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Abstract

The impact of R&D on growth through spillovers has been a major topic of economic
research over the last thirty years. A major problem in the literature is that firm perfor-
mance is affected by two countervailing spillovers: a positive effect from technological
knowledge spillovers and negative business stealing effects from product market rivals.
We develop a general framework to distinguish these two effects, showing that technol-
ogy and product market spillovers have testable implications for a range of performance
indicators. We exploit these implications empirically with distinct measures of a firm’s
position in technology space and product market space. Using panel data on U.S. firms
over two decades we show that both technology and product market spillovers operate,
but technology spillovers quantitatively dominate. The spillover effects are also present
when we analyze three high tech sectors in finer detail and use R&D tax prices as instru-
mental variables for R&D. Finally, using the model we evaluate the net spillovers from
three alternative R&D subsidy policies.
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1. Introduction

Research and Development (R&D) spillovers have been a major topic in the growth, pro-
ductivity and industrial organization literatures for many decades. Theoretical studies have
explored the impact of research and development (R&D) on the strategic interaction among
firms and long run growth1. While many empirical studies appear to support the presence
of technology spillovers, there remains a major problem at the heart of the literature. This
arises from the fact that R&D generates at least two distinct types of “spillover” effects. The
first is technology (or knowledge) spillovers which may increase the productivity of other firms
that operate in similar technology areas, and the second type of spillover is the product mar-
ket rivalry effect of R&D. Whereas technology spillovers are beneficial to other firms, R&D
by product market rivals has a negative effect on a firm’s value. Despite a large amount of
theoretical research on product market rivalry effects of R&D (including patent race models),
there has been very little econometric work on such effects, in large part because it is difficult
to distinguish the two types of spillovers using existing empirical strategies.
It is important to identify the empirical impact of these two types of spillovers. Econometric

estimates of technology spillovers in the literature may be severely contaminated by product
market rivalry effects, and it is difficult to ascertain the direction and magnitude of potential
biases without building a model that incorporates both types of spillovers. Furthermore, even
if there is no econometric bias, we need estimates of the impact of product market rivalry
in order to asses whether there is over-investment or under-investment in R&D. If product
market rivalry effects dominate technology spillovers, the conventional wisdom that there is
under-investment in R&D could be overturned.
This paper develops a methodology to identify the separate effects of technology and

product market spillovers and implements this methodology on a large panel of U.S. com-
panies. Our approach is based on two features. First, using a general analytical framework
we develop the implications of technology and product market spillovers for a range of firm
performance indicators (market value, patents, productivity and R&D). The predictions differ
across performance indicators, thus providing identification for the technology and product
market spillover effects. Second, we empirically distinguish a firm’s positions in technology
space and product market space using information on the distribution of its patenting (across
technological fields) and its sales activity (across different four digit industries). This allows
us to construct distinct measures of the distance between firms in the technology and product
market dimensions2. We show that the significant variation in these two dimensions allow
us to distinguish empirically between technology and product market spillovers.3 Applying

1See, for example, Spence (1984), Grossman and Helpman (1991) or Aghion and Howitt (1992). Barro
and Sala-i-Martin (2003), Keller (2004), Klenow and Rodriguez-Clare (2004) and Jones (2005) all have recent
surveys of the literature.

2In an earlier study Jaffe (1988) assigned firms to technology and product market space, but did not examine
the distance between firms in both these spaces. In a related paper, Bransetter and Sakakibara (2002) make
an important contribution by empirically examining the effects of technology closeness and product market
overlap on patenting in Japanese research consortia.

3Examples of well-known companies in our sample that illustrate this variation include IBM, Apple, Mo-
torola and Intel, who are all close in technology space (revealed by their patenting and confirmed by their
research joint ventures), but only IBM and Apple compete in the PC market and only Intel and Motorola com-
pete in the semi-conductor market, with little product market competition between the two pairs. Appendix
D has more details on this and other examples.
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this approach to a panel of U.S. firms for a twenty year period (1981-2001) we find that
both technological and product market spillovers are present and quantitatively important.
Nevertheless, the technology spillover effects are much larger in magnitude than the rivalry
effects so there will still be under-investment in R&D from a social perspective. We also find
weaker evidence that R&D by product market rivals is, on average, a strategic complement
for a firm’s own R&D. Using parameter estimates from the model we evaluate the impact of
three different R&D subsidy policies and show that the typical focus of R&D support for small
and medium firms may be misplaced, if the objective is to redress market failures associated
with technology spillovers. This is because smaller firms tend to operate more in technological
niches, generating less spillovers since there are fewer firms located nearby in technology space.
Our paper has its antecedents in the empirical literature on knowledge spillovers. The

dominant approach has been to construct a measure of outside R&D (the “spillover pool”)
and include this as an extra term in addition to the firm’s own R&D in a production, cost
or innovation function. The simplest version is to measure the spillover pool as the stock
of knowledge generated by other firms in the industry (e.g. Bernstein and Nadiri, 1989).
This assumes that firms only benefit from R&D by other firms in their industry, and that
all such firms are weighted equally in the construction of the spillover pool. Unfortunately,
this makes identification of the strategic rivalry effect of R&D from technology spillovers
impossible because industry R&D reflects both influences4. A more sophisticated approach
recognizes that a firm is more likely to benefit from the R&D of other firms that are ‘close’
to it, and models the spillover pool (which we will label “SPILLTECH”) available to firm i
as SPILLTECHi = Σj,j 6=iwijGj where wij is some ‘knowledge-weighting matrix’ applied to
the R&D stocks (Gj) of other firms j. All such approaches impose the assumption that the
interaction between firms i and j is proportional to the weights (distance measure) wij. There
are many approaches to constructing the knowledge-weighting matrix. The best practice is
probably the method first used by Jaffe (1986), exploiting firm-level data on patenting in dif-
ferent technology classes to locate firms in a multi-dimensional technology space. A weighting
matrix is constructed using the uncentered correlation coefficients between the location vec-
tors of different firms. We follow this idea but extend it to the product market dimension by
using line of business data for multiproduct firms to construct an analogous distance measure
in product market space5.
A central issue in the paper is distinguishing a spillover interpretation from the possibility

that positive interactions are just a reflection of spatially correlated technological opportuni-
ties. If new research opportunities arise exogenously in a given technological area, then all
firms in that area will do more R&D and may improve their productivity, an effect which
may be erroneously picked up by a spillover measure. This issue is an example of the classic
“reflection problem” discussed by Manski (1991). We address this in two ways. First, we
obtain identification from the technology and product market weighting matrices that specify

4The same is true for papers that use “distance to the frontier” as a proxy for the potential size of the
technological spillover. In these models the frontier is the same for all firms in a given industry (e.g. Acemoglu
et al. 2007). Other approaches include using international data and weighting domestic and foreign R&D
stocks by measures including imports, exports and FDI (see, for example, Coe et al. 2008).

5Without this additional variation between firms within industries, the degree of product market closeness
is not identified from industry dummies in the cross section. The extent of knowledge spillovers may also be
influenced by other factors like geographic proximity (e.g. Jaffe et al. 1993). Our methodology could easily
be extended to allow geographic proximity to influence both technological and product market interactions.
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the relevant reference groups. We also exploit the panel structure of our data using various
controls for the unobserved shocks - such as firm specific fixed effects and measures of industry
demand - as well as lagged explanatory variables. Reassuringly, we find cross-equation empiri-
cal results consistent with the model and inconsistent with a reflection problem interpretation.
In particular the finding that the R&D of product-market rivals has a negative effect on firms’
own market-value is hard to reconcile with the idea that spillovers simply represent positively
correlated technology shocks. Second, we also run robustness specifications instrumenting
firm-level R&D expenditures using the firm-specific tax price of R&D (exploiting Federal and
State-specific rules) and the drop in defence R&D following the decline of the Soviet threat
(the so-called “Peace Dividend”). We find that our IV results are qualitatively similar to our
results where we treat (lagged) R&D as exogenous.
The paper is organized as follows. Section 2 outlines our analytical framework. Section

3 describes the data and Section 4 discusses the main econometric issues. The econometric
findings are presented in Section 5. In Section 6 we use the preferred estimates to evaluate the
social returns generated by three R&D subsidy policies. The concluding remarks summarize
the key results and directions for future research.

2. Analytical Framework

We consider the empirical implications of a non-tournament model of R&D with technology
spillovers and strategic interaction in the product market6. We study a two-stage game.
In stage 1 firms decide their R&D spending and this produces knowledge (which we will
empirically proxy by patents and TFP) that is taken as pre-determined in the second stage.
There may be technology spillovers in this first stage. In stage 2, firms compete in some
variable, x, conditional on knowledge levels k. We do not restrict the form of this competition
except to assume Nash equilibrium. What matters for the analysis is whether there is strategic
substitution or complementarity of the different firms’ knowledge stocks in the reduced form
profit function. Even in the absence of technology spillovers, product market interaction would
create an indirect link between the R&D decisions of firms through the anticipated impact of
R&D induced innovation on product market competition in the second stage. There are three
firms, labelled 0, τ and m. Firms 0 and τ interact only in technology space (production of
innovations, stage 1) but not in the product market (stage 2); firms 0 and m compete only in
the product market.
Although this is a highly stylized model it makes our key comparative static predictions

very clear. Appendix A contains several extensions to the basic model. Firstly, we allow other
firms to overlap simultaneously in product market and technology space and also allow for
more than three firms in the economy. Secondly, we consider a tournament model of R&D
(rather than the non-tournament model which is the focus of this section). Thirdly, we allow
patenting to be endogenously chosen by firms rather than only an indicator of knowledge,

6This approach has some similarities to Jones and Williams (1998, 2000) who examine an endogeneous
growth model with business stealing, knowledge spillovers and congestion externalities. Their focus, however,
is on the biases of an aggregate regression of productivity on R&D as a measure of technological spillovers.
Our method, by contrast, seeks to inform micro estimates through separately identifying the business stealing
effect of R&D from technological spillovers. Interestingly, despite these methodological differences we find (like
Jones and Williams) social returns to R&D are about two to four times greater than private returns.
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k. The comparative static results are shown to be robust to all these extensions with one
exception that we will discuss below.
Stage 2
Firm 00s profit function is π(x0, xm, k0). We assume that the function π is common to

all firms. Innovation output k0 may have a direct effect on profits, as well as an indirect
(strategic) effect working through x. For example, if k0 increases the demand for firm 0 (e.g.
product innovation), its profits would increase for any given level of price or output in the
second stage.7

The best response for firms 0 and m are given by x∗0 = argmax π(x0, xm, k0) and x∗m =
argmax π(xm, x0, km), respectively. Solving for second stage Nash decisions yields x∗0 =
f(k0, km) and x∗m = f(km, k0). First stage profit for firm 0 is Π(k0, km) = π(k0, x

∗
0, x

∗
m), and

similarly for firm m. If there is no strategic interaction in the product market, π(k0, x∗0, x
∗
m)

does not vary with xm and thus Π0 do not depend on km.
We assume that Π(k0, km) is increasing in k0, decreasing in km and concave8.
Stage 1
Firm 0 produces innovations with its own R&D, possibly benefiting from spillovers from

firms that it is close to in technology space:

k0 = φ(r0, rτ) (2.1)

where r0 is the R&D of firm 0, rτ is the R&D of firm τ and we assume that the knowledge
production function φ(.) is non-decreasing and concave in both arguments. This means that
if there are technology spillovers, they are necessarily positive. We assume that the function
φ(.) is common to all firms.
Firm 0 solves the following problem:

max
r0

V 0 = Π(φ(r0, rτ ), km)− r0. (2.2)

Note that km does not involve r0.The first order condition is:

Π1φ1 − 1 = 0

where the subscripts denote partial derivatives with respect to the different arguments. By
comparative statics,

∂r∗0
∂rτ

= −{Π1φ1τ +Π11φ1φτ}
A

(2.3)

where A = Π11φ
2
1 + Π1φ11 < 0 by the second order conditions. If φ1τ > 0, firm 00s R&D

is positively related to the R&D done by firms in the same technology space, as long as
diminishing returns in knowledge production are not ”too strong.” On the other hand, if
φ1τ = 0 or diminishing returns in knowledge production are strong (i.e. Π1φ1τ < −Π11φ1φτ)

7We assume that innovation by firm m affects firm 00s profits only through xm, which is plausible in most
contexts. This can be extended without changing the predictions of the model.

8The assumption that Π(k0, km) declines in km is reasonable unless innovation creates a strong externality
through a market expansion effect. Certainly at km ' 0 this derivative must be negative, as monopoly is more
profitable than duopoly.
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then R&D is negatively related to the R&D done by firms in the same technology space.
Consequently the marginal effect ∂r∗0

∂rτ
is formally ambiguous.

Comparative statics also yield
∂r∗0
∂rm

= −Π12φ1
A

(2.4)

where rm is the R&D of firm m. Thus firm 00s R&D is an increasing (respectively, decreasing)
function of the R&D done by firms in the same product market if Π12 > 0 — i.e., if k0 and km
are strategic complements (respectively, substitutes).9

We also obtain
∂k0
∂rτ

= φ2 ≥ 0 (2.5)

and

∂k0
∂rm

= 0 (2.6)

Table 1 summarizes the basic predictions. The intuition for these results is straightforward.
In the case where there is are no product market rivalry or technology spillovers, R&D by other
firms should have no influence on firm 0’s decisions or market value. Now suppose there are
technology spillovers. From the knowledge production function (2.1), we see immediately that
technology spillovers (rτ ) increase the stock of knowledge (patents), k0, conditional on the
firm’s own R&D — i.e. spillovers increase the average product of the firm’s own R&D. This
in turn increases the flow profit, Π(k0, km), and thus the market value of the firm. At the
same time, the increase in k0 raises the level of total factor productivity of the firm, given
its R&D spending. The effect of technology spillovers on the firm’s R&D decision, however,
is ambiguous because it depends on how such spillovers affect the marginal (not the average)
product of its R&D and this cannot be signed a priori.
We turn next to the effects of R&D by firms that are close in product market space. First,

product market rivals’ R&D has a direct, negative influence on firm 0’s value, through the
business stealing effect. This can work by reducing the firm’s profit margins or market shares,
or both. Second, R&D by product market rivals has no effect on the firm’s production of
knowledge and thus no direct effect on the number of patents, which is our main empirical
proxy for firm knowledge. For the same reason, product market rivals’ R&D does not affect
the level of (physical) total factor productivity. Thirdly, the relationship between the firm’s
own R&D and the R&D by product market rivals depends on how the latter affects the
marginal profitability of the firm’s R&D — i.e. it depends on the sign of Π12. As expected,
R&D reaction functions slope upwards if k0 and km are strategic complements and downwards
if k0 and km are strategic substitutes. Finally, we note one important caveat regarding the
absence of an effect of product market rival R&D on knowledge. Equation (2.6) will only hold
if our empirical measure k purely reflects knowledge. As we show formally in Appendix A3, if

9It is worth noting that most models of patent races embed the assumption of strategic complementarity
because the outcome of the race depends on the gap in R&D spending by competing firms. This observation
applies both to single race models (e.g. Loury, 1979; Lee and Wilde, 1980) and more recent models of sequential
races (e.g. Aghion et al., 1997). There are patent race models where this is not the case, but they involve a
“discouragement effect” whereby a follower may give up if the R&D gap gets so wide that it does not pay to
invest to catch up (Harris and Vickers, 1987).
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patents are costly then they will be endogenously chosen by a firm and equation (2.6) will not
hold in general as firms will tend to patent more (less) if knowledge is a strategic complement
(substitute). It turns out there is some empirical evidence in our data for this effect10. We
also note that if the measure of total factor productivity is contaminated by imperfect price
deflators, product market rival R&D could be negatively correlated with R&D because it will
depress firm 0’s prices and therefore measured “revenue” productivity.

[Table 1 about here]

Three points about identification from Table 1 should be noted. First, the presence of
spillovers can in principle be identified from the R&D, patents, productivity and value equa-
tions. Using multiple outcomes thus provides a stronger test than we would have from any
single indicator. Second, business stealing is identified only from the value equation. Third,
the empirical identification of strategic complementarity or substitution comes only from the
R&D equation11.

3. Data

We use firm level accounting data (sales, employment, capital, etc.) and market value data
from U.S. Compustat 1980-2001 and match this into the U.S. Patent and Trademark Office
(USPTO) data from the NBER data archive. This contains detailed information on almost
three million U.S. patents granted between January 1963 and December 1999 and all citations
made to these patents between 1975 and 199912. Since our method requires information on
patenting, we kept all firm years with a positive patent stock (so firms which had no patents
at all in the 37 year period were dropped), leaving an unbalanced panel of 715 firms with at
least four observations between 1980 and 2001. Appendix B provides details on all datasets.

3.1. Calculating Technological Closeness

The technology market information is provided by the allocation of all patents by the USPTO
into 426 different technology classes (labelled N-Classes). We use the average share of patents
per firm in each technology class over the period 1970 to 1999 as our measure of technological
activity, defining the vector Ti = (Ti1, Ti2, ...Ti426), where Tiτ is the share of patents of firm i

10The intuition is relatively simple. Suppose there is a fixed cost to filing a patent on knowledge. Firms
choose to make this investment depending on the benefits of doing so relative to these costs. In equilibrium,
with strategic complementarity, when rivals increase R&D spending (thus their stock of knowledge), this
increases the marginal profitability of firm 0’s R&D. Since we assume that patenting generates a percentage
increase in innovation rent (‘patent premium’), the profitability of patenting also increases (given the fixed
cost of patenting). Thus R&D by product market rivals raises both R&D spending and the patent propensity
of firm 0. For empirical evidence of strategic patenting behaviour, see Hall and Ziedonis (2001), and Noel and
Schankerman (2006).
11Identification cannot be obtained from the knowledge (patents/productivity) or value equations because

the predictions are the same for both forms of strategic rivalry.
12See Hall et al. (2005) and Jaffe and Trajtenberg (2002). We also constructed a forward cite-weighted

patent count as a quality adjusted measure. This produced very similar results to the simpler raw count
except in specific industries, such as pharmaceuticals (see Table 11).
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in technology class τ . The technology closeness measure, TECHij (i 6= j), is also calculated
as the uncentered correlation between all firm i, j pairings following Adam Jaffe (1986):

TECHi,j =
(TiT

0
j )

(TiT
0
i )

1
2 (TjT

0
j)

1
2

(3.1)

This ranges between zero and one, depending on the degree of overlap in technology, and is
symmetric to firm ordering so that TECHij = TECHji.13 We construct the pool of technology
spillover R&D for firm i in year t, SPILLTECHit,as

SPILLTECHit = Σj,j 6=iTECHijGjt. (3.2)

where Gjt is the stock of R&D by firm j in year t. The R&D stock is calculated using a
perpetual inventory method, Gt = Rt+(1− δ)Gt−1, with a depreciation rate (δ) of 15% (Hall
et al, 2005).

