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Abstract

A representative consumer uses Bayes’ law to learn about parameters and

to construct probabilities with which to perform ongoing model averaging. The

arrival of signals induces the consumer to alter his posterior distribution over

parameters and models. The consumer copes with specification doubts by

slanting probabilities pessimistically. One of his models puts long-run risks in

consumption growth. The pessimistic probabilities slant toward this model and

contribute a counter-cyclical and signal-history-dependent component to prices

of risk.
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Le doute n’est pas une condition agréable, mais la certitude est absurde.1

Voltaire 1767.

1 Introduction

A pessimist thinks that good news is temporary and that bad news endures. This

paper describes how a representative consumer’s model selection problem and fear of

model misspecification foster pessimism that puts countercyclical model uncertainty

premia into risk prices.

1.1 How doubts promote fragile beliefs

Our representative consumer values consumption streams according to iterated ver-

sions of the multiplier preferences that Hansen and Sargent (2001) use to represent

aversion to model uncertainty.2 Following Hansen and Sargent (2007), an iterated ap-

plication of risk-sensitivity operators allows us to focus the representative consumer’s

ambiguity on particular aspects, including model selection and parameter values.3

Ex post, the consumer acts ‘as if’ he uses a probability measure that he twists pes-

simistically relative to his approximating model. By ‘fragile beliefs’ we refer to the

responsiveness of pessimistic probabilities to the arrival of news, as determined by

the state dependent value functions that define what the consumer is pessimistic

about.4 Relative to the conventional rational expectations case in which the represen-

tative consumer has complete confidence in his statistical model, our representative

consumer’s reluctance fully to trust a single approximating model adds ‘model un-

certainty premia’ to prices of risk. New uncertainty components of the “risk” prices

emerge from the hidden Markov model that we impute to the consumer. They are

time-dependent and state-dependent, in contrast to the constant uncertainty premium

analyzed by Hansen et al. (1999) and Anderson et al. (2003).

1Doubt is not a pleasant condition, but certainty is absurd.
2The relationship of the multiplier preferences of Hansen and Sargent (2001) to the max-min

expected utility preferences of Gilboa and Schmeidler (1989) are analyzed by Hansen et al. (2006),
Maccheroni et al. (2006a,b), Cerreia et al. (2008), and Strzalecki (2008).

3Sometimes the literature calls this ‘structured uncertainty’.
4Harrsion and Kreps (1978) and Scheinkman and Xiong (2003) explore another setting in which

difficult to detect departures from rational expectations lead to interesting asset price dynamics that
cannot occur under rational expectations.
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1.2 Fragile expectations as sources of time-varying risk pre-

mia

A hidden Markov model for consumption growth confronts a representative consumer

with ongoing model selection and parameter estimation problems. Our representative

consumer wants to know components of a hidden state vector, some that stand for

unknown parameters within a model and others that index models. A probability

distribution over that hidden state becomes part of the state vector in the represen-

tative consumer’s value function. Bayes’ law describes its motion over time. The

representative consumer slants probabilities towards the model that has the lowest

utility. We show how variations over time in the probabilities attached to models and

other state variables put volatility into the model uncertainty premia.

1.3 Key components

In addition to the risk sensitivity operator that Tallarini (2000) applied, we introduce

an additional one, taken from Hansen and Sargent (2007), that adjusts the probabil-

ity distribution of hidden Markov states for model uncertainty.5 We interpret both

risk-sensitivity operators as capturing the representative consumer’s concerns about

robustness instead of the enhanced risk aversion interpretation of Tallarini.6

Our representative consumer assigns positive probabilities to two models whose

fits make them indistinguishable for our data on per capita U.S. consumption expen-

ditures on nondurables and services from 1948II-2008III. In one model, consumption

growth rates are nearly i.i.d. model, and in the other there is a highly persistent

component to the consumption growth rate as in the long-run risk model of Bansal

and Yaron (2004) with a persistent component in consumption growth. But the con-

sumer doubts the model-mixing probabilities as well as the specification of each of

the component models. In contrast, Bansal and Yaron assume that the representa-

tive consumer assigns probability one to the long-run risk model even though sample

evidence is indecisive in selecting between them.7 Our framework explains why a

5This second risk-sensitivity operator accounts for what some researchers call ‘structured’ model
uncertainty.

6Barillas et al. (2007) reinterpret some of Tallarini’s results in terms of concern about model
misspecification instead of risk aversion.

7Bansal and Yaron (2004) incorporate other features in their specifications of consumption dy-
namics, including stochastic volatility. They also use a recursive utility specification with an in-
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consumer might act as if he puts probability (close to) one on the long-run risk

model even though he knows that it is difficult to discriminate between these models

statistically.

1.4 Relation to other asset pricing models with Bayesian

learning

By adding model uncertainty, we exploit substantially more of the hidden state

structure than did earlier researchers, for example, Detemple (1986), David (1997),

Veronesi (2000), Brennan and Xia (2001), Ai (2006), and Croce et al. (2006),8 who

use learning about a hidden state simply to generate an exogenous process for distri-

butions of future signals conditional on past signals as an input into a consumption

based asset pricing model. Those papers specify the evolution of a primitive stochas-

tic process of technology or endowments with an information structure that conceals

hidden Markov states. By applying Bayesian learning, typically as embodied in re-

cursive filtering methods, they construct a less informative state vector that consists

of sufficient statistics for the distribution of hidden states conditioned on signal his-

tories, as well as a recursive law of motion for it that is then used as an input in

decision making and asset pricing. Having constructed the coarser information struc-

ture implied by Bayesian learning, decision making and asset pricing in these models

is standard. Therefore, the asset pricing implications of such learning models depend

only on the distributions of future signals conditioned on past signals, and not on the

underlying structure with hidden states that the model builder used to deduce that

distribution. In such models, the only thing that learning contributes is a justification

for those conditional distributions: we would get equivalent asset pricing implications

by just assuming those distributions from the start.

