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This paper presents econometric evidence of two independent effects of adding more competitors 
on innovation: 1) a competition effect whereby increasing rivalry shapes, and often decreases, 
incentives to expend effort and invest in innovation; and 2) a parallel search effect whereby 
adding greater numbers of “searchers” benefits innovation by broadening the search for solutions. 
We further show the importance of these effects depends on the nature of the innovation problem 
being solved. The analysis uses data from TopCoder’s software contest platform, on which elite 
software developers were assigned different problems to solve within assigned groups of direct 
competitors. Econometric relationships are identified by exploiting random assignment and a 
separate instrumental variables procedure.  
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1. Introduction 
 

Success at innovation is central to organizational growth and survival and the betterment of 

societies. Fundamental to innovation is the ability to successfully solve scientific, technical and 

design problems that do not necessarily have obvious solutions—or even obvious solution 

approaches ex ante (Nelson 1959; Abernathy and Utterback 1978). Because R&D can sometimes 

be fraught with uncertainty, one leading view casts innovation and problem solving as a process 

of “search” over some poorly understood knowledge landscape (Simon and Newell 1962; 

Levinthal 1997). Not knowing the appropriate solution or solution approach is tantamount to not 

knowing what skill sets, capabilities or orientations are needed to successfully conclude the 

search process. Consequently, a “parallel search” approach whereby multiple independent solvers 

(or teams of solvers) compete to solve the same innovation problem has been recommended as a 

means of bringing a variety of skills and approaches to bear on a problem (Nelson 1959, 1961; 

                                                           
1 We would like to thank Jack Hughes, Mike Lydon and the staff of TopCoder.com for providing us with 
the data for this study and answering numerous questions about their programming competitions. 
Participants in presentations at Harvard Business School, HEC-Paris, Imperial College, London Business 
School, CWRU and the Wharton Technology Miniconference provided significant suggestions for 
improvements. All mistakes remain our own. 
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Abernathy and Rosenbloom 1969). Examples of this principle abound, including introducing 

many diverse competitors to a market and using multiple internal R&D teams to investigate 

distinct design approaches (Abernathy and Rosenbloom 1969; Gerchak and Kilgour 1999; Ding 

and Eliashberg 2002), stimulating “open innovation” around a platform (Chesbrough 2002) and 

“democratizing innovation,” more generally  (von Hippel 2005).  

At the same time, most economic theory on entry and competition across a wide variety of 

institutional contexts argues that high numbers of competitors will reduce innovators’ incentives 

to exert effort and invest (e.g., Salop 1979; Aghion and Howitt 1992; Taylor 1995). Its 

prescription is thus the opposite: restrict the number of competitors. This leaves an important 

theoretical gap, as a pure problem solving and “parallel search” view does not account for 

individual innovators’ incentives and strategic responses to competition (Dosi et al. 2003). This 

prompts several questions. Do parallel search and competition effects coexist? If they do, is it 

simply the case that they work against one another? Do more subtle interactions and 

determinants govern how they shape innovation? This paper presents econometric evidence to 

show that parallel search effects and competition effects coexist and their relative strength 

depends on the nature of the innovation problem being solved. 

Setting our study in a context explicitly designed with parallel search in mind enables us to 

look for how competition might also play a role. TopCoder Inc. serves outsourced software 

development projects to global Fortune 1000 firms. It does so by acting as a two-sided platform 

(Rochet and Tirole 2006) with a large set of independent elite programmers who enter into 

contests to compete against one another to solve problems of client firms. We use data on 645 

problems, on which 9,627 sets of 15-20 direct competitors worked. We observe for each case 

problem-solving performance, numbers of competitors, competitor skills and the type of problem 

being solved.  
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The fundamental approach of our analysis is to exploit the fact that competition effects on 

incentives could be discerned by observing how numbers of competitors affected individual 

competitors’ performance. By contrast, parallel search effects could be discerned by observing 

how numbers of competitors led to changes in the maximum or best innovative performance 

(above and beyond what would be predicted by changing incentives on their own). Key 

relationships are estimated by exploiting random assignment of competitors to different groups of 

direct competitors and problems. Because assignment to groups of direct competitors was not 

perfectly random, the econometric approach focuses on removing sources of variation in the 

estimation that could bias estimates. The approach is corroborated using an instrumental variables 

procedure that exploits variation in the time of day a contest starts as a source of exogenous 

variation that affects numbers of competitors. 

We found that parallel search effects and competition effects coexisted: adding more 

competitors to a group of direct competitors solving the same problem systematically reduced the 

problem-solving scores of individual competitors and at the same time positively affected the 

maximum or best score attained within the group. Corroborating tests and anecdotal information 

from company interviews confirm these results. We further show that the magnitude of both the 

parallel search and competition effects depended on whether problems were “complex” or not 

(Simon 1969) in the sense of implicating a plurality of knowledge sets (Jonassen 2004; Nickerson 

and Zenger 2004; Macher 2006). We interpret these findings as suggesting that problem 

complexity does not only change the nature of the innovation search process, but also has 

implications for strategic interactions and the structure of competition. 

The paper contributes to separate streams of empirical research that have provided 

econometric evidence on parallel search (Cohen and Malerba 2001; Leiponen and Helfat 2007) 

and competition (Cohen and Levin 1989; Cohen 1995; Nickell 1996; Aghion et al. 2005) effects. 

Our analysis bridges these traditions by presenting evidence of the mechanisms at work together. 
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Theoretically, the paper contributes to growing theory development and evidence on the 

mechanisms of problem solving and search (Simon 1947; Cyert and March 1963; Nelson and 

Winter 1982; Levinthal 1997; Gavetti and Levinthal 2000; Rivkin 2000; Hong and Page 2001, 

2004)—in a context in which agents are competing with one another. In doing so, the results 

drawparticularly on recent work by Terweisch and Xu’s (forthcoming). By virtue of the empirical 

setting, the results also contribute to research on distributed innovation and problem solving 

around a platform (Bresnahan and Greenstein 1999; Chesbrough 2002; Gawer and Cusumano 

2002; von Hippel 2005), providing an indication of which sorts of innovation-related problems 

are most likely to benefit from “opening up” innovation.  

The paper proceeds as follows. Section 2 reviews the literature with the objective of developing 

empirical hypotheses regarding how competition effects and parallel search effects might coexist. 

Section 3 details the empirical context and data set used in the analysis. Section 4 explains the 

approach used in the empirical analysis. Section 5 presents results. Section 6 summarizes our 

intended contribution and concluding remarks.  

2. Literature and Hypothesis Development 
 

In this section, we review two distinct ideas concerning how adding more agents to a group of 

direct competitors might affect innovation outcomes. One idea concerns how increasing 

competition affects agents’ incentives to invest—a “competition effect.”  The other concerns how 

adding agents might add useful diversity to the search process—a “parallel search effect.” The 

goal here is to develop empirical hypotheses concerning (1) how these effects can be 

distinguished, and (2) how they might relate to one another and interact.  
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2.1. The Competition Effect 
 

When innovation is organized as a set of directly competing innovators, how many competitors 

are best? This question has been tackled by a variety of literatures in industrial and organizational 

economics that cover distinct institutional contexts. A remarkably consistent result across this 

work is that high numbers of symmetrical competing agents will lower overall innovation 

performance.  

For example, classical work in economics examining the link between innovation and 

competition has shown that as markets become more crowded, potential entrants have less 

incentive to join (Dixit and Stiglitz 1977; Salop 1979) as they will capture a smaller share of the 

market while still bearing the fixed costs of research. Similarly, endogenous growth models of the 

type of Romer (1990) and Aghion and Howitt (1992) show that innovation declines as 

competition and threat of imitation increase. A number of theories (and some evidence) suggest 

that increased rivalry among symmetric competitors can in fact stimulate investment (Nickell 

1996; Raith 2003; Aghion et al. 2005). But these same models indicate that the effect should 

become negative, at least at high levels of competition. (See Aghion and Griffith (2005) for a 

review of the literature.)  

This basic argument of depressed incentives with high competition seems relatively insensitive 

to different innovation settings. For example, the budding literature on research contests (in 

which, instead of splitting the market, just one or few agents win) arrives at similar conclusions. 

Taylor (1995) show that allowing too many competitors reduces the total level of research effort 

and overall innovation outcome, as contestants find the probability of winning lowered. Fullerton 

and McAfee (1999)—extending Taylor’s model to consider heterogeneous competitors and a 

variety of tournament designs—come to the conclusion that limiting entry is preferred. (They 

conclude that the optimal number of contestants is, in fact, just two.) A similar analytic finding 

has been reported by Che and Gale (2003) with the assumption that agents invest in the quality of 

their innovations. 
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Similar predictions of negative effects of competition on investment have been argued in 

relation to a range of other institutional contexts including competing internal R&D projects 

(Rotemberg and Saloner 1994; Gerchak and Kilgour 1999), competing outsourcing partners 

(Bakos and Brynjolfsson 1993), “competing” employees (Rajan and Zingales 1998) and the 

adoption of the same technology standard by competing firms (Ellison and Fudenberg 2003; 

Augereau et al. 2006). 