3.2. Calculating Product Market Closeness

Our main measure of product market closeness uses the Compustat Segment Dataset on each
firm’s sales broken down into four digit industry codes (lines of business). On average each
firm report sales in 5.2 different four digit industry codes, spanning 762 industries across the
sample. We use the average share of sales per industry code within each firm as our measure
of activity by product market, defining the vector Si = (Si1, Si2, ...Si597), where Sik is the share
of sales of firm i in the four digit industry code k.14 The product market closeness measure
for any two different firms i and j, SICij, is then calculated as the uncentered correlation
between all firms pairings in an exactly analogous way to the technology closeness measure:

SICi,j =
(SiS

0
j)

(SiS
0
i)

1
2 (SjS

0
j)

1
2

(3.3)

This ranges between zero and one, depending on the degree of product market overlap, and is
symmetric to firm ordering so that SICij = SICji. We construct the pool of product-market
R&D for firm i in year t, SPILLSICit,as:

SPILLSICit = Σj,j 6=iSICijGjt (3.4)

There are several issues with calculating the key SPILLSIC and SPILLTECH measures,
which we discuss in Sections 3.3 and 3.4, paying particular attention to alternative datasets
to the Compustat Segment Data and alternative functional forms of the measures of distance.

13The main results pool the patent data across the entire sample period, but we also experimented with
sub-samples. Using just a pre-sample period (e.g. 1970-1980) reduces the risk of endogeneity, but increases the
measurement error due to timing mismatch if firms exogenously switch technology areas. Using a period more
closely matched to the data has the opposite problem (i.e. greater risk of endogeneity bias). In the event, the
results were reasonably similar since firms only shift technology area slowly. Using the larger 1963-2001 sample
enabled us to pin down the firm’s position more accurately, so we kept to this as the baseline assumption.
14The breakdown by four digit industry code was unavailable prior to 1993, so we pool data 1993-2001. This

is a shorter period than for the patent data, but we perform several experiments with different assumptions
over timing of the patent technology distance measure to demonstrate robustness (see below).
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3.3. An Alternative to Compustat Segment Data: the BVD Dataset

The finance literature has debated the extent to which the breakdown of firm sales into four
digit industries from the Compustat Segment Dataset is reliable.15 So to address this we
used an alternative datasource, the BVD (Bureau Van Dijk ) Database. This contains cross-
sectional industry and ownership information on around ten million establishments in North
America and Europe, which can be directly matched into Compustat to create a breakdown
of each firm’s activity across four digit industries. This BVD data for the US is obtained
from Dun and Bradstreet (D&B), which collects the data to provide credit ratings and to sell
as a marketing database. These credit ratings are used to open bank accounts, and are also
required for corporate clients by most large companies (e.g. Wal-Mart and General Electric)
and the Government, so almost all multi-person establishments in the US are in the D&B
database. The commercial nature of the database also means the industry information should
be accurate, as paying users would quickly notice errors in the industry coding when they used
this for marketing campaigns. In Europe the BVD data comes from the National Registries
of companies (such as Companies House in the UK), which have statutory requirements on
reporting for public and private firms.
We used the primary and secondary four digit industry classes for every subsidiary within a

Compustat firm that could be matched to BVD to calculate distribution of employment across
four digit industries (essentially summing across all the global subsidiaries). On average we
matched 29.6 subsidiaries per firm: 11.4 of these are in the US and Canada and 18.2 of these
are in Europe. We are able to match three-quarters of all firms in our Compustat sample to the
BVD dataset which represents 84% of all employment and 95% of all R&D. Since the BVD-
Computsat match has fewer firms, our baseline results use the Computsat Segment Dataset
and we use the BVD-based measures to check robustness.
The correlation between the Compustat Segment and BVD Dataset measures is reason-

ably high. For example, the within-firm correlation of ln(SPILLSIC) across the Compustat
Segment and BVD datasets is 0.737 (the within-firm variation identifies our empirical results
as we control for fixed effects).

3.4. Alternative distance metrics

We have chosen particular functional forms of our distance metric based on Jaffe (1986),
but there are obviously a host of alternatives. To see the issues consider a general form of
the relationship between an outcome measure Qi (e.g. the market value of firm i) and the
product market spillovers from other firms in the economy where we abstract from all other
factors (similar issues arise for SPILLTECH so for notational simplicity we focus on just
SPILLSIC):

Qi = g(Si,Sj, Rj;θ) (3.5)

15See, for example, Villalonga (2004), who argues that firms engage in strategic reporting to reduce their
diversification discount. It should be noted that this is a far greater problem in the service sector due to the
difficulties in classifying service sector activity, and Villalonga (2004) in fact finds no discount in manufacturing.
Since our sample is heavily manufacturing focused, (81% of our R&D is in manufacturing), this issue is far
less problematic here.
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Si is a vector of firm i’s sales distribution across industries (as above), Sj is the matrix
of all other firms’ sales distribution vectors, Rj is the vector of R&D for each firm j, θ is
a parameter vector and g(.) is an unknown function mapping sales distributions and R&D
to firm i’s outcome. Different assumptions over the functional form of g(.) will define the
spillover relationship. The only substantive assumption we have made in equation (3.5) is
that firm sales are the relevant measure for where companies are located in product market
space. Empirically, we have to place more structure over equation (3.5) to operationalize it
in our application. Pinske et al (2002) discuss general issues in constructing semi-parametric
versions of equation (3.5). Our approach in this paper is to consider several possible parametric
versions.
Our canonical case is based on Jaffe (1986) as this has proven a fruitful approach in the

technology spillover literature: it seems natural to keep this as a benchmark for SPILLTECH
and to take a symmetrical approach when considering product market spillovers, SPILLSIC.
One unattractive feature of this definition of SICij is that the distance measure between
firm i and firm j is not invariant with respect to firm j0s sales in a third sector where firm
i does not operate. We consider an alternative distance measure, SICA

i,j = SiS
0
j, that is

robust to this problem and can also be rationalized by a simple model of independent markets
coupled with aggregation (see Appendix C.1). In this case the alternative product market
spillover measure is SPILLSICA

it = Σj,j 6=iSIC
A
ijGjt and the analogous measures for technology

TECHA
i,j = TiT

0
j and SPILLTECHA

it = Σj,j 6=iTECH
A
ijGjt. However, this alternative, SICA

i,j

, has an important disadvantages as compared to the Jaffe measure, SICi,j. In particular, it
is sensitive to arbitrary industry boundaries that affect overlap in sales distributions.16

We also consider a third alternative based on Ellison and Glaeser’s (1997) theory-based
measure of “co-agglomeration” (see Appendix C.2 for exact definition of SPILLTECHEG

it ).
In the Ellison-Glaeser model, plants choose optimally where to set-up and will tend to locate
close to other plants if they can benefit from spillovers. In our context, firms will choose to
locate in particular technological classes if they believe they can benefit from spillovers from
other firms operating in the same technology classes. Obviously this argument does not apply
to SPILLSIC as firms will want to avoid rivals who are “close” to them in product market
space.
Finally, Thompson and Fox-Kean (2005) have suggested that the three digit patent class

may be too coarse and a finer disaggregation is better for measuring spillovers. We therefore
constructed SPILLTECHTFK

it which uses four digit patent classes to calculate the distance
measure, TECHTFK

it . As pointed out by Henderson et al. (2005) finer disaggregation of
patents classes is not necessarily superior as the classification is subject to a greater degree of
measurement error17.
Ultimately there is no one obvious, objectively superior distance metric for spillovers. We

take a pragmatic approach and compare our results across all four alternative measures in
order to check whether robust results are obtained.
16To illustrate, consider the following case with two equally sized firms and two sectors. In scenario (i) both

firms are in the same sector and in scenario (ii) each firm is split 50-50 in the two sectors. SICi,j will be the
same in both cases (SICi,j = 1) whereas SICA

i,j = 1 in scenario (i) and SICA
i,j = 0.5 in scenario (ii).

17The information is only available from 1976 (compared to 1963 for all patents), has more missing values
and contains a greater degree of arbitrary allocation by the patent examiners.
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3.5. Descriptive Statistics of SPILLTECH and SPILLSIC

In order to distinguish between the effects of technology spillovers and product market inter-
actions we need variation in the distance metrics in technology and product market space. To
gauge this we do three things. First, we calculate the raw correlation between the measures
SIC and TECH, which is 0.469. and after weighting with R&D stocks following equations
(3.2) and (3.4) the correlation between ln(SPILLTECH) and ln(SPILLSIC) is 0.422. For
estimation in logs with fixed effects and time dummies the relevant correlation in the change of
ln(SPILLTECH) and ln(SPILLSIC) is only 0.319 (all these correlations are significant at
the 1% level). Although these correlations are all positive they are well below unity implying
substantial independent variation in the two measures. Second, we plot SIC against TEC
in Figure 1 from which it is apparent that the positive correlation we observe is caused by a
dispersion across the unit box rather than a few outliers. Finally, in Appendix D we discuss
examples of well-known firms that are close in technology but distant in product market space,
and close in product market but distant in technology space.
Table 2 provides some basic descriptive statistics for the accounting and patenting data,

and the technology and product market distance measures, TECH and SIC. The sample
firms are large (mean employment is over 18,000), but with much heterogeneity in size, R&D
intensity, patenting activity and market valuation. The two distance measures also differ
widely across firms.

[Table 2 about here]

4. Econometrics

There are four main equations of interest that we wish to estimate: a market value equation, a
patents equation, a productivity equation and a R&D equation.18. There are generic issues of
identification with all four equations which we discuss first before turning to specific problems
with each equation.

4.1. Identification

We are interested in investigating the relationship:

yit = x0itβ + uit (4.1)

where the outcome variable for firm i at time t is yit, the variables of interest (especially
SPILLTECH and SPILLSIC) are xit and the error term, whose properties we will discuss
in detail, is uit.
First, we have the problem of unobserved heterogeneity. We will present estimates with

and without controlling for correlated fixed effects (through including a full set of firm specific
dummy variables). The time dimension of the company panel is relatively long, so the “within
groups bias” on weakly exogenous variables (see Nickell, 1981) is likely to be small, subject to

18For an example of this multiple equation approach to identify the determination of technological change,
see Griliches, Hall and Pakes (1991).
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the caveats we discuss below19. Second, equation (4.1) is static, so we experiment with more
dynamic forms. In particular we present specifications including a lagged dependent variable.
Third, we have the issue of the endogeneity due to transitory shocks. To mitigate these we
condition on a full set of time dummies and a distributed lag of industry sales20. Furthermore
we lag all the other variables on the right hand side of equation (4.1) by one period to overcome
any immediate feedback effects. This is a conservative approach as it is likely to reduce the
impact of the variables we are interested in. An alternative is to explicitly use an instrumental
variable approach using “internal” instruments (essentially lags of the endogenous variables)21

and “external” instruments (see below). Finally, since we are attempting to identify a “social
effect” we must address identification issues highlighted by Manski (1991). The paper has
two approaches to this, both of which have several advantages over other contributions in the
spillover literature.

4.1.1. Baseline estimation

We do not attempt to non-parametrically identify the spillover effects and instead make some
parametric assumptions over the form of distance metric. Fundamentally, identification of
the various spillover effects for firm i comes from two elements - a time invariant “distance”
between firm i and all other firms and the time-varying R&D of other firms. For example,
the fact that we measure two firms as close in technology space indicates that they may be
benefiting from mutual inter-firm spillovers. But this is not necessarily the case, the firms will
also appear close in technology space if they have some comparative advantage in utilizing
similar technologies but there is no actual technology spillover between them. Instead, our
application utilizes the fact that there are exogenous shocks, like optimization errors, lumpy
adjustment costs or R&D tax credits (as discussed formally below), that differentially affect
the R&D of other firms in the economy.
We identify spillovers from the assumption that a given increase in the R&D of firm j should

have a larger effect on firm i if it is “close” and a smaller effect on firm i if it is “distant”.
Thus, we can control for distance in a non-parametric way (through firm fixed effects) and
for general changes in R&D (time dummies) and seek to identify from the interaction. Of
course, this does not remove all identification issues. For example, consider the problem of a
transitory unobserved shock specific to a pair of firms close in technology space - this could
simultaneously raise their R&D, patents, productivity and market value. Our approach tries
to mitigate this problem in several ways.
First, we include many controls for this possible shock - time dummies, industry sales,

firm fixed effects and time varying other firm-level covariates in some regressions (e.g. sales,
capital, labor, own R&D, etc. ). Second, we also lag all the firm level variables to avoid
contemporaneous feedback). Most importantly, the model predicts differential responses across
different spillover variables in different equations. Consider the market value equation, for

19In the R&D equation, for example, the mean number of observations per firm is eighteen.
20We use a firm-specific measure of industry sales. The industry sales variable is constructed in the same

way as the SPILLSIC variable. We use the same distance weighting technique, but instead of using other
firms’ R&D stocks we used rivals’ sales. This ensures that the SPILLSIC measure is not simply reflecting
demand shocks at the industry level.
21We compare our within groups results with GMM estimators such as Blundell and Bond (1998) and (for

the production function) variants of Olley and Pakes (1996).
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example. We predict that R&D by firms close in the product market (SPILLSIC) should
have a negative effect on market value whereas R&D by firms whereas firms close in technology
space (SPILLTECH) should have a positive effect on market value. So any shock that is
raising other firms’ R&D generally is predicted to have a differential effect on a firm depending
on its closeness in the product space vs. technology space. Furthermore, in the R&D equation
SPILLSIC is predicted to have a positive effect on R&D if there is strategic complementarity
(which is what we find). It is hard to come up with a story for why an omitted shock should
increase firms’ R&D but depress firms’ market value. So although we can never rule out
the possibility that some complex interaction of omitted shocks drives our results in a world
without spillovers, it seems unlikely.

4.1.2. Instrumental Variables

A complementary approach is to identify policy-based exogenous determinants of firm-level
R&D expenditure, and use these to instrument for changes in technology and product market
R&D stocks. We consider both supply side shocks (tax-induced changes to the user cost
of R&D capital) and a demand-side shock (the fall in the demand for defence-related R&D
following the collapse of the Soviet Union). Details are in Data Appendix B, but we sketch
the strategy here. The tax component of the Hall-Jorgenson user cost of capital, ρit is:

22

ρit =
(1−Ait)

(1− τ st)
(4.2)

where A is the present discounted value of tax credits and depreciation allowances, τ is the
rate of corporation tax (which has a state s as well as a Federal component). Values of
ρit of unity are equivalent to R&D tax neutrality, while values below unity denote net tax
incentives for R&D. ρit will vary across firms for two reasons. First, different States have
different levels of R&D tax credits and corporation tax which will differentially affect firms
depending on their cross state distribution of R&D activity. We use Wilson’s (2008) estimates
of state-specific R&D tax-prices combined with our estimate of the cross-state within-firm
distribution of R&D to calculate the “state R&D tax price”23. Second, we follow Hall (1992)
and Bloom, Criscuolo, Hall and Van Reenen (2008) and construct a firm-specific user cost
using the Federal rules. This has a firm-specific component inter alia because the definition
of what qualifies as allowable R&D for tax purposes depends on a firm-specific “base”24.
The demand side instrument we use is based on the 1990s Peace Dividend following the

fall of the Berlin Wall until 9/11. This resulted in defence expenditure contracting rapidly, for
example its share of GDP falling to below 50% of its 1989 value by 1995. We operationalize
this measure by calculating each firm’s share of sales in the defence sector from the Compustat

22The full user cost also includes the asset price deflator, depreciation rate, the interest rate and a capital
loss term, but since these are common across firms they are absorbed by the time dummies when we log
equation (4.2).
23Wilson’s method is based on Bloom, Griffith and Van Reenen (2002). We use the location of a firm’s

inventors based on the patents database to estimate the location of R&D (see Griffith, Harrison and Van
Reenen, 2006).
24For example, from 1981 to 1989 the base was a rolling average of the previous three years’ R&D. From

1990 to 1995 the base was fixed to be the average of the firm’s R&D between 1984 and 1988. See Appendix
B for more details.
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Segment data and interacting this by a dummy variable taking a value of unity for 1990 until
2001 and zero otherwise.
We use these excluded instruments (and the other exogenous variables) to predict R&D

and then replace the predicted R&D in the second stage equations (correcting the standard
errors appropriately). Note that the spillover terms are being instrumented by the values of
other firms’ tax prices and Peace Dividend, whereas the firm’s own R&D is instrumented by
its own tax prices and the Peace Dividend. We show that treating R&D as endogenous leads
to qualitatively similar results to the baseline estimates.