As we shall see, application of a risk-sensitivity operator to twist the distribution

of hidden states means that that equivalence is not true in our model because it

tertemporal elasticity of substitution greater than 1.
8The learning problems in those papers share the feature that learning is passive, there being no

role for experimentation so that prediction can be separated from control. Cogley et al. (2005) apply
the framework of Hansen and Sargent (2007) in a setting where decisions affect future probabilities
of hidden states and experimentation is active. The papers just cited price risks under the same
information structure that is used to generate the risks being priced. In section 5, we offer an
interpretation of some other papers (e.g., Bossaerts (2002, 2004) and Cogley and Sargent (2008))
that study the effects of agents Bayesian learning on pricing risks generated by limited information
sets from the point of view of an outside econometrician who has a larger information set.

4



makes asset prices depend on the evolution of the hidden states and not simply on

the distribution of future signals conditioned on signal histories. This occurs because

of how, following Hansen and Sargent (2007), we make the representative consumer

explore potential misspecifications of the distributions of hidden Markov states and

of future signals conditioned on those hidden Markov states and on how he therefore

refuses to reduce compound lotteries. Continuation utilities will be center stage in

how our representative consumer uses signal histories to learn about hidden Markov

states, an ingredient absent from those earlier applications of Bayesian learning that

reduced the representative consumer’s information prior to asset pricing.9

1.5 Organization

We proceed as follows. After section 2 sets out a framework for pricing risks implicit

in a vector Brownian motion wt, section 3 describes a hidden Markov model and

three successively less information structures (full information, unknown states, and

unknown states and unknown model) together with the three innovations (or news)

processes given by the increments to Wt(ι), W̄t(ι) and W̄t that are implied by these

three information structures. Section 4 then uses these three information specifica-

tions and associated choices dWt(ι), dW̄t(ι) and dW̄t as the risks dwt to be priced

without model uncertainty. We construct these section 4 risk prices under the infor-

mation assumptions ordinarily used in finance and macroeconomics. Section 5 offers a

different perspective on Bayesian learning by pricing each of the risks dWt(ι), dW̄t(ι)

and dW̄t under the single full information set. Section 6 describes contributions

to risk prices coming from model uncertainties about distributions conditioning on

each of our three information sets. Uncertainty about shock distributions with known

states contributes a constant uncertainty premium, while uncertainty about unknown

states contributes a time-dependent one and uncertainty about models contributes

a state-dependent one. Section 7 presents an empirical example designed to high-

light the mechanism through which the state-dependent uncertainty premia give rise

to countercyclical prices of risk. Appendix A describes how we use detection error

9Exceptions to this statement are our earlier papers Cagetti et al. (2002) and Hansen et al.
(2002) that incorporate robustness corrections. In a sequel to this paper, Hansen (2007), among
other things (a) expands the model uncertainty faced by the representative consumer by effectively
confronting him with a continuum of long-run risk models parameterized by Bansal and Yaron’s ρ,
and (b) studies the consequences of applying a risk-sensitivity adjustment to this additional source
of model uncertainty.
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probabilities to calibrate the representative consumer’s concerns about model mis-

specification, while appendix B proliferates models as part of a robustness exercise

designed to refine our understanding of the forces that produce countercyclical risk

prices.

2 Stochastic discounting and risks

Let {St} be a stochastic discount factor process that, in conjunction with an ex-

pectation operator, assigns date 0 risk-adjusted prices to payoffs at date t. Trading

at intermediate dates implies that St+τ

St
is the τ -period stochastic discount factor for

pricing at date t. Let {wt} be a vector Brownian motion innovation process where

the increment dwt represents new information flowing to consumers at date t. We

synthesize a cumulative time t payoff as

logQt(α) = α · (wt − w0) −
t

2
|α|2.

By subtracting t
2
|α|2, we make the payoff be a martingale with unit expectation. By

changing the vector α, we change the risk exposure to components of wt. At date t,

we price the payoff Qt+τ (α)
Qt(α)

as

Pt,τ (α) = E

[

St+τQt+τ (α)

StQt(α)

∣

∣

∣
Ft

]

. (1)

The vector of (growth-rate) risk prices for horizon τ is given by the price “elasticity”:

πt,τ = − ∂

∂α

1

τ
logPt,τ (α)|α=αo

, (2)

where we have scaled by the payoff horizon τ for comparability. We take the negative

because exposure to risk is bad. Since we scaled the payoffs to have unit price,

− 1
τ

log pt,τ is the logarithm of an expected return adjusted for the payoff horizon. In

log-normal models, this derivative is independent of αo. This is true more generally

when the investment horizon shrinks to zero.10

10Here we are following Hansen and Scheinkman (2009) and Hansen (2008) in constructing a term
structure of prices of growth-rate risk.
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The vector of local risk prices is given by the limit

πt = − lim
τ↓0

∂

τ∂α
logPt,τ . (3)

It gives the local compensation for exposure to shocks expressed as an increase in

the conditional mean return. Local risk prices in conjunction with an instantaneous

risk-free rate are the building blocks of asset prices (e.g., Duffie (2001, pp. 111-114)).

These local prices can be compounded to construct the asset prices for arbitrary

payoff intervals τ using the dynamics of the underlying state variables in an economy.

We exploit the local normality to obtain a simple characterization of the slope of

the mean-standard deviation frontier and to reproduce a classical result from finance.

The slope of the efficient segment of the mean-standard deviation frontier is obtained

by solving:

max
α,α·α=1

α · πt

where the constraint imposes a unit local variance. The solution is α∗
t = πt

|πt|
with the

optimized local mean given by

α∗
t · πt =

πt · πt
|πt|

= |πt|, (4)

In this local normal environment, the Hansen and Jagannathan (1991) analysis sim-

plifies to comparing the magnitude of the risk price vector implied by alternative

models to an observed mean-standard deviation frontier.

In the power utility model,

St+τ

St
= exp(−δ) exp[−γ(ct+τ − ct)],

where the growth rate of log consumption ct+τ − ct. Here the vector πt of local risk

prices is the vector of “exposures” of −d log St = γdct to the Brownian increment

vector dwt.

To study learning and robustness, we use models of Bayesian learning to create

alternative specifications of w and information sets with respect to which the math-

ematical expectation in (1) are evaluated.
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3 Three information structures

We use a hidden Markov model and two filtering problems to construct three infor-

mation sets that we shall use to define risks to be priced with and without concerns

about robustness to model misspecification.