Thus, our first and baseline hypothesis for what happens when the number of competitors 

increases is as follows: 

 

Hypothesis 1 (“COMPETITION EFFECT”) Increasing numbers of direct 
competitors will systematically reduce the innovative performance of individual 
competitors.2
 

2.2. The Parallel Search Effect 
 

Notwithstanding the seeming universality of the competition effect result, there remains an 

equally pervasive intuition that “safety would seem to lie in numbers and variety of attack.” This 

was one of the important conclusions reached by Jewkes et al. (1959, pg. 246) that launched a 

distinct literature that stressed the uncertainty, and sometimes fundamental uncertainty, of the 

innovation process (Nelson 1959, 1961; Abernathy and Rosenbloom 1969).  

In contrast to just “risky” or stochastic outcomes, fundamental uncertainty implies an inability 

to formulate objective prior beliefs (Knight 1921). But as a practical matter, analytical models 

developed in this tradition have been formulated in terms of drawing “balls from an urn” with 

some known distribution of possible outcomes (e.g., Marshall 1961).3 Therefore, notwithstanding 

deep conceptual differences in this tradition, the models themselves do not substantially differ 

                                                           
2 Innovation incentives should be “crowded out” at least at high levels of competition. As mentioned 
earlier, the competition effect may in fact stimulate investment at lower levels of competition. 
3 This drawing-balls-from-an-urn approach has been adopted by and furthered in other research streams 
such as that on product modularity (Baldwin and Clark 2000) and product management (Dahan and 
Mendelson 2001; Terwiesch and Loch 2004; Terwiesch and Xu Forthcoming). 
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from earlier-mentioned models of incentives and competition (which themselves often consider 

probabilistic outcomes). 

A more important difference in the mechanics of these stochastic parallel search models is their 

focus of analysis. Rather than focus on expected outcomes of innovation that result from rational 

investment choices, stochastic parallel search models consider variance, and model how the 

maximum innovation performance will be affected based on nth order statistic calculations. 

Following this logic, insofar as adding competitors contributes greater variation in outcomes, the 

maximum score should systematically increase with numbers of competitors. In cases in which 

innovation outcomes are stochastic and risky across innovators, for whatever reason, we should 

therefore expect the maximum innovation performance in a group to be affected by both the 

competition effect and the “upside” created by more parallel search attempts with random 

outcomes. 

 

Hypothesis 2 (“PARALLEL SEARCH EFFECT”) The maximum or best 
innovation performance within a group of direct competitors will respond more 
positively to an increase in numbers of direct competitors than will individual 
performance. 

 

2.3. Bounded Rationality and the Search for Solutions 
 

So, are the economics of parallel search really just about generating “more variation” in 

innovation outcomes by adding more competitors? If this were the case, there would be no reason 

to look further than economic models of competition and incentives for answers. Such analyses 

might simply pay closer attention to how stochastic outcomes affect maximum performance 

levels.  

Research on behavioral approaches to problemistic search (e.g. March and Simon 1958; Cyert 

and March 1963) suggests a richer set of relationships. Key to this work is the underlying 

assumption of bounded rationality, or limits in the ability of agents to know, calculate, formulate 

and predict outcomes--and thereby take fully informed, rational decisions (Simon 1955). These 
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notions are allied to those of earlier-mentioned fundamental uncertainty (in the environment), 

which effectively imposes bounded rationality (on the decision-maker).  

A first important contribution of this literature is to clarify when agents’ behaviors should be 

expected to be boundedly-rational. Like the earlier-mentioned research on parallel search, this 

tradition ultimately points to the environment and, particularly, the nature of the problem being 

solved as the key determinant of boundedly-rational search behavior. Problems that are complex 

or involve a large number of interdependent knowledge sets to solve a problem (Simon 1969) 

should lead to boundedly-rational behavior in problem-solvers (innovators).4 Increasing numbers 

of knowledge sets are inherent in solving a more complex problem; fewer knowledge sets are 

inherent in solving a less complex or simpler problem (Simon 1969; Jonassen 2004; Nickerson 

and Zenger 2004; Macher 2006). Recent formal and simulation-based abstractions of problem-

solving, as N separate decisions with K interactions, or “N-K models” (Levinthal 1997; Gavetti 

and Levinthal 2000; Rivkin 2000; Rivkin and Siggelkow 2003), provide a formal interpretation of 

the limits of rational calculation of agents. Rivkin (2000) argues that attempts to solve problems 

necessarily become boundedly-rational at the point at which N and K become sufficiently large 

that a problem becomes “NP complete,” a theoretical distinction of insolubility borrowed from 

computer science.5  

Apart from pointing to the nature of the problem as a determinant of boundedly-rational 

search, this literature also provides some indication of the process of search itself. The N-K 

formulation analogizes search as an attempt to find a “peak” solution across a poorly understood 

“landscape” (Levinthal 1997). Increased complexity leads to increased “ruggedness,” or greater 

discontinuities and more numerous peaks that might be “climbed” (a simple problem with few 

interactions has a single peak). Typically, the models assume agents are unable to map the link 

                                                           
4 Simon’s (1973) closely related theorizing on the ill-structuredness of problems places particular emphasis 
on how the linkages between necessary knowledge sets in a problem might be poorly understood. 
5 Rivkin’s article focuses particularly on the problem of imitating a complex solution (organizational 
strategy). 
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between alternative solution approaches and performance outcomes (i.e., they have no prior 

knowledge of the landscape). Phenomenological characterizations of innovation lend credence to 

this analogy by stressing the search for alternative design paths or approaches (Abernathy and 

Utterback 1978; Christensen 1997), design architectures (Clark 1985; Henderson and Clark 1990) 

or new technological combinations (Fleming 2001)—akin to alternative “hills to climb.” Within a 

given approach, innovation might proceed more incrementally along a given technological 

trajectory (Dosi 1982; Nelson and Winter 1982; Sahal 1985)—akin to “climbing a particular hill.” 

2.4. The Mediating Effect of Problem Type 
 

If bounded-rationality emerges when a problem is complex, the solution tends to implicate 

multiple knowledge sets and the process of innovation is largely about searching for the best 

approach rather than just exerting high effort, how should this matter?6 In principle, bounded 

rationality might imply any number of things are not wholly known by competing, problem-

solving agents. The emphasis of the N-K literature on agents’ inability to map solution 

approaches to performance perhaps most obviously points to unknowable technical performance 

resulting from different approaches and, ultimately, the value generated from innovation. It might 

not even be known whether there exists any feasible approach at all or what alternative 

approaches might be. 

Regarding the effect of adding greater numbers of competitors, Terwiesch and Xu 

(forthcoming) provide a useful analytical starting point. They analyze a case they call “trial and 

error” innovations that links closely to the bounded rational search processes described in Section 

2.3 in the sense that the appropriate solution approach is unknown. This is the very same intuition 

offered by Jewkes et al. The authors make the analytical leap of recognizing that insofar as it is 

difficult to rank order alternative solution approaches ex ante, so too should it be difficult to rank 

order the capabilities and orientations of competing agents ex ante. They model the case of 

                                                           
6 See Lenox et al. (2006) for an N-K model that includes competition, but without endogenous innovation. 
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complete uncertainty wherein firms take decisions with the expectation that the value of their 

“expertise” (likelihood of winning) is the very same as that of competitors. In a sense, agents 

might be thought of as being distributed on a search landscape at different initial positions 

without prior knowledge of whether they are positioned next to a tall or a short peak. 

Problem complexity thus effectively adds another source of “surprise” to innovation outcomes 

related to how valuable one’s own capabilities and problem solving approach turns out to be in 

relation to those of other competitors. Adding another source of uncertainty to outcomes should 

increase the benefits of parallel search.  

 

Hypothesis 3 (“COMPLEXITY AND PARALLEL SEARCH”) Greater complexity 
of the problem being solved will lead to a more positive response of the maximum 
innovation performance to increasing numbers of competitors (i.e. a stronger 
parallel search effect).  

 

We argue that this added uncertainty regarding agents’ capabilities might also have the 

potential to shape the competition effect. Uncertainty in the appropriateness of skills and 

approaches virtually “levels the playing field”; competitors may become closer in terms of their 

individual chances of finding the best solution. However, the usual intuition that “closer” 

competitors should engender tighter competition and closer substitutes is clearly incorrect in this 

case. Although competitors might be closer in ex ante likelihood of success when solving a 

complex problem, only a subset of competitors (that have chosen the same best approach, same 

hill to climb) are relevant competitors ex post. Therefore, the response to an added competitor 

should be less sensitive.  

 

Hypothesis 4 (“COMPLEXITY AND COMPETITION EFFECT”) Greater 
complexity in the problem being solved leads to a less negative individual 
response to increasing numbers of competitors (i.e. a weaker competition effect). 

 

The remainder of the paper is devoted to empirically testing these hypotheses. 
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3. Empirical Context & Data 

3.1. Software Development Contests at TopCoder 
 

An ideal data set is one in which both individual and group-level problem-solving outcomes are 

observed. Further, variation in competitors and problem complexity should allow key 

relationships to be econometrically identified. We used data on software developer competitions 

at TopCoder as a context that conforms well to these requirements. Between 2001 and 2007 

TopCoder conducted 350 contests that included 1,050 problems and 22,544 programmers.  

TC’s creates outsourced software for Fortune 1000 firms by encouraging coders from around 

the world to compete in ongoing programming contests. Clients benefit by having their internal 

software programming problems resolved and getting access to potential recruits; participants 

benefit from the opportunity to win prize money and signal their talent in a global competition. 

