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1 Introduction

The 15 years leading up to 2007 saw one of the largest increases in housing prices in U.S. history, followed

by a sharp drop in 2007-2008. With the increases came a panoply of justi�cations, laments, and dire predic-

tions. There have been few structural interpretations, but none that have moved into general acceptance,

particularly given the crash that followed. This paper presents a structural rationale for the path of housing

prices that shies away from labeling it as an asset �bubble,�from characterizations of irrationality amongst

condo-�ip type investors, and from dire forecasts related to the prevalence of subprime. We instead look at

an incentive-based argument that links housing prices with two economic features, one demographic, and

one of political economy. We believe that the combination of demographic and political economy factors can

generate much of the path of housing prices.

The �rst feature is the demographic force of the �baby boom�and its persistent low-frequency e¤ects,

often labeled the �baby echo�. The baby boom, as is well known, was a large increase in births around

mid-century. The increase was followed by a reversion towards birth levels somewhat lower than prior to

the boom. Once grown, the baby boomers began having their own kids and though they did so over a wider

range of years than the original boom, the number of children increased again towards the end of the century

(peaking in the late 1980s and early 1990s).

We argue that housing demand from the baby boomers was an important factor in housing price increases

over the past 50 years. However, since the original �baby boom�was much larger than the second, one would

expect that the peak for housing prices would be around 1989, as predicted by Mankiw and Weil (1989).

Naturally, we would expect to see another peak in prices once the echo kids reach adulthood. In fact, we see

a number of peaks. The �rst of these peaks is around 1972 and the second around 1989. A third �peak�has

likely just passed. See Figure 1.

[Insert Figure 1 about here]

The second feature takes a political economy dimension because it is related to the nature of school

�nancing in the United States. Anyone that has purchased or considered the purchase of a house is aware

that the house�s school district association is an important component of the house�s price. In many areas,

two similar houses located within a block of each other, but on opposite sides of a district boundary will

likely have markedly di¤erent prices. The reason is that school �nancing in the U.S. is a local a¤air. In most

localities, furthermore, schools are �nanced using a property tax on a mark-to-market home value1 .

School district funding is important because (many believe that) the stream of revenues is related to

educational outcome, tertiary educational opportunities, and thus lifetime income opportunities. There is a

long debate about the degree to which better �nancing is related to educational outcomes; since the belief

is su¢ ciently widespread, we use it as a benchmark. This creates a link between current housing location

and investment, and a child�s future income prospects2 . In particular, it links the choice of housing to the

1Some locations now have revenue sharing agreements and/or taxes based on the purchase price of a house. The former will
impact our discussion to some degree by ameliorating the local taxation e¤ects.

2We leave this detail mostly in the background. However, it could be argued that higher funding produces better educated
people with higher expected returns in the labor market. There may be other factors reinforcing this basic pattern. Over the
past 50 years, the number of students attending college has increased dramatically from XX to YY. However, the number of
slots at premier institutions, either elite publicly �nanced ones or private ones, has remained almost unchanged. This has led
to cyclical changes in admission rates for these institutions, leaving the over�ow of students to resort to other options. The
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demographic patterns of the children rather than the parents. A rational, forward-looking parent with a

strong bequest motive will choose to invest in a house that maximizes his child�s future lifetime earnings;

importantly, this decision will be made long before the child begins to earn his livelihood.

The baby boom demographic patterns and the institutional framework of elementary education interact

and take shape a bit more clearly now. The �rst housing price peak occurred with the boomers themselves.

The second occurred when the echo generation was of about age 5; and essentially continues until 2007. We

continue to have an empirical problem because the �rst peak of young children was much larger than the

second, but the second price increase has been much longer than the �rst. See Figure 2.

[Insert Figure 2 about here]

Our model suggests that households�home purchase decisions, made around the time that children are

entering grade school, could be location-speci�c. The characteristics of the location, specially the funding

choices for education, tend to skew the price distribution across school districts and drive a run-up in prices.

The skewness of the distribution gets accentuated over time and pushes the mean price of housing much

higher than demographic factors would otherwise suggest. It also has relevant implications for the wealth

and income distributions within each neighborhood. The combination of these location features and the

population pressures arising from the demographic shift due to the baby echo have led to the large increases

in housing prices in the �rst half of this decade, and could have anticipated the current price decline.

Figure 3 shows the correlation of population growth rates by age and our housing price index. Notice the

two �peaks�on the graph for children under 5 and for individuals in their late twenties. The twenties peak

are the children of the original baby boomers. The very young children are the baby boomers grandchildren.

[Insert Figure 3 about here]

Notice the distinction here from Mankiw and Weil (1989). They �nd that the �baby bust�led to a paucity

of individuals of house-buying age in the late 1980s, and predicted a consequent fall in house prices in the

1990s. For a few years in the late 1980s, their predictions were proven correct as real housing prices collapsed.

However, they did not forecast the role of boomers kids in driving housing prices up after that.

2 Literature Review

It is widely believed that school quality at the secondary level is responsible for both tertiary opportunities

and future income levels. As a result, the �quality�of school districts has long been thought to play a role

in the price of housing. Tiebout (1956) argues that individuals self-sort into communities based on public

spending preferences, and property values are consequently determined by the demand for those public

services such as schooling quality. Figlio and Lucas (2000) �nd a signi�cant correlation between school-wide

testing scores and housing prices. Scores are aggregated by �letter grade� in Gainesville, Florida, and the

authors �nd that an �A�has a market value of seven percent over a �B.�

probability of admissions has declined, and therefore the pressure of housing prices has increased as parents search for the best
district to improve the chances that their kids would get into a top school. While we do not model the decision mechanism
on an individual basis, an information problem lies in the background. Since the student�s ability is not perfectly revealed,
choosing a school that sends a signal of quality is a way to increase likelihood of admissions and thus lifetime earnings.
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Chiodo et al. (2005) �nd that the relationship between school quality and housing prices is highly

nonlinear; a premium is paid for housing in better school zones, but no penalty is paid for worse school

zones. They also provide an excellent survey on the broader literature that �nds strong correlations of

school testing scores and housing prices (see, e.g., Black, 1999, Downes and Zabel, 2002, Kane et al., 2006,

and Bayer et al., 2003). Brewer et al. (1999) and James et al. (1989) �nd a signi�cant economic return to

attending elite private colleges, even after selection e¤ects have been controlled for.

The majority of the current literature regarding the baby boom�s �nancial impact evaluates the e¤ect

of changing demographics on equity prices, with only a select few explicitly addressing the baby boom�s

relationship with housing prices. The literature shows a weak consensus that the bust/boom/bust cycle of

birthrate and population causes an overall decrease in asset returns. However, there has been relatively little

attention paid to the so-called baby-echo; since the boomers are now reaching retirement age and hold far

more assets in their portfolios than their children, the e¤ects of the latter generation have been viewed as

being of secondary importance by comparison.

Munnell (2004) suggests that life in the U.S. will not return to normal following the passing of the baby

boom due to the fertility boom, longer lifespans, and lower mortality rates. Martin (2005) explains that the

baby boom�s e¤ect on the working population also translates into housing prices, but Mankiw and Weil�s

(1989) paper missed the mark with their predictions. They worked in a partial equilibrium environment and

failed to anticipate the demographic shift�s e¤ect on the discount rate. As agents anticipate their children

becoming adults, they are willing to borrow against these future increases in wealth and the bond market and

interest rates evolve accordingly. When this is accounted for, Martin�s general equilibrium model includes the

demand e¤ects created by the exogenous demographic structure, and his model is successful in replicating

the long-term real interest rates (10-year treasury yield adjusted for in�ation) for 37 of the past 55 years.

Poterba (2004) agrees that overall asset returns are reduced for baby boomers, but o¤ers a standard

model showing a sharp upturn of asset holdings of the population during their 30�s and a slow decline

throughout their retirement years, contradicting claims of a �meltdown�between the years of 2020-2050 as

the baby boomer generation retires. Poterba�s (2001) model shows that demographic shocks a¤ect asset

prices and returns, and argues that a large cohort of population should expect lower returns, while a small

cohort can expect higher returns.

A number of authors have used an overlapping generations framework (OLG) to look at asset price e¤ects.

Brooks (2002) develops one to show that baby boomers will earn approximately 100 basis points lower return

on their assets, but will be better o¤ than their children as higher investment returns will move with them

throughout their working lives. In addition, the boomers tend to have fewer children and are therefore able

to begin saving at an earlier age than previous generations. Geanakoplos et al. (2004) o¤er a complex OLG

model that incorporates realistic age/income patterns and captures Social Security, bequest motives, and

other factors. Their �ndings show a larger impact of demography on asset values than previous studies. Abel

(2003) presents analytical results based on an OLG model with variable supply of capital. This shows that

the baby boom increases overall saving and investment in the U.S., resulting in a price increase of capital

when compared to an economy with a constant birthrate.

Abel (2001) also shows that bequest motives can impact the results of capital pricing while accounting

for a baby boom. Yoo (1994) presents an OLG model that sees an overall decline in asset prices. Finally,

Lim and Weil (2003) present a forward-looking macro-demographic model that shows that an exogenous

demographic structure has the power to impact stock prices if their �capital installation costs� are large,
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but conventional estimates are not enough to explain price movements in response to demographic changes.

Other authors that have addressed the baby boom and housing prices include Ang and Maddaloni (2003),

Glaeser et al. (2005), Lamont and Stein (1999), and Topel and Rosen (1988).

Features of the OLG Model. The OLG model, introduced by Samuelson (1958), is built around an

economy that extends ad in�nitum, populated by generations of households that are born at di¤erent dates

and have a �nite lifetime. We assume that each household has a constant probability of dying each period, and

that the newborn households vary cyclically making the population time-varying too. This structure induces

heterogeneity across households at each point in time, and allows for non-trivial life-cycle considerations for

a given household across time as well as non-trivial population dynamics.

Furthermore, the model introduces a particular breakdown of the asset market structure. Other models

of incomplete asset markets restrict the availability of �nancial assets, and therefore limit the savings and

the opportunities to hedge risks available to households. The OLG model introduces market incompleteness

independently of the asset availability. This is the result of incomplete markets for insurance purposes.

First, we allow for the possibility of private borrowing and lending (what used to be called �inside money�).

Households may die the next period and, therefore, it is �riskier�to lend them money. In other words, the

market for death insurance is missing. This feature of the model can generate substantial di¤erences relative

to models where households are in�nitely-lived3 . In extreme circumstances (e.g., when death rates are high)

borrowing and lending may stop altogether because lenders are uncertain about how much of the debt would

be repaid, and therefore interests sky-rocket.

Households can also allocate part of their �liquid�wealth or savings in the form of housing capital. This

investment has some value in the future because real estate trades are also intergenerational. Even though,

riskiness is higher, real estate gives households a new asset instrument to recursively attain additional hedging

opportunities. In any case, this may not be su¢ cient to replicate the complete markets outcome.

Second, the riskiness associated with savings on bonds has spill-over e¤ects on other markets, in particular

on real state, because this gives the asset a new role. In our model, housing is valued for three reasons: (a) it

produces housing services, (b) it in�uences the returns on education (parents can in�uence the future income

stream of their descendents down the family tree through the educational channel), and (c) it serves as a

deposit of value and means of exchange to move resources intertemporally. If asset markets were complete,

in the absence of housing services and returns to education there would be no e¤ective demand for real

estate. It would be a redundant asset because the returns to real estate could always be replicated with a

combination of all other assets.

The heterogeneity of households and the role of market incompleteness is reinforced with our assumption

that housing location is related to returns on education. Naturally, this introduces another missing market

because there is simply no market insurance to protect young households from being residing into a neigh-

borhood with taxes that are either too high or too low for their own �needs�. And, even though location

decisions may greatly in�uence their prospects in life, there is no insurance against the �wrong� funding

3 It is also worth noticing that the �rst welfare theorem does not apply to OLG models, so a competitive equilibrium may
not be Pareto optimal. However, the potential ine¢ ciency of the competitive equilibrium in the model has nothing to do with
the fact that households overlap in a way that prevents them from getting together at date t = 1 and exploiting all possible
gains from trade. That is, the results are not due to the fact that at date t the only feasible trades are between the generation
born at time t� 1 and time t.
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scheme for the school district.

