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A Full derivation of proposition 1 and corollary 2

A.1 Deriving the Kullback—Leibler divergence

We model the agent as comparing models based on the expected value of a squared distance. In the case

of a Gaussian model, the distance is exactly the expected likelihood ratio. When the time series are non-

Gaussian, it becomes a quadratic distance that has been widely studied in the time series econometrics

literature.

Models are indexed by the parameter set Θ ≡
{
b, µ, σ2

}
. The investor has a benchmark model for

consumption growth dynamics, Θ̄. Denote the covariance matrix of consumption growth implied by a

model Θ as ΣΘ . The log likelihood for a sample of consumption growth under the model Θ is

−1

2
log |ΣΘ| −

1

2
(∆c1,...,T − µ)′Σ−1

Θ (∆c1,...,T − µ) (A.1)

where ∆c1,...,T denotes a column vector containing the sample of observed consumption growth between

dates 1 and T . Now suppose consumption growth is generated by the model Θ. One may show that as

T →∞, the expected log likelihood for the model Θ̄ =
{
b̄, µ̄, σ̄2

}
is equal to

lim
T→∞

T−1EΘ

[
−1

2
log |ΣΘ̄| −

1

2
(∆c1,...,T − µ̄)′Σ−1

Θ̄
(∆c1,...,T − µ̄)

]
= −1

2

1

2π

∫ π

−π
log fΘ̄ (ω) dω − 1

2

1

2π

∫ π

−π

fΘ (ω)

fΘ̄ (ω)
− 1dω − 1

2

(µ− µ̄)2

fΘ̄ (0)
(A.2)

where EΘ denotes an expectation when the data is generated by the model Θ. (A.2) is simply the expected

value of Whittle’s (1953) expression for the log likelihood. Formally, the limit is an application of a well

known result from Grenander and Szego (1958) that Toeplitz matrices converge asymptotically to circulant

matrices. See Gray (2006) for a recent textbook review of such results. Examples of recent work using and

extending the Whittle likelihood include Monti (1997), Dahlhaus (2000) and Shimotsu and Phillips (2005).

Now note that
1

2π

∫ π

−π

fΘ (ω)

fΘ̄ (ω)
dω =

1

2π

σ2

σ̄2

∫ π

−π

|B (ω)|2∣∣B̄ (ω)
∣∣2dω (A.3)

Also, as long as the roots of B and B̄ are inside the unit circle, we have 1
2π

∫ π
−π

B(ω)
B̄(ω)

dω = 1.1 We can

1To confirm this, write b (L) as b (L) =
∏
j (1− ajL) for |aj | < 1. Using the same form for b̄, note that each of the factors

of 1/b̄ (L) has a convergent Taylor series, 1
1−ājL

=
∑∞
k=0 ā

k
jL

k. Then the ratio B (ω) /B̄ (ω) may be written as

B (ω) /B̄ (ω) =
∏
j

(
1− ajeiω

)( ∞∑
k=0

ākj e
iωk

)
(A.4)

This function only has Fourier coeffi cients on the positive side of the origin, and the coeffi cient on the constant is a0
j = 1.

That is, all the terms multiplying eiωk for k > 0 integrate to zero, so 1
2π

∫ π
−π B (ω) /B̄ (ω) dω = 1.
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therefore write

1

2π

∫ π

−π

|B (ω)|2∣∣B̄ (ω)
∣∣2dω =

1

2π

∫ π

−π

∣∣∣∣B (ω)

B̄ (ω)

∣∣∣∣2 − B (ω)

B̄ (ω)
− B (ω)∗

B̄ (ω)∗
+ 2dω (A.5)

=
1

2π

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω + 1 (A.6)

Which implies that

1

2π

∫ π

−π

σ2

σ̄2

|B (ω)|2∣∣B̄ (ω)
∣∣2 − 1dω =

1

2π

σ2

σ̄2

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω +
σ2

σ̄2
− 1 (A.7)

=
1

2π

σ2

σ̄2

∫ π

−π

∣∣∣∣B (ω)− B̄ (ω)

B̄ (ω)

∣∣∣∣2 dω +
σ2 − σ̄2

σ̄2
(A.8)

Note also that Kolmogorov’s formula implies that 1
2π

∫ π
−π log fΘ (ω) dω = log σ2.

The investor measures the distance between the benchmark model Θ̄ and an alternative Θ as the

difference in the asymptotic expected log likelihoods of the two models when the data is generated by Θ,

which is the KL divergence,

lim
T→∞

T−1EΘ

[
LL (T,Θ)− LL

(
T, Θ̄

)]
=

1

2

1

2π

σ2

σ̄2

∫ π

−π

∣∣B (ω)− B̄ (ω)
∣∣2∣∣B̄ (ω)

∣∣2 dω

−1

2

(
log

(
σ2

σ̄2

)
− σ2 − σ̄2

σ̄2

)
+

1

2

(µ− µ̂)2

fΘ̄ (0)
(A.9)

A.2 Minimization

The investor’s optimization problem to find the worst-case model is

min
b,µ,σ2

β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+
λ

2

[∫
f (ω)

f̄ (ω)
− log

f (ω)

f̄ (ω)
dω +

(µ− µ̄)2

f̄ (0)

]
(A.10)

where the integral sign without limits denotes 1
2π

∫ π
−π.

The spectral density f (ω) can be expressed as

f (ω) = exp

2
∞∑
j=0

cj cos (ωj)

 (A.11)

for a set of real coeffi cients cj (Priestley (1981)). The coeffi cients cj are simply the Fourier coeffi cients of

the log of the spectrum; we only include coeffi cients for non-negative j because the spectrum is a real and
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even function. Furthermore, setting σ = exp (c0), we have

σB (ω) = exp

 ∞∑
j=0

cje
iωj

 (A.12)

bm =

∫
e−iωm exp

 ∞∑
j=1

cje
iωj

 dω (A.13)

where the bj are the coeffi cients from the Wold representation for the spectrum |B (ω)|2 (Priestley (1981)).
Since σ = exp (c0), b0 = 1. Furthermore, bj = 0 for all j < 0. (A.12) is known as the canonical factorization

of the spectrum. We solve the optimization problem by directly choosing the cj . Since the Fourier transform

is one-to-one, choosing the cj is equivalent to optimizing over the spectrum directly. Since B (ω) is obtained

from the Wold representation, it is guaranteed to be causal, invertible, and minimum-phase. Last, the

innovation variance associated with the spectrum f (ω) is σ2 = exp (2c0).

