU , πpre,EU ) be the associated continuation

payoffs if the opportunity does not arrive next period and (utrans,EU , πtrans,EU )

be the associated continuation payoffs when the new opportunity arrives. The

continuation payoffs therefore have to satisfy the self-enforcement constraint

(upre,EU , πpre,EU ) ∈ Epre and (utrans,EU , πtrans,EU ) ∈ Epost (SEpre,EU )

(ii.) No Deviation: As in the case of centralization, the principal and the

agent never want to deviate off schedule, and there are no feasible on-schedule

deviations.
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(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = (1− δ) b+ δ [(1− q)πpre,EU + qπtrans,EU ] (PKPpre,EU )

for the principal and

u = (1− δ)B + δ [(1− q)upre,EU + qutrans,EU ] (PKApre,EU )

for the agent.

Cooperative Empowerment Under cooperative empowerment, the agent

recommends the principal’s preferred project when it is available and his own

preferred project otherwise, and the principal rubberstamps the agent’s rec-

ommendation. A payoff pair (u, π) can be supported by cooperative empow-

erment if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. If the new opportunity does not arrive next period, let

(upre,EC ,`, πpre,EC ,`) denote the parties’continuation payoffs if the agent chooses

his own preferred project, and (upre,EC ,h, πpre,EC ,h) denote their payoffs if he

chooses the principal’s preferred project. Define (utrans,EC ,`, πtrans,EC ,`) and

(utrans,EC ,h, πtrans,EC ,h) accordingly. The self-enforcement constraint is then

given by

(upre,EC ,`, πpre,EC ,`) ∈ Epre, (upre,EC ,h, πpre,EC ,h) ∈ Epre; (SEpre,EC )

(utrans,EC ,`, πtrans,EC ,`) ∈ EPost, (utrans,EC ,h, πtrans,EC ,h) ∈ EPost.

(ii.) No Deviation: The principal and the agent never want to deviate

off schedule, and the principal has no on-schedule deviations. The agent,

however, can deviate on schedule by recommending his preferred project when

the principal’s preferred project is available. The incentive constraint

(1− δ) b+ δ ((1− q)upre,EC ,h + qutrans,EC ,h) (ICpre,EC )

≥ (1− δ)B + δ ((1− q)upre,EC ,` + qutrans,EC ,`)
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ensures that he does not want to do so.

(iii.) Promise Keeping: The promise-keeping constraints are now given by

π = p [(1− δ)B + δ ((1− q) πpre,EC ,h + qπtrans,EC ,h)] (PKPpre,EC )

+ (1− p) [(1− δ) b+ δ ((1− q) πpre,EC ,` + qπtrans,EC ,`)] ,

and

u = p [(1− δ) b+ δ ((1− q)upre,EC ,h + qutrans,EC ,h)] (PKApre,EC )

+ (1− p) [(1− δ)B + δ ((1− q)upre,EC ,` + qutrans,EC ,`)] .

Restricted Empowerment Under Restricted Empowerment, the agent rec-

ommends the principal’s preferred project when it is available and the default

project otherwise, and the principal always rubberstamps the agent’s recom-

mendation. A payoff pair (u, π) can be supported by restricted empowerment

if the following constraints are satisfied.

(i.) Feasibility: For the continuation payoffs to be feasible, they also need

to be PPE payoffs. If the new opportunity does not arrive next period, let

(upre,ER,`, πpre,ER,`) denote the parties’continuation payoffs if the agent chooses

his own preferred project, and (upre,ER,h, πpre,ER,h) denote their payoffs if he

chooses the principal’s preferred project. Define (utrans,ER,`, πtrans,ER,`) and

(utrans,ER,h, πtrans,ER,h) accordingly. The self-enforcement constraint is then

given by

(upre,ER,`, πpre,ER,`) ∈ Epre, (upre,ER,h, πpre,ER,h) ∈ Epre; (SEpre,ER )

(utrans,ER,`, πtrans,ER,`) ∈ EPost, (utrans,ER,h, πtrans,ER,h) ∈ EPost.

(ii.) No Deviation: The principal and the agent never want to deviate

off schedule, and the principal has no on-schedule deviations. The agent,

however, can deviate on schedule by recommending the default project when
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the principal’s preferred project is available. The incentive constraint

(1− δ) b+δ ((1− q)upre,ER,h + qutrans,ER,h) ≥ δ ((1− q)upre,ER,` + qutrans,ER,`)

(ICpre,ER )

ensures that he does not want to do so.