3 The Model

We study a version of the overlapping generations model (henceforth, OLG model) that accounts for certain

demographic features as well as for an important characteristic in the �nancing of public education across

school districts in the U.S. This framework establishes a link between the housing market and the education

system through property taxes. We use this model to explain the evolution over time (and the observed

dispersion) of housing prices across neighborhoods. We also investigate the role that demographic features

have on housing prices.

3.1 Population and Geography

The economy is populated by overlapping generations with a life-span of J periods. The world operates

with one school district. We denote the school districts as q. In each period, households die with an

exogenous probability. The probability �j = P (alive at j + 1 j alive at j) denotes the survival rate at age
j+1 conditional on having survived up to age j. We assume �j 2 (0; 1] for all j 2 f1; 2; :::; J � 1g and �J = 0
to indicate that no household within a given generation lives longer than a �nite J number of periods. The

survival rate is time independent, but varies with age. In other words, the survival rate varies depending

on how old the individual is. Death is an exogenous random event but J is �xed, therefore �involuntary�

transfers of wealth will almost surely occur.

There is no altruistic bequest motive. These transfers are forced by the sudden death of a household,

hence they are involuntary in nature. The �involuntary�transfers of bonds are denoted T bt , and distributed

as an equal lump-sum payment across all households currently alive. The �involuntary�transfers of housing

wealth are denoted Tht , and are redistributed as an equal lump-sum payment too. We can think of these

transfers as an �implicit�estate tax and redistribution scheme4 .

In each period, a new generation of households is also born. The mass of new households denoted nt is

exogenously given, and stochastic. The rate nt captures cyclical variations of the population, and is assumed

to be identical across all the di¤erent neighborhoods. The population mass nt is interpreted as an aggregate

shock to the economy. It allows us to explore the e¤ects of population cycles on savings and housing choices.

4Since lifetime is uncertain, in order to avoid unintended bequest, some papers simply assume that a life insurance market
is operative as in Yaari (1965) and Blanchard (1985). In particular, in each period individuals receive actuarially fair premia
from competitive life insurance companies in exchange of their �nancial wealth when they pass away. Given the structure of the
population, perfect competition in the insurance sector implies that the gross return on the insurance contract, incorporated in
the consumer �ow budget constraint, is equal to 1

1��j
.
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3.2 Technologies5

Similar to Martin (2005), we include two �nal goods and one intermediate good in our model. One type

of �nal good is the standard, perishable consumption good. The production of this good requires both

labor and an intermediate good which we call education. Education itself is produced combining hours of

study and public spending on education. The �nal output of the consumption good can be either consumed

privately, spent on education or invested in the stock of housing stock (a durable good). The other type of

�nal good available to households is housing services. Consumption of housing services comes from a �ow

derived from the stock of housing.

The production of consumption goods relies on a Cobb-Douglas technology function whose inputs are

labor hours, xt, and education, et,

yt = atF (et; xt) = at (et)
�
(xt)

�
;

where at denotes an idiosyncratic productivity shock. For simplicity, we abstract entirely from capital. In

the spirit of Ben-Porath (1967), we assume that the production of education is given by a Cobb-Douglas

technology function whose inputs are study hours, vt, and total spending on education, Gt,

(et)
�
= (Gt)

�j (vt)
1��

:

Education spending depends on housing because the school district is �nanced with property taxes6 . Each

household allocates his time simultaneously to production and education.

Every household within a school district believes it cannot in�uence public spending on education, hence

Gt is treated as an externality. Education, in turn, is interpreted in a broad sense. It includes on-the-job

learning, training and re-training, and spans over the entire life-cycle of the household. Education spending

does not necessarily impact the education attainment equally over the life-cycle. The parameter �j is age-

dependent, so the function can show varying returns to scale with age.

The variable for time spent in non-leisure activities, lt, is an aggregate measure of the actual hours spent

working and studying, respectively xt and vt. The Cobb-Douglas aggregator is,

l
�j
t = (xt)

�
(vt)

1��
;

which is age-dependent in the parameter �j to account for decreasing marginal returns from labor and study

5For tractability, we implicitly assume that there is a continuum of identical �rms �uctuating at the population rate to
produce consumption goods, housing services and education. Each �rm is entirely owned and operated by a single household
to satisfy his own needs. We believe the model could incorporate also a general competitive framework where �rms are
independent pro�t-maximizers to which households supply labor and capital goods (if needed) on a competitive basis, such that
�rms make zero pro�ts in equilibrium. The model could also be extended to allow for �rm�s stocks to be distributed across
several households. However, neither one of these extensions is likely to add more light on housing prices.

6Consumption goods appear as an input in the production of education but, unlike Manuelli and Seshadri (2005), they
appear in the form of government spending, Gqt .
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hours over the life-cycle. Then, the total production function of the household is summarized as7 ,

yt = at (Gt)
�j (lt)

�j :

Final output is merely a function of an aggregate measure of time, lt, and public spending on education, Gt.

This structure greatly simpli�es the model and su¢ ces to introduce di¤erent returns to scale conditional on

age, without altering signi�cantly the performance of the model along the dimensions of interest.

We assume that there are no investment frictions (time-to-build, etc.), and therefore the investment in

the stock of housing is utilized instantaneously. We denote the stock of housing (our durable good), ht, and

assume a proportional service �ow, st,

st = mht+1;

where m is a given constant. This equation maps the housing stock into �ows of housing services through a

constant scaling factor. Housing services today are derived from the stock of housing bought for tomorrow.

This timing convention is also adopted by Martin (2005). Because the purchase of tomorrow�s housing is

decided today, households perceive some �rents�from the moment of the purchase onwards.

In our model, this timing convention introduces an �implicit�bequest motive that we cannot ignore. A

household that survives up until age J realizes that he will die at the end of the period. However, he is still

willing to invest in housing because of the services it extracts today. This ensures that there will always be

a nonnegative amount of housing to be transferred to the next generation (and everybody else that stays

alive). Hence, �involuntary�transfers may not be all that involuntary after all.

The same technologies to produce consumption goods, housing services and education are available to

each household.

3.3 Preferences

Households are endowed with no wealth of their own (neither bonds nor housing) when they are born, except

for the �involuntary transfers�redistributed from households exiting in that period. Each household is also

endowed with his long-run productivity at birth. The �rst generation to be born in this economy at time

t = 0 has size n0. At that point no other prior generation is alive, and households are scattered uniformly

across the school district.

Location a¤ects the value of wealth transferred to the new generation because the housing markets are

segmented and households must sell their housing stock in the market where they are born. Households

maximize their lifetime discounted utility, which is a standard time-separable function of the form,XJ

j=1
�j�

j�1Et [u (ct+j ; st+j ; lt+j)] ;

where � 2 (0; 1) denotes the corresponding time-discount factor. The period utility function is additively
separable in consumption, ct, housing services, st, and non-leisure time, lt,

u (ct; st; lt) =
c1��t � 1
1� � + �s

s1�
t � 1
1� 
 � �l

l1+'t

1 + '
:

7We could add a productivity shock to the education function. However, that would be subsumed into the productivity
shock for output after substituting the education function into the technology function.
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Expectations are taken with respect to the stochastic processes governing the idiosyncratic productivity

shock, at, the stochastic process driving the aggregate shock, nt, and the survival rate, �j .

3.4 Shocks

Each household faces an idiosyncratic productivity shock, at, which is not fully insurable, and an aggregate

shock, nt, that captures the size of a generation born at time t. We assume that at 2 A = fa1; :::; aIag is
a realization of the idiosyncratic stochastic process, which is independent and identically distributed across

households. This process evolves according to a �nite-state Markov chain with stationary transitions,

F a (A j a) = P (at+1 2 A j at = a) :

We assume that nt 2 N = fn1; :::; nIng is a realization of the aggregate stochastic process. The aggregate
population shock is independent from the idiosyncratic productivity shock. This process evolves according

to a �nite-state Markov chain with stationary transitions,

Fn (N j n) = P (nt+1 2 N j nt = n) :

We assume that F a and Fn consist of only strictly positive entries. Hence, there exists a unique, strictly

positive, invariant distribution for F a and Fn, which we denote respectively F
a
and F

n
.

All households receive at birth the long-run average of their idiosyncratic productivity shock, i.e. a. The

size of the population of newborns will be determined by the realization of the aggregate shock, nt. The

size of each birth cohort, obviously, does not change over time except by death until the entire generation

completely disappears J periods later. Hence, nt represents the population size at birth and once determined

it remains �xed once and for all. However, the population size of a given generation still varies with age due

to the positive probability that individual households will die out.

We compute the long-run average of the shocks as a =
X

a2A
aF

a
and n =

X
n2N

nF
n
, where a 2 A

and n 2 N . From here, we derive the initial conditions for the idiosyncratic productivity shock, and assume

that n = n0 = 1. In a simplistic way, this makes good the old saying that �we are all equal at birth�. However,

di¤erent realizations of the idiosyncratic shocks, the death rate and the endogenous decisions of households

lead to cross-sectional income and wealth di¤erences over the entire life-cycle. Property taxes and public

spending also contribute to magnify these e¤ects.

Conesa and Krueger (2006) and Conesa et al. (2007), among others, argue that in the absence of insurance

markets for the idiosyncratic risks, the tax system can be administered to share some of those risks across

households. This provides the government with a purpose and a tool to �improve� the allocation of the

households. Of course, in all these models, heterogeneity among households due to di¤erences in education

or innate abilities is entirely exogenous. In fact, households are born with certain ability level and it does

not change over their lifetime. This means that di¤erences in income and wealth arise due to idiosyncratic

shocks even among households with the same education level.

In our model, instead, the education and skills that a household displays are not constant over time, but

endogenously determined. Furthermore, property taxes a¤ect the level of education that a household can

attain (because they serve to �nance the school district), and therefore his productivity. One important way

in which households�income pro�le can change is simply through changes in funding for the school district.
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In this context, school district-speci�c policies on taxation and public spending become an important source

of heterogeneity for the population. Now, it becomes less obvious that taxes may be e¤ective in sharing

risks across households because they may simultaneously increase the heterogeneity across individuals and

age groups.

3.5 Budget Constraints

The school districts are �nanced with a constant property tax, � . Schools tax away a proportion of the

value of housing owned by residents within their district (whether through direct purchases or �involuntary�

transfers). The same tax rate applies to all households, and all the revenue raised is used to �nance education

within the district. Borrowing and transfers across districts are ruled out, no other revenue sources are

permitted, and school districts are required to balance their budgets every period.

The stock of housing, ht, is a homogeneous, durable good. Households derive a �ow of housing services

from the housing stock they acquire today. However, they can also realize capital gains by buying and selling

property in the housing market. In principle, all markets (for consumption goods, housing and bonds) are

fully integrated across locations. The depreciation of the aggregate stock of housing, �, re�ects the impact of

weather patterns that can a¤ect the preservation of the property, crime rates, sanitation services, availability

and quality of maintenance, etc., all of which in�uence the depreciation of the stock.

Frictions generated by heterogeneity of housing units, indivisibilities and the matching of buyers and

sellers are ignored. We assume that housing units can be measured on a homogeneous scale through the use

of some hedonic index (or a similar measure), that market transactions can be treated as if they occur in

a frictionless world, and that housing markets operate otherwise e¢ ciently, except perhaps because of the

distortion induced by property taxes.