We first calculate derivatives involved in the optimization

d

dcj
[σb (β)] =

d

dcj

∞∑
m=0

βm
∫

exp

 ∞∑
j=0

cjej

 e−iωmdω (A.14)

=
∞∑
m=0

βm
∫

d

dcj
exp

 ∞∑
j=0

cje
iωj

 e−iωmdω (A.15)

=
∞∑
m=0

βm
∫

exp

 ∞∑
j=0

cje
iωj

 e−iω(m−j)dω (A.16)

= σ

∞∑
m=0

βmbm−j (A.17)

= σ
∞∑
m=0

βm+jbm = σb (β)βj (A.18)

where the derivative can be passed inside the integral because B (ω) is continuous and differentiable with

respect to the cj and the last line follows from the fact that bj = 0 for j < 0.

Next, the derivative of the ratio of the spectra is

d

dcj

∫
f (ω)

f̄ (ω)
dω =

d

dcj

∫ exp
(

2
∑∞

j=0 cj cos (ωj)
)

f̄ (ω)
dω (A.19)

= 2

∫
f (ω)

f̄ (ω)
cos (ωj) dω (A.20)

And last,
d

dc0

∫
log

f (ω)

f̄ (ω)
dω = 2 (A.21)
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So we have

min
b,µ,σ2

β

1− β
1− α

2
σ2b (β)2 +

β

1− βµ+
λ

2

[∫
f (ω)

f̄ (ω)
− log

f (ω)

f̄ (ω)
dω +

(µ− µ̄)2

f̄ (0)

]
(A.22)

The first-order condition for each j > 0 is

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (ωj) dω (A.23)

For j = 0,

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 +
λ

2

∫
fw (ω)

f̄ (ω)
2dω − λ (A.24)

Now multiply each of the first-order conditions by cos (jκ) for some κ.

0 = 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (jκ) cos (ωj) dω (A.25)

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
(cos (j (κ+ ω)) + cos (j (κ− ω))) dω (A.26)

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)
2 cos (j (κ+ ω)) dω (A.27)

where the third line follows by

= 2
β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (ω)

f̄ (ω)
cos (j (κ− ω)) dω

]
= 2

β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (−ω)

f̄ (−ω)
cos (j (κ+ ω)) dω

]
= 2

β

1− β
1− α

2
σ2
wb

w (β)2 cos (jκ)βj +
λ

2

[∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω +

∫
fw (ω)

f̄ (ω)
cos (j (κ+ ω)) dω

]

That is, since fw(ω)

f̄(ω)
is even, we can always reverse the sign of ω in the integration.

Now take the first-order condition (FOC) for j = 0, multiply it by 1
2 , and add to the sum of the FOCs

for j > 0 multiplied by cos (κj),

0 =
β

1− β
1− α

2
σ2
wb

w (β)2 +
λ

2

∫
fw (ω)

f̄ (ω)
dω − λ

2
(A.28)

+
β

1− β
1− α

2
σ2
wb

w (β)2
∞∑
j=1

2 cos (jκ)βj +
λ

2

∫
fw (ω)

f̄ (ω)

∞∑
j=1

2 cos (j (κ+ ω)) dω (A.29)

=
β

1− β
1− α

2
σ2
wb

w (β)2

1 +

∞∑
j=1

2 cos (jκ)βj

+
λ

2

∫
fw (ω)

f̄ (ω)

1 +

∞∑
j=1

2 cos (j (κ+ ω))

 dω − λ

2
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We have

1 +
∞∑
j=1

2 cos (j (κ+ ω)) = δ (κ+ ω) (A.30)

where δ (·) is the Dirac delta function. Furthermore, note that Z (ω) is the transfer function of an AR(1)

model with autocorrelation of β. It then follows that

(
1− β2

)
|Z (κ)|2 = 1 +

∞∑
j=1

2 cos (jκ)βj (A.31)

The FOC then becomes

0 =
β

1− β
1− α

2
σ2
wb

w (β)2 (1− β2
)
|Z (κ)|2 +

λ

2

(
fw (ω)

f̄ (ω)
− 1

)
(A.32)

fw (ω)

f̄ (ω)
− 1 = λ−1 β

1− β (α− 1)σ2
wb

w (β)2 (1− β2
)
|Z (κ)|2 (A.33)

fw (ω) = f̄ (κ) + λ−1β (1 + β) (α− 1) f̄ (κ)σ2
wb

w (β)2 |Z (κ)|2 (A.34)

This is the main result in the text.

A.3 The white-noise benchmark

In the white noise case, f̄ (κ) = σ̄2. The mean immediately follows,

µw = µ̄− λ−1 β

1− β σ̄
2 (A.35)

For the dynamics,

fw (ω) = σ̄2 + λ−1β (1 + β) (α− 1) σ̄2σ2
wb

w (β)2 |Z (ω)|2 (A.36)

Denote the autocovariances under the worst-case model as γwj . Then

γw0 + 2
∞∑
j=1

γwj cos (ωj) = σ̄2

1 + ϕ

1 + 2
∞∑
j=1

cos (ωj)βj

 (A.37)

where ϕ ≡ λ−1 β

1− β (α− 1)σ2
wb

w (β)2 (A.38)

Matching coeffi cients on each side yields

γw0 = σ̄2 (1 + ϕ) (A.39)

γwj = σ̄2ϕβj for |j| > 0 (A.40)
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These may be recognized as the autocovariances of an ARMA(1,1) process. Specifically, set

∆ct = xt + vt (A.41)

xt = βxt−1 + µt (A.42)

σ2
v = σ̄2 (A.43)

σ2
µ = σ̄2ϕ

(
1− β2

)
(A.44)

Then one may confirm that ∆ct has autocovariances γwj .

