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Abstract

We examine how three different communication processes operating through social
networks are affected by homophily – the tendency of individuals to associate with
others similar to themselves. Homophily has no effect if messages are broadcast or sent
via shortest paths; only network connection density matters. In contrast, homophily
substantially slows learning based on repeated averaging of neighbors’ information and
Markovian random walks such as the Google random surfer model. Indeed, the latter
processes are strongly affected by homophily but completely independent of connection
density, provided this density exceeds a low threshold. We obtain these results by
establishing new results on the spectra of large random graphs and relating the spectra
to homophily. We conclude by checking the theoretical predictions using observed high
school friendship networks from the Adolescent Health dataset.
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1 Introduction

How does a society’s structure affect the speed at which information diffuses within it? In

particular, how do the segregation patterns in a social network affect how information is

diffused and aggregated within that society? How does that relationship change as we vary

the communication process? In this paper, we take a step toward answering these questions

by studying how information transmission is affected by one of the most salient observed

features of social networks – homophily.

Homophily – the tendency of individuals to associate with those similar to themselves

– has been observed since antiquity1 and studied by sociologists under that name since

Lazarsfeld and Merton (1954). It has been documented across a wide array of different

characteristics, including race, age, ethnicity, profession, religion, and various behaviors (see

McPherson, Smith-Lovin and Cook (2001) for a survey). Indeed, homophily is one of the

most pervasive and robust tendencies of social networks, and one of the main features that

makes them distinctively social. Nevertheless, there has been effectively no modeling of

the impact of homophily on important processes such as the diffusion of information, the

formation of consensus, or other forms of social learning and communication that are integral

to social and economic behaviors.

In this paper, we address this gap by modeling both homophily and communication

explicitly at the level of interactions between individual agents, and then using the model to

examine how the extent of homophily affects communication in various settings. In doing

this, we bring together two important but previously separate threads of research: statistical

models of networks with homophily and models of information diffusion and learning in a

given network. Random network modeling allows us to capture homophily in a natural way:

certain links are more likely to form than others but the precise realization of the network is

random. Working with models of communication and learning in social networks allows us

to understand how these are affected by changes in homophily.

We use one probabilistic model of homophily: the multi-type random network. This is a

generalization of a seminal Erdős-Rényi random network model, and it also nests many other

previous random network models. In this model, agents are divided into different types, and

the probability that a link is formed depends only on the types of the agents involved. Using

these random networks as a basis, we study three different learning processes2. Whether or

1By Plato’s time, homophily was already considered proverbial. In The Republic, Cephalus says: “For it
often happens that some of us elders of about the same age come together and verify the old saw of like to
like” (Book I, p. 329).

2There are some similar models that generalize the simpler random network models, such as variations on
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not homophily affects the speed of communication or learning at all turns out to depend

on how information is diffused through the network. The first process we study is one in

which information is either broadcast or navigated to its destination via shortest paths. This

class includes many peer-to-peer systems like the Internet, mechanisms where messages are

routed within an organization using something like an organizational chart, and information

spreading phenomena where people tell an important piece of news to everyone they know.

The second is a process based on a linear updating or learning model developed by French

(1956) and Harary (1959) where individuals update their beliefs or actions by repeatedly

taking weighted averages of their neighbors’ beliefs or actions. This captures boundedly

rational processes of updating as well as pressures to conform or a desire to match actions

of neighbors3. The third is a random walk process on a network, where some particle hops

around the network, having equal probability of moving along any link out of its current

node; one example is Google’s famous model of a surfer who randomly follows a link out of

the website he is currently visiting. These three processes encompass many important forms

of network-based communication and diffusion.

Our main results show that whether or not homophily has an impact depends on the

communication process, and then we also detail precisely how homophily matters when it

matters. In particular, we show that processes based on shortest paths are unaffected by

homophily, while averaging processes and random walks are affected and can be substantially

slowed down by homophily. A central intuition behind these results is that homophily

does not affect the average distance between nodes in a network if connectivity is held

constant, but it does affect the relative numbers of paths between various pairs of agents.

The reason that it does not affect average shortest path length is that even with substantial

homophily and the resulting clustering, extended neighborhoods still expand exponentially

in the number of steps. Thus, even though there may be fewer paths between agents of

different types, the average shortest path length between them does not change substantially.

So processes in which information must simply traverse a shortest path have essentially the

same behavior as homophily changes. In contrast, processes based on weighted averaging

or random walks are substantially slowed down as homophily increases. This is because

even though the average path length is unchanged, there are relatively fewer paths between

agents of different types as homophily increases. This means that nodes are more influenced

p∗ models (e.g., see the discussion in Jackson (2008b)). However, those have generally been used as empirical
models to fit observed patterns of relationships, and have not been used to examine processes occurring on
networks, as we do here.

3Such updating processes can lead a society to an optimal aggregation of information in some settings,
depending on the specifics of the social network structure (e.g., see Golub and Jackson (2007)).
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by others of their own type, which reinforces global heterogeneity in beliefs or behaviors and

slows down convergence to a steady state.

An interesting implication of our results is the following. When looking at shortest path-

based processes, increasing homophily does not affect the average shortest path length. In

contrast, with averaging and random-walk based processes, if homophily is increased, the

speed of convergence decreases even if link density also goes up. That is, these processes are

completely orthogonal to each other when it comes to what matters for their speeds.

As an empirical illustration of the results, we examine the time to convergence of these

processes on social networks from over eighty different high school friendship networks that

exhibit varying degrees of homophily. We show that the predictions of our analysis fit well

and that the speed of convergence depends on homophily in the predicted ways.

Conceptual Outline

Our results involve several layers, including some contributions on the mathematical side

which are needed to deduce the relationships discussed above. In particular, in order to

relate network structure (including homophily) to convergence speeds we have to work with

the spectral decomposition of a network, which naturally leads us to develop new results on

the spectra of large random graphs. Given this layering, it is useful to have a road map of

how all of our results fit together.

After introducing the model and background definitions, we first present the main concep-

tual results that relate homophily to speed of communication. Having the main conclusions

in hand, we then present a series of results that are used to derive those conclusions. In

particular, we begin with a statement of standard results relating speed of convergence to

second eigenvalues. Next, we present our key technical theorem, showing that the second

eigenvalue associated with a random network will be close to the second eigenvalue of a

smaller matrix which deals only with relative linking probabilities across types. That is, all

that really matters in determining the second eigenvalue in large societies is the expected

connection probabilities between types. This result allows us to derive second eignvalues for

the multi-type random networks based on homophily patterns and relate the eigenvalues to

simple measures of homophily. Thus, the key technical result allows us to tie homophily to

second eigenvalues, which in turn govern consensus and mixing times. Putting all of this

together provides our conceptual conclusions.
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2 The Model: Networks and Processes

2.1 Networks

Given a set of n nodes N = {1, . . . , n}, a network is represented via its adjacency matrix: a

symmetric n-by-nmatrix A with entries in {0, 1}. The interpretation is that Aij = Aji = 1

indicates that nodes i and j are linked, and we restrict attention to undirected networks.4

Let di(A) =
∑n

j=1Aij denote the degree of node i. Let dmin(A) and dmax(A) be the

minimum and maximum degrees, respectively, and d̄(A) denote average degree, and let

D(A) =
∑
i

di(A)

be the total degree in the society.

2.2 Multi-Type Random Networks

In order to study the impact of homophily on communication and learning through a network,

we introduce a random network model that incorporates homophily. The seminal random

network model of Erdős-Rényi random networks is a special case of the model here (and

the same is true of the model based on degree distributions of Chung and Lu (2002)) which

allows us to make benchmark comparisons to the literature on speeds of processes on networks

without homophily.

The structure we use to model homophily is what we call the multi-type random network.

It consists of a vector n = (n1, . . . , nm) which captures how many nodes of each type there

are (and implicitly, how many types, m, there are), and a symmetric m-by-m matrix P,

whose entries in [0, 1] describe the probabilities of links between various types. Let Nk be

the set of nodes of type k, and without loss of generality label nodes so that {1, . . . , n1}
are the nodes of the first type, {1 + n1, . . . , n1 + n2} are the nodes of the second type, and

Nk =
{

1 +
∑

i<k ni, . . . ,
∑

i≤k ni
}

are the nodes of the k-th type. The resulting random

network is captured via its adjacency matrix which is denoted A(P,n) and is a random

variable. In particular, A(P,n) is built by letting the entries Aij with i > j be independent

Bernoulli random variables with parameter Pk` if i ∈ Nk and j ∈ N`. That is, the entry Pk`

4Although we conjecture that the results can be extended to directed networks without much change in
the statements (as the communication/learning processes have direct extensions to the directed case), there
are parts of the proofs that take advantage of the symmetry of the adjacency matrix, and so we are not sure
of what modifications would ensue in examining directed networks.
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captures the probability that an agent of type k links to an agent of type `. We then fill in

the remaining entries of A by symmetry: Aij = Aji.

Here are some special cases of the model.

If Pk` = p for all k, `, then this is simply an Erdős-Rényi random network.

The random network model of Chung and Lu (2002) is the special case where the only

heterogeneity in liking is induced by expected degrees. In particular, each type has an

expected degree wk, and Pk` = wkw`/W where W =
∑

k nkwk. Thus, the matrix P is

reduced from having m2 degrees of freedom to having m, namely the expected degrees of the

nodes.

A spatial model is one where each type of node has a parameter θk ∈ Rm for some m

that describes it, and Pk` = f(∆(θk, θ`)) where f is a decreasing function and ∆ is Euclidean

distance. This the probability that nodes link to each other is a function of how similar their

types are.

2.2.1 The Islands Model

Another special case of the model that we discuss in some of the results below is an islands

model. There we assume that all ni are equal, so that islands are equal-sized; we set Pkk = ps

for all k and Pk` = pd for all k 6= `. Thus, nodes of the same type connect to each other with

one probability, and nodes of different types connect to each other with another probability.5

These examples are only a few of the possibilities, and clearly one can consider com-

binations of these variations, and other considerations such as special cases where linking

probabilities are built on some hierarchy, etc.

2.2.2 Remarks on When the Multi-Type Random Networks Model is Useful

These examples give an idea of how rich the multi-type random networks model is. How-

ever, as with any model, it is most pointed in its predictions when we obtain a significant

reduction in the dimensionality of the problem. In particular, for our main results involving

representative agents to be most useful, it is helpful for there not to be too many types or,

failing that, for the interaction between types to be described by only a few parameters.

Effectively, the results reduce the problem of working with a network of n individuals to a

simpler problem of working with m types. If there are as many types as individuals, then

5See Currarini, Jackson and Pin (2009) and Copic, Jackson and Kirman (2005) for illustrations and
applications of such a model.
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clearly that will be unhelpful without additional assumptions; however, a good deal of ex-

planatory power comes out from looking at just a few types, to the extent that a few types

capture most of the important variation in the data. As we will see from our look at the

data, very simple definitions of types have substantial explanatory power.

2.3 Communication and Learning Processes

We now describe three different processes communication/learning that we consider. As we

shall see, there will be some differences in how these are affected by homophily.

2.3.1 Shortest-Path Communication

Consider any of a class of processes where the time it takes to communicate between two

nodes is proportional to the shortest path between the two nodes.6 In a connected network,

this applies to broadcast processes, where nodes communicate to all neighboring nodes in

each period, or to processes where the network is explicitly navigated by a traveler using

some sort of addressing system. This applies to some social and many physical transmission

processes.

2.3.2 A Repeated Updating Learning Model

The second process that we examine is based on a model first discussed by French (1956)

and Harary (1959), and articulated in a more general form by DeGroot (1974).

Given a network A, let T(A) be defined by Tij(A) = Aij/di. Beginning with some initial

belief vector b(0) ∈ [0, 1]n, let

b(t) = T(A)b(t− 1)

for all t ≥ 1. That is, agents form today’s beliefs by taking the average of neighbors’ beliefs

yesterday, where an agent can be his own neighbor. It is immediate that then

b(t) = T(A)tb(0).