(iii.) Promise Keeping: The promise-keeping constraints are now given

by

π = p [(1− δ)B + δ ((1− q) πpre,ER,h + qπtrans,ER,h)] (PKPpre,ER )

+ (1− p) [(1− δ) b+ δ ((1− q) πpre,ER,` + qπtrans,ER,`)] ,

and

u = p [(1− δ) b+ δ ((1− q)upre,ER,h + qutrans,ER,h)] (PKApre,ER )

+ (1− p) [(1− δ)B + δ ((1− q)upre,ER,` + qutrans,ER,`)] .

Randomization Finally, a payoff pair (u, π) can be supported by random-

ization. In this case, there exist at most three distinct PPE payoffs (ui, πi) ∈
EPre, i = 1, 2, 3 such that

(u, π) = α1 (u1, π1) + α2 (u2, π2) + α3 (u3, π3)

for some α1, α2, α3 ≥ 0 and α1 + α2 + α3 = 1.

Properties of πpost

To focus our analysis but to allow for suffi cient generality, we make the fol-

lowing assumptions.

ASSUMPTION B1. pb < UN ≤ b.

ASSUMPTION B2. (1− δ)B ≤ pb+ (1− p)UN .

ASSUMPTION B3. B < ΠN ≤ min {B − UN , (p−1 + 1− p)B}.

We will refer to the set (UN ,ΠN) that satisfy assumptions B1, B2, and

B3 as N . Lemma B2 shows that πpost (u) shares similar features as the PPE
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payoff frontier in the main section.

LEMMA B2. For any payoff (u, πPost(u)) on the frontier, the equilibrium

continuation payoffs remain on the frontier. For all (UN ,ΠN) ∈ N , the

following hold.

(i.) If (u, πpost(u)) is supported with centralization, the agent’s continuation

payoff is given by

δupost,C (u) = u.

(ii.) If (u, πpost(u)) is supported with unrestricted empowerment, the agent’s

continuation payoff is given by

δupost,EU (u) = u− (1− δ)B.

(iii.) If (u, πpost(u)) is supported with cooperative empowerment, the agent’s

continuation payoff can be chosen to be

δupost,EC ,h (u) = u− (1− δ) b;
δupost,EC ,` (u) = u− (1− δ)B.

(iv.) If (u, πpost (u)) is supported with restricted empowerment, the agent’s

continuation payoff is given by

δupost,ER,h (u) = δupost,ER,` (u) = u− (1− δ) pb.

(v.) If (u, πpost(u)) is supported with definite adoption, the agent’s contin-

uation payoff is given by

δupost,AD (u) = u− (1− δ)UN .

(vi.) If (u, πpost (u)) is supported with probabilistic adoption, the agent’s

continuation payoff is given by

δupost,AP ,h (u) = δupost,AP ,` (u) = u− (1− δ) (pb+ (1− p)UN) .
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Proof of Lemma B2: Parts (i.)—(iv.) are proven in the same way as in the

proof of the baseline model. Part (v.) follows directly from the agent’s promise-

keeping condition (PKApost,AD ). Part (vi.) follows from the agent’s promise-

keeping condition (PKApost,AP ) and the condition that b ≥ uN , which ensures

that the agent’s on-schedule IC constraint is satisfied when δupost,AP ,h (u) =

δupost,AP ,` (u) .�

Just as in the main section, let πpost,j (u) for j ∈ {C,ER, EC , EU , AD, AP}
be the highest equilibrium payoff for the principal when the agent’s payoff is

u and action j is chosen. Lemma B2 implies that

πpost,C (u) = δπpost (upost,C (u)) ;

πpost,ER (u) = (1− δ) pB + δπpost (upost,ER (u)) ;

πpost,EC (u) = p [(1− δ)B + δπpost (upost,EC ,h (u))]

+ (1− p) [(1− δ) b+ δπpost (upost,EC ,` (u))] ;

πpost,EU (u) = (1− δ) b+ δπpost (upost,EU (u)) ;

πpost,AD (u) = (1− δ) ΠN + δπpost (upost,AD (u)) ;

πpost,AP (u) = (1− δ) (pB + (1− p) ΠN) + δπpost (upost,AP (u)) .

The characterization of πpost is similar to the analysis in the baseline model.

It is worth noting that if (UN ,ΠN) ∈ N , restrictive empowerment is no longer
used to support any payoff pair (u, πpost (u)).

LEMMA B3. For each (UN ,ΠN) ∈ N , there exist two cutoffs upost,EC and

ūpost,EC such that the PPE payoff frontier πpost (u) is divided into at most five

regions:

(i.) For u ∈ (0, UN), πpost (u) is supported by randomization between cen-

tralization and definite adoption. πpost (0) = 0 and πpost (UN) = ΠN .