To find the equivalent univariate ARMA(1,1) representation, note that

∆ct − β∆ct−1 = xt − βxt−1 + vt − βvt−1 (A.45)

= µt + vt − βvt−1 (A.46)

The second line is an MA(1), with

mt ≡ µt + vt − βvt−1 (A.47)

var (mt) = σ2
µ +

(
1 + β2

)
σ2
v =

(
1 + θ2

)
σ2
w (A.48)

cov (mt,mt−1) = −βσ2
v = −θσ2

w (A.49)

We then find θ and σ2
w by solving that pair of equations. We have

θ =

(
σ2
µ

σ2
v

+
(
1 + β2

))
β−1 −

√(
σ2
µ

σ2
v

+
(
1 + β2

))2
β−2 − 4

2
(A.50)

which immediately yields σ2
w. Now θ depends on σ2

µ, which depends on ϕ. But ϕ itself depends on b (β).

We therefore solve for θ and σ2
ε iteratively. Specifically, begin by guessing that ϕ = λ−1 β

1−β (α− 1) σ̄2. We

then calculate θ and σ2
w for that guess, and update ϕ, with ϕ = λ−1 β

1−β (α− 1)σ2
w

(
1−θβ
1−β2

)2
and iterate to

convergence.

B Testing the worst-case model

This section provides details and further results for the small-sample tests of the worst-case model.

B.1 Test statistics

We examine three tests: the ARMA(1,1) likelihood-ratio test suggested by Andrews and Ploberger (AP;

1996), the Ljung—Box (LB; 1978) test, and a test based on the Newey—West (1987) estimator of the long-run

variance.

For the AP and LB tests, as discussed in the text, we assume that the agent takes an observed

7



consumption history and creates a series of residuals,

εΘw
t ≡ (∆ct − µw − aw (L) (∆ct−1 − µw))σ−1

w (B.1)

Under the null hypothesis that the worst-case model is true, εΘw
t is white noise. To see the dynamics of

εΘw
t under the benchmark model, note that we can write εΘw

t as

εΘw
t =

1− βL
1− θLσ

−1
w (∆ct − µw) (B.2)

(where θ is defined for the worst-case model above). Under the benchmark, ∆ct ∼ N
(
µ̄, σ̄2

)
, so we can

write

εΘw
t =

1− βL
1− θL

σ̄

σw
ε̄t +

1− β
1− θ σ

−1
w (µ̄− µw) (B.3)

where ε̄t ∼ N (0, 1).

When we simulate the distribution of the AP and LB test statistics conditional on the benchmark

model being true, we construct them on simulated samples of εΘw
t using (B.3).

As discussed in the text, for the AP and LB tests, we first calculate critical values under the benchmark

model. That is, we simulate samples of the time series ε̄t ∼ N (0, 1) and then construct the AP and LB

test statistics for each sample. The critical values are the 95th percentiles of those simulated distributions.

The AP statistic is constructed exactly as in Andrews and Ploberger (1996). Specifically, for a sample

εt, t ∈ {1, 2, ..., T}, define

ω̃2 = T−1
T∑
t=1

ε2
t (B.4)

ω̃2 is the log likelihood (ignoring constants) under the null hypothesis that εt ∼ N (0, 1)

Second, define

ε∗t ≡ εt − T−1
T∑
t=1

εt (B.5)

ω̂2 (θ) ≡ T−1
T∑
t=1

(ε∗t )
2 −

T−1

(∑T
t=2 ε

∗
t

∑t−2
i=0 θ

iε∗t−i−1

)2

∑T
t=2

(∑t−2
i=0 θ

iε∗t−i−1

)
 (B.6)

ω̂2 (θ) is the log likelihood when the mean of εt is estimated freely and we also allow estimation of the

parameter θ.

The likelihood ratio statistic is then

LR ≡ sup
θ
T log

ω̃2

ω̂2 (θ)
(B.7)

For each simulated sample, we optimize over θ numerically (first searching over a grid, then using the

simplex algorithm from the best grid point).
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Note that the LR statistic here compares the likelihood of the data under assumptions both that εt is

serially uncorrelated and also that its mean is zero. ω̂2 (θ) is the maximized likelihood under an alternative

model that allows both for serial correlation (of an ARMA(1,1) form) and also a non-zero mean. We also

consider a version of the AP test that ignores the deviation in the mean under the null. This constraint

may potentially improve the power of the test, because it means that we are only testing the dynamics of

consumption growth, not the level. Specifically, the AP statistic with a fixed mean is

LR∗ ≡ sup
θ
T log

(ω̃∗)2

ω̂2 (θ)
(B.8)

(ω̃∗)2 ≡ T−1
T∑
t=1

(ε∗t )
2 (B.9)

LR∗ differs from LR only in that the numerator of the likelihood ratio now uses demeaned data. In other

words, the null allows for an estimated mean.

The LB statistic is calculated using the autocorrelations of the sample of εt, which we denote γ̂j . The

statistic, for a maximum lag of j, is

LBj ≡ T (T + 2)

j∑
k=1

γ̂2
k

T − k (B.10)

γ̂k ≡
∑T

t=k+1 εtεt−k∑T
t=k+1 ε

2
t

(B.11)

Finally, we also examine here a test based on the Newey—West (1987) estimator for the long-run variance

of a time series. We ask whether, observing a sample of data generated by the benchmark model, a person

would reject the hypothesis that the long-run variance is as large as implied by the worst-case model.

Specifically, we calculate the Newey—West estimate of the long-run variance

LRVj = κ̂0 + 2

j∑
k=1

(
1− k

j

)
κ̂j (B.12)

κ̂j ≡ T−1
T−j∑
k=1

(
∆ck − T−1

T∑
t=1

∆ct

)(
∆ck+j − T−1

T∑
t=1

∆ct

)
(B.13)

We simulate the distribution of LRVj given data generated by the worst-case model and define LRV ∗j
to be the 5th percentile of that distribution. The agent then rejects the hypothesis that the data was

driven by the worst-case model after observing a sample drawn from the benchmark model if LRVj in that

particular sample is less than LRV ∗j . That is, we ask how often the estimated long-run variance estimated

under the benchmark model is smaller than the 5th percentile of the long-run variance estimated under

the worst-case model.
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B.2 Extended results

The main text discusses results for the LB and AP tests on samples of 50 and 100 years. Table A2 reports

results using the Newey—West based test and using longer samples up to 1000 years.