If the initial beliefs b(0) are independent and identically distributed draws from normal

distributions around a common mean then the linear updating rule at t = 1 corresponds

to Bayesian updating with certain priors about signal precisions as discussed by DeMarzo,

Vayanos, and Zwiebel (2003). The behavioral aspect of the model concerns times after

6Standard network definitions, such as shortest path, are omitted. See Jackson (2008b) for background
definitions.
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the first round of updating. Here, it is no longer Bayesian to update using a weighted-

average rule, but due to the overwhelming complexity of the Bayesian calculation, we assume

agents continue using the simple averaging rule in later periods, too. More discussion of this

assumption can be found in DeMarzo, Vayanos, and Zwiebel (2003).

Beyond the interpretation of updating signals and “learning”, the linear updating model

can also be interpreted as a model that captures behaviors where agents adjust their behav-

iors to match the average of their neighbors’ choices. In particular, it can be interpreted as

myopic best-response updating in a game. Suppose that agents have to choose each period

a variable bi, which captures their behaviors, for instance which dialect of a language they

speak, and the dialects correspond to points in [0, 1]. The cost to i of communicating with

j is (bi − bj)2. If each agent communicates with his neighbors according to A, then the best

response mapping is given by the linear updating rule.

If T(A) is not connected, then it suffices to consider the asymptotic behavior of each

connected component to understand the full dynamics of the process.7 Thus, we assume

from now on that T(A) is connected, and define T(A)∞ = limt→∞T(A)t.

Lemma 1. If A is connected, then T(A)t converges to a limit T(A)∞ such that (T(A)∞)ij =
di(A)
D(A)

.

Lemma 1 follows from standard results on Markov chains (e.g., see Golub and Jackson

(2007) and Jackson (2008b) for details and background) and implies that for any given initial

vector of beliefs b(0), the limiting belief

lim
t

b(t) = T∞b(0) = (b, b, . . . , b) where b =
∑
i

bi(0)di(A)

D(A)
.

Thus, the relative influence that an agent has over the final beliefs is his or her relative

degree.

2.3.3 Random Walks

The third process that we study is a random walk on a network. This is a process where

a particle starts at some node and hops to any of its neighbors with equal probability at

each step. One example to think of is that of a college student who is viewing Facebook

profiles; at each step, she clicks on a random friend of the person whose profile she is currently

7If the communication network is directed then convergence requires some aperiodicity in the cycles of
the network and works with a different segmentation into components, but still holds quite generally, as
discussed in Golub and Jackson (2007).
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viewing. Another example is the Google model of a surfer who randomly clicks on links as he

navigates the World Wide Web.8 Here, the particle starts at some location and transitions

from node i to node j with probability Tij. The question is how long it takes to reach the

steady state distribution on location. While this is a fairly specific process, and may not

capture as many applications as the previous two processes, it has figured prominently in

the literature Markov processes and random graphs and so it is a very useful benchmark.

Just as in the case of the linear updating learning model, Lemma 1 implies that if A is

connected, then Tt converges and then the limit distribution of the random walk is to be at

node i with probability di(A)
D(A)

regardless of the starting position of the random walk. So, the

limiting distribution of the time that the walk spends at a given node is proportional to its

degree.

2.4 Consensus Time and Mixing Time

We now present ways of measuring the speed at which the above-defined processes operate

on a given network. The different processes suggest different measures.

First, shortest-path based processes have an obvious measure of speed, which is simply

the average shortest path length in the network, or if one is worried about the longest time

it could take to pass from some node to some other node, then the diameter of the network.

These are standard notions, so there is no need to develop any special measure for such

processes.

The other two processes require measures of timing/distance that are more tailored to

them. We now discuss each in turn.

2.4.1 Distances between Vectors

There are two distance measures that we focus on in measuring convergence.

The first is a standard weighted squared deviation distance. Given two vectors of beliefs

v and u let

‖v − u‖2w =
∑
i

wi(vi − ui)2.

In applying this, we will be interested in the differences between beliefs at time t and

8Of course, we might think of him being biased toward following certain out-links from a given web page;
this could be modeled by using a nonuniform random walk; i.e., one in which all nonzero entries in a given
row of T are not the same. We suspect that our conclusions would simply be modified by weighting factors,
but the symmetry of the simpler case is handy in our proofs.
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their limit:

‖T(A)tb−T(A)∞b‖2w.

It will be useful to use weights, w, that are the influences of the agents s(A), where

s(A) =

(
d1(A)

D(A)
, . . . ,

dn(A)

D(A)

)
.

The distance

‖T(A)tb−T(A)∞b‖2s(A)

examines the squared difference between agents’ current beliefs and their limit beliefs. The

distance is weighted by the agents’ degrees which gives more weight to relatively more in-

fluential agents. This quantity has a fairly simple interpretation. Consider the following

experiment: agents start with beliefs b; at time t, an agent is sampled uniformly at random.

We imagine that he asks a random neighbor for his opinion: i.e. one of his neighbors is sam-

pled uniformly at random; we record the square of this neighbor’s deviation from consensus

beliefs. The expectation of this variable under this experiment is the distance defined above.

In other words, sampling each agent in proportion to his degree captures the deviation from

consensus of an opinion sent at time t across a randomly chosen link in the network.

The following lemma shows an obvious relationship between a straight averaging of the

squared deviations in beliefs and this weighted averaging.

Lemma 2. Let e = (1, . . . , 1). Then

d̄(A)

dmax(A)
‖T(A)tb−T(A)∞b‖2s(A) ≤ ‖T(A)tb−T(A)∞b‖2e/n

≤ d̄(A)

dmin(A)
‖T(A)tb−T(A)∞b‖2s(A).

Thus, for graphs where the highest- and lowest-degree agents have degrees not too dif-

ferent from the average, as in some of the networks we will be concerned with, whether

or not we weight mean square deviation from consensus by degree will not make a large

difference. Even in networks where there are large deviations in degree, if the number of de-

viant nodes is bounded, then a direct variation of Lemma 2 implies that the two notions are

still close. Given that converting between these two notions only requires computing some

bounds which will usually be good but which will depend on the application, we work with

the degree-weighted version of the deviation measure as it has nicer mathematical properties

and more intuitive relationships to the network structure.
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The other distance measure that we will work with is the total variation metric, where

the distance between a vector v and another vector u is

‖v − u‖TV =
1

2

∑
i

|vi − ui|.

We will be applying this in cases where v and u are probability measures, so that v ≥ 0,

u ≥ 0, and
∑

i vi =
∑

i ui = 1. Then it is straightforward to see that

‖v − u‖TV =
1

2

∑
i

|vi − ui| = max
C⊂N

∣∣∣∣∣∑
i∈C

vi −
∑
i∈C

ui

∣∣∣∣∣ ,
so the total variation metric keeps track of the maximal difference in the probability that

two measures assign to some set.

2.4.2 Consensus Time and the Linear Updating Model

A central question in the linear updating model is the rate at which beliefs of the society

converge to their consensus limit. We define the consensus time as follows.

Definition 1. The consensus time to ε > 0 of the network A is

CT(ε; A) = sup
b∈[0,1]n

min{t : ‖T(A)tb−T(A)∞b‖2s(A) < ε}.

The need to consider different potential starting belief vectors b is clear, as if one starts

with bi(0) = bj(0) for all i and j then consensus is reached instantly. Thus, the “worst case”

b will generally have beliefs that differ across types and is useful as a benchmark measure of

how homophily matters; taking the supremum in this way is standard in defining convergence

times (e.g., see Montenegro and Tetali (2006)).

Since T is a contraction under the distance measure (a standard fact about reversible

Markov chains), once the mean-square deviation is below ε, it can never go above it again.

Thus, the definition is equivalent to letting CT(ε; A) be the earliest time such that deviation

from consensus is small forever after.

2.4.3 Mixing Time and Random Walks

There are many definitions measuring the distance of a random process to its limit that

come from the literature on Markov chains (e.g., see Montenegro and Tetali (2006)), and the
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following definition is among the most common. Let ei be the unit vector with an entry of

1 in the i-th entry and 0’s elsewhere.

Definition 2. The mixing time to ε > 0 of a network A is

MT(ε; A) = sup
i

min{t : ‖eiT(A)t − eiT(A)∞‖TV < ε}.

Mixing time keeps track of how different the probability across states is after t periods

compared to the limiting distribution. Taking the supremum over different starting states is

equivalent to considering all possible starting distributions.

2.4.4 The Relation of Consensus and Mixing Time

The consensus and mixing times have a close relationship intuitively, as both depend on

how quickly Tt approaches its limit. The main difference is that consensus time works

with mean-squared deviations while mixing time works with the sum of absolute values of

the deviations. In terms of the mathematics, the difference between them is simply the

difference between the `2 and `1 norms as well as a difference in the normalizing constant.

Just as an illustration, consider the distance between (1, 0, 0, . . .) and (1/n, 1/n, 1/n, . . .).

If we think of these as probability measures, then they are quite different as one is a Dirac

measure and the other is a uniform distribution. In contrast, if these are behaviors or beliefs,

then only one agent in the society is deviating substantially from the limiting behavior or

beliefs. Thus depending on the application, one might or might not want to consider these

to be close or far apart. Under the `1 norm used in calculating consensus time, these are

close to each other, while under the `2 norm used in calculating mixing time, these are quite

far apart.

The mixing time approach is most natural and standard in the setting of Markov chains,

where distributions are important, and conensus time is a natural measure in the setting of

linear updating models. We present results on both, and shall see that despite the differences,

they will behave similarly in our setting under the right normalizations. As we shall see also

in the empirical section (see Figure 6), consensus time and mixing time will essentially

coincide in the high school data.

2.4.5 Asymptotics

In some cases, we consider what happens as n grows. This is natural as there are many

properties of random graphs that can be deduced to hold almost surely for “large” networks,
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but that are hard to express in any meaningful way for a small random graph where any

possible configuration has a nontrivial probability of arising. In such cases, then there is

some question as to the appropriate choice of ε.

Given the steady state distribution s(A) =
(
d1(A)
D(A)

, . . . , dn(A)
D(A)

)
, if the di(A)’s are growing

at roughly the same speed (a condition in some of the results below), then the entries of

s(A) will be of order 1/n. As such, a natural benchmark is to examine CT(γ/n2; A) (given

the squaring in the norm) and MT(γ/n; A) for some fixed γ > 0.

3 The Speed of Communication

We now present our main conceptual conclusions about the speed of communication and

learning for the various processes and discuss the contrasts across different sorts of commu-

nication. We then come back to the main technical contributions in the next section, which

seem to be of some independent interest.

3.1 Shortest-Path Communication

Consider the multi-type random network (n,P) with an associated number of nodes n and

let dk(n,P) =
∑

k′ Pkk′nk′ indicate the expected degree of a node in group k, d̃(n,P) =∑
k(dk(n,P))2nk/D(n,P) be the second order average degree in society,9

D(n,P) =
∑
k

dk(n,P)nk

be the total expected degree, and p(n,P) = D(n,P)/n be the average probability of a link.

Suppose that

(i) there exists M <∞ such that maxk,k′ dk(n,P)/dk′(n,P) < M ,

(ii) d̃(n,P) ≥ (1 + ε) log(n) for some ε > 0,

(iii) log(d̃(n,P))/ log(n)→ 0, and

(iv) there exists ε > 0 such that minkk′ Pkk′/p(n,P) > ε.

These conditions admit many cases of interest and can be understood as follows: (i)

implies that there is not a divergence in the expected degree across groups; (ii) ensures that

9Note that if the average degree dk(n,P) is the same across groups, then this is just the average degree.
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the average degree grows with n fast enough so that the network becomes connected with a

probability going to 1, so that the network will not have isolated components across which

communication is impossible; (iii) implies that average degree grows more slowly than n, as

otherwise the shortest path degenerates to being of length 1 or 2 and does not match most

empirical applications; and (iv) that there is some lower bound on the probability of a link

between groups relative to the overall probability of links in the network. This last condition

ensures that groups do not become so homophilous that the network becomes disconnected.

These conditions still allow for substantial homophily. For instance, if nk is on the order of

d(n,P), then this still allows the probability of a link within same group to even become

infinite relative to the probability across links, so that arbitrarily high levels of homophily

are permitted.

Theorem 1 (Jackson (2008a)). 10 If the random network process (n,P) satisfies (i)-(iv)

then, asymptotically almost surely in n, A(n,P) is connected; the average distance be-

tween nodes is (1 + o(1)) log(n)/ log(d̃(n,P)); and the diameter of the largest component

is Θ(log(n)/ log(d̃(n,P))).