4.2. Market Value equation

We adopt a simple linearization of the value function proposed by Griliches (1981)25

ln

µ
V

A

¶
it

= lnκit + ln

µ
1 + γv

µ
G

A

¶
it

¶
(4.3)

where V is the market value of the firm, A is the stock of tangible assets, G is the R&D stock,
and the superscript v indicates that the parameter is from the market value equation. The
deviation of V/A (also known as “Tobin’s average Q”) from unity depends on the ratio of the
R&D stock to the tangible capital stock (G/A) and lnκit. We parameterize this as

lnκit =βv1 lnSPILLTECHit + βv2 lnSPILLSICit + Zv0
it β

v
3 + ηvi + τ vt + υvit

where ηvi is the firm fixed effect, τ
v
t is a full set of time dummies, Z

v
it denotes other control vari-

ables such as industry demand, and υvit is an idiosyncratic error term. If γ
v(G/A) was “small”

then we could approximate ln
¡
1 + γv

¡
G
A

¢
it

¢
by γv

¡
G
A

¢
it
. But this will not be a good approxi-

mation for many high tech firms and, in this case, equation (4.3) should be estimated directly
by non-linear least squares (NLLS). Alternatively one can approximate ln

¡
1 + γv

¡
G
A

¢
it

¢
by

a series expansion with higher order terms (denote this by φ(G
A
)), which is more computa-

tionally convenient when including fixed effects. Empirically, we found that a sixth order
series expansion was satisfactory. Taking into consideration the generic econometric issues
over endogeneity discussed above, our basic empirical market value equation is:

ln

µ
V

A

¶
it

= φ((G/A)it−1) + βv1 lnSPILLTECHit−1 + βv2 lnSPILLSICit−1

+Zv0
it β

v
3 + ηvi + τ vt + υvit (4.4)

4.3. Patent Equation

We use a version of the Negative Binomial model to analyze our patent count data. Models
for count data assume a first moment of the form:

E(Pit|Xit, Pit−1) = exp(x
0
itβ

p)

where E(.|.) is the conditional expectations operator and Pit is a (possibly cite weighted) count
of the number of patents. In our analysis we want to allow both for dynamics and fixed effects,

25See also Jaffe (1986), Hall et al (2005) or Lanjouw and Schankerman (2004).
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and to do so we use a Multiplicative Feedback Model (MFM). The conditional expectation of
the estimator is:

E(Pit|Xit, Pit−1) = exp[δ1Dit lnPit−1 + δ2Dit + βp1 lnSPILLTECHit−1 +

βp2 lnSPILLSICit−1 + Zp0
itβ

p
3 + ηpi + τ pt ] (4.5)

where Dit is a dummy variable which is unity when Pit−1 > 0 and zero otherwise.
The variance of the Negative Binomial under our specification is:

V (Pit) = exp(x
0
itβ

p) + α exp(2x0itβ
p)

where the parameter, α, is a measure of “over-dispersion”, relaxing the Poisson restriction
that the mean equals the variance (α = 0 ).
We introduce firm fixed effects into the count data model using the “pre-sample mean

scaling” method of Blundell, Griffith and Van Reenen (1999). This relaxes the strict exogeneity
assumption underlying the conditional maximum likelihood approach of Hausman, Hall and
Griliches (1984). Essentially, we exploit the fact that we have a long pre-sample history (from
1970 to at least 1980) of patenting behavior to construct its pre-sample average. This can then
be used as an initial condition to proxy for unobserved heterogeneity under the assumption
that the first moments of all the observables are stationary. Although there will be some
finite sample bias, Monte Carlo evidence shows that this pre-sample mean scaling estimator
performs well compared to alternative econometric estimators for dynamic panel data models
with weakly endogenous variables (see Blundell, Griffith and Windmeijer, 2002).

4.4. Productivity Equation

Although we consider more complex forms, the basic production function is of the R&D
augmented Cobb-Douglas form (Y is real sales):

lnYit = βy1 lnSPILLTECHit−1 + βy2 lnSPILLSICit−1 + Zy0
it β

y
3 + ηyi + τ yt + υyit (4.6)

The key variables in Zy0
it are the other inputs into the production function - labor, capital, and

the own R&D stock. If we measured output correctly then the predictions of the marginal
effects of SPILLTECH and SPILLSIC in equation (4.6) would be the qualitatively same
as that in the patent equation, Technology spillovers improve total factor productivity (TFP),
whereas R&D in the product market should have no impact on TFP (conditional on own R&D
and other inputs). In practice, however, we measure output as “real sales” - firm sales divided
by an industry price index. Because we do not have information on firm-specific prices, this
induces measurement error (see Foster, Haltiwanger and Syverson, 2008). If R&D by product
market rivals depresses own prices (as we would expect), the coefficient on SPILLSIC will
be negative and the predictions for equation (4.6) are the same as those of the market value
equation. Controlling for industry sales dynamics (see Klette and Griliches, 1996) and fixed
effects should go a long way towards dealing with the problem of firm-specific prices. In the
results section, we show that the negative coefficient on SPILLSIC is essentially zero when
we control for these additional factors.
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4.5. R&D equation

We write the R&D intensity equation as:

ln(R/Y )it = αr ln(R/Y )it−1+β
r
1 lnSPILLTECHit−1+β

r
2 lnSPILLSICit−1+Z

r0
itβ

r
3+η

r
i+τ

r
t+υ

r
it

(4.7)
Note that the coefficients on SPILLTECH and SPILLSIC are particularly difficult to
interpret in equation (4.7) due to the reflection problem (Manski, 1991). A positive coefficient
on SPILLSIC could either reflect strategic complementarity or common unobserved shocks
that are not controlled for by the other variables in equation (4.7).

5. Empirical Results

[Tables 3,4,5,6 about here]

5.1. Market Value Equation

Table 3 summarizes the results for the market value equation. We present specifications with
and without fixed effects. The coefficients of the other variables in column (1) were close to
those obtained from nonlinear least squares estimation26. In this specification without any
firm fixed effects, the product market spillover variable, SPILLSIC, has a positive association
with market value and SPILLTECH has a negative association with market value. These are
both contrary to the predictions of the theory. Finally, we find that the growth of industry sales
affects the firm’s market value (the coefficients are fairly close to each other but of opposite
signs), which probably reflects unobserved demand factors.
When we allow for fixed effects in column (2), the estimated coefficient on SPILLTECH

switches signs compared to column (1) becoming positive and significant as predicted by our
theory 27. A ten percent increase in SPILLTECH is associated with a 2.4 percent increase
in market value28. Recall that we include a sixth-order series of the ratio of own-R&D stock
to tangible capital, G/A, in order to capture the nonlinearity in the value equation. Using the
parameter estimates on these G/A terms, we obtain an elasticity of market value with respect
to own R&D of 0.282 (at the mean). Evaluated at the sample means, this implies that an extra
dollar of R&D stock is associated with $1.14 higher market value. This estimate is higher than
the 86 cent figure obtained by Hall et al (2005) over an earlier sample period. Comparing
these estimates we conclude that the private value of a dollar of technology spillover is only
worth (in terms of market value) about 3.7 percent as much as a dollar of own R&D.
With fixed effects, the estimated coefficient on SPILLSIC is now negative and significant

at the five percent level. A ten percent increase in SPILLSIC is associated with a 0.72

26Using OLS and just the first order term of G/A, the coefficient on G/A was 0.266, as compared to 0.420
under nonlinear least squares. This suggests that a first order approximation is not valid since G/A is not
"small" - the mean is close to 50% (see Table 2).
27The fixed effects are highly jointly significant, with a p-value < 0.001. The Hausman test also rejects the

null of random effects plus three digit dummies vs. fixed effects (p-value=0.02).
28At the regression sample means, this implies that an extra dollar of SPILLTECH is associated with

an increase in the recipient firm’s market value of 4.2 cents. That is if another firm with perfect overlap in
technology areas (TECH = 1) raised its R&D by one dollar, we predict that the firm’s market value would
rise by 4.2 cents.
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percent reduction in market value. Evaluated at the sample mean this implies that an extra
dollar of SPILLSIC is associated with a reduction of a firm’s market value by 4.4 cents.
Interestingly, the negative effect of an extra dollar of product market rivals’ R&D is similar in
magnitude to the positive effect of a dollar of technology (R&D) spillovers. Of course, the net
effect of R&D spending by other firms will depend on the product market and technological
distance between those firms (TECH and SIC). Using our parameter estimates, we can
compute the effect of an exogenous change in R&D for any specific set of firms (see Section
6).
In short, once we allow for unobserved heterogeneity in the specification of the market

value equation, the signs of the two spillover coefficients are consistent with the prediction
from the theory outlined in Section 2. Conditional on technology spillovers, R&D by a firm’s
product market rivals depresses its stock market value, as investors expect that rivals will
capture future market share and/or depress prices.
It is also worth noting that, in column (3) when SPILLSIC is omitted the coefficient on

SPILLTECH declines and becomes statistically insignificant at the 5 per cent level. Failing
to control for product market rivalry could lead us to miss the impact of technology spillovers
on market value. The same bias is illustrated for SPILLSIC - if we failed to control for
technology spillovers we would find no statistically significant impact of product market rivalry
(column (4)). It is only by allowing for both “spillovers” simultaneously that we are able to
identify their individual impacts.
Attenuation bias is exacerbated by fixed effects, but classical measurement error should

bias the coefficients towards zero. This suggests that the change in the coefficients on the
spillover variables between columns (1) and (2) when we introduce fixed effects is not due to
classical measurement error as the coefficients become larger in absolute magnitude. Instead,
it is likely that unobserved heterogeneity obscures the true impact of the spillover variables
on market value. This could arise if we have not controlled sufficiently for firms who are
closely clustered in high tech sectors - they will tend to have high value of SPILLSIC and
high Tobin’s Q (since R&D will not perfectly control for intangible knowledge stocks). This
will drive a positive correlation between the SPILLSIC term and market value even in the
absence of any technological or product market interactions. Fixed effects control for this
unobserved heterogeneity29.

5.2. Patents Equation

We turn next to the patents equation (Table 4). Column (1) presents the estimates in a static
model with no controls for correlated individual effects. Unsurprisingly, larger firms and those
with larger R&D stocks are much more likely to have more patents. SPILLTECH has a
positive and highly significant association with patenting, indicating the presence of technology
spillovers. By contrast, the product market rivalry term has a much smaller coefficient and
is not significant at the 5% level. The overdispersion parameter is highly significant here,

29We also tried an alternative specification that introduces current (not lagged) values of the two spillover
measures, and estimate it by instrumental variables using lagged values as instruments. This produced similar
results. For example estimating the fixed effects specification in column (2) in this manner (using instruments
from t − 1) yielded a coefficient (standard error) on SPILLTECH of 0.282 (0.092 ) and on SPILLSIC of
-0.079 (0.028 ).
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rejecting the Poisson model in favour of the Negative Binomial.
In column (2) we control for firm fixed effects using the Blundell et al (1999) method of

conditioning on the pre-sample patent stock (these controls are highly significant). Compared
to column (1), the coefficient on the R&D stock falls but remains highly significant. A ten
percent increase in the stock of own R&D generates a 2.8 percent increase in patents. The
estimated elasticity of 0.28 points to more sharply diminishing returns than most previous
estimates in the literature, but the earlier studies do not typically control for technology
spillovers or the level of sales to capture demand factors. Turning to our key variables, allowing
for fixed effects reduces the coefficient on SPILLTECH, but it remains positive and significant
at the five per cent level.
In column (3) of Table 4 we present our preferred specification, which includes both firm

fixed effects and lagged patent counts30. Not surprisingly, we find strong persistence in patent-
ing (the coefficient on lagged patents is highly significant). In this model SPILLTECH re-
tains a large and significant coefficient. Interestingly SPILLSIC is positive and significant
in this column whereas it was insignificant in the other columns. This is inconsistent with
the simple model of Section 2, but is consistent with the extended model where patents are
endogenously chosen (Appendix A3)31.

5.3. Productivity Equation

Table 5 contains the results from the production function. The OLS results in column (1)
suggest that we cannot reject constant returns to scale in the firm’s own inputs (the sum of the
coefficients on capital, labor and own R&D is 0.995). The spillover terms are perversely signed
however, with negative and significant signs on both spillover terms. Including fixed effects
in column (2) changes the results - SPILLTECH is positive and significant and SPILLSIC
becomes insignificant - this is consistent with the simple theory that the marginal effects of
spillovers on TFP should be zero. The negative sign on SPILLSIC in column (1) could be
due to rival R&D having a negative effect on prices depressing a firm’s revenue. In principle,
these price effects should be controlled for by the industry price deflator, but if there are firm-
specific prices then the industry deflator will be insufficient. If the deviation between firm and
industry prices is largely time invariant, however, then the fixed effects should control for this
bias. This is consistent with what we observe in column (2) - when fixed effects are included
the negative marginal effect of SPILLSIC disappears and becomes insignificant. The third
column drops the insignificant SPILLSIC term and is our preferred specification. These
results are all consistent with the basic theory: R&D by firms close in technology space has a
positive effect on knowledge (as proxied by TFP), but R&D by product market rivals has no
effect.
One might be concerned that there are heterogeneous technologies across industries, so we

investigated allowing all inputs (labor, capital and R&D) to have different coefficients in each

30The pre-sample estimator assumes we can capture all of the fixed effect bias by the long pre-sample history
of patents (back as far as 1963). To check this assumption, we also included the pre-sample averages of the
other independent variables. Since we have a shorter pre-sample history of these we conditioned on the sample
which had at least ten years of continuous time series data. Only the pre-sample sales variable was significant
at the five per cent level and including this initial condition did not change any of the main results.
31These results do not depend on the variance moment assumption underlying the Negative Binomial model,

as using a GMM estimator that relies only on the first moment condition leads to qualitatively similar results
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two-digit industry. Even in this demanding specification SPILLTECH remained positive
and significant at conventional levels32. We also experimented with using an estimate of real
value added instead of real sales as the dependent variable which led to a similar pattern of
results33.

5.4. R&D Equation

We now turn to the coefficient estimates for the R&D intensity equation (Table 6). In the
static specification without firm fixed effects (column (1)), we find that both technology and
product market spillovers are present34. The positive coefficient on SPILLSIC indicates that
own and product market rivals’ R&D are strategic complements. We control for the level
of industry sales, which picks up common demand shocks and is positively associated with
company R&D spending. When we include firm fixed effects (column (2)), the coefficient
on SPILLSIC declines substantially (to a quarter of its earlier value) but remains positive
and significant. SPILLTECH by contrast is no longer significant. In column (3) we do not
include fixed effects but allow for dynamics (lagged R&D/sales). SPILLSIC is significant at
the five per cent level but the coefficient on SPILLTECH is small and insignificant. In the
final column we allow for both fixed effects and dynamics. In this column SPILLSIC is still
significant at the ten per cent level and the implied, long run effect are similar to the static
specifications (0.103).35

To summarize, we find some evidence that R&D spending by a firm and its product mar-
ket rivals are strategic complements in the OLS specifications, even after we controlling for
industry level demand and firm fixed effects36, but as we will show this result does not survive
the IV specifications.

[Tables 7, 8 about here]

32SPILLTECH took a coefficient of 0.101 and a standard error of 0.046 and SPILLSIC remained in-
significant (coefficient of 0.008 and a standard error of 0.012). Including a full set of two digit industry time
trends also lead to the same findings. The coefficient (standard error) on SPILLTECH was 0.093 (0.048 ).
33We followed the same method as Bresnahan et al (2002) in constructing value added (see Appendix B).

When using value added as the dependent variable the coefficient (standard error) on SPILLTECH was
0.188(0.053 ) and on SPILLSIC was -0.023(0.013 ). Including materials on the right hand side generated a
coefficient (standard error) on SPILLTECH of 0.127(0.039 ) and on SPILLSIC of -0.007(0.010 ).
34The spillover terms are significantly different in the fixed effects specifications compared to the OLS

specifications (with industry dummies) at the five per cent level.
35We checked that the results were robust to allowing sales and lagged R&D to be endogenous by re-

estimating the R&D equation using the Blundell and Bond (1998) GMM “system” estimator. The qualitative
results were the same. We used lagged instruments dated t-2 to t-8 in the differenced equation and lagged
differences dated t-1 in the levels equations. In the most general dynamic specification of column (4) the coeffi-
cient (standard error) on SPILLSIC was 0.140 (0.023 ) and the coefficient (standard error) on SPILLTECH
was -0.026 (0.018 ). Since the lagged dependent variable took a coefficent of 0.640(0.046) this implies a larger
magnitude of the effect of SPILLSIC on R&D than the main within group specifications. Note that the
instruments were valid at the five per cent level according to the Hansen-Sargan test.
36We know of only two papers that empirically test for patent races, one on pharmaceuticals and the other on

disk drives (Cockburn and Henderson, 1994; and Lerner, 1997), and the evidence is mixed. However, neither
of these papers allows for both technology spillovers and product market rivalry.
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5.5. Implications of the Results

To summarize our main findings concisely, Table 7 compares the predictions from the model
with the empirical results from Tables 3-6. The match between the theoretical predictions and
the empirical results is quite close. (The only exception is the positive effects of SPILLSIC
in the patents equation, but this is consistent with the extension of the model to allow for
endogenous patenting.) It gives some reason for optimism that this kind of approach, based
on using multiple performance measures, can help disentangle the role of technology spillovers
and product market rivalry.
The qualitative implications of our simple theory appear to be supported by the data. But

what are their quantitative implications? We solve the system of equations in the model (see
Appendix E) to calculate the long-run equilibrium response of R&D, patents, productivity
and market value to an exogenous stimulus to R&D.
We begin with a unit stimulus to the R&D spending of all firms, which we call “autarky”.

This stimulus is then “amplified” by the strategic complementarity in the R&D equation and
the feedback through the production function. The magnitude of this amplification depends
on how closely linked the firm is to its product market competitors (i.e. on the size of its
average SIC). This long run response of R&D, for each firm, then contributes to the value of
SPILLTECH and SPILLSIC, which further amplifies the impact of the stimulus.
Table 8 summarizes the direct (autarky) effect and the amplification effects of a one percent

R&D stimulus to all firms on each of the endogenous variables. As row 1 shows, strategic
complementarity amplifies the original stimulus by 24.2%, so that the 1% stimulus generates
1.2% more R&D. The relative amplification effects on patents and productivity are larger
because of the large SPILLTECH effects. The relative amplification effect on market value
is smaller because SPILLSIC has a strong negative effect on market value which offsets much
of the positive SPILLTECH effect.
To a first approximation, this finding for productivity suggests that the social returns to

R&D are about 3.5 times larger than the private returns (column (3) divided by column (1)).
Thus when we allow for both technology spillovers and product market rivalry effects of R&D,
we find that the former strongly dominate the latter. Furthermore, the positive amplification
effect for market value suggests that the private sector will under-invest in R&D.37 This
confirms the conventional wisdom of a role for policy support for R&D.

5.6. Instrumental Variable Estimates

The effect of the state and firm level tax credits and the Peace Dividend on R&D are shown in
Appendix Table A2. These are the first-stage results for the IV specifications, which regress
ln(R&D) against the instruments and the other non-R&D variables from the second stage (such
as firm fixed effects and year dummies). It can be seen from Table A2 that firm and state
tax credits significantly increased R&D expenditure while the Peace Dividend significantly
reduced R&D.
Table 9 reports the second stage IV results for our preferred specifications. Overall, the

37Reassuringly, these figures are similar to those estimated from macro data in an endogenous growth model
framework by Jones and Williams (1998). They report social returns to R&D of about 2 to 4 times private
returns, and private-sector under-investment in R&D.
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results support the conclusions of the main models that treat the spillover variables as ex-
ogenous. Column (1) presents the estimates for the market value equation where there is a
large positive SPILLTECH impact on market value and smaller negative SPILLSIC effect.
The coefficients on both terms are larger in absolute magnitude than their equivalent Within
Groups specifications in Table 3, particularly the SPILLTECH term. This suggests the
OLS results are, if anything, an underestimate of the size of technology and product market
spillovers.38 In column (2) we present the patent equation estimates, which show similar co-
efficients to the equivalent OLS specification in column (3) of Table 4, with a large significant
SPILLTECH effect and a much smaller SPILLSIC effect. Column (3) has the productivity
equations which show similar results to the equivalent specification in column (2) of Table 5.
The SPILLTECH term has a coefficient of 0.097, close to the 0.103 point estimate under
OLS, while the SPILLSIC coefficient is insignificant. Finally, in column (4) we report the
IV results for the R&D equations, which are insignificant although the key SPILLSIC term
is 0.025, close to the 0.033 point estimate under OLS.
Taking the table as a whole, the qualitative results all appear to be robust, even though

the standard errors have risen as we would expect so that some coefficients are no-longer
significant.