Households invest their savings in zero-net supply bonds, bt+1, or the stock of housing, ht+1. The risk-free

returns of the zero-net supply bonds are denoted rt, while the price of housing is pt. Taking the consumption

good as numeraire, we de�ne the budget constraint of the household as,

ct + bt+1 + ptht+1 = yt + rt

�
bt + (�t)

�1
T bt

�
+ (1� �) (1� �) pt

�
ht + (�t)

�1
Tht

�
;

where the fraction the size of the entire population in the school district is denoted as,

�t =

Z
d�t;

and �t is the joint distribution of the state vector at time t (we describe this distribution later on). We

use this notation for generality, but obviously total population would depend on size of all generations born

within the last J periods adjusted according to the survival rate of each generation during the current period.

Households pay taxes on the current value of the depreciated stock of housing, independently of whether

this housing stock was bought by the household one period before or whether it comes from �involuntary�

transfers, Tht .

Household �nances depend critically on how the purchase of a house can be �nanced. First, we impose

a nonnegativity (or no short-selling) constraint on housing,

ht+1 � 0:
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This restriction is trivially satis�ed given our choice of preferences. But ensures (and emphasizes) that

there is always some collateral asset available to repay debts. It is worth noticing that housing is a durable

good and has intrinsic value, therefore it can e¤ectively be used to repay some of the outstanding debts.

Furthermore, this speci�cation guarantees that some positive amount of housing is transferred to the �new�

generation.

Second, we impose a constraint on borrowing. One option would be to consider that housing is used as

a collateral for all debts in this model. For that, we could impose a lower bound on wealth. We de�ne the

value at time t of the household�s wealth for time t + 1 net of borrowing as wt+1 � bt+1 + ptht+1. For a

household born at time t, it must hold true that,

wt+j+1 � � ($j � 1) pt+jht+j+1; 8j 2 f1; 2; :::; Jg ;

or simply,

bt+j+1 � �$jpt+jht+j+1; 8j 2 f1; 2; :::; Jg :

Moreover, $j � 0 for all j 2 f1; 2; :::; J � 1g and $J = 0. The lower-bound on wealth is independent of

location, but may vary with age. It requires that households do not make debt commitments that are too

large relative to the acquisition price of their next period housing stock8 . However, this speci�cation may

easily lead to anomalous behavior. Households, independently of their income, can buy as much housing

stock as they wish borrowing on the basis of the house�s value. Hence, all households will tend to invest in

as much housing as they possible can and the borrowing constraint will have no bite. Of course, this set-up

is exposed to many �dangers�during times of declining house prices. The current situation in the �nancial

markets may be a re�ection of that.

Instead, we calibrate the model based on a more conventional �nancial restriction. Usually, the �nancial

restriction is de�ned as a maximum fraction of total income devoted to repay the loan. We model that idea

as follows,

rt+jbt+j � �$jyt+j ; 8j 2 f1; 2; :::; Jg ;

where total income is determined by the production function. If the household is a lender (i.e., bt+j � 0),
this constraint is completely irrelevant. If the household is a borrower (i.e., bt+j � 0), then the constraint
becomes important. This constraint ensures that households cannot borrow excessively beyond their means.

In other words, the loan repayment (including interest and principal) cannot exceed a fraction $j of their

income. This fraction is age-dependent, positive and $J = 0.

3.6 Market Structure

We assume that households cannot insure themselves against idiosyncratic shocks to labor productivity

through an insurance market. Annuity markets to hedge the idiosyncratic risk of death are also missing in

this speci�cation. The aggregate population shock is obviously also uninsurable. Households still can trade

one-period risk-free bonds (as described above) to insure themselves against all idiosyncratic risks. Bonds

8A household of age J is expected to die by the end of the period, hence he cannot borrow at all. This is an intuitive
restriction, but not one that comes naturally from the model. In fact, lenders may take the risk because they anticipate that
the debt would be repaid by another household (or group of them) because those commitments would not be defaulted, instead
they are transferred after death.
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are in zero-net supply, hence this amounts to an intragenerational (and to some extent an intergenerational)

borrowing and lending scheme. However, it is only of limited use because: (a) borrowing is tied down by the

need to use housing as a collateral, which prevents them from dying with pending debt repayments too large

relative to the value of their housing properties, and (b) the OLG framework also restricts intragenerational

trading or trading across age groups. Nobody wants to lend money to households at age J . As discussed

before, the e¤ect of taxes as a government-sponsored instrument to share risks is also unclear.

4 The Recursive Competitive Equilibrium

In this section we de�ne the competitive equilibrium and the stationary competitive equilibrium. We denote

the state vector that characterizes each individual household as (at; wt; j). Hence, at any given time t,

households are characterized by a random idiosyncratic shock, at, by their net wealth, wt, by their stock of

housing, ht, and by their age, j.

The distribution function �t and the aggregate population shock nt are su¢ cient to describe the aggregate

state of the economy. The role of the aggregate state variables is to allow households to predict future housing

prices and interest rates. The part of the law of motion that depends on the aggregate population shock is

exogenous, and can be described with the transition matrix for nt. The joint distribution of the state vector

at time t is given by �t � �t (at; wt; j), and its law of motion can be expressed as follows,

�t+1 = �(�t;nt; nt+1; �) ;

where � = (� ; �) is the vector of (constant) district-speci�c property tax rates and depreciation rates. To

ease our notation requirements we do not keep track of these parameters, since they remain unchanged.

However, we acknowledge their impact and anticipate the important role they can play if taxation decisions

are endogenized.

With �t we calculate the aggregate stock of housing in the market9 , Ht, as,

Ht =

Z
htd�t (at; wt; ; j) :

Aggregate housing satis�es the following law of motion10 ,

Ht+1 = (1� �)Ht + It: (1)

The stock of durable goods diminishes due to the e¤ects of depreciation, but depreciation di¤ers across

9Ht is not an aggregate state variable because when markets are incomplete aggregation fails to deliver a su¢ cient statistic
to predict future housing prices and interest rates.

10Notice that by construction aggregate investment comes from,

It =

Z
ht+1d�t+1 (at+1; wt+1; j)� (1� �)

Z
htd�t (at; wt; j)

=

Z
ht+1dH (�t (at; wt; j) ;nt; nt+1)� (1� �)

Z
htd�t (at; wt; j) :

This shows that aggregate investment depends on the current distribution of shocks �t, which is our su¢ cient aggregate state,
as long as H (�) which is taken as given.

11



neighborhoods.

The maximization problem is described below in the language of dynamic programming. To further ease

our demands on notation, we use a �prime�to denote next period values and (if needed) a �double prime�to

denote values two-periods ahead. We write the household�s problem recursively as follows11 ,

V (a;w; j; �; n) = max
c;l;b0;h0

u (c; s; l) + �j�E [V (a0; w0; j + 1; �0; n0) j a; n]

= max
c;l;b0;h0

u (c; s; l) + �j�

Z
a0;n0

V (a0; w0; j + 1; �0; n0) dF a (a0 j a) dFn (n0 j n) ; (2)

subject to,

c+ b0 + ph0 = a (G)
�j l�j + r

�
b+ (�t)

�1
T b
�
+ (1� �) (1� �) p

�
h+ (�t)

�1
Th
�
; 8j 2 f1; :::; Jg ;

s = mh0;

(c; l; h0) � 0; rb � �$ja (G)
�j l�j ; 8j 2 f1; :::; Jg ;

�0 = �(�;n; n0) ;

where c stands for consumption, l denotes time spent in labor or studies, and h and s represent the stock

of housing and the �ow of housing services respectively. The function V denotes the value function, and�
T b; Th

�
represent the �involuntary� transfers. The control variables are consumption, c, labor supply, l,

demand for bonds, b0, and demand for housing, h0.

The maximal utility of a household is computed as in (2), while after the terminal period J the value

function is set to zero, i.e. V (a;w; J + 1; �; n) = 0. Hence, the value function V (a;w; j; �; n) follows in a

straightforward way by backward induction. Markets are competitive. The optimal decision rules for the

household�s problem can be represented as,

c = c (a;w; j; p; r; �; n) ;

l = l (a;w; j; p; r; �; n) ;

b0 = b0 (a;w; j; p; r; �; n) ;

h0 = h0 (a;w; j; p; r; �; n) ;

given the housing price and the risk-free interest rate.

In this economy, there are markets for consumption goods, housing, and bonds (labor is non-marketable).

The consumption good is taken as the numeraire. By Walras�law, to �nd the equilibrium prices we only need

to use the market clearing conditions for bonds and housing in each district. The market clearing conditions

are discussed later as part of the Recursive Competitive Equilibrium (RCE) de�nition. Equilibrium prices,

nonetheless, should be a function of the aggregate state only, so we argue that,

p = p (�; n) ;

r = r (�; n) ;

11We do not keep track of individual households because the decision of households in the same individual state variable
coordinates are always the same.
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where the idiosyncratic shock and other individual state variables (the stock of net wealth and the age of

the household) do not a¤ect prices directly. Therefore, all the decision rules can be expressed uniquely as

functions of the individual and aggregate state variables, i.e.

c = c (a;w; j; �; n) ;

l = l (a;w; j; �; n) ;

b0 = b0 (a;w; j; �; n) ;

h0 = h0 (a;w; j; �; n) ;

q0 = q0 (a;w; j; �; n) ;

since the equilibrium prices are a function of the aggregate states12 . This notation should be viewed as a

short-hand for the deeper relationships that exist.

Finally, to close down the model we need to specify the school district budget constraint as follows,

G = � (1� �) p
�XJ

i=1

Z
�i1fj=ighd� (a; b; h; q; j) + T

h

�
; (3)

where 1fj=ig is an index function that takes the value of one if the individual�s age is i and takes the value

of zero otherwise. This structure implies that current school district revenues come from the property taxes

they collect from the stock of housing net of depreciation owned by the residents of the district. We take

this tax scheme to be exogenously given, hence not subject to the optimization of the school o¢ cials or to

voting. A natural extension of the model would allow for property taxes being set by majority rule, where

� summarizes the control variables used to determine the policies of the district on funding for education.

We believe that this set-up lends itself easily to discuss relevant issues of education �nancing and political

economy. However, if we were to endogenize the choice of property taxes now, the problem would become

much harder.

Let a 2 A = fa1; :::; aIag, n 2 N = fn1; :::; nIng, w 2 R, and j 2 J = f1; :::; Jg. Let S = A� N� R� J,
B (R) be the Borel ��algebra of R, and P (A), P (N), P (J) the power sets of A, N, and J, respectively.
Finally, let M be the set of all �nite measures over the measurable space (S;P (A)� P (N)� B (R)� P (J)).
Based on our set-up, we de�ne the recursive competitive equilibrium (RCE) as follows,

De�nition 1 Let us take as given the school district property tax and the depreciation rate f�g, the indi-
vidual state variable initial conditions (zero-wealth at birth except for �involuntary� transfers and long-run

idiosyncratic shocks), and the initial conditions on the aggregate state variables (�0; n0). A Recursive
Competitive Equilibrium is a set of a value function fV : S! R+g, of decision rules for the households
fc; l; h0 : S! R+g[fb0 : S! Rg, of public spending on education fG : R+! R+g, and of �involuntary trans-
fers�

�
T b; Th : R! R

	
, as well as a set of prices fp; r :M! R+g, a measure � 2 M and its corresponding

law of motion f� :M!Mg, such that:
(i) Given

�
p; r; T b; Th;�;�; n; �

	
and the initial conditions, the functions V (�), c (�), l (�), b0 (�) and h0 (�)

solve the household�s problem in (2)� (??).
12Notice that given the equilibrium prices p (�) and r (�) we can easily compute the household time allocations l (a;w; j; �; n),

as well as the aggregate allocation L =
R
l (a;w; j; �; n) d� (a;w; j). Using the budget constraint we can also compute the

household consumption each period c (a;w; j; �; n), and the aggregate consumption C =
R
c (a;w; j; �; n) d� (a;w; j).
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(ii) The school district budget constraints de�ned in (3) are satis�ed,

G = � (1� �) p (�; n)
�XJ

i=1

Z
�i1fj=ighd� (a;w; j) + T

h

�
:

(iii) �Involuntary�transfers are given by,

T b0 =

Z �
b0 (a;w; j; �; n)�

XJ

i=1
�i1fj=igb

0 (a;w; j; �; n)

�
d� (a;w; j) ;

Th0 =

Z �
h0 (a;w; j; �; n)�

XJ

i=1
�i1fj=igh

0 (a;w; j; �; n)

�
d� (a;w; j) :

(iv) Prices clear the bond market (bonds are in zero net supply) as well as the housing market,Z
b0 (a;w; j; p; r; �; n) d� (a;w; j) = 0;Z
h0 (a;w; j; p; r; �; n) d� (a;w; j) = H 0:

(v) The law of motion for the stock of housing in each market is given by (1). The resource constraint is

also satis�ed, Z
[c (a;w; j; �; n) + p (�; n)h0 (a;w; j; �; n)] d� (a;w; j)

=

Z
a (G)

�j l (a;w; j; �; n)
�j d� (a;w; j) + (1� �) p (�; n)H:

(vi) The law of motion �0 = �(�;n; n0) is given by,

(a) for all j0 > 1,

�0 (a0; w0; j0) =

Z bF (a0 j a;w; j; �; n) d� (a;w; j) ;
where

bF (a0 j a;w; j; �; n) =
8>>>>>><>>>>>>:

�jF
a (a0 j a) if

b0 (a;w; j; �; n) = (1� �0)w0

h0 (a;w; j; �; n) = �0w
0

p

q0 (a;w; j; �; n) = q0

j0 = j + 1 2 J
0 otherwise,

(b) for j0 = 1,

�0 (a0; w0; f1g) =

8>>>><>>>>:
n0 such that

a0 = a

b0 = T b0

h0 = Th0

0 otherwise.