Theorem 1 tells us that although homophily can change the basic structure of a network, it

does not affect the average shortest-path distance between nodes in the network. Moreover,

we have a precise expression for that average distance which is the same as it is in an

Erdös-Rényi random network with the same average degree. Effectively, as we increase the

homophily, we increase the density of links within a group but decrease the number of links

between groups. The result is perhaps somewhat surprising in showing that these two effects

perfectly balance each other to keep average path length unchanged. The intuition behind

the theorem can be understood in the following manner. Suppose that every node had a

degree of d and that the network was a tree. Then the k-step neighborhood of a node would

capture roughly dk nodes. Setting this equal to n leads to a distance of k = log(n)/ log(d)

to reach all nodes, and given the exponential expansion, this would also be the average

distance. The theorem shows that this is exactly how the average distance behaves even

when the network is not a tree, even when we noise up the network so that nodes do not

all have the same degree, and even when we add substantial homophily to the network. In

proving this, there are two critical parts: first, the randomness of the nodes’ degrees does not

substantially alter the calculation (even if a power law distribution is admitted in expected

degrees); and second, even though homophily may alter the structure of the network, the

10This result holds for a more general random network model, and is specialized to the multi-type random
network model considered here for this statement.
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shortest paths branching out from a given node are not much altered by homophily. The

homophily affects which nodes are likely to be closer or further, but not the average distance.

Corollary 1. Consider a process that has an expected communication time equal to the

average distance between nodes. If it is run on two different random network formation

sequences satisfying (i) to (iv) that have the same second order average degree as a function

of n, then the ratio of the expected communication times on the two different random network

sequences goes to 1, asymptotically almost surely.

The above results tell us that average distance is not affected by homophily, and diameter

is affected only up to a fixed finite factor, provided there is some minimal level of inter-

group connectivity. Thus average-path based communication processes are not affected by

homophily but are affected by the connectivity of a society.

3.2 Markovian Processes: Linear Updating and the Random Walk

When we turn to the other forms of communication, there are substantial effects of ho-

mophily. It is not simply average distance that matters, but the relative numbers of paths

between different nodes that matters.

To state the conceptual results most cleanly, we specialize to the islands model. The

results extend to the more general multi-type random networks; those extensions require a

somewhat longer exposition and so are discussed in the next section.

In the context of the islands model, let us define two measures of homophily. The

(unnormalized) homophily is defined as

H =
ps
p

and captures how much more probable a link to a node of one’s own type is compared to

other types. This varies between 0 and m, the number of islands. If a node only links

to same-type nodes, then the average linking probability p becomes ps/m and so H = m,

while if a node only links to nodes of other types, then ps = 0 and so H = 0. We can also

normalize the measure by dividing by the number of islands m; the normalized homophily

is thus defined as

h =
ps
mp

.

Thus, h is the fraction of a node’s links that are expected to be to agents of the same type.

If we index a sequence of societies by their cardinalities n, then the following theorem
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summarizes the main conclusions of how homophily affects consensus and mixing times. The

details and proof in a more general setting appear in the next section.

Theorem 2. In the equal-sized islands model, if p(n)n/ log2(n) → ∞ and h(n) is bounded

away from 1, then for any δ < 1, high enough n ensures that the following is true with

arbitrarily high probability:

(1− δ) log(n)

2 log(m−1
H−1

)
≤ CT(γ/n2; A(P,n)) ≤ (1 + δ) log(n)

log(m−1
H−1

)

and
(1− δ) log(n)

log(m−1
H−1

)
≤ MT(γ/n; A(P,n)) ≤

3
2
(1 + δ) log(n)

log(m−1
H−1

)
.

Theorem 2 provides us with a precise relationship between homophily and consensus

and mixing times. As homophily increases, both consensus time and mixing time increase.

In particular, both the consensus time CT(γ/n2; A) and the mixing time MT(γ/n; A) are

proportional (up to a fixed factor) to

log(n)

log(m−1
H−1

)
.

This is true independently of connectivity and does not have any specific requirements about

how many types (islands) there are. If m becomes large, then this further simplifies and both

the consensus time CT(γ/n2; A) and the mixing time MT(γ/n; A) are proportional (up to

a fixed factor) to
log(n)

log(1/h)
.

When homophily is low, then marginal increases in homophily has only a small effect. But

as homophily grows large (H/m or h closer to 1), the magnitude of the marginal effect of

increased homophily becomes very large.

3.3 Discussion

The interesting and intuitive contrast is the comparison between what matters for shortest-

path and Markovian communication processes. Comparing Theorems 1 and 2, we see that,

in the context of communication based on shortest paths, homophily has no effect while

average connectivity is critical. In contrast, when considering Markovian processes, we see

that homophily is critical while average connectivity is irrelevant.
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This is an intuitive difference. With shortest-path communication, by definition, only the

average distance between pairs of agents matters; it does not matter who is close and who is

far from a given agent. Adding homophily changes network structure on the second dimen-

sion – introducing a certain kind of clustering (see Jackson (2008a) for more on clustering)

– but it does not change the average lengths of the shortest paths branching out from each

node. Agents just end up very close to other agents of their own types, who then provide

connections to other types. While these last statements are not obvious, Theorem 1 asserts

that the various effects interact in just the way needed to keep average distances the same.

With Markovian communication, on the other hand, the time to convergence is deter-

mined by how homophilous the network is, not by the density of its connections, provided

that a certain (low) density threshold is met. A network in which the underlying links are

formed without discrimination will not have any way to support long-term heterogeneity

away from the steady state, even if the network is fairly sparse. On the other hand, a

network with clearly defined islands of clustered agents will be able to maintain long-term

differences in beliefs or behaviors. Each island will converge to its own metastable state and

stay there for a long time, disagreeing with the other islands. Increasing the overall num-

ber of links while maintaining the homophily will not speed up convergence. The ratio of

same-type connections to different-type connections for a given node will remain essentially

the same, and so the network will be able to support the same disagreement based on the

self-reinforcing effect within given types.

An interesting implication of this is the following. Consider a model where agents form

links to others through a random search process, such as the one discussed in Currarini,

Jackson and Pin (2009). Suppose that we consider a change in the matching technology –

such as the introduction of social networking software – so that it becomes easier to search

for agents of one’s own type. If agents have some preference for connecting to agents of

their own types, this would lead to an increase in the overall density of links in the network,

but would also cause the typical agent to spend a larger fraction of links on agents of the

same type. What would the ultimate impact be in terms of communication? Our results

imply that shortest-path based communication would become faster, but at the same time,

Markovian processes of communication such as the linear updating process would converge

more slowly!
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4 Relating Communication Times, Second Eigenval-

ues, and Homophily

Theorem 2 is proven via a series of mathematical results which are of some interest in

their own right. Again, as outlined in the introduction, the relation of speed of learning

to homophily is established by breaking things into two parts: how speed relates to second

eigenvalues, and how second eigenvalues relate to homophily. The key result that unlocks

the second part of this puzzle is a representative agent theorem that shows that the sec-

ond eigenvalue of a random network is, asymptotically, only dependent on the underlying

probabilities of linking between different types of agents. The extra noise of which specific

agents are linked to which others is essentially irrelevant in a large network. Only the broad

patterns of linking across different types are important. Once we have proved this, we can

relatively easily deduce results relating second eigenvalues to homophily, and then complete

the picture relating speed to homophily.

The outline is summarized in Figure 1. A specific roadmap of the technical results is as

follows.

Measures of convergence speed form the top layer of Figure 1 and summary statistics

related to large-scale network structure form the bottom layer. The middle layer is the

spectral intermediary that allows us to tie everything together. It is well-known that the

second eigenvalue of a network’s Markov matrix is a good proxy for the convergence speed

of linear updating processes. Thus, in relating the top and middle layers of Figure 1, we

use standard spectral results from the Markov chain literature to provide upper and lower

bounds on mixing and consensus times. The results on mixing time, which is a central

concept in Markov chain theory that captures how long it takes a process on a network to

become random, are completely standard. We also define a notion of consensus time, which

is essentially the time required for the mean squared deviation from consensus beliefs to get

small. Bounding this quantity requires adapting standard results in a straightforward way

(Lemma 3) but it turns out that in the multi-type random graph setting, tighter bounds

than usual can be obtained for it (Proposition 6).

The main novel technical work of the paper concerns the relationship between the middle

and bottom layers of the figure. First, we prove a general result, Theorem 3, which shows

that in large multi-type random network, the study of the second eigenvalue of the entire

network can be reduced to a computation based on a representative agent matrix which

contains only one agent for each type. Building on this, we relate the second eigenvalue to

more concrete measures of homophily. One that turns out to be particularly well suited to
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the study of eigenvalues, and hence of convergence, is a new quantity called degree-weighted

homophily (DWH). This quantity measures the relative advantage of same-type links over

different-type links, but does so in a way that takes into account different degrees and group

sizes. Proposition 1 shows that, in arbitrary networks, this quantity always provides a lower

bound on second eigenvalue, and hence consensus time. These results already entail that

homophily slows learning and provide general tools for studying the relationship in arbitrary

multi-type networks. For more concrete characterizations in an important special case, we

turn to networks in which agents split into equally sized “islands”, where each island is a

different type. Agents only discriminate based on whether someone else is inside or outside

of their own islands. In this case, for large networks, we can exactly characterize second

eigenvalues for large networks. These results can be stated in terms of a close relative of

DWH (Theorem 2) and in terms of more traditional unweighted measures of homophily

(Corollary 3).

Putting the transitions between the layers together, we end up with a tight relationship

for large island networks between homophily and the speed of learning, which then leads to

the conclusions described above. These are summarized in Theorem 2.

4.1 Relating Consensus and Mixing Times to Second Eigenvalues

We first state results that give fairly precise bounds on how the consensus time and mixing

time of a matrix depends on its second eigenvalue. For any stochastic matrix T, let 1 =

λ1(T), . . . , λn(T) be its eigenvalues sorted by magnitude in decreasing order.

4.1.1 Consensus Time

Lemma 3. Assume A is connected, let λ2(T(A)) be the second largest eigenvalue in mag-

nitude of T(A), and let s be the (unique) steady-state distribution, with mini si = s. If

λ2(T) 6= 0, then for any 0 < ε ≤ 1:⌊
log(1/4ε)− log(1/s)

2 log(1/|λ2(T)|)

⌋
≤ CT(ε; A) ≤

⌈
log(1/ε)

2 log(1/|λ2(T)|)

⌉
.

If λ2(T) = 0, then for every 0 < ε < 1 we have CT(ε; A) = 1.

If ε is fairly small, then the bounds in the lemma are close to each other and so we have

a quite precise characterization in terms of the spectrum of the underlying social network.

The proof of this result follows fairly standard techniques from the spectral literature

and the proof appears in the appendix.

20



The lower bound in Lemma 3 includes a term log(1/s) which can grow as n grows. We

improve on the lower bound in Proposition 6 in the appendix, where we take advantage of

the random graph structure to obtain a lower bound that does not depend on s or n.

4.1.2 Mixing Time

Next, let us consider mixing time. Again, we can derive bounds based on the second eigen-

value. In this case, there is a difference that reflects the difference in the norms associated

with these measures.

The following lemma is adapted from Montenegro and Tetali (2006) (see their Section

2.4: “Does Reversibility Matter”).

Lemma 4. [Montenegro and Tetali (2006)] Assume A is connected. Let λ2(T) be the second

largest eigenvalue in magnitude of T, and s be the (unique) steady-state distribution, with

mini si = s. If λ2(T) 6= 0, then for any 0 < ε ≤ 1:

log( 1
2ε

)

log( 1
|λ2(T)|)

≤ MT(ε; A) ≤
log( 1

2ε
) + log(1/s)/2

log( 1
|λ2(T)|)

.

If λ2(T) = 0, then for every 0 < ε < 1 we have CT(ε; A) = 1.

4.2 Relating Second Eigenvalues to Network Structure

4.2.1 A Representative Agent Theorem

We now present our main technical result, a “representative-agent” theorem that allows us to

analyze the convergence of a multi-type random graph by studying a much smaller graph in

which there is only one node for each type of agent. We show that under some conditions on

the minimum expected degree, the second eigenvalue of most any realized multi-type random

graph converges in probability to the second eigenvalue of this representative-agent matrix.