5.7. Alternative Construction of the Spillover Variables

5.7.1. Re-estimating all equations using SPILLSIC constructed from the BVD
Dataset

As discussed in the data section we were concerned that the Compustat Segment file may be
inaccurate so we also considered calculating SPILLSIC using the BVD Dataset. We summa-
rize the results for the each of the four dependent variables (Tobin’s Q, patents, productivity
and R&D) for the most general econometric specifications with fixed effects and dynamics in
Table 10 (full results are available from authors).
Although the sample size is slightly smaller, qualitatively the results are remarkably similar

to the earlier tables. In the market value equation of column (1) SPILLTECH is positive
and significant at the five per cent level and SPILLSIC is negative and significant at the
five per cent level. In column (2), the patents equation, SPILLTECH and SPILLSIC are
positive and significant at the five per cent level. In column (3), the productivity equation,
SPILLTECH is positive and significant at the five per cent level and SPILLSIC is in-
significant. In column (4), the R&D regression, SPILLSIC is positive and significant at the
five per cent level and SPILLTECH is insignificant. These results are consistent with the

38In the market value specification we imposed a coefficient of unity for γ in the equation (4.3) to enable
the R&D stock to be included in Tobin’s Q rather than as a right hand side variable:

Tobin’s Q = ln

µ
V

A+G

¶
it

Without this the regression would not be identified given the inclusion of the instruments in the second stage.
In the OLS results the coefficient on γ was 1.14, with the test that γ = 1 insignificant at the sample-mean
(p-value 0.17). Restimating the Tobin’s Q regression instead imposing the OLS coefficient of γ = 1.14 yields
similar results, with the coefficient (standard error) on SPILLTECH and SPILLSIC as 0.404 (0.153 ) and
-0.083 (0.076 ) respectively.
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strategic complementarity version of our model where both technology spillovers and product
market rivalry are important.

[Tables 9, 10 and 11 about here]

5.7.2. Alternative Distance Metrics

Table 11 presents some experiments with alternative distance metrics discussed in Sub-section
3.4. Panel A summarizes the results from Tables 3 through 6 as a baseline. Panel B presents
the results using SPILLSICA, but keeps SPILLTECH as in the baseline case. Panel C
uses both SPILLSICA and SPILLTECHA and Panel D considers using our version of
the Ellison-Glaeser co-agglomeration measure, SPILLTECHEG. Panel E uses the four digit
patent classes instead of three digit patent classes, SPILLTECHTFK .
The results appear very robust. Looking over Panels B through E of Table 10 the coefficient

on SPILLTECH is positive in all twelve specifications of the value equation, patent equation
and production function (and is significant at the ten per cent level or more in ten cases out
of the twelve regressions). The coefficient on SPILLSIC is always negative and significant
at the ten per cent level or more in the value equation and insignificant in the productivity
equations. SPILLSIC is positive in all of the R&D and patent equations, and is significant at
the ten per cent level or greater in Panels B, C and D. The only difference is for SPILLTECH
in the R&D regressions in Panel D where it is significant and negative (like the baseline it is
insignificant in the other panels). Since the sign of SPILLTECH is theoretically ambiguous,
this is not much of a problem.
Taking Tables 10 and 11 together, we conclude that the main findings are robust across

using a large number of alternative constructions of the distance metric using different datasets
and different functional firms. The weakest result is the finding of strategic complementarity,
which is theoretically ambiguous. Overall, these results give us more confidence in our simple
model.

5.8. Econometric results for three high-tech industries

We have used both cross firm and cross-industry variation (over time) to identify the technol-
ogy spillover and product market rivalry effects. An obvious criticism is that pooling across
industries disguises heterogeneity and an interesting extension of the methodology outlined
here is to examine particular industries in much greater detail. This is difficult to do given the
size of our dataset. Nevertheless, it would be worrying if the basic theory was contradicted
in the high-tech sectors, as this would suggest our results might be due to biases induced by
pooling across heterogenous sectors. To investigate this, we examine in more detail the three
most R&D intensive sectors where we have a reasonable number of firms to estimate our key
equations - Computer hardware, Pharmaceuticals, and Telecommunications Equipment. The
results from these experiments are summarized in Table 12.
The results from Computer hardware (Panel A) are qualitatively similar to the pooled

results. Despite being estimated on a much smaller sample, SPILLTECH has a positive
and significant association with market value and SPILLSIC a negative and significant as-
sociation. There is also evidence of technology spillovers in the production function and the
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patenting equation (when we weight by patent citations39). By contrast, SPILLSIC is not
significant in patents, productivity or R&D.
The pattern in Pharmaceuticals is similar, with significant technology spillovers and prod-

uct market rivalry in the market value equation. Technology spillovers are also found in the
production function and the patents equation when we weight by citations (intellectual prop-
erty is particularly important in this industry40). As in the Computer hardware sector, the
product market rivalry terms are insignificant in the patents, productivity and R&D equa-
tion. The results are slightly different in the Telecommunications equipment industry. We do
observe significant technology spillover effects in the market value equation and cite-weighted
patents equations, but SPILLTECH is insignificant (although positive) in the productivity
regressions. Similarly, SPILLSIC is correctly signed (negative) but insignificant in the value
equation and also insignificant in all other regressions.
Overall, the results from these high-tech sectors indicate that our main results are present

in precisely those R&D intensive industries where we would expect our theory to have most
bite. There are two caveats. First, we do see some heterogeneity - although technology
spillovers are found in all three sectors, significant product market rivalry effects of R&D are
only evident in two of the three industries studied. Second, it is difficult to determine whether
R&D is a strategic complement or substitute from these sectors as SPILLSIC tends to be
insignificant in the R&D and patent equations (whereas it was positive and significant in the
main, pooled results), possibly due to the smaller sample size. We leave for future research a
more detailed analysis of particular industries using our approach.

[Tables 12 and 13 about here]

6. Policy Simulations

The model can also be used to evaluate the spillover effects of R&D subsidy policies. Through-
out the policy experiments we consider a binary treatment (a firm is either eligible or not
eligible) and assume that the proportionate increase in R&D is the same across all the eligible
firms. We alter this proportionate increase so that it sums to the aggregate increase in the
baseline case ($870m). This allows us to compare the cost effectiveness of alternative policies.
Four policy experiments are considered (Panel A, Table 13). For the first (row 1) each firm

is given a one percent stimulus to R&D. Given the average R&D spending in the sample this
“costs” $870 million. Working out the full amplification and dynamic effects in the model this
generates an extra $755 million of R&D (for a total R&D increase of $1,625 million). This
is associated with an extra $6,178 million in output. The other three experiments consider a
stimulus of the same aggregate size ($870m) but distribute it in different ways.
The second experiment (row 2 in Panel A) is calibrated to a stylized version of the current

U.S. R&D tax credit to determine the eligible group (40% of all firms in this case)41. This

39Weighting made no difference to the results in the overall sample, but seems to be more important in these
high-tech sectors.
40For example, Austin (1993) found evidence of rivalry effects through the market value impact of pharma-

ceutical patenting. See also Klock and Megna (1993) on semi-conductors.
41We keep to a simple structure in order to focus on the main policy features rather than attempt a detailed

evaluation of actual existing tax credit systems (see Bloom, Griffith and Van Reenen, 2002, for a detailed
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policy generates very similar spillovers for R&D and productivity as the overall R&D stimulus
in row 1. The reason is that the firms eligible for the tax credit have very similar average
linkages in the technology and product markets as those in the sample as a whole (compare
rows 1 and 2 in Panel B, Table 13).
The third experiment gives an equi-proportionate increase in R&D only to firms below the

median size, as measured by employment averaged over the 1990’s (about 3,500 employees).
The fourth experiment does the same for firms larger than the median size. Splitting by
firm size is interesting because many R&D subsidy and other technology policies are targeted
at small and medium sized enterprises.42 These last two policy simulations show a striking
result: the social returns, in terms of spillovers, of subsidizing “smaller” firms are much lower
than from subsidizing larger firms. The stimulus to larger firms generates $6,287 million
of extra output, as compared to only $3,745 million when the R&D subsidy is targeted on
“smaller” firms. As Panel B shows, this difference arises because large firms are much more
closely linked to other firms in technology space and thus generate (and benefit from) greater
technology spillovers. The average value of TECH for large firms is 0.129 as compared to
0.074 for “smaller” firms43. That is, smaller firms are more likely to operate in technology
niches generating lower average spillovers.
Given the weaker results on strategic complementarities for R&D we also re-calculated the

policy simulations assuming no strategic complementarities (Appendix Table A3). This does
reduce the R&D spillovers by about 40%, with spillovers now only arising from the production
function. The effect on the productivity spillovers is to reduce this by about 20%. But in
both cases the ranking across firms is the same — smaller firms generate the less R&D, and
especially productivity, spillovers.
Thus, these findings should caution against over-emphasis on small and medium sized firms

by some policy makers. Of course, appropriate policy design would have to take into account
many caveats in terms of the simplicity of the model (e.g. we have abstracted from credit
constraints that might be worse for smaller firms).

7. Conclusions

Firm performance is affected by two countervailing R&D spillovers: positive effects from
technology spillovers and negative “business stealing” effects from R&D by product market
rivals. We develop a general framework showing that technology and product market spillovers

analysis of fiscal incentives for R&D). We treat a firm as eligible in our simulation if it was eligible to receive
any R&D tax credit for a majority of the 1990’s.
42In practice, policies are typically targetted at firms much smaller than the median firm in our sample. We

also tried conducting the experiment for the lowest and highest quartiles of the size distribution, but there
was not enough R&D conducted by the lowest employment quartile to make the analysis sensible (i.e., the
required percentage increase in their R&D was too large to justify the linear approximation of the model used
for the simulations).
43We were concerned that our econometric results may be under-estimating the spillovers of smaller firms.

For example, relative to large firms, smaller companies may be less able to appropriate the benefits of technology
spillovers, and thus be more likely to pass on technology spillovers to consumers in the form of lower prices.
We tested this idea by interacting the size dummy with SPILLTECH in the production function (Table 5,
column 2). This interaction was negative, as expected, but small and insignificant (coefficient of -0.026 with
a standard error of 0.019).
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have testable implications for a range of performance indicators, and then exploit these using
distinct measures of a firm’s position in technology space and product market space. Using
panel data on U.S. firms between 1980 and 2001 we show that both technology and product
market spillovers operate, but social returns still exceed private returns to a large degree.
We also find that R&D by product market rivals is (on average) a strategic complement for
a firm’s own R&D. Our findings are robust to alternative datasets and definitions of the
distance metric, and the use of tax credits and the 1990s Peace Dividend as instruments for
R&D expenditure.
Using the model we evaluate the social returns from three R&D subsidy policies which

suggested that R&D policies that were tilted towards the smaller firms in our sample would
be unwise if the objective is to redress market failures associated with technology spillovers. Of
course there may be other reasons to support smaller/younger firms, such as financial market
failures or lower rates of knowledge appropriability.
There are various extensions to this line of research. First, while we examined heterogeneity

across industries by looking at three high-tech sectors, much more could be done within our
framework using detailed industry-specific datasets. Second, it would be useful to develop
and estimate more structural dynamic models of patent races. Third, the semi-parametric
approach in Pinske et al. (2002) could be used to construct alternative spillover measures.
Finally, it would be interesting to estimate the impact of geographical distance in shaping
technology and product market spillovers, which could be undertaken using the subsidiary or
patenting data to measure firms activity across geographic space.
Despite the need for these extensions, we believe that the methodology offered in this paper

offers a fruitful way to analyze the existence of these two distinct types of R&D spillovers that
are much discussed in the growth, productivity and industrial organization literature but
rarely subjected to rigorous empirical testing.
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Appendices: For the Working Paper and not
for Publication unless requested by referees/editor

A. Generalizations of the Model

In this Appendix we describe three generalizations of the simple model presented in Section
2. First, we allow for a more general form of interaction between firms in technology and
product market space (where there can be overlap) and also consider the N-firm case (rather
than three firm case). Second, we examine tournament models of R&D (rather than the non-
tournament model in the baseline case). We show, with light modifications, that the essential
insights of our simply model carry through to these more complex settings. Third, we allow the
patenting decision to be an endogenous choice for the firm (rather than simply having patents
as simply an empirical indicator of successfully produced knowledge from R&D). Although
our main model predictions are robust, the extension to endogenous patenting implies that
the partial derivative of patenting with respect to product market rivals’ R&D (SPILLSIC)
will be non-zero (it is zero in the basic model).

A.1. General form of interactions in technology and product market space

We begin with the general expression for flow profit

πi = π∗(ri, r−i) (A.1)

where r−i is the vector of R&D for all firms other than i. In this formulation, the elements of r−i
captures both technology and product market spillover effects. To separate these components,
we assume that (A.1) can be expressed as

πi = π(ri, riτ ,rim) (A.2)

where

riτ =
X
j 6=i

ωijrij (A.3)

rim =
X
j 6=i

θijrij (A.4)

and the partial derivatives are π1 > 0, π2 ≥ 0, π3 ≤ 0, π12 ≷ 0, π13 ≷ 0,and π23 ≷ 0.The
technology spillover effect is π2 ≥ 0, and the business stealing effect is π3 ≤ 0. We do not
constrain the effect of technology and product market spillovers on the marginal profitability
of own R&D. Note that own R&D and product market spillovers are strategic substitutes if
π13 < 0 and strategic complements if π13 > 0.
Equation (A.2) imposes constraints on (A.1) by partitioning the total effect of the R&D by

each firm j 6= i into technology spillovers riτ and product market rivalry spillovers rim and by
assuming that the marginal contribution of firm j to each pool is proportional to its ‘distance’
in technology and product market space, as summarized by θij and ωij (i.e. we assume that
∂π∗

∂rj
can be summarized in the form πi2ωij + πi3θij for each j 6= i).
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Firm i chooses R&D to maximize net value

max
ri

V i = π(ri, riτ ,rim)− ri

Optimal R&D r∗i satisfies the first order condition

π1(r
∗
i , riτ ,rim)− 1 = 0 (A.5)

We want to study how (exogenous) variations in riτ , and rim affect optimal R&D. To do
this we begin by choosing any pair of other firms, say j and k and make compensating changes
in their R&D such that either rim or riτ is held constant. This allows to to isolate the impact
of the spillover pool we are interested in.
Case 1: drim = 0 implies drj = −θik

θij
drk, with associated change in technology spillovers

driτ = (ωik − ωij
θik
θij
)drk ≡ φijkdrk.

Case 2: driτ = 0 implies drj = −ωik
ωij

drk, with associated change in product market spillovers
drim = (θik − θij

ωik
ωij
)drk ≡ λijkdrk.

44

When constraining one spillover pool to be constant, the other pool can either increase or
decline depending on the technology and product market distance weights.
Differentiating (A.5), allowing only ri, rj and rk to change, we obtain:

π11dri + π12(ωijdrj + ωikdrk) + π13(θijdrj + θikdrk) = 0

The first bracketed expression is just driτ , and the second is zero by construction (drim = 0),
so we get45

∂r∗i
∂riτ

|drim=0= −
π12
π11

. (A.6)

Similarly, when we impose the constraint driτ = 0 we obtain:46

∂r∗i
∂rim

|driτ=0= −
π13
π11

(A.7)

These are the key equations. Equation (A.6) says that if we make compensating changes
in the R&D of two firms such that the pool of product market spillovers is constant, the effect
of the resulting change in technology spillovers has the same sign as π12.This can be either
positive or negative depending on how technology spillovers affect the marginal productivity
of own R&D. Equation (A.7) says that if we make compensating changes in the R&D of two
firms such that the pool of technology spillovers is constant, the effect of the resulting change
in product market spillovers has the same sign as π13− the sign depends on whether R&D by
product market rivals is a strategic substitute or complement for the firm’s own R&D.
Using the envelope theorem, the effects of riτ and rim on the firm’s market value are

∂Vi
∂riτ

| drim=0 = π2 ≥ 0

∂Vi
∂rim

| driτ=0 = π3 ≤ 0

44We assume that the changes drj = − θik
θij

drk and drj = − θik
θij

drk do not violate the restriction rj ≥ 0.
45Another way of seeing this is to note that ∂r∗i

∂rk
|drim=0= −

φijkπ12
π11

, which implies the result in (A.6) since
driτ = φijkdrk.
46Again, we can also write ∂r∗i

∂rk
|driτ=0= −

λijkπ13
π11

which yields (A.7) since drim = λijkdrk.

30



These equations say that an increase in technology spillovers raises the firm’s market value,
and an increase in product market rivals’ R&D reduces it.
These results easily generalize to the case where we allow any subset of firms to change so

as to keep constant either riτ ,or rim. Consider a subset denoted by s ∈ S where s 6= i. Impose
the constraint that drim =

P
s∈S θisdrs = 0. The implied change in the technology spillovers

is driτ =
P
s∈S

ωisdrs, which in general will differ from zero (it can be either positive or negative

depending on the ω and θ weights).
Now totally differentiate the first order condition, allowing only rs for s ∈ S to change.

This gives
π11dri + π12

P
s∈S

ωisdrs + π13
P
s∈S

θisdrs = 0

But the third summation is zero by construction (drim = 0), and the second summation is
just driτ . So we again get

∂r∗i
∂riτ

|drim=0= −
π12
π11

By similar derivation we get
∂r∗i
∂rim

|driτ=0= −
π13
π11

The effects on the value function follow immediately using the envelope theorem, as before.
One remark is in order. There are multiple (infinite) different ways to change R&D in a

subset of firms so as to ensure the constraint drim = 0 is satisfied. Each of the combinations
of {drs} that do this will imply a different value of driτ =

P
s∈S

ωisdrs. Thus the discrete impact

of such changes will depend on the precise combination of changes made, but the marginal
impact of a change in driτ does not depend on that choice.