TC’s widely publicized (on its Web site and in interviews and marketing materials) proposition to 

its clients is that it can harness the value of a large number of number of programmers working in 

parallel and let competition determine the best solution. Thus, TC emphasizes a parallel search 

notion of competition, and its contests are intended to act as selection mechanisms for best 

solutions. TC works with clients to identify software module requirements it then converts into 

contests for members. The contests typically run for several weeks and target specific 

programming tasks like design, development, assembly and testing. Winners are awarded pre-

announced cash prizes for their contributions.  

Essential to TC’s success is a stable of programmers willing to participate in the firm-

sponsored module development contests, and the ability to convince client firms that this 

community of programmers possesses the skill and ability to generate code that delivers results. 

Ongoing programmer recruitment and skill assessment at TC is done through weekly online 

“algorithm programming contests” in which participants compete against each other for 75 

minutes to solve three software development problems. TopCoder then automatically tests 

solutions to provide a score and ranking in terms of the design criteria laid out in the original 
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problem statement and robustness tests. It is these regular algorithm contests that are the focus of 

our empirical analysis.  

 

 “Algorithm” Problems: The presence of multitudes of test cases indicates that the problems 

do not have just “Right” or “Wrong” answers, but instead are of the class of NP Complete 

problems (like the traveling salesman), for which there is no “right” answer and solutions can 

approach a theoretical maximum. Although participants have a sense of problem difficulty from 

the potential point value of the problem, they do not have any prior indication of its inherent 

nature (or, rather, its solution) or the number of knowledge domains that might be implicated in 

its solution. However, TC employees, when designing the problems for the algorithmic 

challenges, do internally classify problems into the sixteen knowledge categories listed in Table 

1. Thus, a problem that is internally categorized as graph theory will have been deemed to draw 

on knowledge in that domain for its solution. Roughly half of the TC problems, however, are 

associated with multiple categories, and their solutions will thus necessarily implicate multiple 

knowledge sets.  

Consistent with earlier theory on complex problems (Section 2.3), TC executives and problem 

designers noted that problems associated with multiple categories could not simply be thought of 

as “adding” two sorts of problem together; because they often involved “tricks” and “greater 

creativity,” participants could not rely on rote solution approaches.7 Importantly, this notion of 

problems that drew on multiple knowledge domains, lead to fresh sort of problem was distinct 

from the pure “difficulty” of a problem, which was assessed separately via a subjective score 

from 1 to 3 by problem designers. (As seen in Tables 2 and 4, the difficulty and complexity of 

problems were mostly uncorrelated.) Thus, in our analysis we distinguish single category 

                                                           
7 In a relevant anecdote, TC executives noted that prior problem solutions and even attempt to use “stock” 
code when solving single-category problems that these techniques of gaining an edge were far less useful in 
the case of multi-category problems. 
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problems as “simple” and those involving multiple knowledge categories as “complex,” 

consistent with theorizing about the knowledge domains and complexity in Section 2.3.  

 

Table 1     TopCoder’s Breakdown of Problem Categories 

 

The algorithm contest consists of two distinct phases, programming and solution testing. In 

the programming phase, participants write and submit code for each of the problems. Each 

problem is assigned a set amount of points that is visible at the start of the contest. The higher the 

number of points, the more difficult the problem is. As soon as a participant opens the problem, 

that is, gets the full problem statement (see Appendix B for sample problem statements), the 

available points for a successful submission start to decline based on the amount of time between 

problem opening and submission of code. Hence, the faster the programmer finishes the 

submission, the greater the number of points available, subject to automated testing at the end. If 

the participants open all three problems at the same time, all three problems will have the total 

number of points declining.  

In the testing phase, final scores for each participant are determined by automatically compiling 

the software code for each problem and subjecting the code to a barrage of automated test cases 

ranging from hundreds to thousands to determine the accuracy of the solution over a range of 

potential conditions. Performance over all the test cases is then summed and the time that was 

taken to submit the answer converted into an objective final public score and ranking of each 

participant’s algorithm code-writing skills.  

 

Assignment to “Rooms” of Direct Competitors: Competitors are assigned to distinct 

subgroups of direct competitors in each contest. The typically hundreds of entrants in any given 

contest are divided into groups called “rooms” of not more than 20 competitors. Each virtual 

room gets the same three problems in the division. Competitors in different rooms thus solve the 

same problems, but direct competition largely takes place within a single room. This is because 

rank within an individual room determines cash prizes and public recognition for winning. The 
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top two competitors in each room receive prizes, regardless of differences in scores across rooms. 

Competitors within individual rooms are also provided with rich information about each other 

and the unfolding of the competition in the room. Included in a “heads-up” display in which 

coders complete their code is the full list of the competitors in the room, color-coded to facilitate 

quick assessment of their skill ratings. Clicking on any name reveals further information about, 

and a detailed history of the performance of, that competitor. As there are 20 or fewer competitors 

in a room, this information is easily navigable. This “heads up” display also reveals who has 

submitted solutions to enable the progression of the contest to be observed in real-time. 

Participants are able to observe the submission of solutions by competitors, giving them an idea if 

they are ahead or behind in the competition. An open chat channel is also available. TC reports 

that this is most often used by competitors to “trash talk” one another during the competition. 

Interviews with TC executives and employees revealed that in this set-up a great deal of 

competitive rivalry drives much of the interaction among the participants; the weekly contests 

provide an opportunity for them to demonstrate their skills to each other and improve their 

rankings. The near-instantaneous scoring of performance and public ranking causes participants 

to try their best at the various problems. The public nature of the ratings, and the fact that many 

algorithm contests are sponsored by firms like Google and Microsoft, also causes programmers to 

exert effort and showcase their skills. There are also the cash prizes. The total cash prize awarded 

in any particular contest has fluctuated from zero to $21,900, and has averaged $2,700/contest 

over the course of the six years; 65% (227) of the contests have not involved a cash award. As 

prizes are divided among different subsets of direct competitors, there might typically be on the 

order of one to two dozen winners among several hundred entrants.  

Weekly algorithm contests are held at a different time and day of the week to accommodate 

TC’s global programming members. Contest dates and times are advertised well in advance to all 

registered members of TC through a personalized email and on the company’s Web site. On the 
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day of a contest, members are given a three-hour window to register their intention to compete. 

Five minutes before the start of the contest, registration is closed and participants are assigned to 

the online virtual rooms, or subgroups, of direct competitors.  

Competitors are divided into two divisions, I and II, based on prior skills rating in algorithm 

contests. Division I consists of participants who rank above a pre-determined rating score, 

Division II of newcomers (i.e., those who do not yet have skill ratings) and those who rank below 

the Division I threshold score. Room assignment in a division attempts to randomize participants 

based on the following rules. Coders are first sorted by prior algorithm contest rating. This rating 

is then transformed into a score by dividing by 1024 and squaring the result. A “search value” is 

then computed by dividing the score by the sum of all scores for all participants, and then adding 

to the result the search value of the previous participant. A random floating-point number 

between 0 and 1 is then chosen. The coder whose search value is closest to this is assigned to the 

current room. This process repeats itself until a room is deemed full (up to a maximum of 20 

competitors), at which point new rooms are opened. The structure of the contests described in this 

section is further clarified in the following figure. 

 

Figure 1 Illustration of the Structure of TopCoder Competitions 

3.2. Data and Sample 
 

Our analysis focuses on the elite Division I algorithm coding contests in which all competitors 

have skill ratings and are serious competitors.8 We dropped observations for rooms in which there 

were fewer than 15 competitors, leaving just rooms with 15 to 20 competitors (average: 16.8). 

Although there are rooms with as few as 10 competitors, rooms with fewer than 15 competitors 

represented less than 1% of the total sample, and were eliminated to assure that they did not 

unduly influence the analysis. (Doing so did not affect results.)  

                                                           
8 Histogram plots of ratings suggest that the two divisions represent qualitatively different distributions of 
competitors. 
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In the sample, 645 problems were solved by a total of 9,627 rooms of competitors, implying, on 

average, just fewer than 15 rooms simultaneously competing on each problem on average. The 

principle unit of analysis in the econometric analysis to follow will be a given problem solved by 

a given room; however, several regressions also study the 162,207 attempts by individuals to 

solve individual problems. Because the 645 problems implicated different numbers of problem 

and knowledge categories, problems had different levels of “complexity” (distinct from problem 

difficulty) as discussed in Section 2. The set of problems in the sample is summarized in Table 2. 

 

Table 2 Sample Problems (and Rooms Distributed across Problems)  
by Complexity and Difficulty 

 

Having access to the full database of the TopCoder platform, we were able to draw on measures 

that closely link to the earlier theoretical development. This will be further elaborated in 

explaining the econometric modeling approach, below. Table 3 lists and defines the variables 

used in the analysis. Table 4 provides means, standard deviations and correlations of our key 

variables. As summarized in these tables, we have measures of problem-solving performance 

(AVGSCORE and MAXSCORE), contest-level variables (MONEYPRIZE, TIMEOFDAY), 

individual room-level variables (COMPETITORS, AVGRATING), and problem-level variables 

(COMPLEXITY, DIFFICULTY, MAXPOINTS). 