De�nition 2 A stationary equilibrium is a Recursive Competitive Equilibrium in which endogenous

variables and functions as well as prices and policy rules are constant, and time-invariant. Moreover, the

distribution across individual states is also time-invariant.
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5 A Toy Model and Some Motivation

The question that we want to answer is mainly a quantitative one: how much of the behavior in housing

prices can we explain based on the stylized features of a public education system �nanced with property

taxes and with demographics? To assess how signi�cant the discrepancy is between the data and theory, it

helps us to start by positing a toy model that captures some of the relevant features of housing (similar to

Mankiw and Weil, 1989, but in general equilibrium). Then, we can always conjecture that the gap between

this toy model prediction and the observed housing prices gives us an implicit upper bound estimate for the

magnitude of the model mispeci�cation.

We are going to make several fundamental simpli�cations to the housing model. As in Martin (2005),

we assume ini�nitely-lived agents (instead of overlapping generations, i.e. J = +1), and the aggregate
stock of housing is in �xed supply along the balanced growth path.13 We also assume that property taxes

are assessed, rather than charge on a mark-to-market basis. We view the productivity and the population

dynamics as aggregate shocks, but still treat education expenses as an externality in the production function.

These assumptions allow us to build a bridge between the model of Martin (2005) and the type of models

we want to explore more generally. Most importantly, these assumptions allow us to obtain analytical

solutions. By looking at the problem of an ini�nitely-lived household, we eliminate one source of market

incompleteness. In this model the lack of insurance against �death�is no longer a problem. The assumption

that all shocks are aggregate shocks implies that there is no income and wealth heterogeneity between the

households; that is, all households are identical. Only aggregate shocks are priced in the value of houses

since markets are complete. In principle, we could allow for borrowing constraints, but it will become clear

that in the particular version of the toy model that we solve here household�s borrowing equals zero.

5.1 The Features of the Toy Model

We assume that households own capital and labor and they rent them to �rms. We normalize the consump-

tion price to be equal to one. Under constant returns to scale, there is only need for one �rm whose problem

can be described as a static, one-period pro�t maximization, i.e.

max
Kt;Ht

ZtF
� eGt;Kt; Lt

�
� rtKt � wtLt; 8t; (4)

where the production function takes the following form, i.e.

F
� eGt;Kt; Lt

�
� eGtK�

t L
1��
t :

The expenditure in education, eGt = Gt

Ht
, is viewed as an externality to the production function (see, e.g.,

Barro and Sala-i-Martin, 1992). We assume that eGt is a function of the tax rate in the school district, �ht ,
as well as other relevant features like the tax value of housing relative to its market value, ptp�t , the potential

13We interpret the housing stock as a variable along its balance growth path, and ignore the transition dynamics for the
housing stock at this stage.
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dispersion on house ownership,
R Nt

0
hjt ln

hjt
Ht
dj, and the per capita ownership, Ht, i.e.

eGt = g

 
�h; p�t ;

pt
p�t
; Ht;

Z Nt

0

hjt ln
hjt

Ht

dj

!
:

In the version of the model we contemplate here the generality of this speci�cation reduces to a constant that

depends exclusively on an invariant tax rate and property value assessment, g
�
�h; p�

�
. This is so because

we assume that the market value of housing does not enter into the calculation of property taxes.

Aggregate capital and labor are denoted Kt and Lt, respectively, while Zt � Ate
at is an aggregate

productivity. The aggregate productivity can be decomposed into two components, one deterministic and

one stochastic. Exogenous technological progress is captured by At � (1 + ga)t, so the state of technology
evolves deterministically over time at a growth rate of ga. We normalize the initial condition on productivity

to be equal to one. The cyclical component of productivity in logs, at, evolves according to the following

law of motion,

at+1 = �aat + "
a
t+1; j�aj < 1; (5)

where "at+1 is normally distributed, with mean zero and variance �
2
a. Here, in the speci�cation of the

aggregate productivity shock we conform with standard practice in the RBC literature.

There is a continuum of households in the interval [0; Nt] indexed by j. The exogenous population size

is captured by Nt � (1 + gn)
t, so the state of the population size evolves deterministically over time at

a growth rate of gn. Household j chooses consumption, cjt, labor, ljt, and savings in the form of either

bonds, bjt+1, capital, kjt+1, or housing stock (a durable good), hjt+1, in order to maximize their expected

discounted utility. The housing stock is viewed as a durable good from which households extract housing

services. Subject to sequential budget constraints and the laws of motion for the housing and capital stocks,

an individual household j born at time t maximizes,

max
fcjt+� ;ljt+� ;kjt+�+1;hjt+�+1;bjt+�+1g+1�=0

X+1

�=0
��Et [U (cjt+� ; sjt+� ; ljt+� )] ; 0 < � < 1; (6)

s:t: cjt + i
k
jt + pti

h
jt + qtbjt+1 � wtljt + rtkjt + bjt � �hpthjt;

kjt+1 =
�
1� �k

�
kjt + i

k
jt; �

k = 1;

hjt+1 =
�
1 + gh

�
hjt + i

h
jt;

sjt = mhjt; m = 1;

(kjt+1; hjt+1; bjt+1) � (k; h; b) ; 0 < lt � ent :

The housing price within a period, pt, is the same for the acquisition of new housing stock or for the re-selling

of the depreciated stock. Bonds are in zero-net supply, promise one unit of the consumption good in the

following period and can be bought at a price qt. Households receive income from renting capital and labor

services to the �rms, wt and rt. By simplicity, we assume that the capital stock fully depreciates within a

period, i.e. �k = 1. The stock of housing grows at a rate gh and through household investments too.

Households pay a property tax, �h, proportional to the re-sale value of their stock of housing which is

used to �nance the school district. The budget constraint of the school district is balanced in each period,
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i.e.

Gt = �hp�Ht: (7)

We adopt an additively separable speci�cation for individual preferences, i.e.

U (cjt; sjt; ljt) � ln (cjt) + �s ln (sjt) + �l ln (1� ljt) ; (8)

where the utility of consumption is a¤ected by the government expenditure. Public goods are in principle

not directly valued by agents, however they do provide an externality in the production function. We assume

that the housing service �ow, sjt, is proportional to the housing stock, hjt. The factor of proportionality

between housing services and housing stock is normalized to one, since it does not otherwise a¤ect the

decisions of the individual household.

We also assume that �l = 0, which implies that labor is supplied inelastically. We assume that household

labor supply is exogenously given, random and identical for all households. Hence, the total aggregate labor

supply is equal to the population size times a cyclical component, i.e. Lt = Nte
nt . The cyclical component

of labor supply in logs, nt, follows an exogenous stochastic process,

nt+1 = �nnt + "
n
t+1; j�nj < 1; (9)

where "nt+1 is normally distributed, with mean zero and variance �
2
n. This variable could capture the changes

in employment and labor supply due to demographic factors (e.g., changes in working age population) or

economic conditions (e.g., unemployment). We leave the door open to the possibility that population size

and productivity might be correlated, but at this stage we simply assume that corr ("at ; "
n
t ) = 0.

Prices will adjust such that all markets clear. By Walras� law that implies that the bond market, the

housing market and the consumption market clear, i.e.Z Nt

0

bitdi = Bt = 0; 8t; (10)Z Nt

0

hit+1di = Ht+1 =
�
1 + gh � �h

�
Ht; 8t; (11)

Ct +Gt + I
k
t + ptI

h
t = ZtF

�
g
�
�h
�
;Kt; Lt

�
: (12)

These market clearing conditions re�ect the fact that bonds are in zero net supply, the aggregate stock of

housing grows at a �xed rate, and that all resources produced in this economy are either consumed privately

or spend in education or invested in capital or housing stock. Ours is a model along a balanced growth path,

so the assumption that housing growth is exogenously �xed is translated into the assumption that housing

capital expands along the balanced growth path, i.e.

�
1 + gh � �h

�
= (1 + ga)

1
1�� (1 + gn) : (13)

A more complex model with variable housing capital supply would essentially add a transition path for

housing towards the same balanced growth path anyway. This assumption not only simpli�es our later

calculations, it also guarantees that the per capita housing stock will not drop to zero (that would create a

problem since production in this economy depends on per household property taxes through the education
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externality). By consistency, aggregate capital and consumption must satisfy that,Z Nt

0

citdi = Ct; 8t; (14)Z Nt

0

kit+1di = Kt+1; 8t; (15)

and also the aggregate law of motion for capital and investment should hold true, i.e.

Kj+1 =
�
1� �k

�
Kt + I

k
t ; �

k = 1; (16)

Ht+1 =
�
1 + gh

�
Ht + I

h
t : (17)

Under the assumption that all households start with the same initial conditions, we would expect that

fcjt+� ; kjt+�+1; hjt+�+1; bjt+�+1g+1�=0 = fct+� ; kt+�+1; ht+�+1; bt+�+1g
+1
�=0 for all j.

The First-Order Conditions. From the necessary and su¢ cient �rst-order conditions of the problem of

the �rm, we obtain that the real wage rate, wt, and the real rental price of capital, rt, are equal to,

wt = (1� �)Ztg
�
�h
��Kt

Lt

��
; (18)

rt = �Ztg
�
�h
��Kt

Lt

���1
; (19)

for all t. Assuming constant returns to scale in capital and labor, implies also that there are no pro�ts in

equilibrium. Hence, we can safely ignore issues regarding the ownership of the �rms.

To characterize an interior solution, we obtain the following �rst-order conditions for the problem of the

households,

1

cjt
� �jt = 0;

��jt + �Et
h
�jt+1

�
rt+1 +

�
1� �k

��i
= 0;

��jtpt + �Et
�
�s

1

hjt+1
+ �jt+1

�
1 + gh � �h

�
pt+1

�
= 0;

��jtqt + �Et [�jt+1] = 0:

In particular, we want to emphasize the Euler equations that determine the pricing of bonds and housing in

this model. We summarize these two equations as follows,

pt = �Et
�
�s

cjt
hjt+1

+
cjt
cjt+1

(1 + ga)
1

1�� (1 + gn) pt+1

�
;

qt = �Et
�
cjt
cjt+1

�
;

where we have already used the implicit characterization of the growth rate of the housing stock, i.e.�
1 + gh � �h

�
= (1 + ga)

1
1�� (1 + gn). Pricing housing and bonds in this model would very much depend on
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these equations.