A.2. Tournament Model of R&D Competition with Technology Spillovers

In this sub-section we analyze a stochastic patent race model with spillovers (see Section 2 for
a non-tournament model). We do not distinguish between competing firms in the technology
and product markets because the distinction does not make sense in a simple patent race
(where the winner alone gets profit). For generality we assume that n firms compete for the
patent.
Stage 2
Firm 0 has profit function π(k0, x0, xm). As before we allow innovation output k0 to have a

direct effect on profits, as well as an indirect (strategic) effect working through x. In stage 1, n
firms compete in a patent race (i.e. there are n−1 firms in the setm). If firm 0 wins the patent,
k0 = 1, otherwise k0 = 0. The best response function is given by x∗0 = argmax π(x0, xm, km).
Thus second stage profit for firm 0, if it wins the patent race, is π(x∗0, x

∗
m; k0 = 1), otherwise

it is π(x∗0, x
∗
m; k0 = 0).

We can write the second stage Nash decision for firm 0 as x∗0 = f(k0, km) and first stage
profit as Π(k0, km) = π(k0, x

∗
0, x

∗
m). If there is no strategic interaction in the product market,

πi does not vary with xj and thus x∗i and Πi do not depend directly on kj.Recall that in the
context of a patent race, however, only one firm gets the patent — if kj = 1, then ki = 0.
Thus Πi depends indirectly on kj in this sense. The patent race corresponds to an (extreme)
example where ∂Πi(ki, kj)/∂kj < 0.

Stage 1
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We consider a symmetric patent race between n firms with a fixed prize (patent value)
F = π0(f(1, 0), f(0, 1); k0 = 1)− π0(f(0, 1), f(1, 0); k0 = 0). The expected value of firm 1 can
be expressed as

V 0(r0, rm) =
h(r0, (n− 1)rm)F − r0

h(r0, (n− 1)rm) + (n− 1)h(rm, (n− 1)rm + r0) +R

where R is the interest rate, rm is the R&D spending of each of firm 00s rivals, and h(r0, rm) is
the probability that firm 0 gets the patent at each point of time given that it has not done so
before (hazard rate). We assume that h(r0, rm) is increasing and concave in both arguments.
It is rising in rm because of spillovers. We also assume that hF − R ≥ 0 (expected benefits
per period exceed the opportunity cost of funds).
The best response is r∗0 = argmax V 0(r0, rm).Using the shorthand h0 = h(r0, (n − 1)rm)

and subscripts on h to denote partial derivatives, the first order condition for firm 0 is

(h1F − 1){h0 + (n− 1)hm +R}− (h0F − r1){h01 + (n− 1)hm2 } = 0

Imposing symmetry and using comparative statics, we obtain

sign

µ
∂r0
∂rm

¶
= sign{h12(hF (n− 1) + rF −R}+ {h1(n− 1)(h1F − 1)}

−{h22(n− 1)(hF −R)}− h2{(n− 1)h2F − 1}}

We assume h12 ≥ 0 (spillovers do not reduce the marginal product of a firm’s R&D) and
h1F − 1 ≥ 0 (expected net benefit of own R&D is non-negative). These assumptions imply
that the first three bracketed terms are positive. Thus a sufficient condition for strategic
complementarity in the R&D game ( ∂r0

∂rm
> 0) is that (n− 1)h2F − 1 ≤ 0. That is, we require

that spillovers not be ‘too large’. If firm 0 increases R&D by one unit, this raises the probability
that one of its rivals wins the patent race by (n− 1)h2. The condition says that the expected
gain for its rivals must be less than the marginal R&D cost to firm 0.
Using the envelope theorem, we get ∂V 0

∂rm
< 0. The intuition is that a rise in rm increases the

probability that firm m wins the patent. While it may also generate spillovers that raise the
win probability for firm 0, we assume that the direct effect is larger than the spillover effect.
For the same reason, ∂V 0

∂km
|k0 = 0. As in the non-tournament case, ∂r0

∂rm
> 0 and ∂V 0

∂rm
|r0 < 0. The

difference is that with a simple patent race, ∂V 0

∂km
|k0 is zero rather than negative because firms

only race for a single patent.47.

A.3. Endogenizing the decision to patent

We generalize the basic non-tournament model to include an endogenous decision to patent.
We study a two-stage game. In stage 1 firms make two decisions: (1) the level of R&D
spending and (2) the ‘propensity to patent’. The firm produces knowledge with its own R&D
and the R&D by technology rivals. The firm also chooses the fraction of this knowledge that
it protects by patenting. Let ρ ∈ [0, 1] denote this patent propensity and λ ≥ 1 denote patent
effectiveness — i.e. the rents earned from a given innovation if it is patented relative to the

47In this analysis we have assumed that k = 0 initially, so ex post the winner has k = 1 and the losers k = 0.
The same qualitiative results hold if we allow for positive initial k.
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rents if it is not patented. Thus λ − 1 represents the patent premium and θk is the rent
associated with knowledge k, where θ = ρλ+ (1− ρ). There is a fixed cost of patenting each
unit of knowledge, c.
As in the basic model at stage 2, firms compete in some variable, x, conditional on their

knowledge levels k. There are three firms, labelled 0, τ and m. Firms 0 and τ interact only in
technology space but not in the product market; firms 0 and m compete only in the product
market.

Stage 2
Firm 00s profit function is π(x0, xm, θ0k0). We assume that the function π is common to

all firms. Innovation output k0 may have a direct effect on profits, as well as an indirect
(strategic) effect working through x.
The best response for firms 0 and m are given by x∗0 = argmax π(x0, xm, θ0k0) and x∗m =

argmax π(xm, x0, θmkm), respectively. Solving for second stage Nash decisions yields x∗0 =
f(θ0k0, θmkm) and x∗m = f(θmkm, θ0k0). First stage profit for firm 0 is Π(θ0k0, θmkm) =
π(θ0k0, x

∗
0, x

∗
m), and similarly for firm m. If there is no strategic interaction in the product

market, π(θ0k0, x∗0, x
∗
m) does not vary with xm and thus Π0 do not depend on θmkm. We

assume that Π(θ0k0, θmkm) is increasing in θ0k0, decreasing in θmkm and concave.

Stage 1
Firm 00s knowledge production function remains as

k0 = φ(r0, rτ) (A.8)

where we assume that φ(.) is non-decreasing and concave in both arguments and common to
all firms. Firm 0 solves the following problem:

max
r0,ρ0

V 0 = Π(θ0φ(r0, rτ), θmkm)− r0 − cρ0φ(r0, rτ ) (A.9)

The first order conditions are

r0 : (Π01θ0 − cρ0)φ
0
1 − 1 = 0 (A.10)

ρ0 : Π01φ
0(λ− 1)− cφ0 − 1 = 0 (A.11)

where the subscripts denote partial derivatives and superscripts denote the firm. Comparative
statics on equations (A.10) and (A.11) yield the following results for comparison with the
baseline model:48

∂r∗0
∂rτ

=
Vρ0ρ0Vr0rτ − Vρ0r0Vρ0ρτ

−A ≷ 0 (A.12)

where Vr0rτ ≡ ∂2V
∂r0rτ

,etc.

As in the basic model, the sign of ∂r∗0
∂rτ
depends on sign {φ12} and the magnitude of Π11.We

also obtain:

∂r∗0
∂rm

=
Vρ0ρ0Vr0ρm − Vρ0r0Vρ0ρm

−A ≷ 0 depending on sign{Π12} (A.13)

∂ρ∗0
∂rm

=
Vρ0ρ0Vr0rm − Vρ0r0Vρ0rm

−A ≷ 0 depending on sign{Π12} (A.14)

48This is not a full list of the comparative statics results.
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In signing the above results, we use the fact that Vr0r0 < 0, Vρ0ρ0 < 0, Vρ0r0 > 0 (provided
Π11 is ‘sufficiently small’) and A = Vr0r0Vρ0ρ0 − V 2

r0ρ0
> 0 by the second order conditions, and

the other cross partials: Vr0rτ =
φ12
φ1
+ θ20φ

0
1φ
0
2Π11;Vr0rm = θ0θmφ

0
1φ

m
1 Π12, Vr0ρτ = 0;Vr0ρm =

(λ− 1)θ0kmφ01Π12;
Vρ0rτ = (λ − 1)θ0k0φ02Π11;Vρ0rm = (λ − 1)k0θmφm1 Π12;Vρ0ρτ = 0; and Vρ0ρm = (λ −

1)2k0kmφ
0
2Π12.

The basic results of the simpler model go through. First, an increase in technology spillovers
(rτ) has an ambiguous sign on own R&D spending, (equation (A.12)). Second, after some
algebra we can show that sign{ ∂r∗0

∂rm
} = sign{ Π12} provided that Π11 is ‘sufficiently small’.

An increase in product market rivals’ R&D raises own R&D if they are strategic complements
(conversely for strategic substitutes) [equation (A.13)]. Third, from the knowledge production
function (A.8), it follows that technology spillovers raise firm 00s knowledge stock, ∂k∗0

∂rτ
≥ 0,

and product market rivals’ R&D has no effect on it, ∂k∗0
∂rm

= 0. Finally, the impacts on the value
of the firm follow immediately by applying the envelope theorem to the value equation (A.9):
namely, ∂V ∗0

∂rτ
≥ 0 and∂V

∗
0

∂rm
≤ 0.

The new result here is that an increase in the R&D by firm 00s product market rivals
will affect the firm’s propensity to patent, ∂ρ∗0

∂rm
(equation (A.14). After some algebra, we can

show that sign ∂ρ∗0
∂rm

= signΠ12, provided that Π11 is ‘sufficiently small’. Thus, if there is
strategic complementarity (Π12 > 0), an increase in product market rivals’ R&D raises the
firm’s propensity to patent (the opposite holds for strategic substitution). The intuition is
that, under strategic complementarity, when rivals increase R&D spending (thus their stock of
knowledge), this increases the marginal profitability of firm 0’s R&D and thus the profitability
of patenting (given the fixed cost of doing so). Thus R&D by product market rivals raises
both R&D spending and patent propensity of firm 0.49

B. Data Appendix

B.1. The patents and Compustat databases

The NBER patents database provides detailed patenting and citation information for around
2,500 firms (as described in Hall, Jaffe and Trajtenberg (2005) and Jaffe and Trajtenberg
(2002)). We started by using the NBER’s match of the Compustat accounting data to the
USPTO data between 1970 to 199950, and kept only patenting firms leaving a sample size
of 1,865. These firms were then matched into the Compustat Segment (“line of business”)
Dataset keeping only the 795 firms with data on both sales by four digit industry and patents,
although these need not be concurrent. For example, a firm which patented in 1985, 1988 and
1989, had Segment data from 1993 to 1997, and accounting data from 1980 to 1997 would be
kept in our dataset for the period 1985 to 1997. The Compustat Segment Database allocates
firm sales into four digit industries each year using firm’s descriptions of their sales by lines of
business. See Villalonga (2004) for a more detailed description.
Finally, this dataset was cleaned to remove accounting years with extremely large jumps

in sales, employment or capital signalling merger and acquisition activity. When we removed

49Since product market rivals’ R&D does not affect knowledge production by firm 0, this result for the
propensity to patent also applies to the number of patents taken out by firm 0.
50We dropped pre-1970 data as being too outdated for our 1980s and 1990s accounts data.
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a year we treat the firm as a new entity and give it a new identifier (and therefore a new fixed
effect) even if the firm identifier (CUSIP reference) in Compustat remained the same. This is
more general than including a full set of firm fixed effects as we are allowing the fixed effect to
change over time. We also removed firms with less than four consecutive years of data. This
left a final sample of 715 firms to estimate the model on with accounting data for at least
some of the period 1980 to 2001 and patenting data for at least some of the period between
1970 and 1999. The panel is unbalanced as we keep new entrants and exiters in the sample.

B.2. The Bureau Van Dijk (BVD) Database

Since the BVD dataset has not been widely used by economists we describe it in more detail
than Compustat.

B.2.1. The ICARUS and AMADEUS Datasets

The BVD sales breakdown was calculated using the employment breakdown across primary
and secondary four digit industry classes for enterprises in North America (US and Canada)
and Europe. BVD provides information on the employment in the subsidiaries of our Com-
pustat firms which can then be used to allocate their activities to standard industrial classi-
fication classes. BVD sells a database called ICARUS which contains 1.8 million enterprise
level records for the US and Canada containing information on sales, employment, industry
and ownership. It is drawn from the complete North American Dun and Bradstreet data-
base (of over ten million enterprises) selecting all enterprises that have either twenty or more
employees or $5 million or more in sales. The data is cross-sectional and is continuously up-
dated. We downloaded the complete database in September 2005. BVD also sells a database
called AMADEUS which contains eight million enterprise level records for Europe (broadly
defined to include Israel, Russia, Turkey, etc.). This contains cross-sectional information on
employment, industry sector and ownership (plus various types of accounting information). It
is constructed from country-specific registries of companies. For example all corporate entities
in Britain have to lodge basic accounts with UK Company House in the UK (i.e. privately as
well as publicly listed firms). We used the May 2006 AMADEUS disk which contains industry
sector records primarily from 2004 and 2005.

B.2.2. Calculation of the Sales Breakdown figures

All BVD databases use a common global identification system so that ownership structures
can be easily constructed across countries. The ICARUS and AMADEUS databases were
merged into the Compustat database in three stages. First, all enterprises were accorded an
ultimate global parent name, a BVD identification number and (if relevant) a ticker sym-
bol. Second, the population of ultimate parents was matched into the Compustat database.
This was done first using ticker symbols where these were provided by BVD, then for the
unmatched firms using company names after standardizing certain generic components (for
example standardizing “Co.”, “Co” and “company” to “Company”), and finally by manual
inspection for any remaining unmatched firms. Third, the BVD enterprise-level information
was linked to Compustat through the ultimate parent link to Compustat.
Activity in each enterprise was then allocated across industries using the four digit industry

information. In ICARUS firms report one primary four digit industry code and an ordered set
of up to six secondary four digit industry codes. Employment activity was allocated assuming
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75% of activity was in the primary industry code, 75% of the remainder in the secondary code,
75% of this remainder in the tertiary industry code and so on, with the final industry code
containing 100% of the ultimate residual. In AMADEUS firms report one primary industry
code and as many secondary industry codes as they wish (with some firms reporting over 30)
but without any ordering. Employment was allocated assuming that 75% of employees were
in the primary industry code and the remaining 25% was split equally among the secondary
industry codes. Finally, employment was added across all industry codes in every enterprise in
Europe and the US owned by the ultimate Compustat parent to compute a four digit industry
activity breakdown.

B.2.3. Matching to Compustat

We successfully matched three quarters of the Compustat firms in the original sample. The
matched firms were larger and more R&D intensive than the non-matched firms. Conse-
quently, these matched firms accounted for 84% of all employment and 95% of all R&D in the
Compustat sample, so that judged by R&D the coverage of the BVD data of the Compustat
sample was very good. The reason appears to be that larger R&D intensive Compustat firms
are less likely to have died, been taken over or changed their name between 2001 and 2005
(the gap between the last year of our Compustat sample and the timing of the BVD data).
The correlation between the Compustat Segment and BVD Dataset measures is reasonably

high. The correlation between the sales share of firm i in industry k between the two datasets
is 0.503. The correlation of ln(SPILLSIC) across the two measures is 0.592. The within-firm
over-time variation of ln(SPILLSIC), which identifies our empirical results given that we
control for fixed effects, reassuringly rises to 0.737. In terms of average levels both measures
are similar, with an average SIC of 0.0138 using the Compustat measure and 0.0132 using the
BVD measure. The maximum number of four digit industries for one of our firms, General
Electric, is 213.
As an example of the extent of similarity between the two measures the Compustat and

BVD SIC correlations for the four firms examines in the Case Study discussed in appendix
D below are presented in Table A1. As can be seen the two measures are similar, IBM and
Apple (PC manufacturers) are highly correlated on both measures and Motorola and Intel
(semi-conductor manufacturers) are also highly correlated. But the correlation across these
two pairs is low. There are also some differences, for example the BVD-based measure of
SIC finds that IBM is closer in sales space with Intel and Motorola (SIC = 0.07) then the
Compustat-based measure (SIC = 0.01). This is because IBM uses many of its own semi-
conductor chips in its own products so this is not included in the sales figures. The BVD
based measure picks these up because IBM’s three chip making subsidiaries are tracked in the
ICARUS data even if their products are wholly used within IBM’s vertically integrated chain.

B.2.4. Coverage

The industry coverage was broader in the BVD data than the Compustat Segment Dataset.
The mean number of distinct four digit industry codes per firm was 13.8 in the BVD data (on
average there were 29.6 enterprises, 18.2 in Europe and 11.4 in the US) compared to 4.6 in
the Compustat Segment files. This confirms Villalonga’s (2004) finding that the Compustat
Segment Dataset underestimates the number of industries that a firm operates in.
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B.3. Other variables

The book value of capital is the net stock of property, plant and equipment (Compustat
Mnemonic PPENT); Employment is the number of employees (EMP). R&D (XRD) is used
to create R&D capital stocks calculated using a perpetual inventory method with a 15%
depreciation rate (following inter alia Hall et al, 2005). So the R&D stock, G, in year t is:
Gt = Rt+(1−δ)Gt−1 where R is the R&D flow expenditure and δ = 0.15. We use sales as our
output measure (SALE). Material inputs were constructed following the method in Bresnahan
et al. (2002). We start with costs of good sold (COGS) less depreciation (DP) less labor costs
(XLR). For firms who do not report labor expenses we use average wages and benefits at
the four digit industry level (Erik Bartelsman, Randy Becker and Wayne Gray, 2000, until
1996 and then Census Average Production Worker Annual Payroll by four digit NAICS code
afterwards) and multiply this by the firm’s reported employment level. This constructed
measure of materials is highly correlated with independent industry-level materials measures.
Obviously there are problems with this measure of materials (and therefore value added)
because we do not have a firm specific wage bill for most firms which is why we focus on the
real sales (rather than value added) based production functions. Industry price deflators were
taken from Bartelsman et al (2000) until 1996 and then the BEA four digit NAICS Shipment
Price Deflators thereafter.
For Tobin’s Q, firm value is the sum of the values of common stock, preferred stock and

total debt net of current assets (Mnemonics MKVAF, PSTK, DT and ACT). Book value of
capital includes net plant, property and equipment, inventories, investments in unconsolidated
subsidiaries and intangibles other than R&D (Mnemonics PPENT, INVT, IVAEQ, IVAO and
INTAN). Tobin’s Q was winsorized by setting it to 0.1 for values below 0.1 and at 20 for values
above 20 (see Jenny Lanjouw and Mark Schankerman (2004)).
The construction of the spillover variables is described in Section 3 above in detail. About

80% of the variance of SPILLTECH and SPILLSIC is between firm and 20% is within
firm. When we include fixed effects we are, of course, relying on the time series variation for
identification. Industry sales were constructed from total sales of the Compustat database by
four digit industry code and year, and merged to the firm level in our panel using each firm’s
distribution of sales across four digit industry codes.

