ONLINE APPENDIX FOR CORRELATION MISPERCEPTION IN CHOICE

ANDREW ELLIS AND MICHELE PICCIONE

Appendix A. Additional Results

Proposition A.1. The preference \succsim has basic correlation representation if and only if it has a PCR.

Proof. It is easy to see that if \succsim has a basic representation, it has a PCR with $\mathcal{U}=\{\{a\}: a \in \mathcal{A}\}$. Suppose \succsim has a $\operatorname{PCR}(\mathcal{U}, \pi, u)$. For every $a \in \mathcal{A}$, choose $C_{a} \in \mathcal{U}$ with $a \in C_{a}$. Pick any $B=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathcal{A}$. Define

$$
\pi_{B}\left(\left\{\vec{\tau} \in \Omega^{B}: \tau_{i} \in E_{i} \forall i\right\}\right)=\pi\left(\left\{\vec{\omega} \in \Omega^{\mathcal{U}}: \omega^{C_{a_{i}}} \in E_{i} \forall i\right\}\right)
$$

where $E_{i} \in \sigma\left(a_{i}\right)$ for $i=1, \ldots, n$. This π_{B} is clearly a measure defined on the π system that generates $\otimes_{i=1}^{n} \sigma\left(a_{i}\right)$ and so can be uniquely extended to it. Moreover, the collection $\left\{\pi_{B}\right\}$ is Kolmogorov consistent and so by Kolmogorov's extension theorem, we can define π_{0} on Σ_{A} to agree with every π_{B}. Thus \succsim has a basic correlation representation with probability π_{0} and utility u.

For a $\operatorname{PCR}(\mathcal{U}, \pi, u)$ and finite $B \subseteq \mathcal{U}$, let π_{B} denote the marginal distribution over the copies of Ω assigned to understanding classes in B. Note that the utility of any profile consisting of n actions is determined by some π_{B} with $\# B \leq n$.

Theorem A.1. If \succsim has a rich $P C R(\mathcal{U}, \pi, u)$ and u is a polynomial of degree N, then it also has a $P C R(\mathcal{U}, \mu, u)$ if and only if $\mu_{B}=\pi_{B}$ for any $B \subseteq \mathcal{U}$ with $\# B \leq N$.

Recall that $S_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\sum_{Q \subseteq\{1, \ldots, N\}}(-1)^{[N-\# Q]} u\left(\sum_{i \in Q} x_{i}\right)$. From our observation in the proof of Theorem 2, if u is continuous, then $S_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=0$ for all x_{1}, \ldots, x_{N} if and only if u is a polynomial of degree $N-1$. From primitives, $S_{N}\left(x_{1}, \ldots, x_{N}\right)=0$ for all x_{1}, \ldots, x_{n} if and only if $p_{N}^{E} \sim p_{N}^{O}$ where

$$
p_{N}^{O}=\left(2^{-(N-1)}, \sum_{x \in Q} x\right)_{\# Q \text { odd }} \text { and } p_{N}^{E}=\left(2^{-(N-1)}, \sum_{x \in Q} x\right)_{\# Q \text { even }}
$$

Date: October, 2016.
and Q ranges over all subsets (including \emptyset) of $\left\{x_{1}, \ldots, x_{N}\right\}$. When $x_{i}>0$ for each i, a result in Eeckhoudt et al. (2009) implies $p_{N}^{O} N$-order stochastically dominates p_{N}^{E}. Therefore, the result follows from the below Proposition.

Proposition A.2. If the preference \succsim has a rich $\operatorname{PCR}(\mathcal{U}, \pi, u)$, and

$$
N^{*}=\inf \left\{N: S_{N}(\vec{x})=0 \text { for all } \vec{x}\right\}
$$

then the $P C R(\mathcal{U}, \mu, u)$ also represents \succsim if and only if $\mu_{B}(E)=\pi_{B}(E)$ for every $B \subseteq \mathcal{U}$ with $\# B<N^{*}$.

Proof. Sufficiency follows from exactly the same arguments used in Thoerem 2. To see necessity, suppose that $S_{N}(\vec{x})=0$ for all \vec{x} and that π agrees with μ on any rectangle for B when $\# B<N-1$. Consider any profile $\left\langle a_{i}\right\rangle_{i=1}^{m}$, and assume WLOG that each a_{i} belongs to a distinct understanding class C_{i}; we show that

$$
V_{\pi}\left(\left\langle a_{i}\right\rangle_{i=1}^{m}\right)=V_{\mu}\left(\left\langle a_{i}\right\rangle_{i=1}^{m}\right) .
$$

This is trivially true if $m<N$. The claim is proved if we show that, when $m \geq$ N, we can replace each $V_{\pi}\left(\left\langle a_{i}\right\rangle_{i=1}^{m}\right)$ and $V_{\mu}\left(\left\langle a_{i}\right\rangle_{i=1}^{m}\right)$ with the (possibly negatively) weighted sum of the utilities of "sub-profiles" of $\left\langle a_{i}\right\rangle_{i=1}^{m}$ with at most $N-1$ elements. Rearranging the equation $S_{N}\left(x_{1}, \ldots, x_{N}\right)=0$,

$$
\begin{equation*}
u\left(\sum_{i=1}^{N} x_{i}\right)=-\sum_{Q \subseteq\{1, \ldots, N\}, \# Q<N}(-1)^{[N-\# Q]} u\left(\sum_{i \in Q} x_{i}\right) \tag{A.1}
\end{equation*}
$$

for any x_{1}, \ldots, x_{N}. Now,

$$
V_{\pi}\left(\left\langle a_{i}\right\rangle_{i=1}^{m}\right)=\int u\left(\sum_{i=1}^{m} a_{i}\left(\omega^{C_{i}}\right)\right) d \pi
$$

so by (A.1) where $x_{i}=a_{i}\left(\omega^{C_{i}}\right), i=1, \ldots, N-1$, and $x_{N}=\sum_{i=N}^{m} a_{i}\left(\omega^{C_{i}}\right)$, each term

$$
u\left(\sum_{i=1}^{m} a_{i}\left(\omega^{C_{i}}\right)\right)=u\left(\sum_{i=1}^{N-1} a_{i}\left(\omega^{C_{i}}\right)+\left[\sum_{i=N}^{m} a_{C_{i}}\left(\omega^{C_{i}}\right)\right]\right)
$$

can be written as the sum of utilities where each argument contains the sum of at most $m-1$ terms. We can repeat this procedure until the arguments of each $u(\cdot)$ contain the sum of at most $N-1$ terms. Naturally, the exact same procedure can be applied to V_{μ}. This establishes the result.

References

Eeckhoudt, Louis, Harris Schlesinger, and Ilia Tsetlin (2009), "Apportioning of risks via stochastic dominance." Journal of Economic Theory, 144, 994-1003.