 

Table 3    Variable Definitions 

Table 4    Descriptive Statistics and Correlations 

 

4. Empirical Approach 
 

The central objective of the econometric analysis is to measure how varying the numbers of 

competitors affected problem-solving performance in the groups of direct competitors in the 

different rooms of TopCoder contests. We further measure how the complexity of problems being 

solved by competitors mediated this relationship. Thus, we will test the hypotheses developed in 
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Section 2. Two distinct approaches to econometric estimation will be used in the analysis to 

follow. These are explained in turn. 

4.1. Exploiting Random Assignment to Problems and Competitor Groups 
 

In our first, and preferred, approach we estimate the causal effect of varying the numbers of 

competitors on problem-solving performance by exploiting features of the empirical context that 

are akin to a randomized experiment. Here we have “rooms” of up to 20 competitors who 

competed against one another to solve problems. The assignment of competitors to rooms is 

effectively the equivalent of having competitors receiving different “treatments” of competition. 

The problem is only unveiled during the competition, so competitors are also effectively treated 

to unforeseen different problem types. There is thus something of an experimental character to 

this context that might be exploited to estimate the causal effect of varying competition. 

However, the context is not a purely randomized experiment; several sources of variation need 

to be controlled to eliminate potential omitted variable bias. For example, the roster of software 

developers who have signed up to TopCoder, representing the pool of prospective entrants to a 

given competition, grows steadily over time. Average competitor quality could plausibly also 

change over time, as could problem design or grading. If, at the same time, numbers of 

competitors assigned to rooms systematically varied across competitions, spurious correlation 

could lead to biased estimates of coefficients of interest. 

Although we will explore specifications with round-level and problem-level covariates, our 

preferred specification simply annihilates all these potential sources of between-round and 

between-problem variation with individual problem-level fixed effects, η.9 Thus, the preferred 

model exploits just the variation across different rooms competing on the same problem to 

identify how differences in these rooms cause systematic differences in problem-solving 

                                                           
9 Including fixed effects for individual problems effectively controls for individual weekly contests, as 
there are three problems per individual contest. 
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performance. It is this across-room variation for a given problem that best approximates an 

experimental set-up with random assignment.  

But interviews with TopCoder executives suggested that variation in numbers of competitors 

per room might not have been entirely random. Two potential sources of non-random assignment 

were identified. First, TopCoder’s room assignment algorithm attempts to somewhat randomly 

assign competitors to rooms, while attempting to group competitors somewhat by skill level. If 

there is any sort of systematic relationship between the average skill (i.e., AVGRATING) in a 

room and the extent to which it gets filled, spurious correlation would result. For example, if top-

skill rooms tended to be filled first and fullest (i.e., closer to 20 contestants), this would lead to a 

positive bias in the estimated effect on problem-solving outcomes of adding competitors. 

A second potential source of non-random variation in numbers of competitors could be related 

to competitors “signing up without showing up.” If no-shows are random, this is, in fact, helpful 

variation that can be exploited to identify relationships of interest. If, however, dropouts tend to 

be weaker, less-serious competitors, fewer competitors could correspond to higher average 

scores, creating a negative bias.  

The convenient feature of these plausible sources of endogeneity bias is that both relate to the 

skill levels of competitors in a given room. Therefore, adding an explicit control for the average 

rating of competitors in a room, AVGRATING, should address this bias while increasing the 

precision of the estimates. 

Thus, the preferred model to measure the effect of COMPETITORS on problem-solving 

performance, Y, as mediated by our measure of complexity, COMPLEXITY, is as follows: 

 

Yij = G( COMPETITORSi | COMPLEXITYj ) +ηj + δ AVGRATINGi +εij  (1) 
 

In this expression, i indexes each room of direct competitors and j indexes each problem. The 

term εij is a stochastic, zero-mean error term assumed to be normally distributed. The key 

relationship of interest to be identified is G(). The empirical analysis to follow will show that G() 
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is adequately modeled as a simple linear relationship. In the analysis, the interaction with 

COMPLEXITY is captured with both an interaction term and through separate regressions on 

stratified data. 

Problem-solving performance, Y, is modeled in two ways. First we model the average score 

achieved by competitors within a room, AVGSCORE. Doing so is a means of capturing how 

competitors respond to COMPETITORS, on average. Looking at these systematic differences in 

mean performance outcomes most directly relates to measuring the competition effect (Section 

2.1). Performance is also modeled as the maximum score achieved in a group of direct 

competitors in a room, MAXSCORE, which most directly relates to the parallel search effect 

(Section 2.2).10

4.2. Instrumental Variable Approach 
 

As the earlier approach requires a priori assumptions concerning the sources of endogeneity 

bias, we use a secondary, instrumental variables approach to assure the robustness of results from 

the earlier approach. We use variation in the time of the day at which contests begin as a source 

of exogenous variation in COMPETITORS. Executive interviews revealed that starting times 

varied from week to week based on a range of factors. Start time might be 10:13 am one week 

and 10:47 am the next. Visual inspection of the data showed start times spread from early 

morning until the early afternoon and a tight cluster of start times after 19:00 until roughly 22:00, 

eastern standard time. The visual inspection suggested an increasing number of competitors in 

rooms with later start times, but a clear drop off in the contests beginning later in the day. 

Therefore the effect of start time on COMPETITORS was modeled as a linear model of 

TIMEOFDAY and a dummy variable to account for start times after 3 pm, AFTERNOON.  

                                                           
10 Note that this approach of using problem fixed effects rules out the measurement of direct effects of 
problem type on innovation performance. However, our earlier hypotheses place the focus on how problem 
type mediates the relationship between competition and innovation outcomes—interaction effects rather 
than direct effects. 
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To account for the possibility that time of day did not relate just to numbers of competitors, but 

perhaps also to the composition of competitors (e.g., Russian or Asian competitors might be less 

likely to enter contests late in the day), the analysis was performed on individual competitor-level 

data to control for the individual skills of competitors with individual competitor fixed effects, γ. 

This approach has the advantage of directly controlling for competitor characteristics when 

measuring the effect of variation in COMPETITORS. But because this estimate is based on 

variation between rounds, it does not take advantage of the attractive pseudo-experimental 

variation across rooms. For this reason, the model in this case also includes a vector of contest 

and problem controls, X, for the contest and problem. (If the fixed effects of the earlier approach 

were to be used, they would annihilate all the identifying variation across contests.) In assessing 

the individual responses, the approach also can only be used to assess the competition effect and 

compare the estimate to the model of AVGSCORE obtained in the earlier approach. 

Thus, the instrumental variables specification measures the effect of COMPETITORS on 

problem solving performance of each individual competitor, SCORE, as mediated by 

COMPLEXITY, with an expression that modifies expression (1) in the following manner: 

 

SCOREijkl = G( COMPETITORSi | COMPLEXITYj ) + β ⋅ Xijk + γl + δ AVGRATINGi +εijkl       (2) 
 

In this expression, i indexes each room of direct competitors, j indexes each problem, k indexes 

the contest and l indexes the individual competitor. 

5. Analysis & Results 

5.1. Number of Competitors and Problem Solving Performance 
In this section, we examine the relationship between competition and problem solving in order 

to establish a baseline relationship between them that provides evidence of both a competition 

effect and parallel search effect. We then examine the mediating effect of the nature of the 

problem, which makes the section relevant to Hypotheses 1 and 2. Table 5 presents results.  
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We begin by estimating how the average score achieved in a room, AVGSCORE, changed in 

response to changing numbers of competitors, COMPETITORS. Properly estimated, the 

relationship should reflect how changes in COMPETITORS systematically affected individual 

level performance, on average. Focusing on competitors’ average responses to competition has 

direct relevance to Hypothesis 1, which predicts that higher numbers of competitors will result in 

lower individual performance. We present several specifications so as to explicitly document 

ways in which the model deals with endogeneity bias as well as the robustness of the approach. 

Model (5-1) presents the regression of AVGSCORE on problem covariates (DIFFICULTY,11 

MAXPOINTS, and dummy variables for the type of problem) and round covariate 

(MONEYPRIZE).12 Coefficients on covariates appear sensible. Given that more difficult problems 

are worth many more points, it is not surprising to see large positive coefficients on indicator 

variables for increasing levels of DIFFICULTY. The coefficient on MAXPOINTS is negative. 

This might at first seem surprising, but given strong collinearity with DIFFICULTY, and the 

strong explanatory power of this variable, it appears that MAXPOINTS is simply picking up a 

second order effect. (Re-regressing the model without MAXPOINTS confirms this.) This 

multicollinearity should not bias estimates of other coefficients, in any case. The coefficient on 

MONEYPRIZE is positive, as should be expected. The estimated coefficient on the explanatory 

variable of greatest interest, COMPETITORS, is negative, with a magnitude of -11.5, and is 

highly statistically significant (all estimates are based on robust standard errors). 

 

Table 5    Baseline Estimates of the Relationship between Competition and Problem-Solving 
 

Model (5-2) introduces fixed effects for individual problems. Annihilating variation across 

problems (and across week-to-week contests at the same time) leads contest and problem 

                                                           
11 Because the dummy variable for DIFFICULTY = 1 drops out, the other dummy variables should be 
interpreted as differences with this level. 
12 The F-test for overall model fit is significant at p =  1% for all models. 
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covariates to drop out. The estimated coefficient on COMPETITORS remains negative and highly 

significant, though just slightly smaller in magnitude at -8.9.  