5.2 The Pricing Equations

Given our assumptions on the evolution of the stock of housing capital, i.e. Ht+j =
�
(1 + ga)

1
1��
�j
(1 + gn)

j
Ht,

then after some algebra we can determine the pricing equations that would prevail in this environment. In

other words, the initial condition on the housing stock, Ht, pins down the evolution of housing capital along

the balanced growth path. Hence, it follows that,

pt =
��s

(1 + gn) (1 + ga)
1

1�� (1� � (1 + gn))

bCt
Ht

;

bCt =
g
�
�h
�

1 + � (1 + gn)�
2
eat+(1��)nt bK�

t ;

where bCt = Ct

A
1

1��
t Nt

, and Ct is aggregate consumption. Similarly, bKt =
Kt

A
1

1��
t Nt

, and Kt is aggregate capital.

For more details, see the technical appendix.

In other words, the price of housing today would be determined by ratio of consumption (along the

balanced growth path) relative to today�s housing supply stock. We have determined explicitly what the

consumption path, and the housing and capital path should be in this economy (see appendix). However, it

follows immediately that in logs,

ln pt = c1 + c2t+ c3at + c4nt; (20)

gives a good approximation of the solution, where the time trend captures potential di¤erences in the

balanced growth path for housing and capital. Notice the similarity between the model-implied pricing

equation, and the Mankiw and Weil (1989) housing price regression. The housing price equation can be

expressed as a log-linear function of capital in this analytical solution. It is worth noticing, however, that

the stock of housing also plays a role. Ceteris paribus, the more housing supply available, the lower the price

of housing as expected.

We know the housing stock evolves exogenously around the balanced growth path. After a shock, capital

would eventually converge towards the balanced growth path, but does not sit on it. Therefore, housing

prices would be determined by the transition of capital in response to those shocks. If capital grows much

higher than along the balanced growth path, the income e¤ect we would observe on the transition path leads

to higher housing prices. In a similar vein the direct e¤ect of either productivity shocks or labor supply

shocks is to increase the price of housing. Although we cannot analyze the transitions between two di¤erent

regimes of property taxes, we conclude by exploring the pricing formula that the sign with which property

taxes operate would be crucial. E.g., if g0
�
�h
�
> 0, then higher taxes would lead to higher productivity,

higher income and consequently higher housing prices.

We can estimate the equation above to infer the following result,

Regression Estimates

Productivity Working-Age Pop. Time (�10�3) Constant Std. Dev.

housing prices 0:028024
(0:003524)

7:099459
(0:760323)

�0:292
(3:02�10�5)

�0:889803
(0:094435)

0:639� 10�3
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The numbers in parenthesis are the standard errors, while the R-squared is 0:794221 and the adjusted R-

squared is 0:789509. The power and the limitations of this simple theory can better be scrutinized with just

a look at �gure 4.

[Insert Figure 4 about here]

This plot clearly indicates that the predictive power of the model signi�cantly deteriorates in the early

1990s. While the model, obviously, misses the huge price increases of the last decade, also grossly overstates

the housing prices over the prior decade. The model, as Mankiw and Weil (1989) would have suggested,

performed rather well until the end of the 1980s. This type of �ndings reinforces our view that demographic

factors alone cannot explain the changes in housing prices.

If we make asset markets incomplete and the productivity shocks are treated as idiosyncratic shocks to

each household, then housing prices will not only have to re�ect the impact of aggregate shocks but also

the e¤ect of incomplete insurance against those idiosyncratic shocks. It will also have to re�ect the impact

of potentially binding borrowing constraints for some agents, and the interaction of these constraints with

wealth and income inequality. Then, we would be able to also explore the relationship between inequality

and housing prices. Introducing overlapping generations creates new sources of market incompleteness (in

intergenerational trade) that will also be re�ected in prices.

The question we are asking at this stage is whether prices can be accounted for in this simpler setting. If

not, as suggested by our estimates and �gure 4, then we want to ask whether there is a connection between

inequality and housing prices and what can we do to quantify it. Eventually, we also want to understand

whether moving from one school district to another (i.e., relocation) would contribute to increase/decrease

inequality and increase/decrease housing prices. Why do we want all the features of the baseline model in the

�rst place? For two reasons mainly. On one hand,because we would like to see if the same mechanism that

explains housing prices is also consistent with the observed pattern of inequality. In more broader terms, we

want to be in a position to answer the question: can changes in the funding of our schools lead to less (or

more) wealth/income inequality across neighborhoods?

On the other hand, we want to be able to answer the question: how important is wealth inequality for

the overall behavior of housing prices? In fact one thing that should be evident is that any two model

that result in a mean-preserving wealth distribution, will have zero correlation between wealth inequality

and housing prices. Whatever policy you can design to improve risk-sharing and reduce wealth inequality

for your citizens, will be completely orthogonal to the behavior of housing prices (assuming that you do

not change the overall education funding system). Or course, if the change in the property taxes is not

mean-preserving, the implications can be of great �quantitative�importance.

6 Benchmark OLG Model

6.1 Calibration

Here, we discuss the parameterization of the model used in our quantitative exploration of the benchmark

economy.
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Demographics. Households enter the economy at age at age 1 and retire at age 65. Our model is intended

to match the live-cycle patterns of households until retirement age, J . We do not have much to say after

that, so we impose the simplifying assumption that all households die with certainty after age 65. This

choice of J replicates the compulsory retirement age in the U.S. The life-cycle literature includes models

with a �xed lifespan and mortality models. In the �xed lifespan model, each generation lives with certainty

until the terminal data J .

In turn, our mortality model each household within a generation can die with an exogenous probability

prior to that limiting age. The survival rate is chosen to �t a polynomial function using data from actuarial

life tables (Bell and Miller, 2005). The maximum lifespan in the actuarial life tables is 100, so the survival

rate needs to be appropriately censored at 65. In other words, the probability of dying at age 65 re�ects

the probability of dying at 65 or over. We are particularly interested in the contribution of the baby echo

generation born around 1980, therefore we calibrate the survival rates based on the 1980s cohort. This

calibration ensures that the mortality process is consistent with the data.

The population cycles are obtained after a linear time-trend is extracted from the population in logs.

The long-run average population growth rate for the U.S. is X:XX%. Our demographic parameters are

summarized in Table 1. The maximum age, J , the population growth and the survival probabilities together

determine the population cycles of the model. All exogenous demographic parameters are summarized in

Table 1. The demographic patterns, however, need to be completed by adding a birth rate. The birth rate

is interpreted as an aggregate random shock to the economy, and we describe it later.

Table 1. Demographic Parameters

Parameter Value Target

Min. age 1 First year of life (assumed)

Max. age (J) 65 Compulsory retirement (assumed)

Survival probability, age-dependent (�j) Bell and Miller (2005) Data

Population growth (in a linear time trend) X:XX% Data

Preferences. We choose the discount factor, �, so that the annual real rate of return in steady state is 3%.

We �x the inverse of the intertemporal elasticity of substitution, �, to 2 re�ecting the common view that a

value above 2 is necessary to calibrate a macro model to match aggregate data. For example, Kydland and

Prescott (1982) select 1:5 in their seminal paper, while Lucas (1990) argues that even an inverse elasticity

of 2 may be too low for the macro data. We assume the coe¢ cient of relative risk aversion on housing

services, 
, is just 2, and set the inverse of the Frisch elasticity, ', to 0:47 based on the evidence provided

by Rotemberg and Woodford (1998a, 1998b). For simplicity, the scaling factors on the utility of housing

services and labor, �s and �l respectively, are set equal to 1. All preference parameters are summarized in

Table 2.
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Table 2. Preference Parameters

Parameter Value Target

Discount rate (�) 0:971 3% annual real interest rate

Inverse of the intertemporal elasticity of substitution (�) 2 Kydland and Prescott (1982), Lucas (1990)�

Coe¢ cient of relative risk aversion on housing services (
) 2 Assumed

Inverse of the Frisch elasticity of labor supply (') 0:47 Rotemberg and Woodford (1998a, 1998b)

Scaling factor on the utility of housing services (�s) 1 Assumed

Scaling factor on the disutility of labor (�l) 1 Assumed

Technologies. We assume a production function of the Cobb-Douglas type with labor share, �j . We

choose a labor share of 0:67, independent of age, in accordance with the long-run share for the U.S. economy.

We abstract from capital, but require the production function to satisfy constant returns to scale. Therefore,

the education spending share in output, �j , must be equal to �j = 1 � �j = 0:33. The fact that the labor

share is age-dependent allows us the possibility of experimenting with variants of this benchmark where the

impact of education spending diminishes with age. That feature can be exploited to capture a simple stylized

facts: direct spending on education seems to be more relevant during the formative years of the individual,

because it is at that stage of their life when they spend more time building up their human capital.

We assume that the ratio of housing services over housing stock, m, is merely 0:15. All technological para-

meters are described in Table 3. Evidently, we should pay special attention to the idiosyncratic productivity

shocks while referring to technology, but those would be discussed later.

Table 3. Technology Parameters

Parameter Value Target

Labor share in output, age-dependent (�j) 0:67 Long-run U.S. Labor Share

Education spending share in output, age-dependent (�j) 0:33 By Constant Returns to Scale

Ratio of housing services over housing stock (m) 0:15 Assumed

Housing and Location Parameters. We assume that there is only one neighborhood identi�ed as one.

Neighborhood zero is presumed to have either low property taxes and low depreciation of the housing

capital or the opposite. These parameterization is intended to give households a stark contrast between the

underlying patterns in the two alternative scenarios. In a rudimentary way, the calibration re�ects the believe

that the depreciation of the housing stock and property taxes tends to be higher in wealthier neighborhoods.

We conjecture that the lower bound on borrowing using the housing stock as a collateral is a function

of the life-cycle. Households early in life and near their retirement age cannot borrow more than their

houses are worth. The income of households tends to pick when they reach the middle age in the data. We

conjecture that borrowing practices follow a similar pattern, and allow the households between 19 and 54 to

borrow up to 9% above the value of their houses with the peak at 36. At age 65 a household knows for a

fact that his life is coming to an end at the end of the period and this deserves a special mention.

A 65 year old household has naturally incentives to borrow as much as he can. After death, the household
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will not have to repay the debt, but his assets and debts will be distributed among all living households

through the �estate tax�. Therefore, in a world where these debts cannot be defaulted, there will always be

an amount of lending directed to these retirement-age households. In order to avoid a potential distortion

on the borrowing and lending patterns of the model and to ensure that the net wealth re-distributed to all

other living households is non-negative (which is the pattern that we observe on average), we assume that

households that survive to be 65 years of age cannot borrow anything. All housing and location parameters

are described in Table 4.

Table 4. Housing and Location Parameters

Parameter Value Target

Number of neighborhoods (K) 1 Assumed

Neighborhood identi�cation (q) q = 1 Assumed

Property tax rates (�) � = f0:1; 0:2g Assumed

Depreciation rate of housing stock (�) � = f0:05; 0:1g Assumed

Lower bound on borrowing

relative to collateral, age-dependent ($j)
$j =

8>>>>>><>>>>>>:

1; if j = 1� 18;
1:05% 1:09; if j = 19� 36;
1:09& 1:05; if j = 37� 54;

1; if j = 55� 64;
0; if j = 65:

N.A.

Markov Process for the Shocks. We assume that there are two types of shocks: an idiosyncratic

productivity shock, at, and an aggregate birth rate shock, nt. We also assume that there are three states

of nature for each shock. Both shocks, however, are assumed to be independent and identically distributed

(iid). The transition matrix for productivity shocks has an equal probability of 13 . Similarly, the transition

matrix for the birth rate shock has an equal probability of 13 .