B.4. Instrumental Variables

To fix ideas consider our basic model for firm productivity and abstract away from all other
variables except own R&D and a technological spillover term. Similar issues arise for the other
three equations subject to additional complications noted below.

lnYit = β1 lnRit + β2 ln(Σj,j 6=iTECHijRjt) + uit (B.1)

We are concerned that E(lnRituit) 6= 0 and E(lnRjtuit) 6= 0 so OLS is inconsistent and
consider instrumental variable techniques. Note that R&D is a persistent series, is entered
lagged at least one period, and that fixed effects and other covariates are also included. Given
these considerations, the existing literature has argued that the bias on a weakly exogenous
variable is likely to be small. Nevertheless, we tackle this endogeneity issue explicitly in this
sub-section.
We consider three candidate instrumental variables (z) based on supply side shocks (firm

and state-wide R&D tax credits) and demand side shocks (the “Peace Dividend”). Tax-
prices for R&D are natural instruments to consider as they should effect the amount of R&D
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performed through the R&D factor demand equation, but should have no direct impact on
productivity conditional on R&D itself. Intuitively, the coefficient on Rit is identified by
variation in its own tax-price and the coefficient on SPILLTECH is identified from variation
in the tax-prices facing other firms.
The Hall-Jorgenson tax-adjusted user cost of capital can be written as:

ρUit =
(1−Ait)

(1− τ st)
[it + δ − ∆pt

pt−1
] (B.2)

where Ait is the combined effects of R&D depreciation allowances (AD
it ) and R&D tax credits

(AC
it ), it is the real interest rate, δ the depreciation rate of R&D capital and

∆pt
pt−1

is the growth

of the R&D asset price. Since [it + δ− ∆pt
pt−1

] does not vary between firms it is absorbed in the
time dummies as ρUit enters the equations in logarithmic form. Consequently we focus on the
tax price component of the user cost, ρit =

(1−Ait)
(1−τst) .We decompose the variation of ρitinto two

broad channels: “firm-level”,ρFit , based on firm-level interactions with the Federal tax rules,
and “State level” ρSit. We use the State by year R&D tax-price data from Wilson (2008)
who quantifies the impact of State-level tax credits, depreciation allowances and corporation
taxes. The firms in our data benefit differentially from these State-credits depending on which
state their R&D is located. Tax credits are for R&D performed within the state that can be
offset against state-level corporation tax liabilities. State-level corporation tax liabilities are
calculated on total firm profits allocated across states according to a weighted combination
of the location of firm sales, employment and property. Hence, any firm with an R&D lab
within the state is likely to be liable both for state corporation tax (due to its employees and
property in the state) and eligible for an offsetting R&D tax credit. Hence, inventor location
appears to provide a good proxy for eligibility for state-level R&D tax credits51.
We estimate the distribution of a firm’s inventors from the USPTO patents file. The state

component of the tax-price is therefore

ρSit =
X
s

θistρ
S
st

where ρSst is the state level tax price (from Wilson, 2008) and θist is firm i’s 10-year moving
average share of inventors located in state s.
The second component of the tax price is based solely on Federal rules (ρFit) and is con-

structed following Hall (1992) and Bloom, Criscuolo, Hall and Van Reenen (2008). The “Re-
search and Experimentation” tax credit was first introduced in 1981 and has been in continuous
operation and subject to many rule changes. It has a firm-specific component for several rea-
sons. First, the amount of tax credit that can be claimed is based on the difference between
actual R&D and a firm-specific “base”. From 1981 to 1989 the base was the maximum of a
rolling average of the previous three years’ R&D. From 1990 onwards (except 1995-1996 when
the tax credit lapsed) the base was fixed to be the average of the firm’s R&D to sales ratio
between 1984 and 1988, multiplied by current sales (up to a maximum of 16%). Start-ups
were treated differently, initially with a base of 3%, but modified each year. Second, if the

51State level R&D tax credits can be generous, and vary differentially over states and time For example,
the five-largest R&D doing states had the following tax credit histories: California introduced an 8% credit in
1987, raised to 11%, 12% and 15% in 1997, 1999 and 2000 respectively. Massachussetts, New Jersey and Texas
introduced 10%, 10% and 4% rates in 1991, 1994 and 2000 respectively. While Michigan has never introduced
an R&D tax credit.
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credit exceeds the taxable profits of the firm it cannot be fully claimed and must be carried
forward. With discounting this leads to a lower implicit value of the credit for tax exhausted
firms. Third, these firm-specific components all interact with changes in the aggregate tax
credit rate (25% in 1981, 20% in 1990, 0% in 1995, etc.), deduction rules and corporate tax
rate (which enters the denominator of (B.2)).
The demand side instrument we use is based on the 1990s Peace Dividend following the fall

of the Berlin Wall until 9/11. This resulted in a large reduction in US defence expenditure,
which hit defence R&D particularly hard. We operationalize this measure by calculating each
firm’s share of sales in the defence sector from the Compustat Segment data and interacting
this by a dummy variable taking a value of unity for 1990 until 2001 and zero otherwise. The
defence sector is defined as SIC codes 3721 (Aircraft), 3724 (Aircraft & Engine Parts), 3728
(Aircraft & Equipment Parts), 3761 (Guided Missiles & Space Vehicle Parts), 3764 (Guided
Missile & Space Vehicle Propulsion Units) and 3769 (Guided Missile and Space Vehicle NEC).
The instruments can all be used for the production function and patents equation. For the

R&D equation, the own value of the tax-price and the Peace Dividend need to be directly in
the second stage. The coefficients on the spillover variables are therefore identified from the
instruments using other firms’ values of the tax price and Peace Dividend. For the market
value equation, it could also be argued that the Peace Dividend and tax prices of the firm
itself should be included as additional variables.
We implement the IV approach described here by projecting the endogenous variable

(R&D) on the instruments in the first stage (Table A2), calculating the predicted values
and then plugging these into a second stage estimation procedure (Table 9). We correct the
standard errors using 1000 bootstrap replications over firms. The alternative approach of
straightforward two stage least squares using the distance-weighted versions of the tax-prices
and Peace Dividend as instruments for spillovers is infeasible because the panel is unbalanced.
Consequently the value of the instruments changes as new firms exit and enter the sample.
This generates a positive bias between R&D the user cost of R&D. For example, imagine a
firm j enters a market. Then for some firm i for which TECHij > 0 there will be a rise in
SPILLTECHi,t since there is now another firm doing R&D in its technology space. But its
TECHij weighted R&D user cost measure will also rise since the values of ρSjt and ρ

F
it for firm

j are zero per entry (since they are missing) but strictly positive post entry.
One might be concerned that the current values of the instruments are not exogenous

so we also conducted experiments dropping the peace dividend and lagging the tax-credit
instruments one and two periods. These led to qualitatively similar results.

B.5. Specific High Tech Industry Breakdown

In Table 12 the industries we consider are the following. Computer hardware in Panel A cov-
ers SIC 3570 to 3577 (Computer and Office Equipment (3570), Electronic Computers (3571),
Computer Storage Devices (3572), Computer Terminals (3575), Computer Communications
Equipment (3576)and Computer Peripheral Equipment Not Elsewhere classified (3577). Phar-
maceuticals in Panel B includes Pharmaceutical Preparations (2834) and In Vitro and In Vivo
Diagnostic Substances (2835). Telecommunications Equipment covers Telephone and Tele-
graph Apparatus (3661), Radio and TV Broadcasting and Communications Equipment (3663)
and Communications Equipment not elsewhere classified (3669).
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C. Alternative Distance Metrics

Some general issues regarding construction of spillover measures are discussed in section 3
(especially 3.4). In this Appendix we offer one justification of the SPILLSICA measure in the
first sub-section (C.1) and then adapt the Ellison-Glaeser (1997) co-agglomeration/spillover
measure in the next sub-section (C.2).

C.1. Model-based SPILLSICA

Consider a relationship between Tobin’s Q, Ql
i (this could be any performance outcome,

of course) for firm i which operates in industry l (l = 1,...., L). We abstract away from
other covariates (including SPILLTECH and the firm’s own R&D) for notational simplicity.
Strategic interaction in the product market means that Ql

i is affected by the R&D of other
firms in industry l. Part of each rival firm’s total R&D across all the industries it operates in,
rj, is “assigned” to a particular industry l and will influence Ql

i. R&D is not broken down by
industry l at the firm level in any publicly available dataset that we know of. Consider the
equation:

Ql
i = α

X
j,j 6=i

ωl
jrj (C.1)

where the weights ωl
j determine the part of firm j’s total R&D that is assigned to industry l

(we discuss what these weights might be below). Next, note that industry-specific information
does not exist for Ql

i (market value is a company level measure and is not industry-specific).
Consequently we have to aggregate across the industries in which firm i operates:

Qi ≡ α
X
l

hliQ
l
i = α

X
l

hli
X
j,j 6=i

ωl
jrj (C.2)

where hli are the appropriate aggregation weights. Substituting (C.2) into (C.1) gives

Qi = α
X
j,j 6=i

X
l

hliω
l
jrj (C.3)

We write this compactly as:

Qi = α
X
j,j 6=i

dijrj (C.4)

where dij is the distance metric between firm i and firm j which will depend on the weights
hli and ωl

j. Different approaches to these weights give the different empirical measures of the
distance metrics and therefore different measures of SPILLSIC.
For the weight on hli it seems very natural to use the share of firm’s total sales (s

l
i) in

an industry l as the weight. Theoretically, Ql
i is the ratio of the firm’s market value to its

capital assets (V/A) of firm i at the industry level and we observe the weighted sum (summing
across all “industry V ’s” and “industry A’s” at the parent firm level). If we knew the firm’s
industry-specific value (V ) and capital (A) then we would have better weights but these are
unobservable.
The weights, ωl

j, are far more difficult to determine as they represent the “assignment” of
rival R&D to a specific industry. Under the baseline method in this paper we assume that dij
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is the uncentered correlation coefficient as in Jaffe (1986) except using the sales distribution
across four digit industries. This is SPILLSIC so:

Qi = αSPILLSICi (C.5)

The use of the uncentered correlation could be considered ad hoc, so alternatively consider
ωl
j = slj, the share of firm j’s sales in industry l. One justification for this procedure is that
what matters is total rival R&D in industry l. If a firm’s R&D intensities across industries
are similar then using sales weights correctly estimates the R&D of firm j in industry l.
An alternative justification is that firm i does not know in which industry firm j’s R&D will
generate innovations (indeed firm j may also not know). Under this assumption using equation
(C.3) we then obtain, SPILLSICA

i

SPILLSICA
i =

X
j,j 6=i

ÃX
l

slis
l
j

!
rj =

X
j,j 6=i

SICA
ijrj (C.6)

Note that SICA
i is the numerator in the Jaffe-based measure. The results from using SPILLSIC

A
i

(and the analogous SPILLTECHA
i ) as an alternative measure are contained in Table 10 Pan-

els B and C. The results are robust to this experiment.

C.2. The Ellison-Glaeser (1997) Co-agglomeration measure

Ellison and Glaeser (1997, henceforth EG) propose measures of agglomeration and co-agglomeration.
In their model they are interested in reasons why some industries appear to be concentrated in
geographical areas. One reason for this concentration is that some areas have “natural advan-
tages” such as the fact that shipbuilding and tuna canning industries are co-located in areas
near coastlines. But another reason may be spillovers between geographically local plants
generating an incentive for firms to locate their plants in similar places even in the absence
of natural advantage. They propose a simple theoretical model which generates an equilib-
rium degree of agglomeration (the regional concentration of industries) and co-agglomeration
(the tendency of different industries to co-locate together) and propose empirical measures to
consistently estimate the theoretical concepts.
We can construct analogous measure for technological distance instead of geographical dis-

tance. Consider two firms (instead of two industries in EG) deciding which technology classes
to locate their innovations (instead of their plants in EG). If there are potential spillovers
between the inventions of the two firms we would expect to see their innovations (measured
by patents in our case) to be clustered in the same technological classes. EG offer a theoreti-
cal model to justify their empirical spillover/co-agglomeration measures. Unfortunately, their
procedure will not work for SPILLSIC as their model assumes that (at least potentially)
there is a positive profitability benefit of having another firm located close. In the case of
product market rivalry this will be a negative effect as having more plants of a rival to firm i
close will hurt not help firm i’s profitability.
The EG co-agglomeration measure can be adapted to a distance metric between firm i and
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firm j as:

γij = (1− w2i − w2j )
−1

X
τ

(Ti∪j,τ − xτ)
2

1−
X
τ

x2τ
− w2i

X
τ

(Tiτ − xτ )
2

1−
X
τ

x2τ
− w2j

X
τ

(Tjτ − xτ)
2

1−
X
τ

x2τ

=

⎛⎜⎜⎝
1−

X
k

x2τ

1− w2i − w2j

⎞⎟⎟⎠
ÃX

τ

(Ti∪j,τ − xτ)
2 − w2i

X
τ

(Tiτ − xτ)
2 − w2j

X
τ

(Tjτ − xτ)
2

!

where Tiτ is the share of patents of firm i in technology class τ , xτ is the aggregate share
of patents in technology class τ , Ti∪j,τ is the patent share of the hypothetical combination of
firms i and j in technology class τ and wi(wj) is the weight of firm i’s (j’s) patents in the
combined firm of i and j (i.e. wi = PATENTSi/(PATENTSi + PATENTSj) = 1− wj.

D. Case Studies of particular firms location in technology and prod-
uct space

There are numerous case studies in the business literature of how firms can be differently placed
in technology space and product market space. Consider first firms that are close in technology
but sometimes far from each other in product market space (the bottom right hand quadrant of
Figure 1). Table A1 shows IBM, Apple, Motorola and Intel: four high highly innovative firms
in our sample. We show results for SPILLSIC measured both by the Compustat Segment
Database and the BVD Database. These firms are close to each other in technology space as
revealed by their patenting. IBM, for example, has a TECH correlation of 0.76 with Intel,
0.64 with Apple and 0.46 with Motorola (the overall average TECH correlation in the whole
sample is 0.13 - see Table 12). The technologies that IBM uses for computer hardware are
closely related to those used by all these other companies. If we examine SIC, the product
market closeness variable, however, there are major differences. IBM and Apple are product
market rivals with a SIC of 0.65 (the overall average SIC correlation in the whole sample is
0.05 - see Table 12). They both produced PC desktops and are competing head to head. Both
have presences in other product markets of course (in particular IBM’s consultancy arm is a
major segment of its business) so the product market correlation is not perfect. By contrast
IBM (and Apple) have a very low SIC correlation with Intel and Motorola (0.01) because
the latter firms mainly produce semi-conductor chips not computer hardware. IBM produces
relatively few semi-conductor chips so is not strongly competing with Intel and Motorola for
customers. The SIC correlation between Intel and Mototrola is, as expected, rather high
(0.34) because they are both competitors in supplying chips. The picture is very similar when
we look at the measures of SIC based on BVD instead of Compustat, although there are
some small differences. For example, IBM appears closer to Intel (BVD SIC = 0.07) because
IBM produces semi-conductor chips for in-house use. This is largely missed in the Compustat
Segment data, but will be picked up by the BVD data (through IBM’s chip-making affiliates).
At the other end of the diagonal (top left hand corner of Figure 1) there are many firms

who are in the same product market but using quite different technologies. One example
from our dataset is Gillette and Valance Technologies who compete in batteries giving them
a product market closeness measure of 0.33. Gillette owns Duracell but does no R&D in this

42



area (its R&D is focused mainly personal care products such as the Mach 3 razor and Braun
electronic products). Valence Technologies uses a new phosphate technology that is radically
improving the performance of standard Lithium ion battery technologies. As a consequence
the two companies have little overlap in technology space (TECH = 0.01).
A third example is the high end of the hard disk market, which are sold to computer

manufacturers. Most firms base their technology on magnetic technologies, such as the market
leader, Segway. Other firms (such as Phillips) offer hard disks based on newer, holographic
technology. These firms draw their technologies from very different areas, yet compete in the
same product market. R&D done by Phillips is likely to pose a competitive threat to Segway,
but it is unlikely to generate useful knowledge spillovers for Segway.

E. Policy Experiments

The general specification of the empirical model can be written

ln(R/Y )it = eα1 ln(R/Y )it−1 + eα2 lnX
j 6=i

TECHijGj,t−1 + eα3 lnX
j 6=i

SICijGj,t−1

+eα4X1,it

lnPit = eβ0 lnPit−1 + eβ1 lnGit−1 + eβ2 lnX
j 6=i

TECHijGj,t−1 + eβ3 lnX
j 6=i

SICijGj,t−1

+eβ4X2it + eβ5 lnYi,t−1
ln(V/A)it = eγ1 ln(G/A)it + eγ2 lnX

j 6=i
TECHijGj,t−1 + eγ3 lnX

j 6=i
SICijGj,t−1 + eγ4X3,it

lnYit = eϕ1 lnGit + eϕ2 lnX
j 6=i

TECHijGj,t−1 + eϕ3 lnX
j 6=i

SICijGj,t−1 + eϕ4X4,it

where R is the flow of R&D expenditures, Y is output, G is the R&D stock, P is patent flow,
V/A is Tobin’s Q, and X1, X2, X3 and X4 are vectors of control variables (that for ease of
exposition we treat as scalars). We actually use a sixth order series in ln(G/A),but suppress
that here for notational simplicity.
We examine the long run effects in the model, setting Rit = Rit−1, Yit = Yit−1, Pit = Pit−1,

and Gj =
Rj

r+δ
where r is the discount rate and δ is the depreciation rate used to construct G.

Then the model is

lnRi = α2 ln
X
j 6=i

TECHijRj + α3 ln
X
j 6=i

SICijRj + α4X1i + lnYit (E.1)

lnPi = β1 lnRi + β2 ln
X
j 6=i

TECHijRj + β3 ln
X
j 6=i

SICijRj (E.2)

+β4X2i + β5 lnYit

ln(V/A)i = γ1 ln(R/A)i + γ2 ln
X
j 6=i

TECHijRj + γ3 ln
X
j 6=i

SICijRj + γ4X3i (E.3)

lnYit = ϕ1 lnRi + ϕ2 ln
X
j 6=i

TECHijRj + ϕ3 ln
X
j 6=i

SICijRj + ϕ4X4i (E.4)
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where αk =
αk

(1−α1) , βk =
βk

(1−β1)
, γk = eγk and ϕk = eϕk.

