ONLINE APPENDIX FOR CORRELATION MISPERCEPTION IN CHOICE

ANDREW ELLIS AND MICHELE PICCIONE

APPENDIX A. ADDITIONAL RESULTS

Proposition A.1. The preference \succeq has basic correlation representation if and only if it has a PCR.

Proof. It is easy to see that if \succeq has a basic representation, it has a PCR with $\mathcal{U} = \{\{a\} : a \in \mathcal{A}\}$. Suppose \succeq has a PCR (\mathcal{U}, π, u) . For every $a \in \mathcal{A}$, choose $C_a \in \mathcal{U}$ with $a \in C_a$. Pick any $B = \{a_1, ..., a_n\} \subset \mathcal{A}$. Define

$$\pi_B(\{\vec{\tau} \in \Omega^B : \tau_i \in E_i \; \forall i\}) = \pi(\{\vec{\omega} \in \Omega^\mathcal{U} : \omega^{C_{a_i}} \in E_i \forall i\})$$

where $E_i \in \sigma(a_i)$ for i = 1, ..., n. This π_B is clearly a measure defined on the π system that generates $\otimes_{i=1}^n \sigma(a_i)$ and so can be uniquely extended to it. Moreover, the
collection $\{\pi_B\}$ is Kolmogorov consistent and so by Kolmogorov's extension theorem,
we can define π_0 on Σ_A to agree with every π_B . Thus \succeq has a basic correlation
representation with probability π_0 and utility u.

For a PCR (\mathcal{U}, π, u) and finite $B \subseteq \mathcal{U}$, let π_B denote the marginal distribution over the copies of Ω assigned to understanding classes in B. Note that the utility of any profile consisting of n actions is determined by some π_B with $\#B \leq n$.

Theorem A.1. If \succeq has a rich PCR (\mathcal{U}, π, u) and u is a polynomial of degree N, then it also has a PCR (\mathcal{U}, μ, u) if and only if $\mu_B = \pi_B$ for any $B \subseteq \mathcal{U}$ with $\#B \leq N$.

Recall that $S_N(x_1, x_2, ..., x_N) = \sum_{Q \subseteq \{1,...,N\}} (-1)^{[N-\#Q]} u(\sum_{i \in Q} x_i)$. From our observation in the proof of Theorem 2, if u is continuous, then $S_N(x_1, x_2, ..., x_N) = 0$ for all $x_1, ..., x_N$ if and only if u is a polynomial of degree N - 1. From primitives, $S_N(x_1, ..., x_N) = 0$ for all $x_1, ..., x_n$ if and only if $p_N^E \sim p_N^O$ where

$$p_N^O = \left(2^{-(N-1)}, \sum_{x \in Q} x\right)_{\#Q \ odd} \text{ and } p_N^E = \left(2^{-(N-1)}, \sum_{x \in Q} x\right)_{\#Q \ even}$$

Date: October, 2016.

and Q ranges over all subsets (including \emptyset) of $\{x_1, ..., x_N\}$. When $x_i > 0$ for each i, a result in Eeckhoudt et al. (2009) implies p_N^O N-order stochastically dominates p_N^E . Therefore, the result follows from the below Proposition.

Proposition A.2. If the preference \succeq has a rich PCR (\mathcal{U}, π, u) , and

$$N^* = \inf\{N : S_N(\vec{x}) = 0 \text{ for all } \vec{x}\},\$$

then the PCR (\mathcal{U}, μ, u) also represents \succeq if and only if $\mu_B(E) = \pi_B(E)$ for every $B \subseteq \mathcal{U}$ with $\#B < N^*$.

Proof. Sufficiency follows from exactly the same arguments used in Theorem 2. To see necessity, suppose that $S_N(\vec{x}) = 0$ for all \vec{x} and that π agrees with μ on any rectangle for B when #B < N-1. Consider any profile $\langle a_i \rangle_{i=1}^m$, and assume WLOG that each a_i belongs to a distinct understanding class C_i ; we show that

$$V_{\pi}(\langle a_i \rangle_{i=1}^m) = V_{\mu}(\langle a_i \rangle_{i=1}^m).$$

This is trivially true if m < N. The claim is proved if we show that, when $m \ge N$, we can replace each $V_{\pi}(\langle a_i \rangle_{i=1}^m)$ and $V_{\mu}(\langle a_i \rangle_{i=1}^m)$ with the (possibly negatively) weighted sum of the utilities of "sub-profiles" of $\langle a_i \rangle_{i=1}^m$ with at most N-1 elements. Rearranging the equation $S_N(x_1, ..., x_N) = 0$,

(A.1)
$$u(\sum_{i=1}^{N} x_i) = -\sum_{Q \subseteq \{1,\dots,N\}, \#Q < N} (-1)^{[N-\#Q]} u(\sum_{i \in Q} x_i).$$

for any x_1, \ldots, x_N . Now,

$$V_{\pi}(\langle a_i \rangle_{i=1}^m) = \int u\left(\sum_{i=1}^m a_i(\omega^{C_i})\right) d\pi,$$

so by (A.1) where $x_i = a_i(\omega^{C_i}), i = 1, ..., N - 1$, and $x_N = \sum_{i=N}^m a_i(\omega^{C_i})$, each term

$$u\left(\sum_{i=1}^{m} a_{i}(\omega^{C_{i}})\right) = u\left(\sum_{i=1}^{N-1} a_{i}(\omega^{C_{i}}) + \left[\sum_{i=N}^{m} a_{C_{i}}(\omega^{C_{i}})\right]\right)$$

can be written as the sum of utilities where each argument contains the sum of at most m-1 terms. We can repeat this procedure until the arguments of each $u(\cdot)$ contain the sum of at most N-1 terms. Naturally, the exact same procedure can be applied to V_{μ} . This establishes the result.

References

Eeckhoudt, Louis, Harris Schlesinger, and Ilia Tsetlin (2009), "Apportioning of risks via stochastic dominance." Journal of Economic Theory, 144, 994–1003.