This result is useful for dramatically simplifying computations of approximate consensus

times and mixing times, both in theoretical results and in empirical settings, as now the

random second eigenvalue can be accurately predicted knowing only the relative probabilities

of connections across different types, as opposed to anything about the precise realization of

the random network.

Recalling the notation from Section 2.2, let dk`(P,n) = n`Pk` the expected number of

links that a node of type k will have with nodes of type ` and let dk(P,n) =
∑

` dk`(P,n)
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be the expected degree of a node of type k. Let Q(P,n) be a matrix of the same dimensions

as P with entries

Qk` =
dk`(P,n)

dk(P,n)
.

So, Qk` is the expected relative fraction of links that a node of type k will have with nodes

of type `. This simplifies things in two respects relative to the realized random network.

First, it works with groups rather than individual nodes, and second, it works with expected

fractions rather than realized values.11

Theorem 3. Consider a multi-type random network described by (P,n). For any δ > 0

there exists K such that if mink dk(P,n) > K log2 n then

|λ2(T(A(P,n)))− λ2(Q(P,n))| ≤ δ, (1)

with probability at least 1− δ.

Theorem 3 is a law of large numbers for spectra of multi-type random graphs. Such

techniques are a central tool in the random graphs literature; they show that various im-

portant properties of random graphs converge to their expectations, which shows that these

locally haphazard objects have very precise global structure. The closest antecedent to this

particular theorem is by Chung, Lu and Vu (2004) for networks without homophily. This

theorem is the first of its kind to apply to a model that allows homophily and the associated

heterogeneities in linking probabilities. We employ a similar strategy of proof, which relies

on decomposing the random matrix representing our graph into two pieces: an “orderly”

piece whose entries are given by linking probabilities between nodes of various types, and a

noisy piece due to the randomness of the actual links. By bounding the spectral norm of the

noise, we show that, asymptotically, the second eigenvalue of the orderly part is, with high

probability, very close to the second eigenvalue of the random matrix of interest. Then we

11There is one technical issue which does not substantially affect any results but which deserves some
comment. If one is thinking of a multi-type random network as describing the relationships relevant for a
boundedly rational process of belief updating, then the self-weights assumed in our formulation of the model
are unnatural. In particular, if we think of a link from i to j as capturing the fact that i has access to the
belief of j, then all nodes should have self-links; in the model as we have described it, a node of type k has
a self link with probability only Pkk. It turns out that formulating the model so that all nodes always have
self-links does not change any of the results presented in this section, except for a small change in asymptotic
rates of convergence in Theorem 3 and its consequences. This is because the spectral norm of the difference
between the matrix we work with in the proof and the matrix with self-links decays to 0, assuming that
minimum degree is unbounded. The same is true if we forbid self-links, which is natural in the dialect-choice
game of Section 2.3.2 or the Facebook random walk of Section 2.3.3. In short, the results are not sensitive
to how we model self links, provided that everyone treats all neighbors, including oneself, equally.
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note that computing the second eigenvalue of the orderly part requires dealing only with a

representative-agent matrix, which will usually be small.

The usefulness of Theorem 3 becomes evident through a series of its implications. First,

it can be used to tighten the lower bound in Lemma 3, so that second eigenvalues become

an even better proxy for consensus time; this is done in Proposition 6 in the appendix. In

the next section, we also use the theorem to derive expressions allowing us to understand

how homophily affects consensus and mixing time in the islands model. Lastly, we use it to

show that the degree weighted homophily bound in Proposition 1 is tight.

4.2.2 Non-Spectral Measures of Homophily

The relationships between consensus and mixing time relate to the second eigenvalue of the

updating matrix, and through our representative agent theorem, to the second eigenvalue of

the matrix of probabilities of connection across types in the random networks model. These

characterizations are still somewhat abstract as the second eigenvalue is an implicitly defined

statistic that may be hard to grasp. In order to understand the implications of the structural

feature of homophily on mixing and consensus time, we need to develop some understanding

of how homophily affects the second eigenvalue.

We begin with some general definitions of homophily, and later specialize to multi-type

random networks.

General Networks and Degree-Weighted Homophily Let us partition N into two

subsets, M and M c. First, we define a notion of the weight between two groups.

Definition 3. Given T = T(A) and two subsets of nodes, B,C ⊆ N , let

WB,C =

∑
i∈B
j∈C

TijTji

|B||C|
.

WB,C keeps track of the relative weight between two sets of nodes B and C, and is a

measure that ranges between 0 and 1. The weight of an edge is proportional to the reciprocal

of the product of the degrees of the nodes on its ends: when an edge is between two nodes

that have many neighbors, it doesn’t count for much, but when it is between two that have

few neighbors, it counts for a lot. The weight also depends on group size: individual edges

within larger groups matter less than those within smaller groups. With this definition in

hand, we define a notion of degree-weighted homophily.
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Definition 4. Given any ∅ ( M ( N , let the degree-weighted homophily of the network

A relative to M be defined by

DWH(M ; A) =
WM,M +WMc,Mc − 2WM,Mc

1
|M |2

∑
i∈M

1
di(A)

+ 1
|Mc|2

∑
i∈Mc

1
di(A)

, (2)

where the W ’s are relative to T(A).

The term in the numerator keeps track of how much of the weight in T falls within M

and within M c, and how much weight goes between these sets of nodes. So, links within the

group M or its complement M c increase the degree weighted homophily and links between

the two groups decrease it. The term in the denominator is a normalizing value which

guarantees12 that this quantity is always between −1 and 1.

To see that the degree-weighted homophily has an intuitive interpretation, consider a

very simple special case. Suppose |M | = n/2 and A corresponds to a regular graph, where

all degrees are equal. Then

DWH(M ; A) =
#(within-group edges)−#(between-group edges)

#(total edges)
. (3)

The theoretical justification for the usefulness of this measure is that it provides a lower

bound on the magnitude of the second eigenvalue of T, and in the limit a tight bound.

Let

DWH(A) = max
∅(M(N

|DWH(M ; A)|.

Thus, the degree weighted homophily of a given network is the maximum level of degree

homophily across different possible splits of the network.13

Proposition 1. Assume that A is connected. Then

|λ2(T(A))| ≥ |DWH(A)| (4)

Combining this with Lemmas 3 and 4 we see that degree weighted homophily provides a

lower bound on the consensus and mixing times.

12This can be verified by using the expression of DWH as a quadratic form in the proof of Proposition 1
below and then noting that the spectral norm of the matrix T(A) is 1.

13This has intuitive relationships to a weighted version of a min cut, although this degree weighted ho-
mophily measure turns out to be the right one for our purposes.
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Corollary 2. Assume A is connected. Then for any 0 < ε < 1,

CT(ε; A) ≥
⌊

log(1/(4ε))− log(1/s)

log(1/DWH(A))

⌋
,

and

MT(ε; A) ≥
⌊

log(1/(2ε))

log(1/DWH(A))

⌋
.

Compared with Lemmas 3 and 4, the results have only one inequality each. This is

because DWH only provides a lower bound on eigenvalues, and hence on the convergence

times. In the next subsection, we supply asymptotic upper bounds in the islands setting.

The Islands Model and Simpler Measures of Homophily In order to develop the

clearest and most intuitive relationships between homophily and the resulting consensus and

mixing times, we now examine a specific case of the multi-type random network model.

Recall the islands model from Section 2.2.1, and consider the case where there are m ≥ 2

equally-sized groups. In all the results of this section, we will consider only n divisible by m,

and the the results will concern limits as n→∞. All quantities (probabilities, homophilies,

etc.) are implicitly indexed by n, but we suppress this indexing unless it is important to

emphasize it. Let ps and pd be the probability of links within and across types, respectively,

and p be the overall probability of links.

Let EDWH(m, ps, pd) denote the expected degree weighted homophily in the islands

model where we calculate this relative to the expected number of links within and across

islands. That is, if we have a collection of k islands, M , let

EWM,M =
[psk + pdk(k − 1)]/d2

k2

and

EWM,Mc =
pdk(m− k)/d2

k(m− k)
= pd/d

2,

where d = pn is the expected degree, and EWMM and EWMMc are the expected versions of

WMM and WMMc . Then, we have an expected variation of degree weighted homophily:

EDWH(M ;m, ps, pd) =
EWM,M + EWMc,Mc − 2EWM,Mc

1
|M |2

∑
i∈M

1
d

+ 1
|Mc|2

∑
i∈Mc

1
d

.

Let I(n) denote the subsets of nodes that are collections of islands, so that if M ∈ I(n) then
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any node in M is of a different type from any node in M c. Let

EDWH(m, ps, pd) = max
M∈I(n)

EDWH(M ;m, ps, pd).

This is not quite the expected degree weighted homophily, since we are working with expec-

tations in the numerator and denominator.

We can now prove the following theorem which lets us deduce how consensus and mixing

time depend on degree weighted homophily in the islands (see Corollary 4), since it estab-

lishes how the second eigenvalue relates to homophily and we have already established how

consensus and mixing time relate to the second eigenvalue.

Theorem 4. In the equal-sized islands model, if p(n)n/ log2(n)→∞ then

|λ2(T(A(P,n)))− EDWH(m, ps, pd)|
p−→ 0. (5)

Theorem 4 provides us with limiting expressions for the second eigenvalue as a function

of homophily.

Let

H =
ps
p

capture how much more probable a link to own type is compared to other types, and

h =
ps
mp

be the relative fraction of links to own type. If we index a sequence of societies by their

cardinalities n, then the following lemma establishes the relation between degree weighted

homophily and the relative probabilities of links and the number of islands.

Lemma 5. In the islands model with m ≥ 2 equal-sized groups and probabilities of links

within and across types ps and pd, respectively, the degree weighted homophily is

EDWH(m, ps, pd) =
ps − pd

ps + (m− 1)pd
=
H − 1

m− 1
.

Moreover,

EDWH(m, ps, pd) = EDWH(M ;m, ps, pd)

for all M ∈ I(n), so the grouping of the islands is irrelevant in calculating the homophily. If

the number of islands m(n) diverges then |EDWH(m, ps, pd)− h| → 0.
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From Theorem 4 and Lemma 5, the following corollary, characterizing second eigenvalues

in terms of traditional measures of homophily in the islands model, follows immediately.

Corollary 3. In the islands model with m ≥ 2 equal-sized groups, if p(n)n/ log2(n)→∞
and probabilities of links within and across types ps and pd, respectively,∣∣∣∣λ2(T(A(P,n)))− H − 1

m− 1

∣∣∣∣ p−→ 0. (6)

If the number of islands diverges, then |λ2(T(A(P,n)))− h| → 0.

Combining Lemmas 3 and 4 with Corollary 3 we have the following summary of the

asymptotic behavior of consensus and mixing time in the islands model, which is Theorem

2.

Corollary 4. In the equal-sized islands model, if p(n)n/ log2(n)→∞ and h(n) is bounded

away from 1, then for any δ < 1, with a probability going to 1:

(1− δ) log(n)

2 log(m−1
H−1

)
≤ CT(γ/n2; A(P,n)) ≤ (1 + δ) log(n)

log(m−1
H−1

)

and
(1− δ) log(n)

log(m−1
H−1

)
≤ MT(γ/n; A(P,n)) ≤

3
2
(1 + δ) log(n)

log(m−1
H−1

)
.

The condition that h is bounded away from 1 rules out the case that all but a vanishing

fraction of links are within islands. If that is the case, then the islands can become dis-

connected with a nontrivial probability and the mixing and consensus times diverge. The

consideration of setting ε = 1/n2 for consensus time and ε = 1/n for mixing time ensure

that the convergence is within the order of magnitude of the weight on any given node. We

can rewrite these expressions as

(1− δ) log(n)

2| log(EDWH(m, ps, pd))|
≤ CT(γ/n2; A(P,n)) ≤ (1 + δ) log(n)

| log(EDWH(m, ps, pd))|

and
(1− δ) log(n)

| log(EDWH(m, ps, pd))|
≤ MT(γ/n; A(P,n)) ≤

3
2
(1 + δ) log(n)

| log(EDWH(m, ps, pd))|
.

Corollary 4 provides us with a fairly precise relationship between homophily and consen-

sus and mixing times, as further discussed in previous sections.
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The above results presume equal sized islands. We also provide a result for unequal

sizes for the case of two islands. This shows that the degree weighted homophily bound in

Proposition 1 is tight.