The average productivity is one, so the good and bad times are represented by a 25% increase or drop

in the productivity level. This is an idiosyncratic shock, therefore by the law of large numbers the average

productivity level of the entire population should tend to one in each period. The choice of a high dispersion

of the productivity shock naturally introduces a signi�cative income dispersion among households which, in

turn, generates much stronger incentives for households to relocate across neighborhoods as the realization

of the shocks progresses.

The average birth rate is 500 for each population. This choice gives us a large enough number of

households per each generation without being too burdensome computationally. Good and bad times in

the population cycle are represented by 20% birth rate increases or decreases respectively. Over time, the

average size of the generation of newborns tends to 500. However, the birth rate is an aggregate shock,

therefore the birth rates can be very di¤erent from one period to the next. This speci�cation is intended

as an approximation for the empirically relevant baby boom-baby bust cycles in the U.S. observed during

the post-World War II period. All parameters needed to describe the productivity and birth rate shocks are

described in Table 5.
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Table 5. Markov Processes Parameters

Parameter Value Target

Number of shocks (assumed independent) (#Z) 2 Assumed

Number of states of nature for productivity shock (#Ia) 3 Assumed

Number of states of nature for population shock (#In) 3 Assumed

Number of total states of nature (#ni +#ai) #Ia +#In = 6

Probabilities in the transition matrix (F aip; F
n
ip) (#Ia)

2
+ (#In)

2
= 18

States of nature for productivity shock (Ia) Ia = 0:75; 1; 1:25 Assumed

States of nature for population shock (In) In = 400; 500; 600 Assumed

6.2 Theoretical Results

The borrowing function of the young depends among other things on the characteristics of the location of

their house (in other words, the school district policies). We think this makes sense because where you live

now a¤ects your educational outcome and, therefore, your future income stream. These young families are

simply borrowing against future income. We would expect that a young family living in a good neighborhood

is more likely to buy a house in the �good�neighborhood because it anticipates it will also attain a better

education and become more productive. Therefore, it is also more con�dent to take on higher debt while

young. Alternatively, a young family in a �bad�neighborhood knows that its chances of getting a high paying

job are slim, so it would be less inclined to borrow large amounts now and also less inclined to invest more

on housing.

Housing prices in the �good�neighborhood tend to be higher than in the �bad�neighborhood because

incentives are pushing the demand higher. Access to borrowing certainly makes more people able to pay for

higher housing prices. However, in a more general model that would allow for relocation, this competition

translates into even higher housing prices in the good neighborhood since the more productive households

will want to pay higher prices in order to sort themselves apart from the less productive households. They

do so by driving the prices high enough to ensure that the low productive households hit their borrowing

constraints and are forced to either relocate to the �bad�neighborhood or remain there. The model would

predict that most borrowing-constrained, cash-strapped households live in the �bad�neighborhood.

Moreover, whenever the birth rate increases and the population subsequently grows up, we expect these

trends often to be exacerbated. The reasons are complex and multiple. However, it should be noted that

whenever population grows the demand for housing is also likely to increase. Higher demand drives prices

further up. This implies higher prices across all di¤erent neighborhoods, but the population growth may

interact with the educational channel in the model to reinforce the trends on housing prices. That results

in a spike in the average housing price across all neighborhoods.

[More Results Coming Soon...]

7 Concluding Remarks

[TBA...]
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Appendix

A Description of the Dataset

A.1 Productivity and Working-Age Population

We collect all quarterly U.S. data spanning the post-Bretton Woods period from 1970q1 through 2008q3 (for
a total of 155 observations per series). All data is seasonally adjusted. We rely on aggregate data obtained
from Thomson Datastream. However, the U.S. civilian non-institutional population is from Haver Analytics.

Data Series. We collect data on real output (rgdp), employment (emp), and population size (n) for the
U.S.
� Real output (rgdp). Data at quarterly frequency, transformed to millions of U.S. Dollars, at constant

prices, and seasonally adjusted. Source: Bureau of Economic Analysis.
� Employment (emp). Data at quarterly frequency, expressed in thousands, and seasonally adjusted.

Source: OECD�s Economic Outlook.
� Working-age Population between 16 and 64 years of age (pop): Data at quarterly frequency, expressed

in thousands, and seasonally adjusted. Source: Bureau of Labor Statistics. We take the di¤erence between
civilian non-institutional population 16 and over and civilian non-institutional population 65 and over. We
also seasonally-adjust the resulting series with the multiplicative method X12.

Updating Procedure. The real output (rgdp), and employment (emp) are expressed in per capita terms
dividing each one of these series by the population size (pop). We express all variables in logs and multiply
them by 100. At this point, we also de�ne the productivity term as at � yt�

�
2
3

�
lt. Finally, the productivity

(at) and working-age population (pop) series are estimated to �t an AR (1) process with a linear trend.

A.2 Other Features of the Population

All the population data comes from the decennial censuses. The housing price index (HPI) is based on
Robert Gordon�s measure, and the data comes from the O¢ ce of Federal Housing Enterprise Oversight
(OFHEO). To get the national HPI we use a weighted average of all state�s HPI by year. We also linearly
detrend the data for analysis.

Average Top-tier Tuition. This variable is the average of the annual tuition from the top 14 schools
(according to the 2007�s U.S. News and World Report college rankings). The following schools were chosen
for their prestige, history, and wealth of available information: Princeton University, Harvard University,
Yale University, Stanford University, Massachusetts Institute of Technology, University of Pennsylvania,
Duke University, Dartmouth College, Columbia University in the City of New York, University of Chicago,
Cornell University (All Campuses), Washington University, Northwestern University, and Brown University.
The NSF�s WebCASPAR (www.webcaspar.nsf.gov) service was used to �nd the historical enrollment and

tuition data from these schools (as well as a number of large public universities). The information came
from the IPEDS Enrollment and Institutional Characteristics surveys, but it was not without imperfections,
and in a few cases creative measures were taken to smooth the data. The primary problem with the
dataset was that we are looking for information from 1975-2005 (the years that we have an HPI to compare
possible in�uences), but the tuition data exists only until 2001. To provide data for 2001-2005 a few
websites from these schools had archived news articles where the historical tuitions could be found. For
those schools where this information was not available, a chart was found on a University of Pennsylvania
almanac website (http://www.upenn.edu/almanac/v49/n26/undergrad_charges.html) detailing the annual
percentage change in tuition charges for undergrads in major universities in the U.S. Using the percentage
increases in tuition found there, the tuition through 2004 could be found.
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However, there exists another problem with the data - the tuition for some years simply didn�t exist in
the WebCASPAR database. For example, Harvard University had no tuition data reported for 1983 or 1984.
To mend this, a simple linear extrapolation was performed by �tting the previous �ve years�tuition data to
those years. The result is not perfectly accurate, but our purposes were served as we are only looking for
the average tuition for all of these institutions across time.

Top-tier Freshmen. This was also taken from the WebCASPAR site. The IPEDS �rst-year freshman
enrollment data was intact and none of these measures were necessary.

Total, Male and Female. These indicate the population by state and year for men and women separately
(total is obviously the sum of the two). The data was taken from the U.S. Census Bureau website (census.gov)
and was largely ready to use, aside from the 1970�s data. To clean the data, a clever MATLAB routine was
written to clean up the data into the desired format of single years of age.

B Shocks and Markov Chains

We assume that a given stochastic process, s, can take on i values, i.e. s 2 S = fs1; :::; sig, which are
symmetrically and evenly spaced over the interval [�� #; �+ #]. Implicitly, we assume that the shocks can
be centered around any value �. The shock, in turn, follows a �rst-order Markov process with a symmetric
transition probability �. The particular family of Markov processes that we discuss here can be used to
approximate an AR (1) process. Furthermore, under certain conditions, the stationary distribution behaves
as a symmetric binomial. The symmetric binomial, in turn, o¤ers a discretization that can approximate the
normal distribution of the shock arbitrarily closely.
The two state member of this family is characterized by the following transition matrix,

�3 =

�
p (1� p)

(1� q) q

�
;

with stationary distribution
�

1�q
(1�p)+(1�q) ;

1�q
(1�p)+(1�q)

�
and �rst-order serial correlation of p + q � 1. The

three state Markov process is characterized by the following transition matrix,

�3 =

24 p2 2p (1� p) (1� p)2
p (1� q) pq + (1� p) (1� q) q (1� p)
(1� q)2 2q (1� q) q2

35 ;
with stationary distribution

�
(1�q)2

((1�p)+(1�q))2 ;
2(1�p)(1�q)

((1�p)+(1�q))2 ;
(1�p)2

((1�p)+(1�q))2

�
and �rst-order serial correlation

of p+ q � 1. The �i case can be derived recursively from �i�1 by applying the following procedure. First,
compute the following (i� i) matrix,

p

�
�i�1 0
0T 0

�
+ (1� p)

�
0 �i�1
0 0T

�
+ (1� q)

�
0T 0
�i�1 0

�
+ q

�
0 0T

0 �i�1

�
;

where 0T is an (i� 1)� 1 row vector. Then, divide all but the top and bottom rows by two to restore the
requirement that the conditional probabilities sum up to one. This characterization of the transition matrix
preserve the property that the �rst-order serial correlation is determined by p+ q � 1.
The variance of the shock s can easily be computed as,

�2s =
#2

i� 1 :
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The fourth central moment of s is,

�4s =
(3i� 5)#4

(i� 1)3
;

so that the Kurtosis of the distribution is given by,

�4s
�4s
= 3� 2

i� 1 :

As i!1, the kurtosis becomes 3. Therefore, for large i and choosing # = � 2
p
i� 1, it is possible to obtain

an arbitrarily close approximation to a normal distribution for the shocks with mean � and variance �2, and
with an autocorrelation of p+q�1. A special case is p = q = �, when the transition matrix is symmetric and
characterized by one parameter only. It can be shown that in this special case the stationary distribution of
the Markov process becomes independent of the single parameter �. The �rst-order autocorrelation of the
process, i.e. 2� � 1, and the mean and volatility of the distribution, � and �2, are pined down with only
three parameters.

Estimates on Productivity and Working-Age Population. The three state case gives us a rough
approximation, but one that can be accomplished by choosing a small number of parameters. As it is usually
done, we choose to center the shocks around a zero mean, i.e. � = 0. The productivity shock can be inferred
from the data as at = ln (Yt)� (1� �) ln (Kt)� � ln (Lt), where Yt stands for output, Kt for capital and Lt
for employment. Based on the �ndings of Gomme and Rupert (2007), however, we compute the productivity
without capital. The labor supply variable, nt, is computed as ln (PoPt) where PoPt stands for working-age
population. We compute the AR (1) processes from the data as,

at = �aat�1 + "t; "t � N
�
0; �2a

�
nt = �nnt�1 + �t; �t � N

�
0; �2n

�
:

Our estimates indicate that,

Regression Estimates
Lag Time (�10�3) Constant Std. Dev.