3.1 State evolution

Two models ι = 0, 1 take the state-space forms

dζt(ι) = A(ι)ζt(ι)dt+B(ι)dWt

dyt = D(ι)ζt(ι)dt+G(ι)dWt (5)

where ζt(ι) is the state, yt is the signal, and W is a multivariate standard Brownian

motion. For notational simplicity, we suppose that the same Brownian motion drives

both models. Under full information ι is observed and the vector dWt gives the new

information available to the consumer at date t.

3.2 Filtering problems

To generate two alternative information structures, we solve two types of filtering

problem. Let Yt be generated by the history of the signal dyτ up to t. In what

follows we first condition on Yt and ι for each t. We then omit ι from the consumer’s

conditioning information.

3.2.1 Model known

First, suppose that ι is known. Application of the Kalman filter yields the following

innovations representation:

dζ̄t(ι) = A(ι)ζ̄t(ι) +Kt(ι)[dst −D(ι)ζ̄t(ι)]

where ζ̄t(ι) = E[ζt(ι)|Yt, ι] and

Kt(ι) = [B(ι)G(ι)′ + Σt(ι)D(ι)′][G(ι)G(ι)′]−1
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dΣt(ι)

dt
= A(ι)Σt(ι) + ΣtA(ι)′ +B(ι)B(ι)′

−Kt(ι)[G(ι)B(ι)′ +D(ι)Σt(ι)]. (6)

The innovation process is

dW̄t(ι) = [Ḡ(ι)]−1
[

dst −D(ι)ζ̄t(ι)dt
]

where G(ι)G′(ι) = Ḡ(ι)Ḡ(ι)′ and Ḡ(ι) is nonsingular. The innovation process consti-

tutes the new information revealed to economic agents by the signal history.

3.2.2 Model unknown

Assume that G(ι)G(ι)′ independent of ι. Without this assumption, ι is revealed

immediately. Let ῑt = E(ι|Yt) and

dW̄t = Ḡ−1 (dst − νtdt) = ῑtdW̄t(1) + (1 − ῑt)dW̄t(2)

where

νt
.
= [ῑtD(1)ζ̄t(1) + (1 − ῑt)D(0)ζ̄t(0)]. (7)

Then

dῑt = ῑt(1 − ῑt)[ζ̄t(1)′D(1)′ − ζ̄t(0)′D(0)′]
(

Ḡ′
)−1

dW̄t.

The new information pertinent to consumers is now dW̄t.

4 Risk prices

Section 3 described three information structures: i) full information, ii) hidden states

but known model, iii) unknown states and unknown model. We use the associated

Brownian motions W (ι), W̄t(ι), and W̄t as risks to be priced and price those risks

under the information structure that generated them. The forms of the risk prices are

the same for all three information structures and are familiar from Breeden (1979).

(But in section 5 we shall price all three risks under full information in order to

look at Bayesian learning from another angle.) Given the local normality of the

diffusion model, the risk prices are given by the exposures of the log marginal utility

to the underlying risks. Let the increment logarithm of consumption be given by
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dct = H ′dyt, implying that consumption growth rates are revealed by the increment

in the signal vector. Each of the differing information sets implies a risk price vector,

as reported in Table 1.

Because different risks are being priced, the risk prices change across information

structures. However, the magnitude of the risk price is the same across information

structures. As we saw in (4), the magnitude of the risk price vector is the slope of the

instantaneous mean-standard deviation frontier. In section 6, we shall show how a

concern about model misspecification alters risk prices by adding compensations for

bearing model uncertainty. But first we want to look at Bayesian learning and risk

prices from a different perspective.

information local risk risk price slope

full dWt γG(ι)′H γ
√

H ′G(ι)G(ι)′H

unknown state dW̄t(ι) γḠ(ι)′H γ
√

H ′G(ι)G(ι)′H

unknown model dW̄t γḠ′H γ
√

H ′G(ι)G(ι)′H

Table 1: When the model is unknown, G(ι)G(ι)′ is assumed to be independent of
ι. The parameter γ is the coefficient of relative risk aversion in a power utility
model. The entries in the “slope” column are the implied slope of the mean-standard
deviation frontier. The consumption growth rate is dct = H ′dyt.

5 A full-information perspective on agents’ learn-

ing

In this section, we study what happens when an econometrician mistakenly presumes

that consumers have a larger information set than they actually do. It is known that

an econometrician who conditions on less information than consumers nevertheless

draws correct inferences about the magnitude of risk prices. But we shall see that an

econometrician who mistakenly conditions on more information than consumers actu-

ally have makes false inferences about that magnitude. We regard the consequences

of an econometrician’s mistakenly conditioning on more information than consumers

as contributing to the analysis of risk pricing under consumers’ Bayesian learning.
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Hansen and Richard (1987) systematically studied the consequences for risk prices

of an econometrician’s conditioning on less information than consumers. Given a cor-

rectly specified stochastic discount factor process, if economic agents use more infor-

mation than an econometrician, the consequences for the econometrician’s inferences

about risk prices can be innocuous. In constructing conditional moment restrictions

for asset prices, all that is required is that the econometrician at least include prices in

his information set. By application of the law of iterated expectation, the product of

a cumulative return and a stochastic discount factor remains a martingale when some

of the information available to consumers is omitted from the econometrician’s infor-

mation set. While the econometrician who omits information fails correctly to infer

the risk components actually confronted by consumers, that mistake does not under-

mine his correct inference about the slope of the mean-standard deviation frontier,

as we saw in the third column of table 1 section 3.

We now consider the reverse problem. What happens if economic agents use less

information than an econometrician? We study this by using the full-information

structure but price risks generated by the smaller informative information structures,

in particular, dW̄t(ι) and dW̄t. In pricing dW̄t(ι) and dW̄t under full information,

we use pricing formulas that take the mistaken Olympian perspective (often used in

macroeconomics) that the consumers know the full-information probability distribu-

tion of signals. This mistake made by the econometrician induces a pricing error

relative to the risk prices that are actually confronted by the consumer. The full

information prices misrepresent the “risks” consumers confront with their reduced in-

formation structures. The price discrepancies represent the effects of a representative

agent’s learning that Bossaerts (2002, 2004) and Cogley and Sargent (2008) featured.