Having included problem-level fixed effects, coefficients are now estimated only on the basis 

of room-to-room variation for a given problem. As discussed earlier, any remaining endogeneity 

bias should relate to the skills of the players in a given room (Section 4.1). Model (5-3) therefore 

introduces AVGRATING as an explicit control. Doing so again leads to a negative and highly 

significant coefficient on COMPETITORS, but of the slightly smaller magnitude of -5.0. To 

assure that this linear control sufficiently eliminates any bias associated with the skills of 

competitors in a room, model (5-4) allows the effect of AVGRATING to take a very flexible 

shape, with a series of dummy variables that divide its effect into 20 levels that correspond to the 

5th, 10th, 15th, etc. percentile levels of this variable. The coefficient on COMPETITORS is 

statistically unchanged, affirming model (5-3).  

To confirm the appropriateness of the linear model, various parametric and non-parametric 

specifications were assessed. Figure 2 graphically compares the linear model (5-3) with a very 

flexible specification that estimates the effect of increasing numbers of competitors with 

independent dummy variatles to to illustrate the good fit of the linear model. 

 

Figure 2     Linear and Non-Linear Models of Average Responses to Changing Numbers of 
Competitors 

 

We now re-estimate average performance responses to COMPETITORS using the instrumental 

variables approach (Section 4.2) to ensure that unexpected sources of bias are not playing a role. 

This approach effectively measures how competitor scores systematically changed from week to 

week in response to the different numbers of competitors they faced in different contests. 

Problem and round covariates are re-included in the model.13 Model (5-5) presents the estimated 

“first stage” relationship between COMPETITORS and TIMEOFDAY and the indicator variable 

                                                           
13 Problem covariates are averaged across the three problems in each round. 
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AFTERNOON. The results suggest that holding a contest in the afternoon, on average, led to one 

more competitor in each room. Apart from this effect, for each hour advance of the clock from 

when a round started, there were about one-tenth more competitors per room, on average. 

Model (5-6) reports the full IV model. The IV regression, using an entirely different source of 

variation, yields essentially the same results as the earlier approach. Coefficients on control 

variables DIFFICULTY, MAXPOINTS and MONEYPRIZE take identical signs and similar values 

as those in model (5-1). The coefficient on COMPETITION is -6.97, which is slightly more 

negative than the earlier room-level estimate of -5.0 in model (5-3), but well within a standard 

error of 2.59. 

The analysis thus provides strong support for the econometric approach and confirms that for 

every additional competitor, the average effect on competitors was to reduce performance by 

roughly 5 points, consistent with Hypothesis 1 and the presence of a competition effect.14

We now turn to the question of whether the maximum score attained in group of direct 

competitors, MAXSCORE, was also affected by variation in COMPETITORS. Hypothesis 2 

predicts that MAXSCORE will respond more positively to adding competitors than would be 

predicted by the competitor effect on its own.  

Model (5-7) effectively repeats the earlier preferred model (5-3), simply changing the 

dependent variable to MAXSCORE. The coefficient found on MAXSCORE is -.24 and 

statistically indistinguishable from zero. The result that competition has no effect on the best 

score in a group, on average, is itself remarkable. The result is also consistent with Hypothesis 2: 

the response of the maximum performance is, indeed, more positive than what would be predicted 

by the competition effect on its own (i.e., -.24 is larger than -5). The zero net effect suggests that 

                                                           
14 Corroborating this finding of changing behavior in response to changing numbers of competitors, 
TopCoder executives indicated competitors “try less” and sometimes “give up” when they face high 
competition. We performed ancillary analyses that confirmed this point: competitors spent less time 
working on solutions, on average, when there were more competitors. 
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despite a systematically negative effect on individual competitors of increasing competition, the 

upside variation or parallel search effects weighed against this negative effect. 

Important to note is that, in principle, the explanation for the less negative (zero) slope could 

have been that “top” competitors were simply more likely to have been more stimulated (or less 

negatively affected) by competition (cf. Aghion et al. 2005). However, re-running model (1-1) on 

just the subsample of those “top” competitors with high pre-competition ratings (various levels 

were assessed) finds that these top competitors respond even more negatively than average firms 

do. This is consistent with top competitors acting more strategically. Thus, the possibility of a 

more positive response by top competitors can be ruled out. 

It should also be noted that the zero coefficient might, in principle, also simply reflect a null 

and meaningless result. But results presented in the following section clarify that this zero 

average effect is, in fact, an average of significantly positive and significantly negative effects in 

subsets of the data. Therefore, the result is meaningful and consistent with Hypothesis 2.  

 

5.2. The Nature of the Problem Being Solved by Competitors 
 

The preceding analysis provided evidence suggesting that both competition and parallel search 

effects are at work in the data. Here we explore how the complexity of the problem, 

COMPLEXITY, might mediate these effects. The following analysis therefore relates to 

Hypotheses 3 and 4, which essentially predict that complexity leads to less negative effects of 

competition on both the average and maximum scores. Results are presented in Table 6. 

 

Table 6     Estimates of the Effect of Problem Type on the Competition-Problem-Solving 
Relationship  

 

We begin our analysis of the mediating effect of problem type on the link between adding 

competitors and problem-solving outcomes by including an interaction term, COMPETITORS × 
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COMPLEXITY.15 The coefficient on this interaction term should indicate the average effect of 

implicating one more knowledge set in a problem on the link between competition and problem-

solving. Consistent with Hypothesis 3, the coefficient on the interaction term in a model of 

AVGSCORE, model (6-1), takes a positive and significant sign, which indicates that complex 

problems have a less negative response to competition. As in Figure 3, plotting these results 

shows that the estimated effect of adding another competitor goes to zero at COMPLEXITY = 3. 

Remarkably, this implies that for the more complex problems, competition had no net effect on 

individual behaviors, on average. (The coefficient estimates would imply that the effect, in fact, 

turns positive at COMPLEXITY = 4, 5. Although this is theoretically possible, as noted in Section 

2.1, we do not emphasize this point given that 98% of the sample data are for COMPLEXITY 

between 1 and 3.) 

Based on the coefficient on COMPETITORS and the interaction term, the slope in the case of 

simple problems (i.e., COMPLEXITY = 1) should be -8.60, that is, the sum of direct and 

interaction effects, or -13.06 + 4.46. This is a more negative effect than the earlier overall 

estimate of -5 in model (5-3), as should be expected. To provide an indication of the robustness of 

the estimate, we re-estimate the effect on stratified subsamples of simple (COMPLEXITY = 1) 

and complex (COMPLEXITY > 1) problems. This effectively allows all model coefficients to 

flexibly vary across sample subsets, rather than just the effect of competition, as in the interaction 

model. As reported in model (6-3), the coefficient on COMPETITORS for simple problems is -

8.56, which is extremely close to the earlier estimate based on the interaction model. The 

coefficient in the case of complex problems is -2.64, again suggesting a less negative effect of 

competition for these sorts of problems. Further stratifying complex problems into subsets of 

COMPLEXITY = 2 and COMPLEXITY = 3, presented graphically in Figure 3, shows that the 

                                                           
15 The interaction term does not require COMPLEXITY to also be added, as the fixed effect for problems 
already soaks up any problem-specific variation. 
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linear interaction model is a good approximation of the decreasingly negative effect.16 (Stratified 

analyses at COMPLEXITY = 4, 5 are not included given few degrees of freedom, as seen in Table 

2.) 

We then turn to the same sort of analysis of the mediating effect of problem complexity, but in 

relation to MAXSCORE. Consistent with Hypothesis 4, the coefficient on the interaction term in a 

model of MAXSCORE, model (6-2), also takes a positive and significant sign and one that is 

larger than the interaction term on AVGSCORE in model (6-1). This is important, as the 

difference between these two interaction terms approximates how the parallel path effect is 

mediated by problem complexity above and beyond the mediating effect on individual 

competitors’ incentives.17  

Again, we assess the robustness of the result by re-estimating the effect on stratified 

subsamples of simple (COMPLEXITY = 1) and complex (COMPLEXITY > 1) problems. As 

reported in model (6-4), the coefficient in simple problems on COMPETITORS is -6.27, 

statistically indistinguishable from the -4.46 that is implied in the interaction model at 

COMPLEXITY = 1. Adding another competitor to a complex problem, in fact, has an absolutely 

positive effect, with a coefficient of 3.64, as presented in model (6-6). (The lower statistical 

significance of the coefficient is not surprising given that there is considerably more noise in the 

maximum score, as is readily seen in the descriptive statistics in Table 4.) This substantial, 

positive impact is consistent not just with the hypotheses developed in Section (2.2), but also with 

the broader spirit of work that argues for the virtues of parallel paths (Nelson 1959; Cohen and 

Malerba 2001; Leiponen and Helfat 2007; Terwiesch and Xu Forthcoming). It is also consistent 

with TopCoder’s enthusiasm for utilizing competition as a means of surfacing best solutions 

                                                           
16 We performed ancillary analyses that further corroborated the view that complexity creates greater 
uncertainty with regard to who will win: we find that winners of complex problems were lower ranked, on 
average, (in terms of their pre-competition skill ratings) than were winners of simple problems. 
17 This assumes that the effect of COMPETITORS on AVGSCORE (i.e. the average competition effect on 
individual behavior) approximates how competition affected winning competitors. In fact, this is likely a 
conservative assumption given that, as noted earlier, top competitors tended to respond more negatively to 
competition. 
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(Section 3). Further stratifying complex problems into subsets of COMPLEXITY = 2 and 

COMPLEXITY = 3 provides evidence consistent with the linear approximation of the interaction 

term, although less obviously so. Figure 3 shows that stratified estimates of the effect of adding a 

competitor on MAXSCORE approximate the linear model for COMPLEXITY = 1, 2. However, 

the estimate for COMPLEXITY = 3 is -.16, well below the linear model. This appears to be at 

least partly the result of much greater noise in the MAXSCORE variable; the standard error on 

this estimate is 4.48. Therefore, the estimate is statistically in the range of the estimate in the 

linear interaction model. To better assess this possibility, we add the data for higher levels of 

complexity, COMPLEXITY  ≥ 3 rather than just equal to 3. The point estimate in this case is 3.87. 