(ii.) For u ∈ (UN , pb+ (1− p)UN ], πpost (u) is supported by randomization

between definite adoption and probabilistic adoption. πpost (pb+ (1− p)UN) =

pB + (1− p) ΠN .
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(iii.) For u ∈
[
pb+ (1− p)UN , upost,EC

]
, πpost (u) is supported by random-

ization between probabilistic adoption and cooperative empowerment.

(iv.) For u ∈
[
upost,EC , ūpost,EC

]
, πpost (u) is supported by cooperative em-

powerment.

(v.) For u ∈ [ūpost,EC , B], πpost (u) is supported by randomization between

cooperative empowerment and unrestricted empowerment.

In addition, ūpost,EC = (1− δ) b+ δB and

b ≤ upost,EC ≤ max {b, (1− δ)B + δ (pb+ (1− p)UN)} .

The payoff frontier πpost is maximized at UN .

Proof of Lemma B3: To see part (i.), note that (0, 0) and (UN ,ΠN) are

stage-game equilibrium payoffs. Recall that the agent will never choose e = 1

for any project if the principal chooses e = 0. This implies that all equilibrium

payoffs lie weakly below the line segment hat connects (0, 0) and (UN ,ΠN).

As a result, the line segment connecting (0, 0) and (UN ,ΠN) is on the frontier

of the convex hull of the expected stage-game payoffs, which includes the PPE

payoff set. For part (ii.), notice that (pb+ (1− p)UN , pB + (1− p) ΠN) is a

stage-game equilibrium expected payoffgiven that (1− δ)B ≥ pb+(1− p)UN .
Notice that (pb+ (1− p)UN , pB + (1− p) ΠN) is on the line segment between

(UN ,ΠN) and (b, B). This line segment is on the frontier of the convex hull of

the expected stage-game payoffs, which includes the PPE payoff set. For the

remaining part of the lemma, notice that for the proof of parts (iii.)—(v.), the

value of ūpost,EC and the bounds on upost,EC follow from the same analysis as in

the baseline model. Finally, since (UN ,ΠN) is an equilibrium payoff, and ΠN

is the highest stage-game payoff for the principal, it is immediate that πpost is

maximized at UN .�

Properties of πpre

Now we characterize the payoff frontier of the pre-opportunity game. Unlike

the analysis of the baseline model or of the post-opportunity game, there are

no explicit expressions for the agent’s continuation payoffs. Instead, they are
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pinned down by the following two conditions. First, their expected value is de-

termined by the promise-keeping condition (with the same expressions as those

in the baseline model). Second, we have π′pre (upre,j (u)) = π′post (utrans,j (u))

for j = {C,ER, EU , (EC , h) , (EC , `)} when the payoff frontiers are differen-
tiable. The next lemma provides the details.

LEMMA B4. For any payoff (u, πpre(u)) on the frontier, the equilibrium con-

tinuation payoffs remain on the frontier. In addition, the following holds.

(i.) If (u, πpre(u)) is supported by centralization, the agent’s continuation

payoff satisfies

δqutrans,C (u) + δ (1− q)upre,C (u) = u.

In addition,

π+
pre(upre,C (u)) ≤ π−post(utrans,C (u)); π+

post(utrans,C (u)) ≤ π−pre(upre,C (u)).

(ii.) If (u, πpre (u)) is supported by restricted empowerment, the agent’s

continuation payoff satisfies upre,ER,` (u) = upre,ER,h (u) ≡ upre,ER (u), utrans,ER,` (u) =

utrans,ER,h (u) ≡ utranst,ER (u)

δ [qutrans,ER (u) + (1− q)upre,ER (u)] = u− (1− δ) pb.

In addition,

π+
pre(upre,ER (u)) ≤ π−post(utrans,ER (u)); π+

post(utrans,ER (u)) ≤ π−pre(upre,ER (u)).

(iii.) If (u, πpre(u)) is supported by cooperative empowerment, the agent’s

continuation payoff can be chosen to satisfy

δqutrans,EC ,l (u) + δ (1− q)upre,EC ,l (u) = u− (1− δ)B;

δqutrans,EC ,h (u) + δ (1− q)upre,EC ,h (u) = u− (1− δ) b.

In addition, for j ∈ {h, `},

π+
pre(upre,EC ,j (u)) ≤ π−post(utrans,EC ,j (u)); π+

post(utrans,EC ,j (u)) ≤ π−pre(upre,EC ,j (u)).
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(iv.) If (u, πpre(u)) is supported by unrestricted empowerment, the agent’s

continuation payoff is given by

δqutrans,EU (u) + δ (1− q)utrans,EU (u) = u− (1− δ)B.