5.1 Hidden states but known model

Consider first the case in which the model is known. Represent the innovation process

as

dW̄t(ι) = [Ḡ(ι)]−1
(

D(ι)
[

ζt(ι) − ζ̄t(ι)
]

dt+G(ι)dWt

)

.

This expression reveals that dW̄t(ι) bundles two risks: ζt− ζ̄t and dWt. An innovation

under the reduced information structure ceases to be an innovation in the original

full information structure. Also, the “risk” ζt(ι)− ζ̄t(ι) under the limited information

structure ceases to be risk under the full information structure.
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Consider the pricing of the small time interval limit of

Q̄t+τ (ᾱ)

Qt(ᾱ)
= exp

(

ᾱ′
[

W̄t+τ (ι) − W̄t(ι)
]

− |ᾱ|2τ
2

)

.

This has unit expectation under the partial information structure. The local price

computed under the full information structure is:

−δ−γHζt(ι)+ᾱ′[Ḡ(ι)]−1D(ι)
[

ζt(ι) − ζ̄t(ι)
]

+
1

2

∣

∣

∣
−γH ′G(ι) + ᾱ′

[

Ḡ(ι)
]−1

G(ι)
∣

∣

∣

2

−|ᾱ|2
2

where δ is the subjective rate of discount. Multiplying by minus one and differenti-

ating with respect to ᾱ gives the local price:

γḠ(ι)′H + [Ḡ(ι)]−1D(ι)
[

ζ̄t(ι) − ζt(ι)
]

.

The first term is the risk price under partial information (see Table 1), while the sec-

ond term is the part of the forecast error in the signal under the reduced information

set that can be forecast perfectly under the full information set.

5.2 States and model both unknown

Consider next what happens when the model is unknown. Suppose that ι = 1 and

represent W̄t as

W̄t = Ḡ−1 [G(1)dWt +D(1)ζt(1)dt] − Ḡ−1
[

ῑtD(1)ζ̄t(1)dt+ (1 − ῑt)D(0)ζ̄t(0)dt
]

There is an analogous calculation for ι = 0. When we compute local prices under full

information, we obtain

γḠ′H + Ḡ−1 [νt −D(ι)ζt] (8)

where νt is defined in (7).

The term γḠ′H is the risk price under reduced information when the model is

unknown (see Table 1). The term Ḡ−1 [νt −D(ι)ζt] is a contribution to the risk price

measured by the econometrician coming from the effects of the consumer’s learning

on the basis of his more limited information set. With respect to the probability

distribution used by the consumer, this term averages out to zero. Since ι is unknown,

the average includes a contribution from the prior. For some sample paths, this term
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can have negative entries for a substantial amount of time, indicating that the prices

under the reduced information exceed those computed under full information. Other

trajectories could display just the opposite phenomenon. It is thus possible that the

term Ḡ−1 [νt −D(ι)ζt] contributes apparent pessimism or optimism, depending on

the prior over ι and the particular sample path. In what follows, we use concerns

about robustness to motivate priors that are necessarily pessimistic and that always

enhance the counterpart to risk prices.

6 Price effects of consumers’ concerns about ro-

bustness

When prices reflect a representative consumer’s fears of model misspecification, (2)

must be replaced by

Pt,τ (α) = Ê

[

St+τQt+τ (α)

StQt(α)

∣

∣

∣
Ft

]

, (9)

where Ê is the mathematical expectation with respect to the representative con-

sumer’s worst-case probability distribution. This equation can also be expressed as

Pt,τ (α) = E

[

Mt+τ

Mt

St+τQt+τ (α)

StQt(α)

∣

∣

∣
Ft

]

, (10)

where Mt+τ is a martingale that represents the ratio of a worst-case density to the

original density for the Brownian motion wt+τ . To capture the effects of a preference

for robustness, we first construct the likelihood ratio Mt+τ

Mt

for the representative con-

sumer, then proceed to compute associated prices of risk and the implied slopes of

the efficient frontier by using formula (4). To compute Mt+τ

Mt
under our alternative

information structures, we must find value functions for a planner who fears model

misspecification.11 We do this below for our three information structures and then

construct the last column of Table 2, which indicates the contribution to risk prices

from each type of model uncertainty.

11Hansen and Sargent (2008, chs.11-13) discuss the role of the planner’s problem in computing
and representing prices with which to confront a representative consumer.
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information local risk risk price uncertainty price

full dWt G(ι)′H 1
θ1

[B(ι)′λ(ι) +G(ι)′H ]

unknown state dW̄t(ι) Ḡ(ι)′H 1
θ2
Ḡ(ι)−1D(ι)Σt(ι)λ(ι)

unknown model dW̄t Ḡ′H (ι̃− ῑ)Ḡ−1[D(1)ζ̄(1) −D(0)′ζ̄(0)]

Table 2: When the model is unknown, G(ι)G(ι)′ is assumed to be independent of
ι. The consumption growth rate is dct = H ′dst. Please cumulate contributions to
uncertainty prices as you move down the last column.

6.1 Value function without robustness

We study a consumer with unitary elasticity of intertemporal substitution. We start

with the value function for discounted expected utility using a logarithm period utility

function:

V (ζ, c, ι) = δE

[
∫ ∞

0

exp(−δτ)ct+τ |ζt = ζ, ct = c, ι

]

= δE

[
∫ ∞

0

exp(−δτ)(ct+τ − ct)|ζt = ζ, ct = c, ι

]

+ c

= λ(ι) · ζ + c.

Given the recursive nature of this valuation, the vector λ(ι) satisfies the equation

0 = −δλ(ι) +D(ι)′H + A(ι)′λ(ι), (11)

and thus

λ(ι) = [δI − A(ι)′]−1D(ι)′H. (12)

The value function under limited information simply replaces ζ with the best forecast

ζ̄ of the state vector given past information on signals.

6.2 Full information

Consider first the full information environment in which states are observed and the

model is known. The form of the value function is the same as that of Tallarini
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(2000) and Barillas et al. (2007).12 In a diffusion setting, a concern about robustness

induces the consumer to consider distortions that append a drift µtdt to the Brownian

increment and to impose a quadratic penalty to this distortion. This leads to a

minimization problem whose indirect value function yields the T
1 operator of Hansen

and Sargent (2007):

Problem 6.1.