Theorem 5. Suppose n = (df1ne, b(1− f1)nc) with 0 < f1 < 1 and

P =

[
ps pd

pd ps

]
,

where all the entries of this matrix are positive. Then

plimn→∞λ2(T(A(P,n))) =
ps

ps + pd(f
−1
1 − 1)

− pd

ps(f
−1
1 − 1) + pd

= plimn→∞DWH(N1; A(P,n)),

where N1 denotes the first df1ne nodes.

5 Consensus and Mixing Times in the

Adolescent Health Data

In this section, we examine consensus time and mixing times in 84 social networks from the

Adolescent Health dataset14 and show how the patterns in that data illustrate our conclu-

sions. For each of the 84 schools, the dataset includes information on each student’s grade,

gender and race. In addition, each student was asked to name his or her closest male and

female friends.15 Using the reported friendship networks (linking two individuals if either

named the other as friend) we compute consensus and mixing times. We can also examine

traditional and degree weighted homophily measures based on the observed characteristics:

grade, race and sex. Grade is the year in school, and ranges from 6 to 12, as most of the

schools include 6 different years of students. Race is self-reported as Asian, black, Hispanic,

white, or other (and these were the only categories permitted). Sex is self-reported as male

14Add Health is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan
Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and Human De-
velopment, with cooperative funding from 17 other agencies. Persons interested in obtaining data files from
Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill,
NC 27516-2524 (addhealth@unc.edu). We thank James Moody for making available the data organized in
Pajek files for the 84 schools.

15The number of friends reported was capped at five of each type, or ten in total. Less than ten percent of
the students hit the caps, but that still censors the data. This design feature makes homophilies computed
based on gender somewhat less reliable than the others, since it would tend to equalize the numbers of
reported male and female friends, even if there were strong homophily present.
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or female.

It is worth commenting briefly on the nature of the illustration that our empirical compu-

tations provide for the theoretical work. There are actually three aspects to the full spectrum

of our results that can be tested.

• First, there is a question of whether substantial information about the impact of ho-

mophily can be captured by examining relatively simple definitions of types.

• Second, many of our results are asymptotic and there is a question about whether our

bounds on how consensus time and mixing time relate to homophily will be useful in

finite samples of medium size.

• Third, there is a question of whether or not people actually communicate in ways

that are captured by the learning model and random Markov models that underlie

consensus and mixing time.

Our empirical analysis answers the first two questions in the affirmative. In particular,

the multi-type random network model is a good fit for these social networks when it comes

to investigating consensus and mixing times, and gets a good deal of explanatory power

from very basic definitions of types. Our main claim — that the study of the convergence

of Markovian processes on large networks can be reduced to simple computations about

homophily — is not merely an asymptotic, theoretical claim, but one that holds up well

when applied to the data. To see this more clearly, consider some of the typical building

blocks that went into establishing the relationship between convergence and homophily:

Lemma 3, Theorem 3, and Corollary 4, for example. Each result either provides inequalities

or statements about asymptotic convergence. A priori, the data might be badly behaved

with respect to either of these. It might stay within the inequalities in a noisy way (oscillating

randomly between the bounds). It might also take very large networks for the asymptotic

results to kick in. Lastly, it might even be the case that the multi-type random graph model

captures none of the salient structure of these social networks. If any of these happened, then

there might be very weak, nonexistent, or “wrong way” correlations in the quantities that

we studied empirically in this section. The fact that the correlations are quite strong and

correspond to our predictions shows that the relationships suggested by the inequalities and

asymptotic theory are relevant. In particular, these high school friendship networks seem to

have many of the salient features of well-behaved multi-type random graphs, and much can

be captured with simple definitions of types.

Whether or not these models of updating and communication shed light on actual social

behavior – that is, on how people actually communicate in or navigate networks – is obviously
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an important question, but one that requires additional (longitudinal) data and is left for

future investigations.

The first step is to test the relationship summarized in Theorem 2 between convergence

and homophily in the equal-sized islands model. We begin the building blocks of the theorem

to rearrange it into an inverted form that compensates for the extreme behavior of the con-

vergence times at high homophilies and makes the quantities amenable to linear regressions.

In particular, we define

ρ(X) = exp

(
− log(n)

X

)
.

By Lemmas 3 and 4, ρ(CT(γ/n2; A)) and ρ(MT(γ/n; A)) are approximately the second

eigenvalue of T(A), which, by Corollary 3, is well approximated by H−1
m−1

. For instance, if X

is an empirical measurement of a consensus time for some choice of ε = γ/n2, then ρ(X)

can be thought of as an imputed per-step rate of convergence. Thus, we run regressions of

ρ(CT(γ/n2; A)) and ρ(MT(γ/n; A)) on H−1
m−1

.

The regressions include an intercept term. This is not in Theorem 2 or its constituent

parts. However, it turns out that if there is additional homophily within each island on

dimensions not reported in the data, then there will be an intercept term in the model.

Details are in Section 7.3.1.

Lastly, we removed two data points whose consensus and mixing times exceeded our

algorithms’ capacity. These networks (schools number 53 and 57) had very large consensus

times (on the order of serveral thousand), so computing them precisely was infeasible. These

would not substantially change the results of the first two regressions, since for those pur-

poses, a consensus or mixing time of about 1000 is essentially infinite. So, from now on, we

work with the 82 data points excluding those schools. The results are presented in Tables 1

and 2, as well as Figure 2.

We begin with the finest definition of type available in the data. Thus, we consider a

“type” to be a specific combination of race, grade, and sex: so for instance a type would

be all female Asians in grade 9. Thus, in a high school with two sexes, four races, and four

grades there are thirty two types.
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Table 1: Dependent variable = ρ(CT(0.1/n2; A))
(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.870
(61.2)

H−1
m−1

for “type” 0.297

(4.91)

R2 0.231

Table 2: Dependent variable = ρ(CT(0.1/n2; A))
(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.861
(66.9)

H−1
m−1

for “type” 0.287

(5.23)

R2 0.255
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Figure 2: The relationship between ρ(CT(0.1/n2; A)) and H−1
m−1

computed based on the finest-
grained type data available (i.e. a type is a race-grade-sex tuple).
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The R2 in the above regressions shows that the homophily among these types accounts

for roughly a quarter of the variation in consensus and mixing times in the data. This is

quite high in view of the fact that many qualities that determine network formation – such

as interests, extracurricular activities, etc. – are not captured by these data.

We also explore how much of the variation can be explained by the even simpler definitions

of types. For example, for grades, out of the three characteristics captured in the data, has

the greatest variation in homophily. The grades also have approximately equal sizes in most

of the schools, so that it is legitimate to use the formulas from the equal-sized islands model.

The results are then reported in Tables 3 and 4, as well as Figure 3.

Table 3: Dependent variable = ρ(CT(0.1/n2; A))
(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.809
(32.6)

H−1
m−1

for grade 0.209

(5.21)

R2 0.253

Table 4: Dependent variable = ρ(CT(0.1/n2; A))
(N = 82)

Variable Coefficient
(t-statistic)

Intercept 0.825
(34.6)

H−1
m−1

for grade 0.163

(4.24)

R2 0.184

The fit is similar in quality (though weaker in the case of mixing time) to that obtained

from the finest definitions of type.

We can also examine some other implications of the theory. By focusing on Theorem 4

instead of Theorem 2 we can replace H−1
m−1

in the above regressions by DWH. The increase in

explanatory power comes from the fact that DWH does not presume equal-sized groups, and
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for grade.
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thus captures the fact that different islands may be of different sizes. We compute DWH

based on the three different observed characteristics in the data and use them to estimate

ρ(CT(γ/n2; A)) and ρ(MT(γ/n; A)). For a given definition of type, we take the DWH over

all nontrivial partitions that never separate two agents of the same type. For example,

DWHgrade(A) is the DWH taken over all partitions which have some grades on one side and

the rest of the grades on the other. In the tables below, we refer to this quantity as Grade

DWH, and similarly with other type classifications. More generally, given some definition θ

of type such that θ : N → C maps agents to types, we define

DWHθ(A) := max
θ−1(M)∩θ−1(Mc)=∅

∅(M(N

DWH(M ; A).

For this analysis, we do not compute DWH for types, as with thirty or so different groups,

the number of different partitions is such that the computations become infeasible.

Here we are measuring realized degree weighted homophily, DWH, rather than its “ex-

pected” analogue, EDWH. This is because EDWH is not available to us, so, as usual, we

replace it by the sample analogue. As shown by the following lemma, this is valid asymp-

totically.

Lemma 6. Consider the islands model with m(n) ≥ 2 equal-sized groups where m(n)/n→ 0,

and probabilities of links within and across types ps and pd, respectively, and consider any

sequence of groupings of islands M(n) ∈ I(n). Then

|EDWH(M(n),m, ps, pd)−DWH(M(n),A(P,n))| p−→ 0,

and so

|EDWH(m, ps, pd)−DWH(M(n),A(P,n))| p−→ 0.

Regressions of convergence rates on the DWH for the 82 networks are reported in Tables

5 and 6. Here, we run the regressions with an intercept term, which is motivated by the

same idea as the one formally justifying the inclusion of an intercept in the first regressions of

this section. We have not worked out the details formally. Moreover, one of our regressions

includes three DWH explanatory variables – one for each dimension. Such an additively

separable form is not justified by the theory but seems to track the data quite closely, so

we include it here to point out a potential relationship which may be fruitful to examine

further.
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Table 5: Dependent variable = ρ(CT(0.1/n2; A))
(N = 82)

Variable Coefficient
(t-statistic)

All Homophilies Grade Only Gender Only Race Only

Intercept 0.644 0.716 0.886 0.916
(20.7) (21.52) (56.4) (88.1)

Grade DWH 0.347 0.330 — —
(7.75) (6.64)

Gender DWH 0.137 — 0.231 —
(2.64) (3.36)

Race DWH 0.105 — — .0663
(5.04) (2.29)

R2 0.545 0.356 0.123 0.0617

Consider Table 5. The first regression includes all the homophilies acting as independent

variables, and the others have each type of homophily used as an explanatory variable on its

own. The table shows two main things. First, all three homophilies are significant at the 2%

level when the regression is run with all three explanatory variables. Second, grade homophily

is doing most of the work in explaining the variation in convergence times; other kinds of

homophily have a significant effect, but 36% of the variation can be explained by ignoring all

but the grade information. This is illustrated in Figure 4, where we plot ρ(CT(0.1/n2; A))

versus grade homophily and draw the least-squares trend line corresponding to the second

column of Table 5.
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Figure 4: Rate of convergence of consensus time for the 82 friendship networks plotted
against the degree weighted homophily in each of the networks calculated relative to grade.

Table 6: Dependent variable = Imputed convergence rate, ρ(MT(0.1/n; A))
(N = 82)

Variable Coefficient
(t-statistic)

All Homophilies Grade Only Gender Only Race Only

Intercept 0.665 0.735 0.884 0.902
(22.4) (23.3) (60.2) (95.6)

Grade DWH 0.309 0.284 — —
(7.26) (6.05)

Gender DWH 0.100 — 0.183 —
(2.02) (2.84)

Race DWH 0.104 — — 0.0696
(5.23) (2.65)

R2 0.511 0.314 0.0917 0.0807
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Figure 5: Rate of convergence of mixing time for the 82 friendship networks plotted against
the degree weighted homophily in each of the networks calculated relative to grade.
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We repeat the analysis with mixing times, and the results turn out to be qualitatively

the same, with slightly weaker values of R2, as summarized in Table 6. The corresponding

plot for the rate of convergence of mixing time versus DWH based on grade is in figure 5.

The fact that consensus time and mixing time show similar results is not surprising, given

that they both involve measures of distance between T(A) and its limit. To see this directly,

we note the tight relationship between the two in Figure 6.
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Figure 6: The relationship between consensus and mixing times.
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While the above analysis has examined how imputed rates of convergence are affected by

homophily, we could work with the consensus times and mixing times directly and compare

them to the prediction of Theorem 2, which states that they should be approximately pro-

portional to log(n)/ log(m−1
H−1

). When we perform such an analysis, we find results consistent

with the theory, as pictured in Figures 8 and 7, where the slope coefficients are both signifi-

cant at levels well below .001 and the intercept is constrained to be 0. However, the values

of R2 in these regressions are low (0.06 for CT and 0.01 for MT) because some extreme data

points contribute very large error under this parameterization. It was for this reason that

we changed the axes in the above regressions; the rescaling makes errors comparable across

data points.
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Figure 7: The relationship between consensus time and the prediction of Theorem 2 for
grade.
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6 Concluding Remarks

Our results are built in several parts:

(i) we relate communication processes to second eigenvalues largely building on standard

spectral theory,

(ii) we provide novel results relating second eigenvalues to homophily,

(iii) we provide novel results relating homophily to random graphs, and

(iv) finally, combining these results enables us to relate communication to homophily in

random networks.