As one would expect, as the samples grow, the rejection rates across all four tests rise. For 1000-year

samples, all but the Ljung—Box test reject with probabilities greater than 85 percent, confirming that they

eventually converge to the correct result asymptotically. However, one can see looking across the table

that all the tests converge rather slowly. With 250 years of data, the AP tests reject the worst case still

less than 10 percent of the time, while the NW test rejects approximately 25 percent of the time.

A natural question is why the rejections probabilities are so low, even for the Newey—West based test.

A simple way to see the intuition is to consider the periodogram. In a finite sample, the lowest frequency at

which the periodogram is observed is 2π/T radians, which corresponds to a cycle with wavelength equal to

the sample. Asymptotically, the periodogram is distributed exponentially with mean equal to the spectral

density. What distinguishes the worst-case model from the benchmark is that its spectrum is much larger

at low frequencies.

Specifically, the spectrum under the worst case has a value at frequency zero of fw (0) = bw (1)2 σ2
w =

0.00491,, whereas under the true model, f̄ (0) = 0.000215. So fw (0) is 23 times larger than f̄ (0). Given

that the standard deviation of the periodogram is equal to the level of the spectrum itself, fw (0) is 22

standard deviations higher than f̄ (0) and should be easily distinguishable.

However, since we do not observe the periodogram at frequency zero, what really matters is the value of

the spectrum at ω = 2π/T . For T = 200, fw (2π/200) = 0.000244, which is only higher than f̄ (2π/200) =

σ̄2 by a factor of 1.13. So in a sample with 200 observations, there simply is little information in the sample

that reveals the deviations between fw and f̄ .

In a 100-year sample, rejection is obviously easier. The first periodogram ordinate has mean fw (2π/400) =

0.00312, which is now substantially larger than f̄ . On the other hand, this is still only a single data point

for the estimators to use.

C Interpretation of the distance measure as a Wald test

This section provides an alternative of the distance measure used in the main text as a Wald test on

estimated MA coeffi cients. Specifically, the part of the distance measure
∫ |B(ω)−B̄(ω)|2

f̄(ω)
dω represents the

asymptotic expected value of a Wald statistic for a joint test of all the MA coeffi cients in the lag polynomial

b (L).

Brockwell and Davis (1988b) show that for an MA model of order m, the coeffi cients are asymptotically
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normal with a covariance matrix denoted Σm. As m→∞, Σm converges to a product,2

Σm → JTruem JTrue′m (C.1)

where JTruem ≡


bTrue0 bTrue1 · · · bTruem

0 bTrue0 · · · bTruem−1
...

...
. . .

...

0 0 · · · bTrue0

 (C.2)

A natural empirical counterpart to that variance is to replace JTrue with J̄ , defined analogously using the

point estimate b̄. The Wald statistic for the MA coeffi cients (ignoring scale factors) is then

m−1
(
b1:m − b̄1:m

) (
J̄mJ̄

′
m

)−1 (
b1:m − b̄1:m

)′ (C.3)

where b1:m is the row vector of the first m elements of the vector of coeffi cients in the model b.

Jm is a Toeplitz matrix, and it is well known that Toeplitz matrices, their products, and their inverses,

asymptotically converge to circulant matrices (Grenander and Szegő (1958) and Gray (2006)). So Σ̄−1
m has

an approximate orthogonal decomposition, converging as m→∞, such that3

Σ̄−1
m ≈ ΛmF̄

−1
m Λ∗m (C.4)

where ∗ here represents transposition and complex conjugation, Λm is the discrete Fourier transform matrix

with element j, k equal to exp (−2πi (j − 1) (k − 1) /m), F̄m is diagonal with elements equal to the discrete

Fourier transform of the autocovariances. Now if we define the vector B to be the Fourier transform of b,

B1:m ≡ b1:mΛm, we have

m−1
(
b1:m − b̄1:m

)
Σ̄−1
m

(
b1:m − b̄1:m

)′ ≈ m−1
(
BmΛ∗m − B̄mΛ∗m

)
ΛmF̄

−1
m Λ∗m

(
B∗′mΛ′m − B̄∗′mΛ′m

)′(C.5)
= m−1

(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ (C.6)

which itself, by Szegő’s theorem, converges as m→∞ to an integral,

m−1
(
Bm − B̄m

)
F̄−1
m

(
Bm − B̄m

)∗ → ∫ ∣∣B (ω)− B̄ (ω)
∣∣2

f̄ (ω)
dω (C.7)

So the integral
∫ |B(ω)−B̄(ω)|2

f̄(ω)
dω may be interpreted as the limiting value of a Wald statistic for the lag

polynomial b taking b̄ as the point estimate.

2The distribution result used here is explicit in Brockwell and Davis (1988). It is implicit in Berk (1974) from a simple
Fourier inversion of his result on the distribution of the spectral density estimates. Note that Brockwell and Davis (1988)
impose the assumption that b0 = 1, which we do not include here.

3Specifically, J̄m ≈ ΛmB̄mΛ∗m = Λ∗′mB̄
∗
mΛ′m, and thus J̄mJ̄

′
m ≈ ΛmB̄mΛ∗mΛmB̄

∗
mΛ∗m = Λm

(
B̄mB̄

∗
m

)
Λ∗m = ΛmF̄mΛ∗m,

where B̄m is the diagonal matrix of the discrete Fourier transform of
[
b̄0, b̄1, ..., b̄m

]
. Again, the aproximations become exact

as m→∞.
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D Lifetime utility (assumption 3)

As discussed in the text, the agent’s expectation of future consumption growth, Et [∆ct+j |Θ] is equal to

expected consumption growth at date t + j given the past observed history of consumption growth and

the assumption that εt has mean zero. Given that the agent believes that the model Θ =
{
b, µ, σ2

}
drives

consumption growth, we can write the innovations implied by that model as

εΘ
t = (∆ct − µ− a (L) (∆ct−1 − µ)) (D.1)

That is, εΘ
t is the innovation that the agent would believe occurred given the observed history of con-

sumption growth and the model Θ. The agent’s subjective expectations for future consumption growth

are then

Et [∆ct+j |Θ] = µ+

∞∑
k=0

bk+jε
Θ
t−k (D.2)

with subjective distribution
∆ct+1 − Et [∆ct+1|Θ]

σ
∼ N (0, 1) (D.3)