0 = min
µ

−δ[λ(ι) · ζ(ι) + κ(ι)] + ζ(ι)′D(ι)′H + µ′G(ι)′H + ζ(ι)′A(ι)′λ(ι)

+ µ′B(ι)′λ(ι) +
θ1

2
µ′µ.

where we conjecture a value function of the form λ(ι) · ζ + κ(ι) + c.

Here θ1 is a positive penalty parameter that characterizes the decision maker’s fear

that model ι is misspecified. We impose the same θ1 for both models. See Hansen

et al. (2006) and Anderson et al. (2003) for more general treatments and see appendix

A for how we propose to calibrate θ1. The minimizing drift distortion µ is

µ∗(ι) = − 1

θ1

[

G(ι)′H +B(ι)′λ(ι)
]

(13)

which is independent of the state vector ζ(ι). As a result,

κ(ι) = − 1

2θ1δ
|G(ι)′H +B(ι)′λ(ι)|2 (14)

Equating coefficients on ζ(ι) in (6.1) implies that equation (11) continues to hold.

Thus, λ(ι) remains the same as in the model without robustness and is given by (12).

Proposition 6.2. The value function shares the same λ(ι) with the expected utility

model [formula ( (11))] and κ(ι) is given by (14). The associated worst case distri-

bution for the Brownian increment is normal with covariance matrix Idt and drift

µ∗(ι)dt given by (13).

Under full information, the likelihood of the worst-case model relative to that of

12While Tallarini adopts an interpretation in terms of enhanced risk aversion, we interpret a
risk-sensitivity adjustment as expressing an consumer’s concern about model misspecification. See
Barillas et al. (2007) for the relationship between these interpretations.
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the benchmark model is a martingale {Mf
t (ι)} with local evolution

d logMf
t (ι) = µ∗(ι)′dWt −

1

2
|µ∗(ι)|2dt.

The stochastic discount factor (relative to the benchmark model) includes contribu-

tions both from the consumption dynamics and from the martingale, so that

d logSft = d logMf
t (ι) − δdt− dct.

The local risk price is once again the negative of the risk exposure of the stochastic

discount factor. With robustness, the risk price vector under full information is

augmented by an uncertainty price:

G(ι)H + 1
θ1

[G(ι)′H +B(ι)′λ(ι)]

↑ ↑
risk uncertainty.

Neither the risk price nor the uncertainty price is state dependent or time dependent.

We have completed the first row of Table 2.

6.3 Unknown states

Now suppose that the model (the value of ι) is known but the state ζt(ι) is not.

We seek a martingale M i
t (ι) to use in (10) under this information structure. Follow-

ing Hansen and Sargent (2007), we introduce a positive penalty parameter θ2 and

construct a robust estimate of the hidden state ζt(ι) by solving:

Problem 6.3.

min
φ

∫

φ(ζ)ψ(ζ|ζ̂,Σ)dζ=1

∫

[λ(ι) · ζ + κ(ι) + θ2φ(ζ) logφ(ζ)]ψ(ζ |ζ̂,Σ)dζ

= min
ζ̃

λ(ι) · ζ̃ + κ(ι) +
θ2

2
[ζ̃ − ζ̄(ι)]′[Σ(ι)]−1[ζ̃ − ζ̄(ι)]

where ψ(ζ |ζ̄,Σ) is the normal density with mean ζ̄ and covariance matrix Σ, ζ̄(ι) is

the estimate of state and Σ the covariance matrix under the benchmark ι model.

In the first line of Problem 6.3, φ is a density (relative to a normal) that distorts the
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density for the hidden state and θ2 is a positive penalty parameter that penalizes φ’s

with large values of relative entropy (the expected value of φ logφ). The second line

of Problem 6.3 exploits the fact that the worst-case density is necessarily normal with

a mean distortion z̃ to the state. This structure make it straightforward to compute

the integral and as a result simplifies the minimization problem. In particular, the

worst-case state estimate ζ̃(ι) solves

0 = λ(ι) +
1

θ2
[Σ(ι)]−1[ζ̃(ι) − ζ̄(ι)].

Proposition 6.4. The robust value function is

U [ι, ζ̄(ι),Σ(ι)] = λ(ι) · ζ̄(ι) + κ(ι) − 1

2θ2
λ(ι)′Σ(ι)λ(ι) (15)

with the same λ(ι) as in the expected utility model [formula (11)] and the same κ(ι) as

in the robust planner’s problem with full information [formula (14)]. The worst-case

state estimate is

ζ̃ = ζ̄ − 1

θ2
Σ(ι)λ(ι).

The indirect value function on the right side of (15) defines an instance of the T
2

operator of Hansen and Sargent (2007). Under the distorted evolution, dyt has drift

ξ̃t(ι)dt = D(ι)ζ̃t(ι)dt+G(ι)µ∗(ι)dt,

while under the benchmark evolution it has drift

ξ̄t(ι)dt = D(ι)ζ̄tdt.

The corresponding likelihood ratio for our limited information setup is a martingale

M i
t (ι) that evolves as

d logM i
t (ι) =[ξ̃t(ι) − ξ̄t(ι)]

′[Ḡ(ι)′]−1dW̄t(ι) −
1

2
|Ḡ(ι)−1[ξ̃t(ι) − ξ̄t(ι)]|2dt,

and therefore the stochastic discount factor evolves as

d logSit = d logM i
t (ι) − δdt− dct.
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There are now two contributions to the uncertainty price, the one in the last

column of the first row of table 2 coming from the potential misspecification of the

state dynamics as reflected in the drift distortion to the Brownian motion and the

other in the second row of table 2 coming from the filtering problem as reflected in a

distortion in the estimated mean of hidden state vector:

Ḡ(ι)′H + 1
θ1

[Ḡ(ι)]−1G(ι)[G(ι)′H +B(ι)′λ(ι)] + 1
θ2

[Ḡ(ι)]−1D(ι)Σt(ι)λ(ι)

↑ ↑ ↑
risk model uncertainty estimation uncertainty.

(16)

The state estimation adds time dependence to the uncertainty prices through the

evolution of the covariance matrix Σt(ι) governed by (6), but the observed history of

signals is inconsequential. We have completed the second row of Table 2.