In addition,

π+
pre(upre,EU (u)) ≤ π−post(utrans,EU (u)); π+

post(utrans,EU (u)) ≤ π−pre(upre,EU (u)).

Proof of Lemma B4: This is proven in the same way as that in the

baseline model. The additional inequality constraints arise, because at the

optimum, for a given expected continuation payoff for the agent, it has to

be optimal for the principal not to increase or decrease the agent’s state-

contingent continuation payoff.�

Now we can prove proposition 3.

PROPOSITION 3. For each (UN ,ΠN) ∈ N ,
(i.) There exists Π̄ (UN) and q (UN ,ΠN) such that for all ΠN ≤ Π̄(UN) and

q ≤ q(UN ,ΠN), there exists a public history hT such that Pr
(
uT = UN |hT

)
<

1, where T is the first period in the post-opportunity phase.

(ii.) There exists a δ̂ and q̂ (UN ,ΠN) such that for all δ ≤ δ̂ and q ≤
q̂(UN ,ΠN), there exists a public history hT such that Pr

(
ut = UN |hT

)
= 0

for all t ≥ T .

Proof of Proposition 3: Denote πqpre (u) to be the payoff frontier in the

pre-opportunity game with parameter q, and notice that π0
pre (u) = π (u),

which is the frontier of the baseline model. By Berge’s maximum theorem,

limq→0 π
q
pre (u) = π (u) for each u. Define

ūqpre,EC = max
{
u : πqpre, (u) = πqpre,EC (u)

}
.

Then, limq→0 ū
q
pre,EC

= ū0
pre,EC

= ūEC and π
q
pre (u) is sustained by randomiza-

tion on the interval
(
ūqpre,EC , ũ

q
pre,EC

)
for some ũqpre,EC > ūqpre,Ec . Denote s

q to
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be the slope of πqpre on this interval, and denote by s
0 the slope of π on this

interval. It follows that limq→0 s
q = s0.

To prove part (i.), it suffi ces to show that we cannot simultaneously have

both uqtrans,EC ,h
(
ūqpre,EC

)
= UN and uqtrans,EC ,`

(
ūqpre,EC

)
= UN . In order to

get a contradiction, suppose to the contrary that
(
ūqpre,EC , π

q
pre

(
ūqpre,EC

))
is

supported by cooperative empowerment and the pair of continuation payoffs(
uqtrans,EC ,h

(
ūqpre,EC

)
, uqtrans,EC ,`

(
ūqpre,EC

))
and

(
uqpre,EC ,h

(
ūqpre,EC

)
, uqpre,EC ,`

(
ūqpre,EC

))
,

where

uqtrans,EC ,h
(
ūqpre,EC

)
= uqtrans,EC ,`

(
ūqpre,EC

)
= UN .

Consider an alternative strategy profile that delivers equilibrium payoffs (û, π̂)

on the frontier, and this point is sustained by cooperative empowerment with

continuation payoffs given by utrans,EC ,h = utrans,EC ,` = UN + ε for some ε > 0

small and upre,EC ,h = uqpre,EC ,h
(
ūqpre,EC

)
and upre,EC ,` = uqpre,EC ,`

(
ūqpre,EC

)
. The

promise-keeping condition implies that

û = ūqpre,EC + δεq

and, if we denote by r the slope between (pb+ (1− p)UN , pB + (1− p) ΠN)

and (UN ,ΠN),

π̂ = πqpre
(
ūqpre,EC

)
+ δqrε.

Now, for any UN ≤ b, there exists Π̄ (UN) such that for all B < ΠN ≤ Π̄ (uN),

the slope r > s0/2. Further, there exists q̄ (UN) such that for any q ≤ q̄ (UN),

sq ∈ (3s0/4, s0). It then follows that

π̂ > πqpre
(
ūqpre,EC

)
+

1

2
δqs0ε

and

πqpre
(
ūqpre,EC + δqε

)
= πqpre

(
ūqpre,EC

)
+ δqsqε

≤ πqpre
(
ūqpre,EC

)
+

3

4
δqs0ε

< πqpre
(
ūqpre,EC

)
+

1

2
δqs0ε < π̂,

29



which implies that (û, π̂) lies above the point
(
û, πqpre (û)

)
because s0 < 0,

which is a contradiction.

To prove part (ii.), suppose that δ < δ̂ = B−b
2B−(1+p)b

, so that uEC ,` (ūEC ) <

pb. It suffi ces to show that for q suffi ciently small, upre,EC ,h
(
ūqpre,EC

)
= B.