We guess that v
(
∆ct; Θ

)
takes the form

v
(
∆ct; Θ

)
= ct + k̄ +

∞∑
j=0

kjε
Θ
t−j (D.4)

Inserting into the recursion for lifetime utility yields

k̄ +
∞∑
j=0

kjε
Θ
t−j =

β

1− α logEt

[
exp

((
k̄ + µ+ (k0 + 1) εΘ

t+1

+
∑∞

j=1 (kj + bj) ε
Θ
t−j+1

)
(1− α)

)
|Θ
]

(D.5)

= β
(
k̄ + µ

)
+ β

∞∑
j=0

(kj+1 + bj+1) εΘ
t−j + β

1− α
2

(k0 + b0)2 σ2 (D.6)

Matching the coeffi cients on each side of the equality yields

kj = β (kj+1 + bj+1) (D.7)

v
(
∆ct; b

)
= ct +

β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+

∞∑
k=1

βk
∞∑
j=0

bj+kε
Θ
t−j (D.8)

= ct +
β

1− β
1− α

2
b (β)2 σ2 +

β

1− βµ+

∞∑
j=0

( ∞∑
k=1

βkbj+k

)
εΘ
t−j (D.9)

= ct +
β

1− β
1− α

2
b (β)2 σ2 +

∞∑
k=1

βkEt [∆ct+k|Θ] (D.10)
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E Multiplier preference interpretation

In our main analysis, we model agents as having Epstein—Zin preferences. Such preferences are observation-

ally equivalent (in the sense that they rank all consumption streams identically) to Hansen and Sargent’s

(2001) multiplier preferences. In that model, agents have log utility over consumption, but they form

expectations using a worst-case model over innovations to the consumption process. Specifically, their

preferences are obtained through

vt = min
ht+1

ct + β (Et [ht+1vt+1] + ψEt [ht+1 log ht+1]) (E.1)

where ht+1 is a change of measure with E [ht+1] = 1. ht+1 represents an alternative distribution of the

innovations to the state variables at date t+ 1. In this model, agents select an alternative distribution for

innovations (instead of a full distribution over consumption growth) penalizing alternative distributions

based on their KL divergence (Et [ht+1 log ht+1]).

Inserting the value of ht+1 that solves the minimization problem yields

vt = ct − βψ logEt exp
(
−ψ−1vt+1

)
(E.2)

That is, the Epstein—Zin preferences used in the main text can be interpreted as multiplier preferences

with −ψ−1 = (1− α).

We can thus interpret the model described in the paper as involving two layers of robustness, or two

evil agents. First, there is an evil agent who, in a timeless manner, selects a full worst-case process for

consumption growth. Next, taking the preferences (E.2) a second evil agent causes further deviations in

the innovations to that process.

The second evil agent’s minimization problem is (E.1), and the minimized value function is then (E.2),

which is exactly the preference specification that is minimized in the main text. In other words, both the

minimization problem over the full models for consumption growth that we study and also the minimization

over one-step deviations —which induces Epstein—Zin preferences —depend on a KL divergence penalty.

A natural benchmark is to equalize the penalty on the KL divergence that is involved in both mini-

mization problems. Since the entropy penalty for the second agent is applied in every period, we naturally

scale it up by the discount rate. That is,

λ = ψ/ (1− β) (E.3)

Which immediately yields a connection between λ and α,

λ =
1

1− β
1

α− 1
(E.4)

α = 1 +
λ−1

1− β (E.5)
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F Asset prices and expected returns

F.1 Pricing a levered consumption claim

Using the Campbell—Shiller (1988) approximation, the return on a levered consumption claim can be

approximated as (with the approximation becoming more accurate as the length of a time period shrinks)

rt+1 = δ0 + δpdt+1 + γ∆ct+1 − pdt (F.1)

where δ is a linearization parameter slightly less than 1.

We guess that

pdt = h̄+
∞∑
j=0

hj∆ct−j (F.2)

for a set of coeffi cients h̄ and hj .

The innovation to lifetime utility is

vt+1 − Et [vt+1|bw] =
∞∑
k=0

βk∆Et+1 [∆ct+k+1|Θw] (F.3)

= bw (β) εΘw

t+1 (F.4)

where the investor prices assets as though εΘw
t+1 is a standard normal.

The pricing kernel can therefore be written as

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
(F.5)

The pricing equation for the levered consumption claim is

0 = logEt

[
β exp

(
δ0 + (δ − 1) h̄+ (δh0 + γ − 1) ∆ct+1 +

∑∞
j=0 (δhj+1 − hj) ∆ct−j

+ (1− α) bw (β) εΘw
t+1 −

(1−α)2

2 bw (β)2 σ2
w

)
|Θw

]
(F.6)

= (δh0 + γ − 1) ((1− aw (1))µw + aw (L) ∆ct) +
∞∑
j=0

(δhj+1 − hj) ∆ct−j

+δ0 +

(
1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w + (δ − 1) h̄+ log β (F.7)

Matching coeffi cients on ∆ct−j and on the constant yields two equations,

(δ − 1) h̄+ log β + δ0 = −
(

1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w

− (δh0 + γ − 1) (1− aw (1))µw (F.8)

(δhj+1 − hj) = − (δh0 + γ − 1) awj (F.9)

14



And thus

h0 =
(γ − 1) aw (δ)

1− δaw (δ)
(F.10)

and

δh0 + γ − 1 =
γ − 1

1− δaw (δ)
(F.11)

Note then that

varw (rm,t+1) = (δh0 + γ)2 σ2
w (F.12)

covw (rm,t+1,mt+1) = (δh0 + γ) (−1 + (1− α) bw (β))σ2
w (F.13)

F.2 The risk-free rate

For the risk-free rate, we have

rf,t+1 = − logEt

[
β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
|Θw

]
(F.14)

= − log β + (1− aw (1))µw + aw (L) ∆ct −
1

2
σ2
w + (1− α) bw (β)σ2

w (F.15)

= − log β + µw + aw (L) (∆ct − µw)− 1

2
σ2
w + (1− α) bw (β)σ2

w (F.16)