Although the estimate has a similarly large standard error, the point estimate is consistent with an 

effect on MAXSCORE that increases with COMPLEXITY, as 3.87 exceeds estimates of the effect 

of adding competitors at COMPLEXITY = 2 or 1.  

The dominant curves presented in Figure 3 provide an overall view of the responses of 

MAXSCORE, model (6-2), and AVGSCORE, model (6-1), to added competitors, as mediated by 

problem complexity. This figure summarizes points consistent with the four hypotheses: the 

effect of adding another competitor on AVGSCORE is negative (Hypothesis 1); the effect of 

adding another competitor on MAXSCORE is less negative than this (Hypothesis 2); problem 

complexity leads to a less negative response of AVGSCORE to competition (Hypothesis 3); 

problem complexity leads to an even less negative response of MAXSCORE (Hypothesis 4). 

 

Figure 3     Estimated Effect of Adding an Additional Competitor to Average Scores and the 
Winning Score in a Group of Direct Competitors in a Room18

 

6. Conclusions 
 

In this paper, we empirically studied the relationship between competition and innovation using 

data on elite software programmer competitions. The strength of the analysis rests largely on our 
                                                           
18 See the discussion in Section 5.2 to interpret this graph, particularly the stratified sample estimates 
related to MAXSCORE. Results are plotted for just COMPLEXITY ≤ 3, as this constitutes 98% of sample 
data, as shown in Table 2. 
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ability to observe key microeconomic variables and exploit random assignment in this context. 

The analysis shows that increasing numbers of competitors had a negative effect on individual 

competitors’ performance. However, the effect on the best individual score, or maximum 

performance, within a group of direct competitors was much less negatively (more positively) 

affected by adding competitors. The effect on both average performance and maximum 

performance was found to be substantially less negative (more positive) when the problem being 

solved was complex, that is, when solution approaches drew from multiple knowledge domains. 

The effect of adding more competitors on the maximum score was, in fact, absolutely positive for 

complex problems.  

This study contributes empirical evidence relevant to the long-studied question of how 

competition and innovation are linked. The baseline finding of a reduced average response of 

innovation to competition affirms one of the most basic arguments in this literature, relating 

innovation to strategic incentives. The contribution here is simply the strength of our econometric 

approach in identifying the causal relationship.  

A more novel empirical contribution is to demonstrate the differential effect of increasing 

competition on average versus maximum performance within the same analysis. By 

distinguishing these effects, this study shows that effects described here as the “competition 

effect” and the “parallel search effect” coexist and should both be considered when determining 

optimal ways to organize competing innovation. 

Our most important finding was that both the average and maximum response of innovation 

performance’s to increasing numbers of competitors became less negative (more positive) with 

the increasing complexity of the problem being solved. We interpret this finding to indicate that 

complex problems change the nature of the innovation search process and the link with 

competition. The response to problem complexity is consistent with theorizing on boundedly-

rational problemistic search (Nelson 1959; Simon and Newell 1962; Levinthal 1997) and, at the 
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same time, consistent with conceptions of innovation as relate to neoclassical investment 

functions and strategic interactions (e.g. Arrow 1962; Romer 1990; Aghion et al. 2005).  

Perhaps most fascinating of all in these results is that the competition effect is substantially 

mitigated in complex problems, the sorts of problems in which parallel path effects and bounded 

rationality are also bound to be strongest. This finding suggests that insofar as individual 

competitors anticipate the nature of the problem being solved, they adjust their responses to 

added competitors. Therefore, the nature of the problem implicitly changes the innovative process 

and, ultimately, the structure of competition. 

 
 



 

References 

Abernathy, W.J., R.S. Rosenbloom. 1969. Parallel Strategies in Development Projects. Management Science 15(10) 
B486-B505. 

Abernathy, W.J., J.M. Utterback. 1978. Patterns of Industrial Innovation. Technology Review 79(June/July) 41-47. 
Aghion, P., N. Bloom, R. Blundell, R. Griffith, P. Howitt. 2005. Competition and Innovation: An Inverted-U 

Relationship. Quarterly Journal of Economics 120(2) 701-728. 
Aghion, P., R. Griffith. 2005. Competition and Growth: Reconciling Theory and Evidence. MIT Press, Cambridge, 

MA. 
Aghion, P., P. Howitt. 1992. A Model of Growth through Creative Destruction. Econometrical 60(2) 323-351. 
Arrow, K.J. 1962. K.J. Arrow, Economic welfare and the allocation of resources for invention. In: R.R. Nelson, 

Editor, The Rate and Direction of Inventive Activity, Princeton University Press, New Jersey (1962), pp. 609–
625. 

Augereau, A., S. Greenstein, M. Rysman. 2006. Coordination versus Differentiation in a Standards War: The 
Adoption of 56K Modems. Rand Journal of Economics 37(4) 887-910. 

Bakos, J.Y., E. Brynjolfsson. 1993. Information Technology, Incentives, and the Optimal Number of Suppliers. 
Journal of Management Information Systems 10(2) 37-53. 

Baldwin, C.Y., K.B. Clark. 2000. Design Rules: Volume 1. The Power of Modularity. MIT Press, Cambridge, MA. 
Bresnahan, T.F., S. Greenstein. 1999. Technological Competition and the Structure of the Computer Industry. The 

Journal of Industrial Economics 47(1) 1-40. 
Che, Y.-K., I. Gale. 2003. Optimal Design of Research Contests. American Economic Review 93(3) 646-671. 
Chesbrough, H. 2002. Open Innovation: The New Imperative for Creating and Profiting from Technology. Harvard 

Business School Press, Boston. 
Christensen, C. 1997. Patterns in the Evolution of Product Competition. European Management Journal 15(2) 117-

127. 
Clark, K.B. 1985. The Interaction of Design Hierarchies and Market Concepts in Technological Evolution. Research 

Policy 14(5) 235-251. 
Cohen, W. 1995. Empirical studies of innovative activity, in: P. Stoneman (Ed.), Handbook of the Economics of 

Innovation and Technological Change, Blackwell. 
Cohen, W., R. Levin. 1989. Empirical Studies of Innovation and Market Structure. R. Sehmalensee, R.D. Willig, 

eds. Handbook of Industrial Organization. Elsevier Science Publishers, 1060-1107. 
Cohen, W.M., F. Malerba. 2001. Is the Tendency to Variation a Chief Cause of Progress? Industrial and Corporate 

Change 10 587-608. 
Cyert, R.M., J.G. March. 1963. Behavioral Theory of the Firm Englewood Cliffs, N.J. 
Dahan, E., H. Mendelson. 2001. An Extreme-Value Model of Concept Testing. Management Science 47(1) 102-116. 
Ding, M., J. Eliashberg. 2002. Structuring the New Product Development Pipeline. Management Science 48(3) 343-

363. 
Dixit, A.K., J.E. Stiglitz. 1977. Monopolistic Competition and Optimum Product Diversity. American Economic 

Review 67(3) 297-308. 
Dosi, G. 1982. Technological Paradigms and Technological Trajectories A Suggested Interpretation of the 

Determinants and Directions of Technical Change. Research Policy 11(3) 147-162. 
Dosi, G., D.A. Levinthal, L. Marengo. 2003. Bridging Contested Terrain: Linking Incentive-Based and Learning 

Perspectives on Organizational Evolution. Industrial and Corporate Change 12(2) 413-436. 
Ellison, G., D. Fudenberg. 2003. Knife-Edge or Plateau: When Do Market Models Tip? The Quarterly Journal of 

Economics 118(4) 1249-1278. 
Fleming, L. 2001. Recombinant Uncertainty in Technological Search. Management Science 47(1, Design and 

Development) 117-132. 
Fullerton, R.L., R.P. McAfee. 1999. Auctioning Entry into Tournaments. American Economic Review 107(3) 573-

605. 
Gavetti, G., D. Levinthal. 2000. Looking Forward and Looking Backward: Cognitive and Experiential Search. 

Administrative Science Quarterly 45(1) 113-137. 
Gawer, A., M.A. Cusumano. 2002. Platform Leadership: How Intel, Microsoft and Cisco Drive Industry Innovation. 

Harvard Business School Press, Boston. 
Gerchak, Y., D.M. Kilgour. 1999. Optimal Parallel Funding of Research and Development. IIE Transactions 31 

145-152. 
Henderson, R.M., K. Clark. 1990. Architectural Innovation: The Reconfiguration of Existing Product Technologies 

and the Failure of Established Firms. Administrative Science Quarterly 35(1) 9-30. 
Hong, L., S.E. Page. 2001. Problem Solving by Heterogeneous Agents. Journal of Economic Theory 97(1) 123-163. 
Hong, L., S.E. Page. 2004. Groups of Diverse Problem Solvers Can Outperform Groups of High-Ability Problem 

Solvers. PNAS 101(46) 16385-16389. 
Jewkes, J., D. Sawers, R. Stillerman. 1959. The Sources of Invention. St. Martin's Press, New York. 