We then solve out the cross equation links with Yit by substituting equation (E.4) into
equations (E.1) and (E.2). This yields

lnRi = α02 ln
X
j 6=i

TECHijRj + α03 ln
X
j 6=i

SICijRj + α04X1i (E.5)

lnPi = β01 lnRi + β02 ln
X
j 6=i

TECHijRj + β03 ln
X
j 6=i

SICijRj + β04X2i (E.6)

ln(V/A)i = γ1 ln(R/A)i + γ2 ln
X
j 6=i

TECHijRj + γ3 ln
X
j 6=i

SICijRj (E.7)

+γ4X3i

lnYit = ϕ1 lnRi + ϕ2 ln
X
j 6=i

TECHijRj + ϕ3 ln
X
j 6=i

SICijRj (E.8)

+ϕ4X4i

where α0i =
αi+α5ϕi
1−α5ϕ1

= αi
(1−ϕ1)(1−α1)

+ ϕi
(1−ϕ1)

and β0i = βi + β5ϕi =
βi+β5ϕi
(1−β1)

.

We take a first order expansion of ln [
P

j 6=i TECHijRj] and ln [
P

j 6=i SICijRj] in or-
der to approximate them in terms of lnR around some point, call it lnR0.Take first f i =
ln [
P

j 6=i TECHijRj] = ln [
P

j 6=i TECHij exp(lnRj)].Approximating this nonlinear function
of lnR,

f i ' { ln
X
j 6=i

TECHijR
0
j −

X
j 6=i
(

TECHijR
0
jP

j 6=i TECHijR0j
) lnR0j}

+
X
j 6=i
(

TECHijR
0
jP

j 6=i TECHijR0j
) lnRj

≡ ai +
X
j 6=i

bij lnRj

where ai reflects the terms in large curly brackets and bij captures the terms in parentheses
in the last terms.
Now consider the term gi = ln [

P
j 6=i SICijRj].By similar steps we get

gi ' { ln
X
j 6=i

SICijR
0
j −

X
j 6=i
[

SICijR
0
jP

j 6=i SICijR0j
] lnR0j}+

X
j 6=i
(

SICijR
0
jP

j 6=i SICijR0j
) lnRj

≡ ci +
X
j 6=i

dij lnRj

Define

λi = α02ai + α03ci

θij = α02bij + α03dij

Using these approximations, we can write the R&D equation (E.5)as

lnRi = λi +
X
j 6=i

θij lnRj + α04X1i
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Let λ, lnR and X be Nx1 vectors, and define the NxN matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝
0 θ12 θ13 . . θiN
θ21 0 θ23 θ2N
θ31 θ32 0 θ34 . θ3N
. .
, .

θN1 θN2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠
Then the R&D equation can be expressed in matrix form

lnR = Ω−1λ+ α04Ω
−1X1

=⇒
d lnR = Ω−1α04dX1

where Ω = I −H.

E.1. Deriving the Amplification Effects

E.1.1. R&D equation

Using the restriction
P

j 6=i bij, it can be shown that H× i = α02+α03 where i is a column vector
of ones. Thus Ω× i = 1− α02 +α03, so the macro R&D response to a unit stimulus to R&D of
each firm (equal to α04dX1 ) is

Ω−1 × i =
1

1− α02 − α03
In the absence of technology and product market spillovers, R&D would increase by one
percent. Thus we define the amplification effect as 1

1−α02−α03
− 1.

E.1.2. Patents equation

Using the approximations above, the patents equation (E.6) is52

lnPi = β01 lnRi +
X
j 6=i

ρij lnRj + β04X2i

where ρij = β02bij + β03dij. By similar reasoning, we define the NxN matrix

G =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ρ12 ρ13 . . ρiN
ρ21 0 ρ23 ρ2N
ρ31 ρ32 0 ρ34 . ρ3N
. .
, .

ρN1 ρN2 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎠
52In this experiment we assume that the only forcing variable is X1. If X2 in the patents equation is the

same as X1 (e.g. industry sales), then we need to add the direct effect of the change in X1 on patents as well
as the induced effect via R&D.
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Letting d lnR and d lnP be Nx1 vectors, we get

d lnP = β01d lnR+ [G× d lnR]

Using the result from the R&D amplification effect d lnR = 1
1−α02+α03

× i, we get the macro
response of patents to a unit stimulus to R&D of each firm

d lnP =
1

1− α02 − α03
(β01 × i× i0 +G)× i

=
1

1− α02 − α03
(β01 + β02 + β03)× i

Thus the amplification effect on patents equals 1
1−α02−α03

(β01 + β02 + β03)− β01.

E.1.3. Tobin’s-Q and productivity equations

The calculations are completely analogous to those for the patent equation. For brevity, we
do not repeat the details here.
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FIGURE 1 – SIC AND TECH CORRELATIONS 

 
 

Notes: This figure plots the pairwise values of SIC (closeness in product market space between two firms) and TECH (closeness in technology 
space) for all pairs of firms in our sample. 
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TABLE 1 - 
THEORETICAL PREDICTIONS FOR MARKET VALUE, PATENTS AND R&D UNDER DIFFERENT ASSUMPTIONS OVER 

TECHNOLOGICAL SPILLOVERS AND STRATEGIC COMPLEMENTARITY/SUBSTITUTABILITY OF R&D 

 
Notes: See text for full derivation of these comparative static predictions. Note that the empirical predictions for the (total factor) productivity 
equation are identical to the patents equation 

(1) (2) (3) (4) (5) (6) (7)  (8) 
Equation Comparative 

static prediction 
Empirical  
counterpart 

No Technology Spillovers Technology Spillovers 

   No Product 
Market Rivalry 

Strategic 
Complements 

Strategic 
Substitutes 

No Product 
Market Rivalry 

Strategic 
Complements 

Strategic 
Substitutes 
 

Market 
value  

∂V0/∂rτ Market value 
with 
SPILLTECH 
 

Zero Zero Zero Positive Positive Positive 

Market 
value  

∂V0/∂rm Market value 
with SPILLSIC 
 

Zero Negative Negative Zero Negative Negative 

Patents (or 
productivity)  

∂k0/∂rτ Patents with 
SPILLTECH 
 

Zero Zero Zero Positive Positive Positive 

Patents (or 
productivity)  

∂k0/∂rm Patents with 
SPILLSIC 
 

Zero Zero Zero Zero Zero Zero 

R&D ∂r0/∂rτ  R&D with 
SPILLTECH 
 

Zero Zero Zero Ambiguous Ambiguous Ambiguous 

R&D ∂r0/∂rm R&D with 
SPILLSIC 
 

Zero Positive Negative Zero Positive Negative 
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TABLE 2 - 

 DESCRIPTIVE STATISTICS 
 
Variable Mnemonic Mean Median Standard 

deviation 
 

Tobin’s Q V/A 2.36 1.41 2.99 
Market value V 3,913 412 16,517 
R&D stock G 605 28.7 2,722 
R&D stock/fixed 
capital 

G/A 0.48 0.17 0.95 

R&D flow R 104 4.36 469 
Technological 
spillovers 

SPILLTECH 22,419 17,914 17,944 

Product market 
rivalry 

SPILLSIC 6,494 2,006.8 10,114 

Patent flow P 16.2 1 75 
Sales Y 2,879 456 8,790 
Fixed capital A 1,346 122 4,720 

 
Employment N 18,379 3,839 52,826 
     
 

Notes: The means, medians and standard deviations are taken over all non-missing 
observations between 1981 and 2001; values measured in 1996 prices in $million.
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TABLE 3 – 
COEFFICIENT ESTIMATES FOR TOBIN’S-Q EQUATION 

 
 (1) 

 
(2) (3) (4) 

Dependent variable: 
Ln (V/A) 
 

OLS OLS, 
Fixed Effects  

OLS, 
Fixed Effects 

OLS, 
Fixed Effects 

Ln(SPILLTECHt-1) -0.042 
(0.012) 

0.242 
(0.105) 

0.186 
(0.100) 

 

Ln(SPILLSICt-1) 0.051 
(0.007) 

-0.072 
(0.032) 

 -0.050 
(0.031) 

Ln(Industry Salest) 0.425 
(0.068) 

0.300 
(0.044) 

0.294 
(0.044) 

0.305 
(0.044) 

Ln(Industry Salest-1) -0.503 
(0.067) 

-0.173 
(0.045) 

-0.178 
(0.045) 

-0.166 
(0.045) 

Polynomial terms in lagged (R&D Stock/Capital Stock)  
Ln(R&D Stock/Capital 
Stock)t -1 

0.842 
(0.154) 

0.799 
(0.197) 

0.794 
(0.198) 

0.799 
(0.198) 

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-0.172 
(0.215) 

-0.384 
(0.222) 

-0.377 
(0.222) 

-0.374 
(0.222) 

[Ln(R&D Stock/Capital 
Stock)t -1]3 

-0.024 
(0.111) 

 0.120 
(0.103) 

0.116 
(0.103) 

0.115 
(0.104) 

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-0.013 
(0.025) 

-0.021 
(0.022) 

-0.020 
(0.022) 

-0.020 
(0.022) 

[Ln(R&D Stock/Capital 
Stock)t -1]5 

-0.002 
(0.003) 

-0.002  
(0.002) 

0.002  
(0.002) 

0.002  
(0.002) 

[Ln(R&D Stock/Capital 
Stock)t -1]6 

0.006 a 
(0.009) 

-0.007a 
(0.008) 

-0.006a 
(0.008) 

-0.006 a 
(0.008) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes Yes Yes 
No. Observations 9,944 9,944 9,944 9,944 
     
 

a coefficient and standard error have been multiplied by 100 
 
Notes: Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of 
fixed capital. The equations are estimated by OLS (standard errors in brackets are robust to 
arbitrary heteroskedacity and first order serial correlation using the Newey-West correction). A 
dummy variable is included for observations where lagged R&D stock equals zero.  
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TABLE 4 -  

COEFFICIENT ESTIMATES FOR THE PATENT EQUATION 

 
 
Notes: Estimation is conducted using the Negative Binomial model. Standard errors (in brackets) 
are robust to arbitrary heteroskedacity and allow for serial correlation through clustering by firm. 
A full set of four digit industry dummies are included in all columns. A dummy variable is 
included for observations where lagged R&D stock equals zero (all columns) or where lagged 
patent stock equals zero (column (3)). The initial conditions effects in column (3) is estimated 
through the “pre-sample mean scaling approach” of Blundell, Griffith and Van Reenen (1999) – 
see text. 

  (1) (2) (3) 
Dependent variable: 
Patent Count 

No Fixed 
Effects  
 

Fixed Effects  Fixed Effects 
Dynamic 

Ln(SPILLTECH)t-1 0.406 
(0.086) 

0.295 
(0.066) 

0.192 
(0.038) 

Ln(SPILLSIC)t-1 0.037 
(0.031) 

0.051 
(0.029) 

0.032 
(0.016) 

Ln(R&D Stock)t-1 0.492 
(0.044) 

0.280 
(0.046) 

0.104 
(0.027) 

Ln(Sales)t-1 0.340 
(0.052) 

0.259 
(0.048) 

0.138 
(0.027) 

Ln(Patents)t-1   0.550 
(0.026) 

Pre-sample fixed effect  0.452 
(0.050) 

0.176 
(0.028) 

    
Over-dispersion (alpha) 0.955 

(0.062) 
0.815 
(0.046) 

0.402 
(0.029) 

Year dummies Yes Yes Yes 
Firm fixed effects  No Yes Yes 
4 digit industry dummies Yes Yes Yes 
No. Observations 9,023 9,023 9,023 
Log Pseudo Likelihood -20,499 -20,116 -18,636 
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TABLE 5 –  
COEFFICIENT ESTIMATES FOR THE PRODUCTION FUNCTION 

 
 (1) (2) (3) 
Dependent variable: 
 Ln(Sales) 
 

OLS 
 

OLS, 
Fixed Effects 

OLS, 
Fixed Effects 

Ln(SPILLTECH) t-1 -0.030 
(0.009) 

0.103 
(0.046) 

0.111 
(0.045) 

Ln(SPILLSIC) t-1 -0.016 
(0.004) 

0.010 
(0.012) 

 

Ln(Capital) t-1 0.286 
(0.009) 

0.161 
(0.012) 

0.161 
(0.012) 

Ln(Labour) t-1 0.650 
(0.012) 

0.631 
(0.015) 

0.631 
(0.015) 

Ln(R&D Stock) t-1 0.059 
(0.005) 

0.044 
(0.007) 

0.045 
(0.007) 

Ln(Industry Sales) t 0.230 
(0.040) 

0.200 
(0.021) 

0.201 
(0.021) 

Ln(Industry Sales) t-1 -0.118 
(0.040) 

-0.039 
(0.022) 

-0.038 
(0.022) 

    
Year dummies Yes Yes Yes 
Firm fixed effects  No Yes Yes 
No. Observations 10,009 10,009 10,009 
R2 0.948 0.990 0.990 

 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and allow for first order serial correlation using the Newey-West procedure.  Industry price 
deflators are included and a dummy variable for observations where lagged R&D equals to zero.  
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TABLE 6 – 
COEFFICIENT ESTIMATES FOR THE R&D EQUATION 

 
 (1) (2) (3) (4) 

Dependent variable: 
ln(R&D/Sales) 

OLS OLS, 
Fixed Effects 

OLS, 
Dynamics 

OLS, 
Fixed Effects, 

Dynamics 
Ln(SPILLTECH)t-1 0.092 

(0.017) 
0.117 

(0.074) 
0.001 

(0.004) 
-0.036 
(0.040) 

Ln(SPILLSIC) t-1 0.371 
(0.013) 

0.088 
(0.035) 

0.017 
(0.002) 

0.033 
(0.019) 

Ln(R&D/Sales) t-1   0.969 
(0.004) 

0.681 
(0.015) 

Ln(Industry Sales) t 0.523 
(0.082) 

-0.036 
(0.029) 

-0.023 
(0.022) 

-0.031 
(0.022) 

Ln(Industry Sales) t-1 -0.893 
(0.081) 

0.065 
(0.031) 

0.009 
(0.022) 

 0.078 
(0.022) 

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  No Yes No Yes 
No. Observations 8,579 8,579 8,387 8,387 
R2 0.776 0.973 0.945 0.986 

 
Notes: Estimation is by OLS. Standard errors (in brackets) are robust to arbitrary heteroskedacity 
and serial correlation using Newey-West corrected standard errors. The sample includes only 
firms which performed R&D continuously in at least two adjacent years.  
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 TABLE 7 –  
COMPARISON OF OLS EMPIRICAL RESULTS TO MODEL WITH 

TECHNOLOGICAL SPILLOVERS AND STRATEGIC COMPLEMENTARITY 
 
 
 Partial 

correlation of: 
 

Theory Empirics Consistency? 

∂V0/∂rτ Market value 
with 
SPILLTECH 
 

Positive 0.242** Yes 

∂V0/∂rm Market value 
with SPILLSIC 
 

Negative -0.072** Yes 

∂k0/∂rτ Patents with 
SPILLTECH 
 

Positive 0.192** Yes 

∂k0/∂rm Patents with 
SPILLSIC 
 

Zeroa  0.032* No a  

∂y0/∂rτ Productivity with 
SPILLTECH 
 

Positive 0.103** Yes 

∂y0/∂rm Productivity with 
SPILLSIC 
 

Zero 0.010 Yes 

∂r0/∂rτ  R&D with 
SPILLTECH 
 

Ambiguous -0.036 - 

∂r0/∂rm R&D with 
SPILLSIC 

Positive 0.033* Yes 

 
a The extension of the model in Appendix A3 that allows for strategic patenting generates a 
positive effect under strategic complementarity. 
 
Notes: The theoretical predictions are for the case of technological spillovers with product market 
rivalry (strategic complements and non-tournament R&D) - this is column (7) of Table 1. The 
empirical results are from the most demanding specifications for each of the dependent variables 
(i.e. dynamic fixed effects for patents and R&D, and fixed effects for market value). ** denotes 
significance at the 5% level and ** denotes significance at the 10% level (note that coefficients 
are as they appear in the relevant tables, not marginal effects). 
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TABLE 8 –  
SPILLOVER AND TOTAL EFFECTS OF AN R&D SHOCK 

 
     (1) (2) (3) 
 Variable Amplification Mechanism Autarky Effect Amplification 

Effect  
Total Effect 

(Amplification + 
Autarky) 

 
1 R&D  1 

 
0.242 

(0.059) 
1.242 

(0.053) 
2 Patents TECH, SIC and R&D 0.231 

(0.032) 
0.562 

(0.100) 
0.793 

(0.082) 
3 Market Value TECH, SIC and R&D 0.726 

(0.161) 
0.248 

(0.111) 
0.975 

(0.208) 
4 Productivity TECH, SIC and R&D 0.045 

(0.007) 
0.124 

(0.049) 
0.169 

(0.049) 
 
Notes: Calculated in response to a 1% direct stimulus to R&D in all firms – see text. All numbers 
are percentages. Results are calculated using preferred estimation results (i.e. Table 3 column (2), 
Table 4 column (3), Table 5 column (3) Table 6 column (4)). Standard errors in brackets 
calculated using the delta method.   
 