F.3 Expected excess returns

The expected excess return on the levered consumption claim from the perspective of an econometrician

who believes that consumption dynamics are the point estimate Θ̄ is

Et
[
rt+1|Θ̄

]
= Et

δ0 + (δ − 1) h̄+ (δh0 + γ) ∆ct+1 +

∞∑
j=0

(δhj+1 − hj) ∆ct−j |Θ̄

 (F.17)

= δ0 + (δ − 1) h̄− (δh0 + γ − 1) aw (L) ∆ct + Et
[
(δh0 + γ) ∆ct+1|Θ̄

]
(F.18)

= δ0 + (δ − 1) h̄+ (− (δh0 + γ − 1) aw (L) + (δh0 + γ) a (L)) ∆ct

+ (δh0 + γ) (1− a (1))µ (F.19)

Et
[
rt+1 − rf,t+1|Θ̄

]
= δ0 + (δ − 1) h̄+ (− (δh0 + γ − 1) aw (L) + (δh0 + γ) a (L)) ∆ct

+ (δh0 + γ) (1− a (1))µ

+ log β − (1− aw (1))µw − aw (L) ∆ct +
1

2
σ2
w − (1− α) bw (β)σ2

w (F.20)
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Inserting the formula for (δ − 1) h̄+ log β + δ0 from above yields

(δ − 1) h̄+ log β + δ0 = −
(

1

2
(δh0 + γ − 1)2 + (δh0 + γ − 1) (1− α) bw (β)

)
σ2
w

− (δh0 + γ − 1) (1− aw (1))µw (F.21)

Et
[
rt+1 − rf,t+1|Θ̄

]
= (δh0 + γ) (a (L)− aw (L)) (∆ct − µ)

+ (δh0 + γ) (1− aw (1)) (µ− µw)

−1

2
varw (rm,t+1)− covw (rm,t+1,mt+1) (F.22)

where

varw (rm,t+1) = (δh0 + γ)2 σ2
w (F.23)

covw (rm,t+1,mt+1) = (δh0 + γ) (−1 + (1− α) bw (β))σ2
w (F.24)

Substituting in

δh0 + γ = δ
(γ − 1) aw (δ)

1− δaw (δ)
+ γ =

γ − δaw (δ)

1− δaw (δ)
(F.25)

yields the result from the text.

Et
[
rt+1 − rf,t+1|Θ̄

]
=

γ − δaw (δ)

1− δaw (δ)
(a (L)− aw (L)) (∆ct − µ)

+
γ − δaw (δ)

1− δaw (δ)
(1− aw (1)) (µ− µw)

−1

2
varw (rm,t+1)− covw (rm,t+1,mt+1) (F.26)

F.4 The behavior of interest rates

The mean of the risk-free rate is

− log β + (1− aw (1))µw + aw (1)µ− 1

2
σ2
w + (1− α) bw (β)σ2

w (F.27)

And its standard deviation is

std (aw (L) ∆ct) (F.28)

When consumption growth is white noise, this is

std (aw (L) ∆ct) = std

(β − θ)
∞∑
j=0

θj∆ct−j

 (F.29)

= (β − θ) σ∆c√
1− θ2

(F.30)
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We denote the log price on date t of a claim to a unit of consumption paid on date t+ j as pj,t, and we

guess that

pj,t = φ(j) (L) (∆ct − µw) + nj (F.31)

for a lag polynomial φ(j) and a constant nj that differ with maturity.

The pricing condition for a bond is

Mt+1 = β exp

(
−∆ct+1 + (1− α) bw (β) εΘw

t+1 −
(1− α)2

2
bw (β)2 σ2

w

)
(F.32)

φ(j) (L) ∆ct + nj = logEt

[
exp

(
log β −∆ct+1 + (1− α) bw (β) εΘw

t+1

− (1−α)2

2 bw (β)2 σ2
w + φ(j−1) (L) (∆ct+1 − µw) + nj−1

)
|Θw

]
(F.33)

= log β +
(
φ

(j−1)
0 − 1

)
(µw + aw (L) (∆ct − µw))− φ(j−1)

0 µw +

∞∑
k=0

φ
(j−1)
k+1 (∆ct−k − µw)

−(1− α)2

2
bw (β)2 σ2

w + nj−1 +
1

2

(
(1− α) bw (β)− 1 + φ

(j−1)
0

)2
σ2
w (F.34)

Matching coeffi cients yields,

φ(j) (L) =
(
φ

(j−1)
0 − 1

)
aw (L) +

∞∑
k=0

φ
(j−1)
k+1 Lk (F.35)

nj = log β − µw − (1− α)2

2
bw (β)2 σ2

w + nj−1 +
1

2

(
(1− α) bw (β)− 1 + φ

(j−1)
0

)2
σ2
w (F.36)

We also have the boundary condition that the price of a unit of consumption today is 1, so that n0 = 0

and φ(0) (L) = 0. Note that the mean price of any of these claims is

E [pj,t] = φ(j) (1) (µ− µw) + nj (F.37)

F.5 Results used in table 1

Under the worst-case, consumption growth follows an ARMA(1,1). We have

∆ct = β∆ct−1 + εt − θεt−1 (F.38)

aw (L) = (β − θ)
∞∑
j=0

θjLj (F.39)
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where θ ≡ (1− ϕ)β and ϕ is obtained above. We then have

aw (δ) =
β − θ
1− θδ (F.40)

aw (1) =
β − θ
1− θ (F.41)

bj = βj−1 (β − θ) (F.42)

For the coeffi cients in the price/dividend ratio, we have

(δhj+1 − hj) = − (δh0 + γ − 1) awj (F.43)

hj = (δh0 + γ − 1)
∞∑
k=0

δkawj+k (F.44)

= (δh0 + γ − 1)
∞∑
k=0

δk (β − θ) θj+k (F.45)

= (δh0 + γ − 1) (β − θ) θj

1− δθ (F.46)

And thus

pdt = h̄+
(δh0 + γ − 1) (β − θ)

1− δθ

∞∑
j=0

θj∆ct−j (F.47)

The standard deviation of the price/dividend ratio under the true white-noise process for consumption

growth is then

std (pdt) =
(δh0 + γ − 1) (β − θ)

1− δθ
σ̄√

1− θ2
(F.48)