John 
Okay?



2 
Boudreau, Lacetera and Lakhani: Parallel Search, Incentives and Problem Type 
 
 

  

Jonassen, D.H. 2004. Learning to Solve Problems: An Instructional Design Guide. Jossey-Bass, San Francisco. 
Knight, F.H. 1921. Risk, Uncertainty and Profit. Houghton Mifflin Company, Boston. 
Leiponen, A., C.E. Helfat. 2007. Innovation Objectives, Knowledge Sources and the Benefits of Breadth. Working 

Paper  (October). 
Lenox, M., S. Rockart, and A. Lewin (2006) ““Interdependency, Competition and the Distribution of Firm and 

Industry Profits.” Management Science 52(5): 757-772. 
Levinthal, D.A. 1997. Adaptation on Rugged Landscapes. Management Science 43(7) 934-950. 
Macher, J., T. 2006. Technological Development and the Boundaries of the Firm: A Knowledge-Based Examination 

in Semiconductor Manufacturing. Management Science 52(6) 826-843. 
March, J.G., H. Simon. 1958. Organizations. Wiley. 
Marshall, A. 1961. Principles of Economics, 9th ed. The Macmillan Company, New York. 
Nelson, R.R. 1959. The Economics of Parallel R and D Efforts: A Sequential-Decision Analysis. RAND Research 

Memorandum RM2482. 
Nelson, R.R. 1961. Uncertainty, Learning, and the Economics of Parallel Research and Development Efforts. The 

Review of Economics and Statistics 43(4) 351-364. 
Nelson, R.R., S.G. Winter. 1982. An Evolutionary Theory of Economic Change. Belknap Harvard, Cambridge, MA. 
Nickell, S. 1996. Competition and Corporate Performance. Journal of Political Economy 2(4) 724-746. 
Nickerson, J.A., T.A. Zenger. 2004. A Knowledge-Based Theory of the Firm - The Problem Solving Perspective. 

Organization Science 15(6) 617-632. 
Raith, M. 2003. Competition, Risk and Managerial Incentives. American Economic Review 93(1425-1436). 
Rajan, R., L. Zingales. 1998. Power in a Theory of the Firm. The Quarterly Journal of Economics 113(2) 1998. 
Rivkin, J.W. 2000. Imitation of Complex Strategies. Management Science 46(6) 824-844. 
Rivkin, J.W., N. Siggelkow. 2003. Balancing Search and Stability: Interdependencies among Elements of 

Organizational Design. Management Science 49(3) 290-311. 
Rochet, J.C., J. Tirole. 2006. Two-Sided Markets: A Progress Report. Rand Journal of Economics 35(3) 645-667. 
Romer, P.M. 1990. Endogenous Technical Change. Journal of Political Economy 98(5) S71-s102. 
Rotemberg, J.J., G. Saloner. 1994. Benefits of Narrow Business Strategies. American Economic Review 84(5) 1330-

1349. 
Sahal, D. 1985. Technological Guideposts and Innovation Avenues. Research Policy 14(2) 61-82. 
Salop, S.C. 1979. Monopolistic Competition with Outside Goods. Bell Journal of Economics 10(1) 141-156. 
Simon, H.A. 1947. Administrative Behavior: A Study of Decision-making Processes in Administrative 

Organizations. Macmillan, Chicago, IL. 
Simon, H.A. 1955. A Behavioral Model of Rational Choice. The Quarterly Journal of Economics 69 99-118. 
Simon, H.A. 1969. The Sciences of the Artificial. Massachusetts Institute of Technology, Cambridge. 
Simon, H.A., A. Newell. 1962. Computer Simulation of Human Thinking and Problem Solving. Monographs of the 

Society for Research in Child Behavior 27 137-150. 
Taylor, C.R. 1995. Digging for Golden Carrots: An Analysis of Research Tournaments. American Economic Review 

85(4) 872-890. 
Terwiesch, C., C.H. Loch. 2004. Collaborative Prototyping and the Pricing of Custom-Designed Products. 

Management Science 50(2) 145-158. 
Terwiesch, C., Y. Xu. Forthcoming. Innovation Contests, Open Innovation, and Multiagent Problem Solving. 

Management Science 1-15. 
von Hippel, E. 2005. Democratizing Innovation. MIT Press, Cambridge, MA. 

John 
Institution?



3 
Boudreau, Lacetera and Lakhani: Parallel Search, Incentives and Problem Type 
 
 

  

 

Figures 

Figure 1 Illustration of the Structure of TopCoder Competitions 

 
 

Figure 2 Comparison of Preferred Linear Specification,with Flexible Non-Parametric Specification 
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Figure 3 Estimated Effect of Adding an Additional Competitor to Average Scores and the Winning Score 
in a Group of Direct Competitors in a Room 
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Table 1 TopCoder’s Breakdown of Problems Categories 

Knowledge Category No. of Problems Tagged

Encryption/Compression 19
Advanced Math 63
Greedy 84
Sorting 99
Recursion 117
Geometry 119
String Parsing 128
Simple Search, Iteration 148
Graph Theory 151
Simulation 157
Search 170
String Manipulation 192
Math 202
Simple Math 213
Dynamic Programming 245
Brute Force 251

Notes. The number of problems associated with 
different problem types exceeds the count of 
problems in the population, as roughly the half the 
problems are tagged as belonging to multiple 
categories.  

 

 
Table 2 Sample Problems (and Rooms Distributed across Problems)  

by Complexity and Difficulty 

 

COMPLEXITY
(No. Knowledge Categories) 1 2 3 Total 1 2 3 Tot

1 87 92 95 274 1,308 1,233 1,343 3,884
al

2 99 94 77 270 1,451 1,496 1,205 4,152
3 36 24 34 84 408 390 500 1,298
4 3 4 9 16 42 68 161 271
5 0 1 0 1 0 22 0 2

Total 21
2

5 215 215 645 3,209 3,209 3,209 9,627

DIFFICULTY DIFFICULTY

Sample Problems "Rooms" of Direct 
Competitors
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Table 3 Variable Definitions 

Variable Definition

AVGSCORE Total number of points scored by a set of direct competitors in a 
given room, divided by the number of competitors in the room

MAXSCORE Best or winning score in a group of direct competitors in a room

COMPETITORS Number of competitors in a given room of direct competitors

COMPLEXITY Count of different TopCoder knowledge categories that a given 
problem has been associated with

MONEYPRIZE Dollar prize awarded per room

DIFFICULTY TopCoder's assessment of the difficulty of solving a problem as 
a score of 1, 2 or 3, where 3 is most difficult

MAXPOINTS Maximum possible points that are possible to score on a given 
problem

AVGRATING TopCoder's internal rating of competitor's abilities, based on 
historical performance, averaged across all direct competitors in 
a given room

TIMEOFDAY The precise clock time (hours, minutes) at which a given contest 
started, expresed in terms of (decimalized) 24 hour clock

AFTERNOON Indicator variable switched on when TIMEOFDAY > 15 (i.e. 
3pm)

 
 

  

Table 4 Descriptive Statistics and Correlations 

Variable Mean Std. Dev. Min Max (1) (2) (3) (4) (5) (6) (7)

(1) AVGSCORE 279.4 131.1 0 840

(2) MAXSCORE 313.7 212.9 0 995 .39

(3) COMPETITORS 18.4 1.1 15 20 -.11 -.02

(4) COMPLEXITY 1.8 .8 1 5 -.09 -.06 .03

(5) MONEYPRIZE 38.8 68.1 0 234 .01 .01 .09 .04
(6) DIFFICULTY 2.0 .8 1 3 .00 .20 .00 .05 -.01

(7) MAXPOINTS 585.6 304.7 200 1200 -.01 .15 .00 .05 -.01 .98

(8) AVGRATING 1757.7 244.0 1036 3122 .28 .17 -.06 .01 .04 .18 .19
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Table 5 Baseline Estimates of the Relationship between Competition and Problem-Solving 

Room-level, 
MAXSCORE

(5-1) (5-2) (5-3) (5-4) (5-5) (5-6) (5-7)
Explanatory 
Variables

Covariates Problem FE FE, Room 
Controls I

FE, Room 
Controls I I First-Stage IV, FE FE, Room 

Controls

COMPETITORS -11.50*** -8.94*** -5.00*** -5.06*** -6.97*** -.25
(1.14) (.84) (.74) (.73) (2.59) (1.56)

MONEYPRIZE 0.04* .001*** .04***
(.02) (.00) (.01)

DIFFICULTY = 2 40.78*** .03 52.05***
(8.73) (.02) (2.26)

DIFFICULTY = 3 109.67*** .06 162.01***
(22.54) (.05) (6.01)

MAXPOINTS -.14*** .00 -.34***
(.03) (.00) (.01)

AVGRATING .17*** -.0003*** -.006 .15***
(.00) (.00) (.00) (.01)

AVGRATING Dummies Yes
TIMEOFDAY .08***

(.00)
AFTERNOON .95***

(.02)
Problem Type Dumm Yes Yes Yes
Round FE
Problem FE Yes Yes Yes Yes Yes Yes
R-squared .04 .64 .73 .73 .03 0.55

Notes. *, **, and *** indicates statistical significance at the 10%, 5% and 1% levels, respectively. Robust 
standard errors in parentheses; In room-level regressions, N =  9,627; In individual competitor-level 
regressions, N = 162,207; these observation counts relate to the sample of 645 problems.