“Autarky effect” (in column (1)) refers to the impact on the outcomes solely from the firm’s 
initial increase in R&D. “Amplification Effects” (in column (2)) reports the additional impact 
from product market and technology space spillovers. “Total effect” (column (3)) reports the total 
effect from summing autarky and spillover effects (i.e. column (1) plus column (2)).  
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TABLE 9 – TREATING R&D AS ENDOGENOUS USING TAX PRICES AND THE 
PEACE DIVIDEND AS INSTRUMENTAL VARIABLES 

 (1) (2) (3) (4) 
Dependent variable: 

 
Tobin’s Q* Patents Ln(Real 

Sales) 
Ln(R&D/Sales)

 Fixed Effects Initial 
Conditions: 
Dynamics 

Fixed effects Fixed Effects + 
Dynamics 

Ln(SPILLTECHt-1) 0.425 
(0.154) 

0.202 
(0.054) 

0.097 
(0.060) 

0.000 
(0.045) 

Ln(SPILLSICt-1) -0.083 
(0.077) 

0.068 
(0.037) 

-0.020 
(0.021) 

0.025 
(0.039) 

Ln(Industry Salest) 0.294 
(0.052) 

 0.207 
(0.026) 

-0.034 
(0.022) 

Ln(Industry Salest-1) -0.185 
(0.053) 

 -0.039 
(0.022) 

0.090 
(0.024) 

R&D User Cost, 
(Firm Tax Credit Componentt) 

-0.603 
(0.125) 

  -0.277 
(0.053) 

R&D User Cost, 
(State Tax Credit Componentt) 

-0.548 
(0.672) 

  0.098 
(0.183) 

Peace Dividendt 0.132 
(0.213) 

  0.004 
(0.089) 

Ln(R&D Stock) t-1  0.131 
(0.030) 

0.030 
(0.009) 

 

Ln(R&D/Sales) t-1    0.662 
(0.017) 

Ln(Capital) t-1   0.156 
(0.017) 

 

Ln(Labor) t-1   0.642 
(0.023) 

 

Ln(Sales)t-1  0.208 
(0.032) 

  

Ln(Patents)t-1  0.557 
(0.029) 

  

Pre-sample fixed effect  0.211 
(0.034) 

  

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  Yes Yes (BGVR) Yes Yes 
No. Observations 9,910 8,602 9,896 8,080 

 

a coefficient and standard error have been multiplied by 10 
Notes: This table summarizes the results from the “preferred specifications” treating own R&D, 
SPILLTECH and SPILLSIC as endogenous. As instrumental variables for the spillover terms we 
use the firm-specific R&D tax-price based on Federal Rules, the R&D tax price based on state tax 
rules and the “Peace Dividend” (see text). Tobin’s Q is calculated including the R&D stock, i.e. 
Tobin’s Q=log(market value/(assets+R&D stock)). First stages are reported in Table A2. 
Standard errors (in brackets) are robust to first order serial correlation. 
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TABLE 10– ALTERNATIVE CONSTRUCTION OF SPILLSIC USING BVD 
INFORMATION INSTEAD OF COMPUSTAT SEGMENT DATASET 

 
 (1) (2) (3) (4) 

Dependent variable: 
 

Tobin’s Q Patents Ln(Real Sales) Ln(R&D/Sales)

 Fixed Effects Initial 
Conditions: 
Dynamics 

Fixed effects  Fixed Effects 
+ Dynamics 

 
Ln(SPILLTECHt-1) 0.310 

(0.108) 
0.185 

(0.049) 
0.100 

(0.052) 
-0.048 
(0.041) 

Ln(SPILLSICt-1) -0.060 
(0.034) 

0.031 
(0.014) 

0.001 
(0.014) 

0.048 
(0.017) 

Ln(Industry Salest) 0.235 
(0.049) 

 0.194 
(0.025) 

-0.049 
(0.026) 

Ln(Industry Salest-1) -0.142 
(0.050) 

 -0.042 
(0.026) 

0.094 
(0.026) 

Ln(R&D Stock) t-1  0.118 
(0.032) 

0.057 
(0.008) 

 

Ln(R&D/Sales) t-1    0.697 
(0.017) 

Ln(Capital) t-1   0.169 
(0.014) 

 

Ln(Labor) t-1   0.625 
(0.018) 

 

Ln(R&D Stock/Capital 
Stock)t -1 

0.901 
(0.221) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-0.393 
(0.244) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]3 

0.106 
(0.111) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-0.017 
(0.023) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]5 

0.002 
(0.002) 

   

[Ln(R&D Stock/Capital 
Stock)t -1]6 

-0.006 a 
(0.008) 

   

Ln(Sales)t-1  0.107 
(0.032) 

  

Ln(Patents)t-1  0.545 
(0.029) 

  

Pre-sample fixed effect  0.203 
(0.035) 

  

     
Year dummies Yes Yes Yes Yes 
Firm fixed effects  Yes Yes (BGVR) Yes Yes 
No. Observations 7,269 6,699 7,364 6,325 
     
a coefficient and standard error have been multiplied by 10 
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Notes: This table summarizes the results from the “preferred specifications” using the alternative 
method of constructing SPILLSIC based on BVD data (see Appendix B). The market value 
equation in column (1) corresponds to the specification in Table 3 column (2); the patents 
equation in column (2) corresponds to the specification in Table 4 column (3); the productivity 
equation in column (4) corresponds to the specification in Table 5 column (2) and the R&D 
equation in column (3) corresponds to the specification in Table 6 column (4).  
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TABLE 11 – ALTERNATIVE CONSTRUCTION OF SPILLOVER VARIABLES 
 
A. Baseline (Summarized from Tables 3-6 above) 
 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.242 

(0.105) 
0.192 
(0.038) 

0.103 
(0.046) 

 -0.036 
(0.040) 

Ln(SPILLSIC)t-1 -0.072 
(0.032) 

 0.032 
(0.016) 

 0.010 
(0.012) 

0.033 
(0.019) 

Lagged dependent 
variable 

 0.402 
(0.029) 

 0.681 
(0.015) 

Observations 9,944 9,023 10,009 8,387 
 

B. Alternative Based on SPILLSICA (and SPILLTECH unchanged) 

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.239 

(0.104) 
0.192 
(0.038) 

0.106 
(0.046) 

 -0.041 
(0.040) 

Ln(SPILLSIC)t-1 -0.068 
(0.032) 

0.049 
(0.017) 

0.004 
(0.010) 

0.036 
(0.019) 

Lagged dependent 
variable 

 0.550 
(0.026) 

 0.681 
(0.015) 

Observations 9,958 9,046 10,023 8,387 
 

C. Alternative Based on SPILLSICA  and SPILLTECHA   

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.188 

(0.193) 
0.241 
(0.049) 

0.085 
(0.040) 

 -0.032 
(0.036) 

Ln(SPILLSIC)t-1 -0.069 
(0.032) 

0.041 
(0.017) 

0.004 
(0.012) 

0.036 
(0.019) 

Lagged dependent 
variable 

 0.540 
(0.026) 

 0.681 
(0.015) 

Observations 9,958 9,046 10,023 8,387 
 

D. Alternative Based on  SPILLTECH EG  (see Ellison-Glaeser, 1997) 

 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents  Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.886 

(0.184) 
0.653 
(0.273) 

0.061 
(0.075) 

-0.167 
(0.075)  

Ln(SPILLSIC)t-1 -0.076 
(0.031) 

0.039 
(0.010) 

0.017 
(0.013) 

0.035 
(0.017) 

Lagged dependent 
variable 

 0.637 
(0.027) 

 0.680 
(0.015) 

Observations 9,944 9,023 10,009 8,387  
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E. Alternative Based on SPILLTECH TFK  (see Thompson and Fox-Kean, 2005) 
 
 (1) (2) (3) (4) 
Dependent variable Tobin’s Q Patents Real Sales R&D/Sales 
Ln(SPILLTECH)t-1 0.105 

(0.062) 
0.223 
(0.032) 

0.059 
(0.025) 

 0.023 
(0.029) 

Ln(SPILLSIC)t-1 -0.063 
(0.033) 

 0.023 
(0.017) 

 0.002 
(0.013) 

0.021 
(0.019) 

Lagged dependent 
variable 

 0.547 
(0.026) 

 0.680 
(0.015) 

Observations 9,848 8,923 9,913 8,386 
 

 
Notes: This table summarizes the results from the “preferred specifications” using the alternative 
methods of constructing the distance metrics (see text).  The market value equation in column (1) 
corresponds to the specification in Table 3 column (2); the patents equation in column (2) 
corresponds to the specification in Table 4 column (3); the productivity equation in column (4) 
corresponds to the specification in Table 5 column (2) and the R&D equation in column (3) 
corresponds to the specification in Table 6 column (4).  Panel A summarizes the results in Tables 
3-6 using the standard methods where ∑

≠

=
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,
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(with SPILLTECHA  defined analogously). Panel D uses a variant of the the Ellison-
Glaeser (1997) co-agglomeration measure of distance for SPILLTECH ( Panel E uses a 
more disaggregated version of technology classes,  SPILLTECHTFK, as suggested by 
Thompson and Fox-Kean, 2005). See section 3.4 and Appendix C for more details. 
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TABLE 12 –   ECONOMETRIC RESULTS FOR SPECIFIC HIGH TECH INDUSTRIES 

 
A. Computer Hardware  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.302 
(0.613) 

0.013 
(0.158) 

0.427 
(0.176) 

0.457 
(0.222) 

-0.158 
(0.164) 

Ln(SPILLSIC)t-1 -0.472 
(0.159) 

 0.532 
(0.433) 

-0.193 
(0.525) 

-0.046 
(0.226) 

0.091 
(0.095) 

Lagged dependent 
variable 

 0.696 
(0.065) 

0.488 
(0.088) 

 0.648 
(0.059) 

Observations 358 277 277 343 388 
 
B. Pharmaceuticals 
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 1.611 
(0.674) 

-0.273 
(0.326) 

1.056 
(0.546) 

0.638 
(0.279) 

0.154 
(0.243) 

Ln(SPILLSIC)t-1 -1.324 
(0.612) 

-0.106 
(0.194) 

-0.089 
(0.174) 

-0.396 
(0.339) 

 0.359 
(0.532) 

Lagged dependent 
variable 

 0.218 
(0.091) 

0.269 
(0.089) 

 0.660 
(0.117) 

Observations 334 265 265 313 381 
 
C. Telecommunication Equipment  
 (1) (2) (3) (4) (5) 
Dependent variable Tobin’s Q Patents Cite-

weighted 
patents 

Real Sales R&D/Sales 

Ln(SPILLTECH)t-1 2.299 
(0.869) 

0.290 
(0.175) 

0.651 
(0.364) 

0.477 
(0.339) 

0.217 
(0.208) 

Ln(SPILLSIC)t-1 -0.118 
(0.456) 

0.064 
(0.073) 

-0.025 
(0.217) 

0.154 
(0.182) 

-0.049 
(0.085) 

Lagged dependent 
variable 

 0.645 
(0.093) 

0.476 
(0.098) 

 0.598 
(0.059) 

Observations 405 
 

353 353 390 429 

Notes: Each Panel (A, B, C) contains the results from estimating model on the specified separate 
industries (see Appendix B for exact details). Each column corresponds to a separate equation for 
the industries specified. The regression specification is the most general one used in the pooled 
regressions. Tobin’s Q (column 1) corresponds to the specification in column (2) of Table 3; 
Patents (column 2) corresponds to column (3) of Table 4; cite-weighted patents (column 3) is 
identical to the previous column but replaces all patent counts with their forward cite weighted 
equivalents; real sales (column 4) corresponds to column (2) of Table 5; R&D/Sales (column (5)) 
corresponds to column (4) of Table 6.  
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TABLE 13 –  POLICY SIMULATIONS: SPILLOVER IMPACTS ACROSS DIFFERENT 
GROUPS OF FIRMS 

Panel A 
 
 (1) (2) (3) (4) 
Target Group Short-run R&D 

Stimulus, $m 
Additional R&D 
Dynamics and 
Spillovers,  $m 

Total R&D Increase 
(columns 1+2), $m  

Total Output 
Increase, $m  
 

1. All Firms 870 755 1,625 6,178 
2. US R&D Tax 
Credit (firms 
eligible in median 
year) 

870 779 1,650 5,982 

3. Smaller Firms 
(smallest 50%) 

870 513 1,384 3,745 

4. Larger Firms 
(largest 50%) 

870 765 1,636 6,287 

 
Panel B 
 
 (1) (2) (3) 
Target Group % firms Average SIC 

 
Average TECH 
 

1. All Firms 100 0.046 0.127 
2. US R&D Tax Credit (firms 
eligible in median year) 

40 0.052 0.131 

3. Smaller Firms (smallest 50%) 50 0.041 0.074 
4. Larger Firms (largest 50%) 50 0.047 0.129 
 
Notes: All numbers in 1996 prices and simulated across all firms who reported non-zero R&D at 
least once over the 1990-2001 period. We use our “preferred” systems of equations as in Table 8  
Details of calculations are in Appendix E. In Panel A we consider four different experiments. The 
first row gives every firm 1% extra R&D. Given average R&D spending in the sample this 
“costs” $870m in the short-run (column (1)). We predict (column (2)) that incorporating 
dynamics and spillovers this will generate an extra $755m of R&D giving a total of total of 
$1,625m in column (3). This is associated with an extra $6,178m increase in production (column 
4) in the long-run).  
The other rows consider a stimulus of the same aggregate size ($870m) but distributed in different 
ways (column (1) of Panel B gives the proportion of firms affected). Row 2 is calibrated to a 
stylized version of the current US R&D tax credit (see text for details) and assumes all eligible 
firms (40% under our stylized scheme) increase R&D by the same proportionate amount (capping 
the total at $870m). Row 3 considers an experiment that gives an equi-proportionate increase in 
R&D to the smallest 50% of firms (by mean 1990s employment size). Row 4 does the same for 
the largest 50% of firms. 
In Panel B, the SIC and TECH average values have been calculated after weighting by the R&D 
of the spillover receiving firm times the R&D of the spillover generating firm. This accounts for 
the average closeness of difference groups of firms and also the absolute size of the spillovers.  
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APPENDIX TABLES 
 

TABLE A1 –  
AN EXAMPLE OF SPILLTEC AND SPILLSIC FOR FOUR MAJOR FIRMS 

 
 Correlation IBM Apple Motorola Intel 
IBM SIC Compustat 

SIC BVD 
TECH  

1 
1 
1 

0.65 
0.55 
0.64 

0.01 
0.02 
0.46 

0.01 
0.07 
0.76 

Apple SIC Compustat 
SIC BVD 
TECH 

 1 
1 
1 

0.02 
0.01 
0.17 

0.00 
0.03 
0.47 

Motorola SIC Compustat 
SIC BVD 
TECH 

  1 
1 
1 

0.34 
0.47 
0.46 

Intel SIC Compustat 
SIC BVD 
TECH 

   1 
1 
1 

 
Notes: The cell entries are the values of SICij = (Si S’j)/[(Si Si’)1/2(Sj S’ j)1/2] (in normal script) 
using the Compustat Line of Business sales breakdown (“SIC Compustat”) and the Bureau Van 
Dijk database (“SIC BVD”), and TECHij = (Ti T’j)/[(Ti Ti’)1/2(Tj T’ j)1/2] (in bold italics) between 
these pairs of firms. 
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TABLE A2 -  
FIRST STAGE RESULTS FOR INSTRUMENTAL VARIABLE ESTIMATIONS 

 
 
Notes: Standard errors (in brackets) are robust to arbitrary heteroskedacity and allow for first 
order serial correlation using the Newey-West procedure.  A dummy variable is included for 
when the State or Firm tax credits are missing. In column (2) a full set of four digit industry 
dummies are included, as well as dummy variables for observations where lagged R&D stock 
equals zero or where lagged patent stock equals zero. In column (3) industry price deflators are 
included.  

 (1) (2) (3) (4) 
Dependent variable: ln(R&D): First stage for 

Tobin’s Q 
equation 

First stage for 
Patents  
equation 

First stage for 
Productivity  
equation 

First stage for 
R&D  equation 

Dependent variable: ln(R&D) ln(R&D) ln(R&D) ln(R&D) 
     
R&D User Cost, 
State Tax Credit Componentt 

-1.058 
(0.408) 

-2.452 
(0.435) 

-0.261 
(0.268) 

-1.058 
(0.408) 

R&D User Cost, 
Firm Tax Credit Componentt 

-0.611 
(0.112) 

-1.079 
(0.146) 

-0.580 
(0.078) 

-0.611 
(0.112) 

Peace Dividendt -0.442 
(0.174) 

-0.099 
(0.191) 

-0.217 
(0.135) 

-0.442 
(0.174) 

Ln(Industry Sales)t 0.222 
(0.043) 

 0.173 
(0.030) 

0.222 
(0.043) 

Ln(Industry Sales)t-1 0.239 
(0.045) 

 0.048 
(0.031) 

0.239 
(0.045) 

Ln(Sales)t-1  0.810 
(0.014) 

  

Ln(Patents)t-1  0.188 
(0.012) 

  

Pre-sample fixed effect  0.048 
(0.015) 

  

Ln(Capital) t-1   0.255 
(0.020) 

 

Ln(Labour) t-1   0.561 
(0.024) 

 

     
F-test on State Tax Credit, Firm Tax 
Credit and Peace Dividend 

14.36 29.96 19.32 14.36 

Year dummies Yes Yes Yes Yes 
Firm fixed effects  Yes No Yes Yes 
4 digit industry dummies Yes Yes Yes Yes 
No. Observations 8,587 8,602 8,565 8,587 
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TABLE A3 –  POLICY SIMULATIONS WITHOUT ANY R&D STRATEGIC 
COMPLEMENTARITY 

 
Panel A 
 
 (1) (2) (3) (4) 
Target Group Short-run R&D 

Stimulus, $m 
Additional R&D 
Dynamics and 
Spillovers,  $m 

Total R&D Increase 
(columns 1+2), $m  

Total Output 
Increase, $m  
 

1. All Firms 870 465 1,335 5,077 
2. US R&D Tax 
Credit (firms 
eligible in median 
year) 

870 483 1,354 4,886 

3. Smaller Firms 
(smallest 50%) 

870 277 1,148 2,924 

4. Larger Firms 
(largest 50%) 

870 473 1,344 5,172 

 
Notes: All numbers in 1996 prices and simulated across all firms who reported non-zero R&D at least once 
over the 1990-2001 period. We use our “preferred” systems of equations as in Details of calculations are in 
Appendix E, except with no spillover effects in the R&D equation. In Panel A we consider four different 
experiments. The first row gives every firm 1% extra R&D. Given average R&D spending in the sample 
this “costs” $870m in the short-run (column (1)). We predict (column (2)) that incorporating dynamics and 
spillovers this will generate an extra $465m of R&D giving a total of total of $1,335m in column (3). This 
is associated with an extra $5,077m increase in production (column 4) in the long-run). The other rows 
consider a stimulus of the same aggregate size ($870m) but distributed in different ways (column (1) of 
Panel B gives the proportion of firms affected). Row 2 is calibrated to a stylized version of the current US 
R&D tax credit (see text for details) to determine the eligible group (40% of firms) and assumes all eligible 
firms increase R&D by the same proportionate amount (capping the total at $870m). The final column 
again shows the impact on R&D and productivity. Row 3 considers an experiment that gives an equi-
proportionate increase in R&D to the smallest 50% of firms (by mean 1990s employment size). Row 4 does 
the same for the largest 50% of firms. 
 