6.4 Model unknown

Finally, we obtain a martingaleMu
t to use in pricing formula (10) that reflects a robust

adjustment for an unknown model. We do this by twisting the model probability ῑt

by solving:

Problem 6.5.

min
0≤ι̃≤1

ι̃U [1, ζ̄(1),Σ(1)] + (1 − ι̃)U [0, ζ̄(0),Σ(0)]

+ θ2ι̃[log ι̃− log ῑ] + θ2(1 − ι̃)[log(1 − ι̃) − log(1 − ῑ)]

Proposition 6.6. The indirect value function for this problem becomes our robust

value function13

−θ2 log

[

ῑ exp

(

− 1

θ2
U [1, ζ̄(1),Σ(1)]

)

+ (1 − ῑ) exp

(

− 1

θ2
U [0, ζ̄(0),Σ(0)]

)]

.

The worst-case model probabilities satisfy:

(1 − ι̃) ∝ (1 − ῑ) exp

(

−U [0, ζ̄(0),Σ(0)]

θ2

)

ι̃ ∝ ῑ exp

(

−U [1, ζ̄(1),Σ(1)]

θ2

)

.

13This is evidently another application of the T
2 operator of Hansen and Sargent (2007).

18



Under the distorted probabilities, the signal increment dyt has a drift

κ̃tdt = [ι̃tξ̃t(1) + (1 − ι̃t)ξ̃t(0)]dt,

and under the benchmark probabilities this drift is

κ̄tdt = [ῑtξ̄t(1) + (1 − ῑt)ξ̄t(0)]dt.

The associated martingale constructed from the relative likelihoods has evolution

d logMu
t = (κ̃t − κ̄t)

′(Ḡ′)−1dW̄t −
1

2
|Ḡ−1(κ̃t − κ̄t)|2dt

and the stochastic discount factor is

d logSt = d logMu
t − δdt− dct

The resulting risk price vector equals the exposure of d logSt to dW̄t and is

Ḡ′H + ι̃Ḡ−1

[

1

θ 1
G(1)G(1)′H +

1

θ1
G(1)B(1)′λ(1) +

1

θ2
D(1)Σ(1)λ(1)

]

+ (1 − ι̃)Ḡ−1

[

1

θ1
G(0)G(0)′H +

1

θ1
G(0)B(0)′λ(0) +

1

θ2
D(0)Σ(0)λ(0)

]

+ (ι̃− ῑ)Ḡ−1
[

D(1)ζ̄(1) −D(0)′ζ̄(0)
]

(17)

This local price includes the risk price as well as the adjustments for model misspec-

ification and robust state estimation given in (16) where the latter two contributions

are weighted by the distorted probabilities ι̃. It also includes an additional term that

measures the difference in model probabilities before and after the distortion. The

resulting overall risk prices now inherit signal dependence from the model and state

probabilities and time dependence from the state covariance matrices Σ(ι). In sum-

mary, by completing the last column of table 2, we have characterized three sources

of uncertainty prices.
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7 Illustrating the mechanism

To highlight the forces that govern the component contributions of model uncertainty

to risk prices in formula (17), we create a long-run risk model along the lines of Bansal

and Yaron (2004) and Hansen et al. (2008a). Our models share the form

dζ1t = a(ι)ζ1t(ι) + σ1(ι)dW1t

dζ2t = 0

dyt = ζ1t + ζ2t + σ2(ι)dW2t (18)

where ζ1t(ι), ζ2t(ι) are scalars and W1t,W2t are scalar components of the vector Brow-

nian motion Wt and where ζ20(ι) = µy(ι) is the unconditional mean of consumption

growth for model ι. We use the following discrete time approximation to the state

space system (5):

ζt+τ (ι) − ζt(ι) = τA(ι)ζt(ι) +
√
τB(ι)wt+τ

yt+τ − yt = τD(ι)ζt(ι) +
√
τG(ι)wt+τ

(19)

where now wt+τ ∼ N (0, I) is an iid shock. We set τ = 1.

A small negative a(ι) coupled with a small σ1(ι) captures long-run risks in con-

sumption growth. Bansal and Yaron (2004) justify such a specification with the

argument that it fits consumption growth approximately as well as, and is therefore

difficult to distinguish from, an iid consumption growth model, which we know to

fit the aggregate per capital U.S. consumption data well. We respect this argument

by forming two models with the same values of the signal noise σ2(ι) but that with

differing values of σ1(ι), ρ(ι) = a(ι)+1, and µy(ι) = ζ20(ι), give identical values of the

likelihood. We impose ρ(1) = .99 to capture a long run risk model, while the equally

good fitting ι = 0 model has ρ = .36.14 Thus, we have constructed our two models

14The sample for real consumption of services and durables runs over the period 1948II-2008III. To
fit model ι = 1, we fixed ρ = .99 and estimated σ1 = .0004257, σ2 = .0048177, µy = .004545. Fixing
σ2 equal to .0048177, we then found a values of ρ = .36 and associated values σ1 =, 0020455, µy =
.00478258 that give virtually the same value of the likelihood. In this way, we construct two good
fitting models that are difficult to distinguish, with model ι = 1 being the long-run risk model and
model ι much more closely approximating an iid growth model. Freezing the value of σ2 at the
above value, the maximum likelihood estimates are ρ = .8179, σ1 = .00131659, µy = .00474011. The
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Figure 1: Bayesian model probability ῑt (solid line) and worst-case model probability
ι̃t (dashed line).

so that they are indistinguishable statistically over our sample. This is our way of

making precise the Bansal and Yaron (2004) observation that long-run risk and iid

consumption growth models are difficult to distinguish empirically.

In appendix A we describe how we first calibrated θ1 to drive the average detection

error probability over the two ι models with observed states to be .4 and then with θ1

thereby fixed set θ2 to get a detection error probability of .2 for the signal distribution

of the mixture model. We regard these values of detection error probabilities as being

associated with moderate amounts of model uncertainty.15 For these values of θ1, θ2,
16

figure 1 plots values of the Bayesian model mixing probability ῑ along with the worst-

data for consumption comes from the St. Louis Fed data set (FRED). They are taken from their
latest vintage (11/25/2008) with the following identifiers PCNDGC96 20081125 (real consumption
on nondurable goods), PCESVC96 20081125 (real consumption on services). The population series
is from the BLS, Series ID: LNS10000000. This is civilian noninstitutional population 16 years and
over in thousands. The raw data are monthly. We averaged it to compute a quarterly series.