Competitor-level, 
SCORE

Room-level, AVGSCORE

 
 

Table 6 Estimates of the Effect of Problem Type on the Competition-Problem-Solving Relationship 

AVGSCORE MAXSCORE AVGSCORE MAXSCORE AVGSCORE MAXSCORE
Explanatory Variables (6-1) (6-2) (6-3) (6-4) (6-5) (6-6)

COMPETITORS -13.06*** -10.26** -8.56*** -6.27** -2.64*** 3.64*
(1.78) (4.00) (1.17) (2.50) (.94) (1.98)
4.46*** 5.54***
(.88) (2.08)

AVGRATING .17*** .15*** .18*** .14*** .17*** .16***
(.00) (.01) (.01) (.01) (.00) (.01)

Problem FE Yes Yes Yes Yes Yes Yes
R-squared 0.73 0.55 0.74 0.57 0.72 0.54

Notes. *, **, and *** indicates statistical significance at the 10%, 5% and 1% levels, respectively. Simple problems are those 
that implicate a single category of problem type, i.e. COMPLEX = 1; Complex problems are those that implicate more than one 
category of problem type, i.e. COMPLEX > 1; Robust standard errors in parentheses; In room-level regressions, N = 9,627; 
these observation counts relate to the sample of 645 problems.

COMPLEX PROBLEMS 
(COMPLEXITY>1)

SIMPLE PROBLEMS 
(COMPLEXITY=1)ALL PROBLEMS

COMPETITION x COMPLEXITY
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Sample TopCoder Problem  

 
Problem Statement 
You are working for the FBI and are trying to locate a particular criminal organization. Within the organization you 
know which members communicate with each other. The problem is that the members may go by aliases. Given both 
the information in the database about the organization, and the field data about a suspicious organization, you will 
determine whether they represent the same group. The two sets of data represent the same group if and only if they only 
differ by the names of the participants. 
 
For example: 
Database               Field Data  
FRANK ----- BOB        WILLARD ----- GEORGE 
  |                       | 
  |                       | 
  |                       | 
GEORGE                  GREG 
 
The Database and Field Data represent the same organization even though the participants are using different names. 
 
Renaming Scheme: 
FRANK -> WILLARD           FRANK -> WILLARD          
BOB -> GEORGE       or     BOB -> GREG  
GEORGE -> GREG             GEORGE -> GEORGE 
 
If the database data and the field data represent the same organization return how many of the members are going by 
aliases, otherwise return -1. If there is more than one naming scheme possible in mapping the database information to 
the field data, use the one that gives the greatest value for the number of aliases. So in the previous example we would 
use the first renaming scheme thus giving 3 instead of 2. 
 
The database data will be given in a String[] database. Each element of database will be in the form "NAME1 NAME2" 
meaning that NAME1 and NAME2 communicate with each other. The field data will be given in a String[] fieldData 
that is formatted in the same way as database. In the above example, the input could have been formatted as: 
 
database = {"FRANK BOB","FRANK GEORGE"} 
fieldData = {"WILLARD GREG","GEORGE WILLARD"} 
 
In any particular organization, no two people will have the same name or alias. In other words, no two different people 
in the database will have the same name in database. In addition, no two different people in the field data will have the 
same name in fieldData. 
  
 
 
Problem Statement 
  
A certain vending machine delves out its goods from a rotating cylinder, which can rotate around in both clockwise and 
counter-clockwise directions. The cylinder has a number of shelves on it, and each shelf is divided into a number of 
columns. On the front of the machine, there is a panel of doors that extends the entire height of the column. There is 
one door for each shelf, which is the width of one column. When a purchase is made, the user uses two buttons to 
rotate the cylinder so their purchase is located at a door. They make their purchase by sliding the appropriate door open, 
and removing the item (there can only be one item per column on a particular shelf). The cylinder can rotate in a 
complete circle, and so there are always two ways to get from a particular column to another column. 
 
Because the vending machine company wants to sell the most expensive items possible, and the machine can only show 
one column at a time, the machine will always try to put forth the most expensive column available. The price of a 
column is calculated by adding up all the prices of the remaining items in that column. The most expensive column is 
defined to be the one with the maximum price. If 5 minutes have elapsed since the last purchase was made, the machine 
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rotates the cylinder to the most expensive column. If, however, another purchase has been made before the 5 minutes 
are up, the rotation does not occur, and the 5 minute timer is reset. 
 
Recently, some machines' rotating motors have been failing early, and the company wants to see if it is because the 
machines rotate to show their expensive column too often. To determine this, they have hired you to simulate purchases 
and see how long the motor is running. 
 
You will be given the prices of all the items in the vending machine in a String[]. Each element of prices will be a single-
space separated list of integers, which are the prices (in cents) of the items. The Nth integer in the Mth element of prices 
represents the price of the Nth column in the Mth shelf in the cylinder. You will also be given a String[] purchases. Each 
element in purchases will be in the format: 
 
"<shelf>,<column>:<time>" 
 
<shelf> is a 0-based integer which identifies the shelf that the item was purchased from. <column> is a 0-based integer 
which identifies the column the item was purchased from. <time> is an integer which represents the time, in minutes, 
since the machine was turned on. 
 
In the simulation, the motor needs to run for 1 second in order to rotate to an adjacent column. When the machine is 
turned on, column 0 is facing out, and it immediately rotates to the most expensive column, even if the first purchase is 
at time 0. The machine also rotates to the most expensive column at the end of the simulation, after the last purchase. 
Note that when an item is purchased, its price is no longer used in calculating the price of the column it is in. When the 
machine rotates to the most expensive column, or when a user rotates the cylinder, the rotation is in the direction which 
takes the least amount of time. For example, in a 4-column cylinder, if column 0 is displayed, and the cylinder is rotated 
to column 3, it can be rotated backwards, which takes 1 second, versus rotating forwards which takes 3 seconds. 
 
If a user tries to purchase an item that was already purchased, this is an incorrect simulation, and your method should 
return -1. Otherwise, your method should return how long the motor was running, in seconds. 
 
 
Problem Statement 
 
DNA testing is one of the most popular methods of establishing paternity. In such a test, you compare samples of DNA 
from the man, the child, and the child's mother. For the purposes of this problem, assume that each sample is 
represented as a String of uppercase letters ('A'-'Z'). If half of the characters in the child's sample match the characters in 
the corresponding positions in the man's sample, and the remaining characters in the child's sample match the characters 
in the corresponding positions in the mother's sample, then the man is most likely the father. On the other hand, if it is 
impossible to partition the child's sample such that half of the characters match the man's and the other half match the 
mother's, then the man is definitely ruled out as the father. 
 
For example, suppose the child's sample is "ABCD" and the mother's sample is "AXCY" (all quotes for clarity only). 
The 'A' and 'C' in the child's sample must have come from the mother, so the 'B' and 'D' must have come from the 
father. If the man's sample is "SBTD", then he is most likely the father, but if the man's sample is "QRCD", then he is 
definitely not the father. Note in the latter case that the man was definitely ruled out even though half of his sample (the 
'C' and 'D') did in fact match the child's. 
 
Your method will take samples from the child and the mother, as well as samples from several men, and return the 
indices of the men who cannot be ruled out as the father, in increasing order. 
 
 
 
Problem Statement 
Fabian is in charge of a law firm working on an important case. For a case coming up, he needs a specific folder which is 
stored in one of the filing cabinets arranged in a line against the wall of the records room. He has assigned a number of 
workers to find the folder from the filing cabinets. He doesn't want the workers to get in each other's way, nor does he 
want folders from different filing cabinets getting mixed up, so he has decided to partition the cabinets, and assign a 
specific section to each worker. Each worker will have at least 1 cabinet to search through. 
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More specifically, Fabian wants to divide the line of filing cabinets into N sections (where N is the number of workers) 
so that every cabinet that the ith worker looks through is earlier in the line than every cabinet that the jth worker has to 
look through, for i < j. 
 
His initial thought was to make all the sections equal, giving each worker the same number of filing cabinets to look 
through, but then he realized that the filing cabinets differed in the number of folders they contained. He now has 
decided to partition the filing cabinets so as to minimize the maximum number of folders that a worker would have to 
look through. For example, suppose there were three workers and nine filing cabinets with the following number of 
folders: 
 
   1. 10 20 30 40 50 60 70 80 90 
 
He would divide up the filing cabinets into the following sections: 
 
   1. 10 20 30 40 50 | 60 70 | 80 90 
 
The worker assigned to the first section would have to look through 150 folders. The worker assigned to the second 
section would have to search through 130 folders, and the last worker would filter through 170 folders. In this 
partitioning, the maximum number of folders that a worker looks through is 170. No other partitioning has less than 170 
folders in the largest partition. 
 

Write a class FairWorkload with a method getMostWork which takes a int[] folders (the number of folders for 

each filing cabinet) and an int workers (the number of workers). The method should return an int which is the maximum 

amount of folders that a worker would have to look through in an optimal partitioning of the filing cabinets. For the 

above example, the method would 
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