F.6 Returns in the absence of model uncertainty

When there is no model uncertainty, the SDF is the same as in our main case, but everything is calculated

using the benchmark model instead of the worst case. For interest rates, then

rf,t+1 = − logEt

[
β exp

(
−∆ct+1 + (1− α) εΘ̄

t+1 −
(1− α)2

2
σ̄2

)
|Θ̄
]

(F.49)

= − log β + µ̄− 1

2
σ̄2 + (1− α) σ̄2 (F.50)

E [rf,t+1] = − log β + µ̄− 1

2
σ̄2 + (1− α) σ̄2 (F.51)

std (rf ) = 0 (F.52)
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For the price/dividend ratio, we have hj = 0 for all j, which implies

var (rm,t+1) = γ2σ̄2 (F.53)

cov (rm,t+1,mt+1) = −αγσ̄2 (F.54)

The standard deviation of the log pricing kernel is

std (mt+1) = −ασ̄ (F.55)

G Dividends cointegrated with consumption

Two drawbacks of our main specification for dividends are that it implies that dividend and consumption

growth are perfectly correlated and that it implies dividends are slightly more volatile than observed

empirically. To generate more realistic behavior for dividends, we now consider a setting where dividends

and consumption are cointegrated. We want to exactly match three major features of the joint dynamics

of consumption and dividends: the standard deviations of the two series, the correlation between the two

series, and the fact that dividends appear to be smoothed over time (Marsh and Merton (1987); Chen, Da,

and Priestley (2012)).

We assume the following model holds

dt = γgc (L) ct + gζ (L) ζt (G.1)

where ζt is a normally distributed innovation with unit variance and gζ (L) is a lag polynomial. We assume

that gζ (L) ζt is stationary with finite variance (the case where gζ (L) has a unit root would correspond

to a situation where dividends and consumption are no longer cointegrated, but their growth rates are

correlated).

The function gc (L) is what models dividends as a smoothed form of consumption. We normalize the

lag polynomial so that gc (1) = 1. As a simple example, if gc (L) = 1 + L + L2, then dividends are a

three-year moving average of consumption plus noise (gζ (L) ζt). Allowing a lagged response of dividends

to fundamentals (consumption) allows us to model the dividend smoothing observed in Marsh and Merton

(1987) and Chen, Da, and Priestley (2012).

γ represents the cointegrating coeffi cient between dividends and consumption —it determines how much

the long-run level of dividends responds to a unit shock to the long-run level of consumption.

In terms of growth rates we have

∆dt = γgc (L) ∆ct + g̃ζ (L) ζt (G.2)

g̃ζ (L) ≡ gζ (L) (1− L) (G.3)

We then recapitulate the analysis from above. Specifically, we add a superscript C to the coeffi cients
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in the price/dividend function to yield the guess

pdCt = h̄C +

∞∑
j=0

(
hCc,j∆ct−j + hCζ,jζt−j

)
(G.4)

rCt+1 = δ0 + δpdCt+1 + γgc (L) ∆ct+1 + g̃ζ (L) ζt+1 − pdCt (G.5)

The pricing equation for the dividend claim is

0 = logEt

β exp


δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0 − 1

)
∆ct+1

+
∑∞

j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+ (1− α) bw (β) εΘw
t+1 −

(1−α)2

2 bw (β)2 σ2
w

+
(
δhCζ,0 + g̃ζ,0

)
ζt+1 +

∑∞
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j

 |Θw

 (G.6)

=
(
δhCc,0 + γgc,0 − 1

)
((1− aw (1))µw + aw (L) ∆ct) +

∞∑
j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+δ0 +

(
1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w + (δ − 1) h̄C + log β

+
∞∑
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j +

1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.7)

Matching coeffi cients on ∆ct−j , ζt−j , and on the constant yields three equations,

(δ − 1) h̄C + log β + δ0 = −
(

1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w

−
(
δhCc,0 + γgc,0 − 1

)
(1− aw (1))µw − 1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.8)

δhCc,j+1 − hCc,j = −
(
δhCc,0 + γgc,0 − 1

)
awj − γgc,j+1 (G.9)

δhCζ,j+1 − hCζ,j = −g̃ζ,j+1 (G.10)

And thus

hCc,j = δhCc,j+1 +
(
δhCc,0 + γgc,0 − 1

)
awj + γgc,j+1 (G.11)

hCc,0 =
∞∑
j=0

(
δhCc,0 + γgc,0 − 1

)
awj δ

j + δ−1
∞∑
j=1

γgc,jδ
j (G.12)

δhCc,0 + γgc,0 − 1 =
(
δhC0 + γgc,0 − 1

)
δaw (δ) + γgc (δ)− 1 (G.13)

δhCc,0 + γgc,0 − 1 =
γgc (δ)− 1

1− δaw (δ)
(G.14)
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δhCc,0 + γgc,0 =
γgc (δ)− δaw (δ)

1− δaw (δ)
(G.15)

Note that when gc (L) = 1, gc (δ) = 1, and gc = 1, so the above equation reduces to precisely what is

obtained above for δhCc,0 + γ − 1. Furthermore, note that for δ ≈ 1, gc (δ) ≈ gc (1) = 1.

For the coeffi cients on ζ, we have

δhCζ,0 + g̃ζ,0 = g̃ζ (δ) (G.16)

Note then that

varw (rm,t+1) =
(
δhCc,0 + γgc,0

)2
σ2
w + g̃ζ (δ)2 (G.17)

covw (rm,t+1,mt+1) =
(
δhCc,0 + γgc,0

)
(−1 + (1− α) bw (β))σ2

w (G.18)

So what we have is that the variance of the return is simply increased through the additional noise added

to dividends, g̃χ (δ)2, while the covariance is unaffected. Furthermore, we note that g̃ξ (1) = 0, so for δ

close to 1, we would expect the term g̃χ (δ)2 to be small.

G.1 Calibration

We leave the calibration of γ the same as in the main text. We also maintain the calibration that con-

sumption growth in the benchmark model is white noise. We then have

corr (∆c,∆d) = γgc,0
std (∆c)

std (∆d)
(G.19)

Following Bansal and Yaron (2004) (who use real dividend growth for the CRSP value-weighted index), we

set std (∆d) = 0.057 and corr (∆d,∆c) = 0.55, which then implies gc,0 = 0.44 (given the value of γ from

table 1). For the sake of simplicity, we assume that gc is a simple MA(1), yielding gc,,1 = 0.56 and gc,j = 0

for j > 1.