15We initiate the Bayesian probability ῑ0 = .5 and set the covariance matrices Σ0(ι) over hidden
states at values that approximate what would prevail for a Bayesian who had previously observed a
sample of the length 242 that we have in our actual sample period. In particular, we calibrated the
initial state covariance matrices for both models as follows. First, we set preliminary ‘uninformative’
values that we took to be the variance of the unconditional stationary distribution of ζ2t(ι) and a
value for the variance of ζ2(ι) of .012, which is orders of magnitude larger than the maximum
likelihood estimates of µy for our entire sample. We set a preliminary state covariance between
ζ1t(ι) and ζ2(ι) equal to zero. We put these preliminary values into the Kalman filter, ran it for a
sample length of 242, and took the terminal covariance matrix as our starting value for the covariance
matrix of the hidden state for model ι.

16The calibrated values are θ−1

1
= 7, θ−1

2
= 1.
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Figure 2: Contribution of model uncertainty to risk price.

case probability ι̃. As described in the previous paragraph, we have constructed our

two models so that with our setting of the initial model probability ῑ0 at .5, the

terminal value of ῑt is also approximates .5. The interesting thing about figure 1 is

to watch how the worst-case ι̃t twists toward the long-run risk ι = 1 model. This

probability twisting contributes the countercyclical movements to the uncertainty

contributions to risk prices from expression (17) that we plot in figure 2.17

7.1 Explanation for countercyclical uncertainty premia

Our representative consumer attaches positive probabilities to a model with statis-

tically subtle persistence in consumption growth, namely, the long-run risk model

of Bansal and Yaron (2004), and also to another model asserting close to iid con-

sumption growth rates.18 The asymmetrical response of model uncertainty premia

to consumption growth shocks comes from (1) how consumer’s concern about pos-

sible misspecification of the probabilities that he attaches to models causes him to

calculate worst case probabilities that depend on value functions, and (2) how the

value functions for the two models respond to shocks in ways that bring them closer

together after positive consumption growth shocks and push them farther apart after

negative shocks. The long-run risk model with very persistent consumption growth

17The figure plots all components of (17) except the ordinary risk price ḠH ′.
18Appendix B reports a sensitivity analysis aimed to add insight about the source of countercyclical

risk prices.
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confronts the consumer with a long-lived shock to consumption growth. That affects

the set of possible model misspecifications that he worries about. The representative

consumer’s concerns about these misspecifications are reflected in a mean distortion

to the long-run risk shock and therefore a more negative constant term in the formula

for the continuation value. The resulting difference in constant terms in the value

functions for the models with and without long-run consumption risk sets the stage

for an asymmetric response of uncertainty premia to consumption growth shocks.

Consecutive periods of higher than average consumption growth raise the probability

that the consumer attaches to the model with persistent consumption growth relative

to that of the approximately iid consumption growth ι = 0 model. Although the

long-run risk model has a more negative constant term, when a string of higher than

average consumption growths occur, persistence of consumption growth under this

model means that consumption growth can be expected to remain higher than average

for many future periods. This pushes the continuation values associated with the two

models closer together than they are when consumption growth rates have recently

been lower than average. Via exponential twisting formulas, continuation values de-

termine the worst-case probabilities that the representative consumer attaches to the

models. That the continuation values for the two models become farther apart after

a string of negative consumption growth shocks implies that our cautious consumer

slants probability more towards the pessimistic long-run risk model when recent ob-

servations of consumption growth have been lower than average than when these

observed growth rates have been higher than average. The intertemporal behavior of

robustness-induced probability slanting accounts for how learning in the presence of

uncertainty about models induces time variation in uncertainty premia.

7.2 Effects of learning under rational expectations

It is interesting to contrast the kind of pessimism coming from robustness in section 7

with the kind featured in Cogley and Sargent (2008) that is induced by a pessimistic

prior joined with ordinary Bayesian learning. Figure 3 shows the contributions to risk

prices γḠ′H+ Ḡ−1 [νt −D(ι)ζt] given in expression (8) when we assume that the true

model used to price risks under full information is model ι = 0 with parameters set

at values estimated at the end of our sample. Notice how the learning contribution

to the risk price fluctuates between positive and negative values. These fluctuations
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Figure 3: Contribution of learning to risk price.

that can be interpreted in terms of alternating spells of Bayesian-learning-induced

optimism and pessimism relative to what we have assumed are the true hidden state

variables with the true model.19 The alternating signs of these effects of Bayesian

learning on risk prices contrast with the unidirectional pessimism associated with

model uncertainty.

8 Concluding remarks

The contributions of model uncertainty to risk prices combine (1) the same constant

forward-looking contribution µ∗(ι) = −θ−1
1

[

G(ι)′H +B(ι)′λ(ι)
]

that was featured in

earlier work without learning by Hansen et al. (1999) and Anderson et al. (2003),

(2) additional smoothly decreasing in time components −θ−1
2 Σ(ι)λ(ι) that come from

learning about parameter values within models, and (3) the potentially volatile time

varying contribution highlighted in section 7.1 that is caused by the consumer’s robust

learning about the probability distribution over models.

19Suppose that the state vector processes {ζt(ι)} are stationary and ergodic and the associated
stationary distributions are used as the prior for the limited information structures. In this case,
learning is about perpetually moving targets. In long samples, the entries of {ζt(ι) − ζ̄t(ι)} will
change signs so that on average they agree. In contrast if one an entry of ζt(ι) is truly invariant but
unknown a priori, then a systematic bias can emerge in a sample trajectory analogous to the one
depicted in figure 3 even as the impact of the prior decays over time. For finite t’s, the expectation
of ζ̄t(ι) conditioned on the invariant parameter will be biased as is standard in Bayesian analysis.
This bias disappears only when we average across such trajectories in accordance to the prior over
the invariant parameter.
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Our mechanism for producing time varying risk premia differs from other ap-

proaches. For instance, Campbell and Cochrane (1999) induce secular movements in

risk premia that are backward looking because a social externality depends on cur-

rent and past average consumption. To generate variation in risk premia, Bansal and

Yaron (2004) assume stochastic volatility in consumption.20

Our analysis features the effects of robust learning on local prices of exposure

to uncertainty. Studying the consequences of robust learning and model selection

for multi-period uncertainty prices is a natural next step. Multi-period valuation

requires the compounding of local prices, and when the prices are time-varying this

compounding can have nontrivial consequences.