Our results show that homophily can substantially affect communication processes but

that this depends both on the level and type of homophily and the type of communication.

Communication based on shortest paths is essentially unaffected by homophily, while random

walks and updating by averaging are affected in a well-identified and nonlinear manner. The

underlying reason is that homophily does not change shortest paths, but affects the relative

numbers of paths between nodes of different types. Interestingly, there is a complete reversal

in the manner in which communication depends on the structure of connections:

• The speed of shortest path communication depends on link density but not homophily.

• The speed of Markovian processes (weighted averaging and random walks) depends on

homophily but not link density.

We have also examined a set of 82 networks to see how the communication processes

would operate on these networks, and how that relates to the observed homophily of the

networks. The results show significant relationships that are as predicted by the theory,

with increased homophily leading to increased consensus and mixing times according to the

predicted formulas.

Our results suggest the importance of understanding homophily in order to understand

communication and the functioning of a society. This is, of course, a first step and suggests

many avenues for further research including endogenizing homophily and network structure,

considering other sorts of communication, and examining other data.

42



References

Chung, F. and L. Lu (2002): “The average distance in random graphs with given expected

degrees,” Proceedings of National Academy of Science, 99, 15879–15882.

Chung, F., L. Lu, and V. Vu (2004): “The Spectra of Random Graphs with Given

Expected Degrees,” Internet Mathematics, 1, 257–275.

Copic, J., M. O. Jackson, and A. Kirman (2005): “Identifying Community Structures

from Network Data,” Revised September, 2008. Preprint, available at

http://www.stanford.edu/~jacksonm/netcommunity.pdf

Currarini, S., M. O. Jackson, and P. Pin (2009): “An Economic Model of Friendship:

Homophily, Minorities and Segregation,” Econometrica, forthcoming.

DeGroot, M. H. (1974): “Reaching a Consensus,” Journal of the American Statistical

Association, 69, 118–121.

DeMarzo, P., D. Vayanos, and J. Zwiebel (2003): “Persuasion Bias, Social Influence,

and Uni-Dimensional Opinions,” Quarterly Journal of Economics, 118, 909–968.

Diaconis, P. and D. Stroock (1991): “Geometric Bounds for Eigenvalues of Markov

Chains,” The Annals of Applied Probability, 1, 36–61.

French, J. (1956): “A Formal Theory of Social Power,” Psychological Review, 63, 181–194.
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7 Appendix: Proofs

7.1 Background on Reversible Markov Chains

For completeness and to fix notation, we review very well-known results about Markov

chains and self-adjoint matrices which form the foundation for our measures of convergence

to consensus and bounds on the time required to converge. None of the material in this

section is original; further background and references on these techniques can be found in

Diaconis and Stroock (1991).

Symmetry or self-adjointness is often a useful property to have when working with eigen-

values and other spectral quantities of a matrix. While T(A) generally will not be symmetric,

we can make it into a self-adjoint operator under a well-chosen inner product, as in Diaconis

and Stroock (1991). For this we need a few definitions.

Given a probability distribution π on N , define

〈v,w〉π =
∑
i

viwiπi.

This is just the Euclidean inner product weighted by the entries of the distribution.

Definition 5. A stochastic matrix T satisfies detailed balance (equivalently, is reversible)

relative to the distribution π over the nodes if, for every i, j ∈ N we have

πiTij = πjTji.

44



Proposition 2. If T satisfies detailed balance relative to π then π is a stationary distribu-

tion for T.

Proof of Proposition 2: Observe that∑
j

Tjiπj =
∑
j

Tijπi = πi
∑
j

Tij = πi,

where the first equality uses the definition of detailed balance.

Proposition 3. The stochastic matrix T satisfies detailed balance relative to π if and only

if T is self-adjoint under the inner product 〈·, ·〉π.

Proof of Proposition 3: Assume that detailed balance is satisfied. Take v = δi and

w = δj for some i, j ∈ N , i.e. take two standard basis vectors. Then

〈Tv,w〉π = Tjiπj

and

〈v,Tw〉π = Tijπi.

These two quantities are equal by detailed balance and this equality extends to arbitrary v

and w because the inner product is a bilinear form.

For the converse direction, the equality 〈Tδi, δj〉π = 〈δi,Tδj〉π for standard basis vectors

is guaranteed as a consequence of T being self-adjoint, and this immediately gives detailed

balance by the simple calculation above.

The next claim is that T(A) satisfies detailed balance relative to s(A), which is defined

by

si(A) =
di(A)∑
i di(A)

.

This is immediate to check from the definitions. Thus, s(A) is the stationary distribution of

T(A) and, moreover, T(A) is self-adjoint relative to 〈·, ·〉s(A). As a result, the eigenvalues of

T(A) are all real. Let 1 = λ1(T(A)), . . . , λn(T(A)) denote these eigenvalues ordered from

greatest to least by magnitude, and

1 = β1(T(A)) > β2(T(A)) ≥ β3(T(A)) ≥ · · · ≥ βn(T(A)) > −1

denote these same eigenvalues ordered from greatest to least as real numbers. Obviously

|λ2(T(A))| = max{|β2(T(A))|, |βn(T(A))|}.
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Now, since T(A) is self-adjoint, we can use the powerful Courant-Fischer variational

characterization of the eigenvalues of a Hermitian matrix16. Let e denote the unit column

vector of ones.

Proposition 4.

βn(T(A)) = inf
0 6=v∈Rn

{
〈v,T(A)v〉
〈v,v〉

}
. (7)

β2(T(A)) = sup
0 6=v∈Rn s.t.
〈v,e〉=0

{
〈v,T(A)v〉
〈v,v〉

}
, (8)

where the inner product everywhere is 〈·, ·〉s(A).

This says that the smallest eigenvalue (under the real number ordering) minimizes the

normalized quadratic form in braces, where v ranges over all nonzero vectors. Moreover, the

second largest eigenvalue (under the real number ordering) maximizes the same quantity but

where v ranges over all nonzero vectors orthogonal to the right eigenvector corresponding to

the largest eigenvalue.

7.2 Proofs and Additional Material for the Main Results

7.2.1 Relating Consensus Times to Second Eigenvalues

Proof of Lemma 3: In the proof, we fix A and drop it as an argument; we also drop the

argument on the eigenvalues, being fixed throughout.

We first show that

CT(ε) ≤
⌈

log(1/ε)

2 log(1/|λ2|)

⌉
.

Take any b ∈ [0, 1]n. Let Ui be the projection onto the eigenspace of T corresponding to λi.

Note that under 〈·, ·〉s, these eigenspaces are orthogonal. Define U =
∑n

i=2 Ui. This is the

projection off the eigenspace corresponding to λ = 1. Then:

‖(Tt −T∞)b‖2s =

∥∥∥∥∥
n∑
i=2

λtiUib

∥∥∥∥∥
2

s

spectral theorem applied to the stochastic matrix

=
n∑
i=2

|λi|2t‖Uib‖2s orthogonality of the spectral projections

≤ |λ2|2t
n∑
i=2

‖Uib‖2s

16Horn and Johnson (1985, p. 176–178).
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= |λ2|2t
∥∥∥∥∥

n∑
i=2

Uib

∥∥∥∥∥
2

s

orthogonality of the spectral projections

= |λ2|2t‖Ub‖2s definition of U

≤ |λ2|2t‖b‖2s projections are contractions

≤ |λ2|2t
n∑
i=1

si b ∈ [0, 1]n and definition of 〈·, ·〉s

= |λ2|2t entries of s sum to 1.

Thus, if

t ≥ log(1/ε)

2 log(1/|λ2|)
then

‖(Tt −T∞)b‖2s ≤ ε,

from which the bound follows upon observing that CT(ε) must be an integer. This also

shows that when the second eigenvalue is identically 0, then consensus time must be 1.

Now we show that ⌊
log(s/4ε)

2 log(1/|λ2|)

⌋
≤ CT(ε).

Let w be an eigenvector of T corresponding to λ2, scaled so that ‖w‖2s = s/4. Then the

maximum entry of w is at most 1/2 and the minimum entry is at least −1/2. Consequently,

if we define b = w + e/2, then b ∈ [0, 1]n. Now, using the fact that e is a right eigenvector

corresponding to λ1 = 1 and spectral projections are orthogonal, it follows that:

‖(Tt −T∞)b‖2s = |λ2|2t‖U2w‖2s
= |λ2|2t‖w‖2s
=
s

4
|λ2|2t.

Therefore, if

t ≤ log(s/4ε)

2 log(1/|λ2|)
then

‖(Tt −T∞)b‖2s ≥ ε,

from which the remaining bound follows upon observing that CT(ε) must be an integer.
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7.2.2 The Representative Agent Theorem and a Consequence

Theorem 3 and Proposition 6 require related machinery, which we will develop and apply in

this section. First, we introduce some notation.

We drop the arguments on the random variable A. Let D(A) denote the diagonal matrix

whose (i, i) entry is di(A). Let R be the n-by-n matrix given by Rij = Pk` if i ∈ Nk, j ∈ N`.

Then the expected degree of node i is wi :=
∑

j Rij.

Let V =
∑

iwi be the sum of expected degrees and v =
∑

i di(A) the sum of realized

degrees.

For any matrix T, let ‖T‖ = sup‖v‖=1〈v,Tv〉, where the inner product is the standard

Euclidean dot product. Let

J = D(A)−1/2AD(A)−1/2 − v−1D(A)1/2ED(A)1/2

and

K = D(R)−1/2RD(R)−1/2 − V −1D(R)1/2ED(R)1/2.

Now we note a fact from basic linear algebra.

Fact 1. D(A)−1/2AD(A)−1/2 and T(A) = D(A)−1A are similar matrices, so that they

have the same eigenvalues, and that v−1D(A)1/2ED(A)1/2 is the summand of the spectral

decomposition of D(A)−1/2AD(A)−1/2 corresponding to the eigenvalue 1. The same reason-

ing applies when we replace A by R and v by V .

We now state the proof of Theorem 3, or rather a reduction to a proposition which will

also be useful for proving Proposition 6.

Proof of Theorem 3: It is clear that D(R)−1R has the same eigenvalues as Q, so to prove

the claim it suffices to prove that the former matrix has second eigenvalue close enough to

that of D(A)−1/2AD(A)−1/2.

By Fact 1, we know that ‖J‖ is the second largest eigenvalue in magnitude of the matrix

D(A)−1/2AD(A)−1/2, and ‖K‖ is the second largest eigenvalue in magnitude of the matrix

D(R)−1/2RD(R)−1/2. Thus, by the triangle inequality, if we can show that with probability

at least 1−δ we have ‖J−K‖ < δ, then the proof is done. This is the content of Proposition

5 below.

Now we state a lemma from the proof of Theorem 3.6 of Chung Lu and Vu (2004), which

is a consequence of a Chernoff-type concentration inequality and is quite useful throughout

this section.
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Lemma 7. Fix any δ > 0. If wmin/ log n is high enough, the following statement holds with

probability at least 1− δ for all i simultaneously: |di − wi| < δwi.

Proposition 5. If wmin/ log2 n is high enough, then with probability at least 1− δ we have

‖J−K‖ < δ.

Proof of Proposition 5: Write

J−K = B + C + L + M where Bij =
Aij√
didj

(
1−

√
didj

√
wiwj

)
Cij =

Aij −Rij√
wiwj

Lij =

√
wiwj

V

(
1−

√
didj

√
wiwj

)
Mij = (V −1 − v−1)

√
didj.

By the triangle inequality,

‖J−K‖ ≤ ‖B‖+ ‖C‖+ ‖L‖+ ‖M‖,

so it suffices to bound the pieces individually.

Now we list two lemmas, useful only in this proof, from Chung Lu and Vu (2004). The

proof of the first requires only minor modification in our setting.