In order to get a contradiction, suppose that upre,EC ,h
(
ūqpre,EC

)
< B for all q.

Define sq as above. We know that limq→0 s
q = s0. As above, suppose to the

contrary that
(
ūqpre,EC , π

q
pre

(
ūqpre,EC

))
is supported by cooperative empower-

ment and continuation payoffs
(
uqtrans,EC ,h

(
ūqpre,EC

)
, uqtrans,EC ,`

(
ūqpre,EC

))
and(

uqpre,EC ,h
(
ūqpre,EC

)
, uqpre,EC ,`

(
ūqpre,EC

))
, where uqpre,EC ,h

(
ūqpre,EC

)
< B. Con-

sider an alternative strategy profile that delivers equilibrium payoffs (û, π̂) on

the frontier, and this point is sustained by cooperative empowerment with

continuation payoffs given by ûtrans,EC ,h
(
ūqpre,EC

)
= utrans,EC ,h

(
ūqpre,EC

)
and

ûtrans,EC ,`
(
ūqpre,EC

)
= utrans,EC ,`

(
ūqpre,EC

)
, for the transitional continuation

payoffs, and ûpre,EC ,h
(
ūqpre,EC

)
= upre,EC ,h

(
ūqpre,EC

)
+ε and ûpre,EC ,`

(
ūqpre,EC

)
=

upre,EC ,`
(
ūqpre,EC

)
+ ε for the continuation payoffs that remain on the pre-

opportunity frontier. This new strategy profile provides the agent with a

payoff of

û = ūqpre,EC + δ (1− q) ε

and the principal with a payoff of

π̂ = πqpre
(
ūqpre,EC

)
+ δ

[
p (1− q)

(
πqpre (ûpre,EC ,h)− πqpre (upre,EC ,h)

)]
+δ (1− p) (1− q)

(
πqpre (ûpre,EC ,`)− πqpre (upre,EC ,`)

)
.

Moreover, this change preserves the agent’s incentive constraint, and it is an

equilibrium payoff.

Next, notice that

πqpre (û) = πqpre (u) + sqδ (1− q) ε

and

π̂ ≥ πqpre (u)+δ (1− q) ε
[
pπq+pre

(
upre,EC ,h

(
ūqpre,EC

))
+ (1− p) πq+pre

(
upre,EC ,`

(
ūqpre,EC

))]
.
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Therefore, we obtain a contradiction if

pπq+pre
(
upre,EC ,h

(
ūqpre,EC

))
+ (1− p)πq+pre

(
upre,EC ,`

(
ūqpre,EC

))
> sq.

Next, notice that there exists q̄ (UN ,ΠN) such that if q < q̄ (UN ,ΠN) and

δ < δ̄ (UN ,ΠN), then πq+pre
(
upre,EC ,`

(
ūqpre,EC

))
= B/b and this inequality is

satisfied if

pπq+pre
(
upre,EC ,h

(
ūqpre,Ec

))
+ (1− p) B

b
> s0.

The left-hand side of this inequality is weakly bigger than

pπq−pre (B) + (1− p) B
b
≥ pπ−post (B) + (1− p) B

b
,

so it suffi ces to show that pπ−post (B) + (1− p) (B/b) > s0.

By construction,

s0 =
b− π0

pre (ūEC )

B − ūEC
and π−post (B) =

b− πpost (ūEC )

B − ūEC
.

Since ūEC = (1− δ) b+ δB, we have that B− ūEC = (1− δ) (B − b). Further,

πpost (ūEC )−π0
pre (ūEC ) = (1− p) δ

[
πpost (upost,EC ,` (ūEC ))− π0

pre (uEC ,` (ūEC ))
]
,

so the inequality becomes

(1− δ) (B − b) B
b

+π0
pre (ūEC )−b > pδ

[
πpost (upost,EC ,` (ūEC ))− π0

pre (uEC ,` (ūEC ))
]
.

By the proof of Proposition 1, π0
pre (ūEC ) > b. Finally, we can note that since

UN > pb and ΠN <
(

1
p

+ p− 1
)
B,

πpost (upost,EC ,` (ūEC ))−π0
pre (uEC ,` (ūEC )) ≤ πpost (pb)−pB <

(
1

p
+ p− 1

)
B−pB;

further, because the incentive constraint holds with equality, and uEC ,h (ūEC ) =
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B and uEC ,` (ūEC ) ≤ pb, we have that

δ

1− δ ≤
B − b
B − pb .

Combining these inequalities gives us the desired inequality.�
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