Finally, we calibrate g̃ζ to match the variance of dividend growth. We have

var (∆d) = γ2
(
g2
c,0 + g2

c,1

)
var (∆c) + var (g̃ζ (δ) ζt) (G.20)

Again, for the same of simplicity, we assume that the error gζ (L) = gζ,0, which implies that g̃ξ (L) =

gζ,0 − gζ,0L. Finally,
var (∆d) = γ2

(
g2
c,0 + g2

c,1

)
var (∆c) + 2g2

ζ,0 (G.21)

(under the normalization that var (ζt) = 1). Inserting the calibrated values for the other parameters, we

obtain

g2
ζ,0 =

1

2

(
var (∆d)− γ2

(
g2
c,0 + g2

c,1

)
var (∆c)

)
(G.22)

gζ,0 = 0.019 (G.23)
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That is, the final model of dividends is

dt = 2.13ct + 2.67ct−1 + 0.019ζt (G.24)

ζt ∼ N (0, 1) (G.25)

G.2 Expected excess returns

The expected excess return on the levered consumption claim from the perspective of an econometrician

who believes that consumption dynamics are the point estimate Θ̄ is

Et
[
rt+1|Θ̄

]
= Et


δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0

)
∆ct+1

+
∑∞

j=0

(
δhCc,j+1 + γgc,j+1 − hCc,j

)
∆ct−j

+
(
δhCζ,0 + g̃ζ,0

)
ζt+1 +

∑∞
j=0

(
δhCζ,j+1 − hCζ,j + g̃ζ,j+1

)
ζt−j

|Θ̄

 (G.26)

= δ0 + (δ − 1) h̄+
(
δhCc,0 + γgc,0

)
Et
[
∆ct+1|Θ̄

]
−
(
δhCc,0 + γgc,0 − 1

)
aw (L) ∆ct(G.27)

= δ0 + (δ − 1) h̄−
(
δhCc,0 + γgc,0 − 1

)
aw (L) ∆ct

+
(
δhCc,0 + γgc,0

)
(µ+ a (L) (∆ct − µ)) (G.28)

Et
[
rt+1 − rf,t+1|Θ̄

]
= δ0 + (δ − 1) h̄+

(
δhCc,0 + γgc,0

)
(a (L)− aw (L)) (∆ct − µ)

+
(
δhCc,0 + γgc,0

)
(1− aw (1))µ

+ log β − (1− aw (1))µwt +
1

2
σ2
w − (1− α) bw (β)σ2

w (G.29)

Inserting the formula for (δ − 1) h̄+ log β + δ0 from above yields

Et
[
rt+1 − rf,t+1|Θ̄

]
=

(
δhCc,0 + γgc,0

)
(a (L)− aw (L)) (∆ct − µ)

+
(
δhCc,0 + γgc,0

)
(1− aw (1)) (µ− µw)

+
1

2
σ2
w − (1− α) bw (β)σ2

w

−
(

1

2

(
δhCc,0 + γgc,0 − 1

)2
+
(
δhCc,0 + γgc,0 − 1

)
(1− α) bw (β)

)
σ2
w

−1

2

(
δhCζ,0 + g̃ζ,0

)2
σ2
ζ (G.30)

Et
[
rt+1 − rf,t+1|Θ̄

]
=

γgc (δ)− δaw (δ)

1− δaw (δ)
(a (L)− aw (L)) (∆ct − µ)

+
γgc (δ)− δaw (δ)

1− δaw (δ)
(1− aw (1)) (µ− µw)

−covw (rm,t+1,mt+1)− 1

2
varw (rm,t+1) (G.31)
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where, from above,

varw (rm,t+1) =

(
γgc (δ)− δaw (δ)

1− δaw (δ)

)2

σ2
w + g̃ζ (δ)2 (G.32)

covw (rm,t+1,mt+1) =
γgc (δ)− δaw (δ)

1− δaw (δ)
(−1 + (1− α) bw (β))σ2

w (G.33)

G.3 Price/dividend ratio

δhCc,j+1 − hCc,j = −
(
δhCc,0 + γgc,0 − 1

)
awj − γgc,j+1 (G.34)

δhCζ,j+1 − hCζ,j = −g̃ζ,j+1 (G.35)

hζ,0 = gζ,1 (G.36)

hc,0 =
γgc (δ)− 1

1− δaw (δ)
(β − θ) 1

1− δθ + γgc,1 (G.37)

hc,j =
γgc (δ)− 1

1− δaw (δ)
(β − θ) θj

1− δθ (G.38)

So the standard deviation of the pricing kernel is now

pdCt =
∞∑
j=0

hCc,j∆ct−j + gζ,1ζt (G.39)

var
(
pdCt

)
=

(
γgc (δ)− 1

1− δaw (δ)

(β − θ)
1− δθ

)2 σ̄2

1− θ2 + g2
ζ,1 (G.40)

corr (pdt, pdt−4) =
θ4
(
γgc(δ)−1
1−δaw(δ)

(β−θ)
1−δθ

)2
σ̄2

1−θ2

var
(
pdCt

) (G.41)

G.4 Results

Table A1 reports an alternative version of table 1 in which we use the more sophisticated model of dividends

that are cointegrated with consumption growth. Since the consumption process is unchanged, there is no

effect on the worst-case model of consumption. The only difference between table A1 and table 1 is that

they use different models of dividends and hence have different implications for equity returns.

The mean and standard deviation of returns are both slightly reduced —the mean is lower by 5 basis

points and the standard deviation by 14 basis points. The small reduction is due to the fact that gc (δ) =

0.993. The difference between the returns under the two models of dividends depends purely on that term

being different from 1. The fact that it is not (which is a consequence of cointegration) is why the returns

are essentially unchanged. The autocorrelation and standard deviation of the price/dividend ratio are

also numerically nearly identical to what is obtained in table 1. Finally, the bottom two rows of table

A1 confirm that the model is calibrated here so that the standard deviation of dividend growth and the
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correlation between dividend growth and consumption growth is identical to the data (the data moments

are drawn from Bansal and Yaron (2004), as is the case with our other empirical targets).
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