Lemma 8. Fix any δ > 0. Then if wmin/ log2 n is high enough, with probability at least 1−δ:

‖C‖ ≤ 2√
w̄

+
log n
√
wmin

.

Proof of Lemma 8: The only step of the proof of this last lemma that does not work exactly

as in the proofs of Theorems 3.2 and 3.6 of Chung Lu and Vu (2004) is their equation (3.2).

This step asserts (in our notation) that for m ≥ 2, we have

E[Cm
ij ] ≤ (1−Rij)Rij + (−Rij)

m(1−Rij)

(wiwj)m/2
≤ Rij

(wiwj)m/2
≤ wiwj/V

(wiwj)m/2
≤ 1/V

(wmin)m−2
.

The step which is slightly different is the penultimate inequality. We must show that Rij ≤
wiwj/V . But note that wj/V ≤ 1 by definition and wi =

∑
k Rik ≥ Rij.
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It follows that we have ‖C‖ < δ/4 with probability at least 1− δ/4.

Lemma 9. Fix any δ > 0. If wmin/ log2 n is high enough, the following statement holds with

probability at least 1− δ:
‖M‖ ≤ 1√

w̄
.

It follows that we have ‖M‖ < δ/4 with probability at least 1− δ/4.

To bound ‖B‖ and ‖L‖, we will use Lemma 7 and two simple facts about the matrix

norm. Let abs(X) denote the matrix whose (i, j) entry is |Xij|.

Lemma 10. 1. For any matrix X, ‖X‖ ≤ ‖ abs(X)‖.

2. Suppose there are two nonnegative matrices, X and Y and a constant c > 0 such that

for each i, j, we have Yij < cXij. Then ‖Y‖ ≤ c‖X‖.

Proof of Lemma 10: For (1), note that for all ‖v‖ = 1, we have

〈v,Xv〉 =
∑
i,j

vivjXij

≤
∑
i,j

|vivjXij|

≤
∑
i,j

|vi||vj||Xij|

≤ ‖ abs(X)‖,

the last inequality being true because ‖ abs(v)‖ = 1. This proves the claim by definition of

the matrix norm.

For (2), note that for all ‖v‖ = 1, we have

〈v,Yv〉 =
∑
i,j

vivjYij

<
∑
i,j

|vi||vj|cXij

≤ c
∑
i,j

vivjXij

≤ c‖X‖,

where again we have made use of the fact that ‖ abs(v)‖ = 1.
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To show that, with probability at least 1 − δ, we have ‖B‖ < δ/4, define B̂ = abs(B);

by Lemma 10(1) it suffices to show ‖B̂‖ < δ/4. Note

B̂ij =
Aij√
didj

∣∣∣∣∣1−
√
didj

√
wiwj

∣∣∣∣∣ .
By Lemma 7 we have with probability at least 1− δ/4 that∣∣∣∣∣1−

√
didj

√
wiwj

∣∣∣∣∣ < δ/4

and so, noting that

‖D(A)−1/2AD(A)−1/2‖ = 1

and using Lemma 10(2), the claim is proved.

Precisely the same argument works to show that with probability at least 1 − δ/4, we

have‖L‖ < δ/4, with V −1D(R)1/2ED(R)1/2, which also has norm 1, playing the role of

D(A)−1/2AD(A)−1/2.

Combining all the bounds shows that, with probability at least 1−δ we have ‖J−K‖ < δ,

as desired.

This completes the proof of the proposition.

We will now use the results established so far in this section to prove a proposition that

tightens the lower bound in Lemma 3, so that second eigenvalues become an even better

proxy for consensus time.

Proposition 6. Suppose (P,n) are such that, for all n,

1. There exist λ and λ so that 0 < λ ≤ λ2(Q(P,n)) ≤ λ < 1.

2. mink nk/n ≥ α > 0.

3. dmin(P)/dmax(P) ≥ β > 0.

Write T = T(A). Then, for any δ > 0, for high enough n, with probability at least 1− δ⌊
log(1/8ε)− log(1/αβ)

2 log(1/|λ2(T)|)

⌋
− 1 ≤ CT(ε; A).
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Combining this with Lemma 3, we can conclude that for any δ with probability at least

1− δ ⌊
log(1/8ε)− log(1/αβ)

2 log(1/|λ2(T)|)

⌋
− 1 ≤ CT(ε; A) ≤

⌈
log(1/ε)

2 log(1/|λ2(T)|)

⌉
.

Thus, as we let ε get small, we find that CT(ε; A) is proportional to log(1/ε)
log(1/|λ2(T)|) .

The assumptions of this proposition could be weakened, but in their current form they

are simple to state and interpret. The first one says that the second eigenvalue of Q(P,n)

should have a magnitude that stays away from 0 and 1, and amounts to requiring that

consensus time is not going to 0 or ∞. The other conditions impose some balance on the

system. The second one says that no group should be getting negligibly small relative to

society. The third one says that maximum and minimum degrees should not get too far

apart proportionally. Some types are allowed to be much more popular than others, but not

infinitely so. If these conditions are met, then Lemma 3 can be strengthened so that the

lower bound is tighter, and still easy to compute.

Techniques similar to the ones used in the proof below can be applied to the study of

mixing times in order to tighten the upper bound in Lemma 4 in the multi-type random

graph setting.

Proof of Proposition 6: We will reuse the same variable names used inside the proof of

Proposition 5, but the variables defined for the whole subsection will be unchanged.

Write C = D(R)−1R and T = T(A). That is, C is the version of T in the “expectations”

world. Also, let

z =

⌊
log(1/8ε)− log(1/αβ)

2 log(1/|λ2(T)|)

⌋
.

There are three steps to the proof. In Step 1, we show that for Ctb to converge within 2ε of

its limit takes at least z − 1 steps for some b. In Step 2, we use Proposition 5 to show that

for any η > 0, for high enough n, with probability at least 1− η, we have ‖T−C‖ < η. In

Step 3, we show that, if η is chosen small enough, then Ctb and Ttb are at most ε apart for

at least z − 1 steps under the inner product 〈·, ·〉s(A). This shows the requisite result.

Step 1. Let v be a right eigenvector of C corresponding to eigenvalue λ̂2 := λ2(Q) (this

is also the second eigenvalue in magnitude of C by Fact 1). If we multiply v by a constant

scalar, we may assume that the entry with largest magnitude is 1/2. By Assumption 1, λ̂2

is nonzero. Given this and the fact that C is constant on a given type, it follows that v is

constant on a given type. Thus, by Assumption 2, there are at least αn entries in v equal

52



to 1/2. And from this it follows, by the definition of s(C) and Assumption 3, that

〈v,v〉s(C) ≥ nα ·
(

1

2

)2

· dmin(P)

ndmax(P)
≥ αβ

4
.

Setting bi = vi + 1/2, we see as at the end of the proof of Lemma 3 that

‖Ctb−C∞b‖s(C) ≥
αβ

4
|λ2(C)|2t,

which yields the lower bound on convergence time we want with C instead of T. But in

view of Assumption 1 and Theorem 3, for high enough n we can replace C by T and lose at

most an additive factor of 1 in the bound.

Step 2. Recall C = D(R)−1R and T = T(A). Also put

L = D(A)−1/2JD(A)1/2

and

M = D(R)−1/2KD(R)1/2.

By Fact 1, we have

T−C = v−1ED(A)− V −1ED(R) + L−M.

So by the triangle inequality, it suffices to bound ‖v−1ED(A)− V −1ED(R)‖ and ‖L−M‖.
By Lemma 7, if wmin/ log2 n is high enough, the following event occurs with probability

at least 1 − γ for all i simultaneously: |di − wi| < γwi. Call this event E1. Given the

assumptions, high enough n ensures the condition of the lemma is met. Thus, on E1,

‖v−1ED(A)− V −1ED(R)‖ < γ,

and so it suffices to take care of the other term.

By Proposition 5, we know that if wmin/ log2 n is high enough, then on an event E2 of

probability at least 1− γ we have ‖J−K‖ < γ. As above, for high enough n the condition

is met. Now let

F = D(A)−D(R),

G = (D(R) + F)1/2 −D(R)1/2,
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and

H = (D(R) + F)−1/2 −D(R)−1/2.

Observe

‖L−M‖ = ‖(D(R) + F)−1/2J(D(R) + F)1/2 −D(R)−1/2KD(R)1/2‖
= ‖(D(R)−1/2 + H)J(D(R)1/2 + G)−D(R)−1/2KD(R)1/2‖
= ‖D(R)−1/2(J−K)D(R)1/2 + D(R)−1/2JG + HJD(R)1/2‖
≤ ‖D(R)−1/2(J−K)D(R)1/2‖+ ‖D(R)−1/2JG‖+ ‖HJD(R)1/2‖+ ‖HJG‖

Using Lemma 7 and standard series approximation arguments, for high enough n we can

ensure ‖G‖ ≤ γ‖D(R)1/2‖ and ‖H‖ ≤ γ‖D(R)−1/2‖ on an event E3 of probability at least

1− γ. Using the fact that ‖J‖ ≤ 1, the Cauchy-Schwartz inequality yields that each of the

middle two terms above is bounded by γ. For the last term, note that

‖HJG‖ ≤ γ2‖D(R)1/2‖ · ‖D(R)−1/2‖ =
dmax(P)

dmin(P)
≤ γ2

β
.

So it suffices to take care of the first term. This is accomplished by noticing that, on

E1 ∩ E2,

‖D(R)−1/2(J−K)D(R)1/2‖ ≤ dmax(A)1/2

dmin(A)1/2
‖J−K‖

≤ (1 + γ)
dmax(P)1/2

dmin(P)1/2
‖J−K‖ definition of E1

≤ 1 + γ

β
‖J−K‖ Assumption 3

≤ (1 + γ)γ

β
definition of E2.

Together, these facts show that for high enough n, on E1 ∩ E2 ∩ E3, which occurs with

probability at least 1− 3γ, we have

‖T−C‖ ≤ γ +
(1 + γ)γ

β
+ 2γ +

γ2

β
.

By choosing γ so that the right hand side is less than η and 3γ < η (to take care of the

probability), the step is complete.
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Step 3. Write T = C + Y, where ‖Y‖ ≤ η. Note that

(T + Y)t = Tt +
t−1∑
q=0

Xq,

where Xq is a product of q copies of Y and t− q copies of T in some order. By the fact that

‖T‖ = 1 and ‖Y‖ ≤ η, we have ‖Xq‖ ≤ ηq for each q ≥ 1. Then, by the triangle inequality,∥∥∥∥∥
t−1∑
q=0

Xq

∥∥∥∥∥ ≤
t−1∑
q=0

ηq ≤ 1

1− η
.

Thus,

Yt := ‖Ct −Tt‖ ≤ 1

1− η
.

Take b and v to be the vectors constructed in Step 1. Note that for t ≤ z − 1 we have,

for high enough n,

〈Ttb−T∞b,Ttb−T∞b〉s(A) = 〈Ttv,Ttv〉s(A)

= 〈(Ct + Yt)v, (C
t + Yt)v〉s(A)

≥ 〈Ctv,Ctv〉s(A) + 2〈Ytv,C
tv〉s(A)

≥ (1− η)〈Ctv,Ctv〉s(C)

+ 2〈Ytv,C
tv〉s(A) Lemma 7

≤ 2(1− η)ε+ 2〈Ytv,C
tv〉s(A) definition of z

≤ 2(1− η)ε− 2‖Ytv‖s(A) · ‖Ctv‖s(A) Cauchy-Schwartz

≤ 2(1− η)ε− 2‖Ytv‖s(A) see below

≤ 2(1− η)ε− 2‖Ytv‖ def’n of ‖ · ‖s(A)

≤ 2(1− η)ε− 2η.

The step whose explanation is missing is straightforward; no entries in v have magnitude

exceeding 1/2 and multiplication by the stochastic matrix C preserves this property. Since

s(C) is a probability distribution, ‖Ctv‖s(C) ≤ 1 holds by definition of the inner product. If

η is chosen so that 2(1− η)ε− 2η > ε, then the proof is complete.
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7.2.3 Results on DWH and EDWH

Proof of Proposition 1: We will construct a v satisfying 〈v, e〉s = 0 so that the absolute

value of the quantity 〈v,Tv〉s/〈v,v〉s is equal to |DWH(M)|. Since |λ2| = max{|β2|, |βn|},
this suffices by Proposition 4.