Our analysis also imposed a unitary elasticity of substitution in order to obtain

convenient formulas for prices. While a unitary elasticity of substitution simplifies our

calculations, it implies that the ratio of consumption to wealth is constant. Although

consumption claims have no obvious counterpart in financial data, it remains interest-

ing to relax the unitary elasticity of substitution because of its potential importance

in the valuation of durable claims.

While our example economy is highly stylized, we can imagine a variety of envi-

ronments in which learning about low frequency phenomena is especially challenging

when consumers are not fully confident about their probability assessments. Hansen

et al. (2008a) show that while long-run risk components have important quantitative

impacts on low frequency implications of stochastic discount factors and cash flows,

it is statistically challenging to measure those components. Belief fragility emanating

from model uncertainty promises to be a potent source of fluctuations in the prices

of long-lived assets.

A Detection error probabilities

By adapting procedures developed by Hansen et al. (2002) and Anderson et al. (2003)
in ways described by Hansen et al. (2008b), we can use simulations to approximate
a detection error probability. Repeatedly simulate {yt+1 − yt}Tt=1 under the approx-
imating model. Evaluate the likelihood functions the likelihood functions LaT and
LwT of the approximating model and worst case model for a given (θ1, θ2). Compute

20Our interest in learning and time series variation in the uncertainty premium differentiates us
from Weitzman (2005) and Jobert et al. (2006), who focus on long run averages.
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the fraction of simulations for which
Lw

t

La

T

> 1 and call it ra. This approximates the

probability that the likelihood ratio says that the worst-case model generated the
data when the approximating model actually generated the data. Do a symmetrical
calculation to compute the fraction of simulations for which

La

T

Lw

T

> 1 (call it rw), where

the simulations are generated under the worst case model. As in Hansen et al. (2002)
and Anderson et al. (2003), define the overall detection error probability to be

p(θ1, θ2) =
1

2
(ra + rw). (20)

Because in this paper we use what Hansen et al. (2008b) call Game I, we use
the following sequential procedure to calibrate θ1 first, then θ2. First, we pretend
that ζt(ι) is observable for ι = 0, 1 and calibrate θ1 by calculating detection error
probabilities for a system with an observed state vector using the approach of Hansen
et al. (2002) and Hansen and Sargent (2008, ch. 9). Then having pinned down θ1,
we use formula (20) to calibrate θ2. This procedure takes the point of view that θ1
measures how difficult it would be to distinguish one model of the partially hidden
state from another if we were able to observe the hidden state, while θ2 measures how
difficult it is to distinguish alternative models of the hidden state. The probability
p(θ1, θ2) measures both sources of model uncertainty.

We proceeded as follows. (1) Conditional on model ι and the model ι state ζt(ι)
being observed, we computed the detection error probability as a function of θ1 for
models ι = 0, 1. (2) Using a prior probability of π = .5, we averaged the two curves
described in point (1) and plotted the average against θ1. We calibrated θ1 to yield
an average detection error probability of .4 and used this value of θ1 in the next step.
(3) With θ1 locked at the value just set, we then calculated and plotted the detection
error for the mixture model against θ2. To generate data under the approximating
mixture model, we sampled sequentially from the conditional density of signals un-
der the mixture model, building up the Bayesian probabilities ῑt sequentially along
a sample path. Similarly, to generate data under the worst case mixture model, we
sampled sequentially from the conditional density for the worst-case signal distribu-
tion, building up the worst-case model probabilities ι̃t sequentially. We set θ2 to fix
the overall detection error equal to .2.

B Sensitivity analysis

This appendix spotlights the force that produces countercyclical uncertainty contri-
butions to risk prices by introducing a perturbation to our model that attenuates
that force. The persistent countercyclical uncertainty contributions to risk prices in
figure 3 come from a setting in which the representative consumer entertains two
models that are difficult to distinguish. We study how uncertainty contributions to
risk prices change when we expand the consumer’s universe of models to include ones
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that fit the data even better than the two models in section 7. In particular, we
now endow the model with seven models having the same value of σ2 but now with
values of ρ = .36, .52, .67, .82, .89, .95, .99, with values of σ1, µy being concentrated
out via likelihood function maximization. In terms of the likelihood function for the
whole sample, the values at the end values .36, .99 are the poorest fitting ones and the
ρ = .82 one is the best fitting. We start the representative consumer with a uniform
prior over the seven models and set θ−1

1 = 4, θ−1
2 = 3 to obtain the uncertainty con-

tribution to risk prices reported in figure 4. We report Bayesian model probabilities
and their worst-case counterparts in figure 5.

Countercyclical risk premia still emerge, but they are moderated relative to those
in figure 3 in the text. The reason is to be found in how the presence of models
that fit better eventually pushes down the Bayesian model probability on long-run
risk model. Pushing that probability down far enough diminishes its influence on
uncertainty contributions to risk price even in the face of the tendency to twist model
probabilities toward the long-run risk model. Even after twisting, the worst-case
probabilities on that model are much smaller than they were in figure 1.

We find the comparison among competing models that have disperse implications
for risk prices as featured in our paper to be interesting. While adding our models
with ρ’s between .36 and .99 that give higher values of the likelihood diminishes
the variation in contributions to uncertainty that we have computed, the impact
on the rational expectations counterpart can be even more dramatic because those
intermediate models fit the data in ways that imply substantially smaller risk prices.
For the recursive utility model with full information, the magnitude of the risk price is
γ|[B(ι)′λ(ι) +G(ι)′H ]| where γ is a measure of risk aversion. For the model with the
largest likelihood, |[B(ι)′λ(ι)+G(ι)′H ]| = 0.008622, while this magnitude is 0.039627
for the ρ = .99 model. Thus, a value of γ more than four times larger is required
at the maximum likelihood estimate for the magnitude of the risk price to remain
the same as for the model with ρ = .99. To the extent that ρ = .99 is statistically
implausible, a rational expectations econometrician either rejects the model or finds
that consumers are highly risk averse.
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