Productivity 0:947764
(0:023862)

0:209
(9:14�10�5)

0:195497
(0:088051)

0:006853

Working-age pop. 0:958744
(0:007416)

0:00113
(2:32�10�7)

0:004879
(0:000869)

1:39� 10�5

We calibrated the shocks based on these patterns. The numbers in parenthesis are the standard errors.
The term p2 for the Markov transition matrix corresponding to the productivity shock, a, is the condi-

tional probability of a realization at+1 = �# given that at = �# and (1� p)2 is the conditional probability of
at+1 = # given that at = �#. Similarly, q2 is the conditional probability of a realization at+1 = # given that
at = # and (1� q)2 is the conditional probability of at+1 = �# given that at = #. The same description can
apply to the transition matrix that characterizes the labor supply shock. Hence, p governs the probability
of improving after a low realization of the productivity shock, and q de�nes the probability of worsening
given a high realization of the shock. The choice of p and q a¤ects the expected duration of contractions
and expansions, as can be inferrer from the dominant role they play in the characterization of the �rst-order
autocorrelation.
However, the frequency of the expansions and contractions may not be symmetric if we choose p and q

to be di¤erent. In particular, choosing p to be smaller than q implies that bad shocks occur less frequently
than good shocks. Moreover, the conditional probabilities of leaving the bad state are higher than the
probabilities of leaving the good state, which reduces the expected duration of contractions in productivity
(or labor supply) relative to expansions. If p = q = �, then the stationary distribution of the process is�
1
4 ;

1
2 ;

1
4

�
which is independent of the choice of �. Hence, the average time spent in the good and bad states
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is identical.
For p < q, the recessions become shorter than expansions. Also for a symmetric process where f�� #; �; �+ #g,

this would introduce conditional heteroskedasticity in the shocks.
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C The Toy Model: The Solution

C.1 The Representative Household

Given that all households are e¤ectively identical, aggregation is not a problem. It results in the following
maximization program for a representative household,

max
fCt+� ;Kt+�+1;Ht+�+1;Bt+�+1g+1�=0

X+1

�=0
��Nt+�Et

�
ln

�
Ct+�
Nt+�

�
+ �s ln

�
Ht+�

Nt+�

��
; 0 < � < 1; (21)

s:t: Ct + I
k
t + ptI

h
t + qtBt+1 � wtLt + rtKt +Bt � �hptHt;

Kt+1 =
�
1� �k

�
Kt + I

k
t ; �

k = 1;

Ht+1 =
�
1 + gh

�
Ht + I

h
t ;

wt = (1� �)Ztg
�
�h
��Kt

Lt

��
;

rt = �Ztg
�
�h
��Kt

Lt

���1
:

In equilibrium, we know that the optimal allocation implies that,

Iht = ��hHt; 8t;
Bt = 0; 8t:

Using these equilibrium conditions and the functional forms for real wages and the rental rate of capital
implies that we can write the problem of the representative household as,

max
fCt+� ;Kt+�+1g+1�=0

X+1

�=0
��Nt+�Et

�
ln

�
Ct+�
Nt+�

�
+ �s ln

�
Ht+�

Nt+�

��
; 0 < � < 1; (22)

s:t: Ct + I
k
t � Ztg

�
�h
�
K�
t L

1��
t ;

Kt+1 =
�
1� �k

�
Kt + I

k
t ; �

k = 1;

Ht+� =
�
(1 + ga)

1
1��
��
(1 + gn)

�
Ht;

where the sequence g
�
�h
�
is treated as completely exogenous and out of the control of the planner. The

assumption of logarithmic preferences coupled with full capital depreciation ensures a Solow-type solution
to the model with constant savings rates. Based on this model, it immediately follows that the individual
consumption and savings decisions can be inferred as,

cjt = Ct =
Ct
Nt
;

kjt+1 = Kt+1 =
Kt+1

Nt
:

These transformations would be important to characterize the solution of the pricing equations later.
At this stage, we want to be able to pin down the solution around the balanced growth path. For any

variable, Xt, we de�ne an alternative variable bXt =
Xt

A
1

1��
t Nt

. With this notation, the resource constraint
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and the law of motion for capital are given by,

bCt + bIkt � eat+(1��)ntg
�
�h
� bK�

t ;bKt+1 =
1� �k

(1 + ga)
1

1�� (1 + gn)
bKt +

1

(1 + ga)
1

1�� (1 + gn)
bIkt ; �k = 1:

Using the same transformation, preferences can be written as,X+1

�=0
[� (1 + gn)]

� Et
h
ln
� bCt+� �(1 + ga) 1

1��
���

+ �s ln
� bHt+�

�
(1 + ga)

1
1��
���i

:

Since Ht+� =
�
(1 + ga)

1
1��
��
(1 + gn)

�
Ht, then we can immediately write bHt+� = Ht. As a result, we

determine the following objective for the representative household,X+1

�=0
[� (1 + gn)]

� Et
h
ln
� bCt+��+ �s ln (Ht) + (1 + �s) ln

��
(1 + ga)

1
1��
���iX+1

�=0
[� (1 + gn)]

� Et
h
ln
� bCt+��+ �s ln (Ht)

i
+
�
1+�s
1��

�
ln (1 + ga)

X+1

�=0
[� (1 + gn)]

�
�X+1

�=0
[� (1 + gn)]

� Et
h
ln
� bCt+��+ �s ln (Ht)

i
+
�
1+�s
1��

�
ln (1 + ga)

�(1+gn)

(1��(1+gn))2
:

However,Ht is already given at the time the maximization is performed and the last term is merely a constant.
Hence, the objective function of the representative household can be summarized with the logarithmic utility
on consumption alone. Hence, the maximization problem reduces e¤ectively to this one,

max
f bCt+� ; bKt+�+1g+1

�=0

X+1

�=0
[� (1 + gn)]

� Et
h
ln
� bCt+��i ; 0 < � (1 + gn) < 1; (23)

s:t: bCt + bKt+1 � g
�
�h
�
eat+(1��)nt bK�

t ;

where we already use the fact that �k = 1 and bKt+1 = bIkt .
The Planner�s Problem. There is no possible insurance against aggregate shocks (productivity and labor
supply) and those are the only sources of uncertainty in the model. Hence, there are no missing markets in
this environment to worry about. Our interest shifts now to the planner�s problem motivated by the fact
that for this model economy the solution to the planner�s problem is quite simple and reminiscent of the
Solow model.
In that case, the social planner�s problem can be expressed in the following form,

V
�
a; n; bK� = maxbC; bK0

ln
� bC�+ � (1 + gn)E hV �a0; n0; bK 0

�
j a; n

i
; (24)

s:t: bC + bK 0 � g
�
�h
�
ea+(1��)n bK�;

a0 = �aa+ "
0
a; j�aj < 1;

n0 = �nn+ "
0
n; j�nj < 1; (25)

where V
�
a; n; bK� is the value function for the social planner. This problem is rather convenient because

we can easily characterize an interior solution. Let us assume that an interior solution exists, i.e.

V
�
a; n; bK� = maxbK0

ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)E

h
V
�
a0; n0; bK 0

�
j a; n

i
; (26)

a0 = �aa+ "
0
a; j�aj < 1;

n0 = �nn+ "
0
n; j�nj < 1: (27)
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Logarithmic preferences is the same assumption that Krusell and Smith (1998) use in their calibrations,
full capital depreciation is not but allows us to obtain an analytic solution.

C.2 The Solution

We employ the old-fashioned method of guess-and-verify to properly characterization the decision rules of
the planner and its Bellman equation in order to pin down the solution of the model. Logarithmic preferences
and full capital depreciation allows us to obtain an analytic solution comparable to the ones underlying the
model of Krusell and Smith (1998).
1) I conjecture that the value function takes the following form,

V
�
a; n; bK� = 
1 + 
2 ln

�
e
3a+
4n bK�

�
= 
1 + 
2� ln

� bK�+ 
2
3a+ 
2
4n:
With this conjecture of the Bellman equation we expect to �nd a decision rule for capital as follows,

bK 0 = k
�
a; n; bK� = sg

�
�h
�
ea+(1��)nK�;

with a constant savings share 0 < s < 1.
2) We substitute out the conjectured value function in the Bellman equation in order to write a simpler

maximization problem as,

bK 0 2 argmaxbK02[0;g(�h)ea+(1��)n bK�]
ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)E

h
V
�
a0; n0; bK 0

�
j a; n

i
= argmaxbK02[0;g(�h)ea+(1��)n bK�]

ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)

h

1 + 
2� ln

� bK 0
�
+ 
2E (
3a0 + 
4n0 j a; n)

i
= argmaxbK02[0;g(�h)ea+(1��)n bK�]

ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)

h

1 + 
2� ln

� bK 0
�
+ 
2
3�aa+ 
2
4�nn

i
:

3) We solve the simple maximization problem to obtain the following �rst-order condition,

� 1

g (�h) ea+(1��)n bK� � bK 0
+ � (1 + gn)�
2

1bK 0
= 0:

From simple re-arranging it follows that the decision rule for new capital is,

bK 0 =
� (1 + gn)�
2

1 + � (1 + gn)�
2
g
�
�h
�
ea+(1��)n bK�:

It also naturally follows that the decision rule for consumption is,

bC = g
�
�h
�
ea+(1��)n bK� � bK 0 =

1

1 + � (1 + gn)�
2
g
�
�h
�
ea+(1��)n bK�;

which indicates that the consumption and savings shares are constant.
4) We can write the Bellman equation now as,


1 + 
2� ln
� bK�+ 
2
3a+ 
2
4n = maxbK02[0;eaK�]

ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)E

h

1 + 
2� ln

� bK 0
�
+ 
2
3a

0 + 
2
4n
0 j a; n

i
= maxbK02[0;eaK�]

ln
�
g
�
�h
�
ea+(1��)n bK� � bK 0

�
+ � (1 + gn)

h

1 + 
2� ln

� bK 0
�
+ 
2
3�aa+ 
2
4�nn

i
;
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or, simply,


1 + 
2� ln
� bK�+ 
2
3a+ 
2
4n = � (1 + gn) 
1 + ln

�
1

1+�(1+gn)�
2
g
�
�h
�
ea+(1��)n bK�

�
+

+� (1 + gn) 
2� ln
�

�(1+gn)�
2
1+�(1+gn)�
2

g
�
�h
�
ea+(1��)n bK�

�
+ � (1 + gn) 
2
3�aa+ � (1 + gn) 
2
4�nn;

After a little bit of algebra, I can re-write the right-hand side more compactly as follows,


1 + 
2� ln
� bK�+ 
2
3a+ 
2
4n = � (1 + gn) 
1 + ln

�
1

1+�(1+gn)�
2
g
�
�h
��
+ � (1 + gn) 
2� ln

�
�(1+gn)�
2
1+�(1+gn)�
2

g
�
�h
��

+(1 + � (1 + gn) 
2�)� ln
� bK�+ (1 + � (1 + gn) 
2 (�+ 
3�a)) a+ ((1� �) + � (1 + gn) 
2 (� (1� �) + 
4�n))n:

At this stage, we are left with the task of matching coe¢ cients appropriately.
5) By the method of matching coe¢ cients we obtain the following equivalences between the coe¢ cients

on the right- and left-hand side of the equation above,


1 = � (1 + gn) 
1 + ln

�
1

1 + � (1 + gn)�
2
g
�
�h
��
+ � (1 + gn) 
2� ln

�
� (1 + gn)�
2

1 + � (1 + gn)�
2
g
�
�h
��

;

�
2 = (1 + � (1 + gn) 
2�)�;


2
3 = (1 + � (1 + gn) 
2 (�+ 
3�a)) ;


2
4 = ((1� �) + � (1 + gn) 
2 (� (1� �) + 
4�n)) :

It follows from the second condition that,


2 =
1

1� � (1 + gn)�
:

Using this condition, therefore, we can re-write the third constraint as,

1

1� � (1 + gn)�

3 = 1 +

� (1 + gn)

1� � (1 + gn)�
(�+ 
3�a) =

1

1� � (1 + gn)�
+

� (1 + gn)

1� � (1 + gn)�

3�a;

and obtain that,


3 =
1

1� � (1 + gn) �a
:

Similarly, we can re-write the fourth constraint as,

1

1� � (1 + gn)�

4 = (1� �) + � (1 + gn)

1� � (1 + gn)�
(� (1� �) + 
4�n)

=

�
1

1� � (1 + gn)�

�
(1� �) + � (1 + gn)

1� � (1 + gn)�

4�n;

and obtain that,


4 =
1� �

1� � (1 + gn) �n
:
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Replacing 
2 into the �rst constraint we obtain that,