Define

vi =

 1
rdi

if i ∈M

− 1
(n−r)di

if i /∈M.

Let D =
∑

i di and note

〈v,v〉s =
∑
i

v2
i · si

=
∑
i∈M

1

(rdi)2
· di
D

+
∑
i∈Mc

1

((n− r)di)2
· di
D

=
1

D

[
1

r2

∑
i∈M

1

di
+

1

(n− r)2

∑
i∈Mc

1

di

]
. (9)

Also,

〈v,Tv〉s =
∑
i

vi

(∑
j

Tijvj

)
si

=
1

D

∑
i

∑
j

viTijvjdi

=
1

D

∑
i,j:Tij>0

vi
1

di
vjdi

=
1

D

[
1

r2

∑
i,j∈M

TijTji +
1

(n− r)2

∑
i,j∈Mc

TijTji −
2

r(n− r)
∑

i∈M,j∈Mc

TijTji

]
.

Dividing 〈v,Tv〉s by 〈v,v〉s, canceling D, and using the definition of W yields the result.

We prove Lemma 5 before Theorem 2.

Proof of Lemma 5: We show that EDWH(m, ps, pd) = (ps − pd)/mp = (ps − pd)/(ps +

(m− 1)pd), which is easily checked to be equal to (H − 1)/(m− 1); this, in turn, converges

to h = H/m as m grows. Consider M consisting of k islands and M c consisting of m − k
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islands of nodes. Then from the definition of EDWH(M ;m, ps, pd) it follows that

EDWH(M ;m, ps, pd) =
EWM,M + EWMc,Mc − 2EWM,Mc

1
|M |2

∑
i∈M

1
d

+ 1
|Mc|2

∑
i∈Mc

1
d

,

which can be written as

kps+k(k−1)pd

k2d2
+ (m−k)ps+(m−k)(m−k−1)pd

(m−k)2d2 − 2pd

d2

m2

k2n2
kn
dm

+ m2

(m−k)2n2

(m−k)n
dm

.

This becomes
ps+(k−1)pd

k
+ ps+(m−k−1)pd

m−k − 2pd
dm
kn

+ dm
(m−k)n

,

or
ps − pd
pm

,

which is the claimed expression. Since this holds for all M ∈ I(n), the result follows.

Proof of Theorem 2: Note

Q(P,n) =
pd

ps + (m− 1)pd
Em +

ps − pd
ps + (m− 1)pd

Im,

where Em denotes the m-by-m matrix of ones and Im denotes the m-by-m identity matrix.

Then, the eigenvalues of this matrix can be computed directly. The only nonzero eigenvalue

of the first matrix is
mpd

ps + (m− 1)pd

with multiplicity 1; and adding
ps − pd

ps + (m− 1)pd
Im

just shifts all the eigenvalues by adding to them the constant multiplying the identity. Thus

the second largest eigenvalue of Q(P,n) (after the eigenvalue 1) is

ps − pd
ps + (m− 1)pd

.

Simple algebra shows that this is the same as the expression claimed in the theorem.

Proof of Corollary 4: Let us first show that with a probability going to 1 all nodes have

degree between (1 − f(n))d and (1 + f(n))d for a function f(n) → 0. From Lemma 2.1 in
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Chung and Lu (2002),17 it follows that for any given i, P(di ≥ (1− f(n))d) > 1− e−(f(n))2d/3

for any function f(n) < 1. The probability that all nodes have degrees at least (1−f(n))d is

then at least
(

1− e−(f(n))2d/3
)n

. Given that d ≥ log2(n), it follows that this expression is at

least
(

1− e−(f(n))2 log(n)/3

n

)n
, which goes to 1 as long as (f(n))2 log(n)/3 goes to ∞. A similar

argument establishes that all nodes have degrees at most (1+f(n))d with a probability going

to 1. Thus, with a probability going to 1, smin ≥ 1−f(n)
(1+f(n))n

.

Note, also that with a probability going to 1 that A is connected (e.g., apply Theorem

1 noting that h(n) is bounded away from 1 so that (iv) applies, and (i)-(iii) apply given the

islands model and d ≥ log2(n)). Thus, we can also apply Lemmas 3 and 4, to conclude that

with a probability going to 1⌊
log(n2/4γ)− log((1 + f(n))n/(1− f(n)))

−2 log(|λ2(T(A(P,n)))|)

⌋
≤ CT(γ/n2; A) ≤

⌈
log(n2/γ)

−2 log(|λ2(T(A(P,n)))|)

⌉
,

and

log( n
2γ

)

− log(|λ2(T(A(P,n)))|)
≤ MT(γ/n; A(P,n)) ≤

log( n
2γ

) + log((1 + f(n))n/(1− f(n)))/2

− log(|λ2(T(A(P,n)))|)
.

These imply that with a probability going to 1:⌊
log(n)− log(4γ)− log((1 + f(n))/(1− f(n)))

−2 log(|λ2(T(A(P,n)))|)

⌋
≤ CT(γ/n2; A) (10)

≤
⌈

log(n)− log(γ)/2

− log(|λ2(T(A(P,n)))|)

⌉
,

and

log(n)− log(2γ))

− log(|λ2(T(A(P,n)))|)
≤ MT(γ/n; A(P,n)) (11)

≤
3
2

log(n)− log(2γ) + log((1 + f(n))/(1− f(n)))/2

− log(|λ2(T(A(P,n)))|)
.

Next, applying Theorem 2 and Lemma 5,∣∣∣∣λ2(T(A(P,n)))− H(n)− 1

m(n)− 1

∣∣∣∣ p−→ 0. (12)

17Set the Xi’s in their lemma to be the realization of the links that a given node might have to other
nodes.
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Since, H(n) = h(n)m(n) it follows that H(n)−1
m(n)−1

= h(n)m(n)−1
m(n)−1

is bounded away from 1. Thus,

from (12), we deduce that for any 1 > δ > 0, with a probability going to 1

1− δ
− log(H(n)−1

m(n)−1
)
≤ 1

− log(|λ2(T(A(P,n)))|)
≤ 1 + δ

− log(H(n)−1
m(n)−1

)
.

The corollary then follows from (10) and (11), noting that f(n)→ 0.

Proof of Theorem 5: For the left hand side, apply Theorem 3 and then compute the

second eigenvalue of

Q(P) =

[
f1ps

f1ps+f2pd

f2pd

f1ps+f2pd
f1pd

f1pd+f2ps

f2ps

f1pd+f2ps

]
,

(the result appears in Jackson (2008), Section 8.3.6). For the right hand side, first use the

definition of DWH; then apply Lemma 7 to show the degrees in the denominators in the

DWH formula are arbitrarily close to their expectations; then use the strong law of large

numbers to conclude that the ratios appearing in the formula converge to their expectations.

7.3 Results and Proofs for the Empirical Analysis

7.3.1 Misidentifying Islands and Affine Bias

To justify including an intercept in our regressions, consider the following stylized elaboration

of the islands model. We have m equally sized islands N1, . . . , Nm and each of those islands

k is divided into r equally sized sub-islands Nk1, . . . , Nkr. If i and j are in different islands,

then the linking probability between them is pd. If i and j are in the same island, then the

linking probability depends on whether they are in the same sub-island, or different sub-

islands. If they are in the same sub-island, then they are linked with probability ps. And if

they are in the same island but different sub-islands, then they are linked with probability

pb. We assume 0 < pd ≤ pb ≤ ps.

The idea is that the researcher has data on the islands but not the sub-islands. We will

now study, in this simple setting, what happens if the homophily H is estimated as if the

data were generated by the islands model with islands N1, . . . , Nm and no sub-islands.

If, without knowing about the sub-islands, we estimate the probability of same-type

nodes being linked, we are actually estimating the quantity

p̃s =
ps + (r − 1)pb

r
,
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and our estimate of H, the unnormalized homophily, will be

H̃ =
p̃s
mp

,

where p will be estimated correctly by its sample analogue of link density.

In this setting, it is not valid to apply Corollary 3 with the predictor of the second eigen-

value computed based on the misidentified island structure. That is, the second eigenvalue

will not be well estimated by H̃−1
m−1

. Instead, the second eigenvalue of the representative agent

matrix18 will be an affine function of H̃−1
m−1

. This is the content of the following proposition.

Proposition 7. In the modified islands setting just described, if x̃ = H̃−1
m−1

is the regressor

computed without information about the sub-island structure, then

λ2(Q(P,n)) = αx̃+ β,

where α and β depend on m and r.

Proof of Proposition 7: Letting Ek denote the matrix of all ones of size k and Ik denote

the identity matrix of size k, we find that with P specified by the description above,

Q(P,n) =
pdEmr + (pb − pd)Im ⊗ Er + (ps − (pb − pd))Imr

ps + (r − 1)pb + (m− 1)rpd
.

Now, the second eigenvalue of

pdEmr + (pb − pd)Im ⊗ Er

is r(pb − pd). Thus,

λ2(Q(P,n)) =
r(pb − pd) + ps − (pb − pd)
ps + (r − 1)pb + (m− 1)rpd

.

This can be rewritten as

λ2(Q(P,n)) =
H̃m(mr − 1) + 1− r

(m− 1)r
.

Letting x̃ = H̃−1
m−1

be the regressor, we find that

λ2(Q(P,n)) =
m(mr − 1)

r
· x̃+

mr + r − 1

r
.

18This, by Theorem 3 is the limit of the second eigenvalue of the realized matrix.
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Now, in running the regressions, we do not make use of the details of the formula in

the proof. We merely note that there is an affine bias if there is some homophily inside the

islands on dimensions falling outside the scope of our data. Thus, including an intercept in

the regression of convergence rates on x̃ is a reasonable first-order approximation to account

for some of this affine bias.

Of course, in more realistic settings, the various kinds of symmetry present in this model

will not exist. However, it appears that more general formulas or characterizations could

be obtained describing how homophilies at various levels interact. This could be a useful

direction to pursue in taking this model to empirical settings, where there will almost always

be some underlying homophily on dimensions not captured by the data.

7.3.2 The Asymptotic Equivalence of DWH and EDWH

Proof of Lemma 6: Consider the islands model with m(n) ≥ 2 equal-sized groups, and

probabilities of links within and across types ps and pd, respectively, and consider any se-

quence of groupings of islands M(n) ∈ I(n). We show that

|EDWH(M(n),m, ps, pd)−DWH(M(n),A(P,n))| p−→ 0.

This follows from showing that |EWM(n),M(n) −WM(n)M(n)(A(P,n))| p−→ 0, |EWM(n),Mc(n) −
WM(n)Mc(n)(A(P,n))| p−→ 0, and (

∑
i∈M(n)

1
d(n)

)/( 1
di(A(P,n))

)
p−→ 1, for any M(n) (and noting

that the denominator is bounded away from 0 in the limit).

The latter conclusion follows from the argument in the proof of Corollary 4 using Lemma

2.1 in Chung and Lu (2002) to show that with a probability going to 1 all nodes have

degree between (1 − f(n))d(n) and (1 + f(n))d(n) for any function f(n) → 0 such that

(f(n))2 log(n)/3 goes to∞. Next, given that m(n)/n→ 0 which implies that the number of

nodes in within any island i(n) = n/m(n) is growing without bound, and so we can again

apply Lemma 2.1 in Chung and Lu (2002),19 to deduce that there is a function g(n) → 0

such that with a probability going to 1,

(1− g(n))
[
k(n)ps(n)|i(n)|2/d(n)2 + pd(n)k(n)(k(n)− 1)|i(n)|2/d(n)2

]
≤

∑
i∈M,j∈M

TijTji

≤ (1 + g(n))
[
k(n)ps(n)|i(n)|2/d(n)2 + pd(n)k(n)(k(n)− 1)|i(n)|2/d(n)2

]
,

19Now, we work with the Xi’s in their lemma to be the realization of the links within a given M(n).
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where k(n) is the number of islands in M(n) and similarly

(1−g(n))pd(n)|M(n)||M c(n)|/d(n)2 ≤
∑

i∈M,j∈M

TijTji ≤ (1+g(n))pd(n)|M(n)||M c(n)|/d(n)2.

These imply that

|EWM(n),M(n) −WM(n)M(n)(A(P,n))| p−→ 0

and

|EWM(n),Mc(n) −WM(n)Mc(n)(A(P,n))| p−→ 0,

as claimed.
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