(1� � (1 + gn)) 
1 = ln
�

1
1+�(1+gn)�
2

�
+ � (1 + gn) 
2� ln

�
�(1+gn)�
2
1+�(1+gn)�
2

�
+ [1 + � (1 + gn) 
2�] ln

�
g
�
�h
��

= ln

�
1

1+
�(1+gn)�

1��(1+gn)�

�
+ �(1+gn)�

1��(1+gn)� ln

�
�(1+gn)�

1��(1+gn)�

1+
�(1+gn)�

1��(1+gn)�

�
+
h
1 + �(1+gn)�

1��(1+gn)�

i
ln
�
g
�
�h
��

= ln

�
1
1

1��(1+gn)�

�
+ �(1+gn)�

1��(1+gn)� ln

�
�(1+gn)�

1��(1+gn)�
1

1��(1+gn)�

�
+
�

1
1��(1+gn)�

�
ln
�
g
�
�h
��

= ln (1� � (1 + gn)�) + �(1+gn)�
1��(1+gn)� ln (� (1 + gn)�) +

1
1��(1+gn)� ln

�
g
�
�h
��
;

or, more compactly,


1 =
1

1� � (1 + gn)

�
ln (1� � (1 + gn)�) +

� (1 + gn)�

1� � (1 + gn)�
ln (� (1 + gn)�) +

1

1� � (1 + gn)�
ln
�
g
�
�h
���

:

This pins down completely the Bellman equation for our model.
6) To sum up, the conjecture has been veri�ed and implies that the solution to this model is characterized

by,

V
�
a; n; bK� = 1

1��(1+gn)

h
ln (1� � (1 + gn)�) + �(1+gn)�

1��(1+gn)� ln (� (1 + gn)�)
i
+ 1

1��(1+gn)�

h
ln
�
g
�
�h
� 1
1��(1+gn) e

1
1��(1+gn)�a

a+ 1��
1��(1+gn)�n

n bK�
�i

= 1
1��(1+gn)

h
ln (1� � (1 + gn)�) + �(1+gn)�

1��(1+gn)� ln (� (1 + gn)�)
i
+ 1

1��(1+gn)�

h
1

1��(1+gn) ln
�
g
�
�h
��
+ � ln

� bK�+ 1
1��(1+gn)�a

a+ 1��
1��(1+gn)�n

n
i
;bK 0 = k

�
a; n; bK� = �(1+gn)�

1��(1+gn)�

1+
�(1+gn)�

1��(1+gn)�
g
�
�h
�
ea+(1��)n bK� = � (1 + gn)�g

�
�h
�
ea+(1��)n bK�;bC = 1

1+
�(1+gn)�

1��(1+gn)�
g
�
�h
�
ea+(1��)n bK� = (1� � (1 + gn)�) g

�
�h
�
ea+(1��)n bK�:

Taking a look at this expression it becomes rather obvious why a log-linear law of motion for the aggregate
state can be perceived as a good initial conjecture for this type of models as Krusell and Smith (1998) argue
in their paper. Based on this characterization of the law of motion for aggregate capital we can precisely
determined the steady state of the transformed bK where,

bK 0 = � (1 + gn)�g
�
�h
�
ea+(1��)n bK�;bK 00 = � (1 + gn)�g

�
�h
�
ea

0+(1��)n0
� bK 0

��
=
�
� (1 + gn)�g

�
�h
��1+�

e�a+a
0+(1��)(�n+n0) bK�2 = (��)

1+�
e�a+a

0
K�2 ;

bK 000 = � (1 + gn)�g
�
�h
�
ea

00+(1��)n00
� bK 00

��
=
�
� (1 + gn)�g

�
�h
��1+�+�2

e�
2a+�a0+a00+(1��)(�2n+�n0+n00) bK�3 ;

:::

bK(n) =
�
� (1 + gn)�g

�
�h
��Xn�1

j=0
�j

e

Xn�1

j=0
�ja(n�1�j)+(1��)�jn(n�1�j) bK�n :

In a deterministic steady state where the aggregate productivity and labor supply shocks are invariant (and
normalized to be equal to their unconditional mean of zero), naturally bK(n) converges towards a steady state
value bK� as n! +1 which is a function of

�
�; �; gn; �

h
�
alone, i.e.

bK� = lim
n!1

�
� (1 + gn)�g

�
�h
��Xn�1

j=0
�j bK�n =

�
� (1 + gn)�g

�
�h
��X+1

j=0
�j

=
�
� (1 + gn)�g

�
�h
�� 1

1�� :

This is an important feature of the model that we can exploit in many ways.
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C.3 Pricing Bonds and the Housing Stock

Let us recall the Euler equations that help us price both bonds and assets in this economy, i.e.

pt = �Et
�
�s

cjt
hjt+1

+
cjt
cjt+1

(1 + ga)
1

1�� (1 + gn) pt+1

�
;

qt = �Et
�
cjt
cjt+1

�
:

We know that under the conditions implied by this model, the solution ought to be symmetric, i.e. cjt = ct
and hjt+1 = ht+1 for all j 2 [0; Nt]. Therefore, it must be the case that,

cjt =
Ct
Nt
;

hjt+1 =
Ht+1

Nt
;

implying that the Euler equations can be expressed in terms of aggregate variables instead,

pt = �Et

"
�s

Ct
Nt

Ht+1

Nt

+
Ct
Nt

Ct+1
Nt+1

(1 + ga)
1

1�� (1 + gn) pt+1

#
= �Et

"
�s

Ct
Nt

Ht+1

Nt

+ (1 + gn)
Ct
Ct+1

(1 + ga)
1

1�� (1 + gn) pt+1

#
;

qt = �Et

"
Ct
Nt

Ct+1
Nt+1

#
= � (1 + gn)Et

�
Ct
Ct+1

�
:

We have transformed the variables such that for any aggregate variable, Xt, we de�ne an alternative variablebXt =
Xt

A
1

1��
t Nt

. Therefore, we can once again re-write the pricing equations in the following terms,

pt = �Et

2664�s
Ct

(1+ga)
1

1��A
1

1��
t Nt

(1+gn)Ht+1

A
1

1��
t+1 (1+gn)Nt

+

Ct

(1+ga)
1

1��A
1

1��
t Nt

Ct+1

A
1

1��
t+1 Nt+1

(1 + ga)
1

1�� (1 + gn) pt+1

3775
= �Et

264�s
bCt

(1+ga)
1

1��

(1 + gn) bHt+1

+

bCt
(1+ga)

1
1��bCt+1 (1 + ga)

1
1�� (1 + gn) pt+1

375
= �Et

"
�s

bCt
(1 + gn) (1 + ga)

1
1�� bHt+1

+
bCtbCt+1 (1 + gn) pt+1

#
;

qt = �Et

2664
Ct

(1+ga)
1

1��A
1

1��
t Nt

Ct+1

A
1

1��
t+1 Nt+1

3775 = � (1 + ga)
� 1
1�� Et

" bCtbCt+1
#
:

Given our assumptions on the evolution of the stock of housing capital, i.e. Ht+� =
�
(1 + ga)

1
1��
��
(1 + gn)

�
Ht,

then we can immediately determine that bHt+1 = Ht (which is the initial condition on the housing stock).
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Therefore, the system of equations reduces to,

pt = � (1 + gn)Et

" bCtbCt+1 pt+1
#
+

��s

(1 + gn) (1 + ga)
1

1��

bCt
Ht

;

qt = � (1 + ga)
� 1
1�� Et

" bCtbCt+1
#
:

We know what the aggregate decision rule on consumption is, so it can be inferred that,

pt = � (1 + gn)Et

"
eat+(1��)nt bK�

t

eat+1+(1��)nt+1 bK�
t+1

pt+1

#
+ ��s
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�h
�
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1��
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t
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;

qt = � (1 + ga)
� 1
1�� Et

"
eat+(1��)nt bK�

t

eat+1+(1��)nt+1 bK�
t+1

#
;

or, more precisely,

pt = � (1 + gn)Et
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t

e�aat+"
a
t+1+(1��)(�nnt+"nt+1)

�
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a
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�
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More compactly, we obtain the following expressions,

pt =
� (1 + gn)

(� (1 + gn)�g (�h))
�Et
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or simply,
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�Et
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This gives us a way to pin down precisely the price of a bond, which nicely corresponds with the log-linear
approximation favored by Krusell and Smith (1998). It also gives us a single equation that would characterize
the solution for the housing prices. An analytic solution may even be feasible in this environment.

A Characterization of the Housing Prices. The pricing equation for housing, i.e.

pt = � (1 + gn)Et

" bCtbCt+1 pt+1
#
+

��s

(1 + gn) (1 + ga)
1

1��
Et

" bCtbHt+1

#
:

can be expressed recursively as,
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Let us take j to in�nity, then the no-bubbles solution to this equation must satisfy that,

pt =
��s

(1 + gn) (1 + ga)
1

1��

"X+1

j=0
(� (1 + gn))

j Et

 bCtbHt+1+j

!#
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which is a well-known present value formula. Given our assumptions on the evolution of the stock of housing

capital, i.e. Ht+j =
�
(1 + ga)

1
1��
�j
(1 + gn)

j
Ht, then we can immediately determine that bHt+j = Ht for

any j. In other words, the initial condition on the housing stock, Ht, pins down the evolution of housing
capital along the balanced growth path. Hence, it follows that,

pt =
��s
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1

1��
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i bCt
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:

In other words, the price of housing today would be determined by ratio of consumption (along the balanced
growth path) relative to today�s housing supply stock. We have determined explicitly what the consumption
path should be in this economy, therefore it follows immediately that,

pt =
��s (1� � (1 + gn)�) g

�
�h
�

(1 + gn) (1 + ga)
1

1�� (1� � (1 + gn))
eat+(1��)nt bK�

t

Ht
:

Once again, the conjecture that housing prices can be expressed as a log-linear function of capital appears
to be consistent with the analytical solution of this type of model. It is worth noticing, however, that the
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stock of housing also plays a role. Ceteris paribus, the more housing supply available, the lower the price of
housing as expected.
We know the housing stock evolves exogenously around the balanced growth path. After a shock, capital

would eventually converge towards the balanced growth path, but does not sit on it. Therefore, housing
prices would be determined by the transition of capital in response to those shocks. If capital grows much
higher than along the balanced growth path, the income e¤ect we would observe on the transition path leads
to higher housing prices. In a similar fashion the direct e¤ect of either productivity shocks or labor supply
shocks is to increase the price of housing. Although we cannot analyze the transitions between two di¤erent
regimes of property taxes, we conclude by exploring the pricing formula that the sign with which property
taxes operate would be crucial. E.g., if g0

�
�h
�
> 0, then higher taxes would lead to higher productivity,

higher income and consequently higher housing prices.
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D The Baseline Model: The Computational Algorithm

With idiosyncratic uncertainty and a continuum of ex ante identical agents, there usually exists a steady
state wealth distribution which can be computed. With aggregate uncertainty, however, a steady state
wealth distribution will not exist in general, as stochastic aggregate shocks by construction do not cancel
out in the aggregate. Hence, the distribution of wealth changes with the stochastic aggregate shock. This
feature, noted by Krueger and Kubler (2004), makes it very di¢ cult to approximate equilibria with many
agents of di¤erent ages and aggregate uncertainty.
In the context of a model with in�nitely-lived agents, Krusell and Smith (1998) recognize that each

household only needs to forecast future interest rates, but not the future distribution of wealth. If interest
rates can be forecasted with su¢ cient accuracy using a low-dimensional summary statistic of current endoge-
nous variables (such as the current aggregate capital stock), one can simulate an approximate equilibrium
allocation by just solving the individual problem given the approximate forecasting rule. Evidently, if this
forecasting rule is su¢ ciently accurate, the dimension of the problem is independent of the number of agents
in the economy.
Applying their algorithm to a model with a continuum of in�nitely-lived agents (no heterogeneity with

respect to age), borrowing constraints and uninsurable idiosyncratic labor income uncertainty Krusell and
Smith (1998) �nd that the aggregate capital stock is su¢ cient for private agents to forecast future returns to
labor and capital with high accuracy. Thus, although exact aggregation of saving behavior across households
fails (households di¤er in their marginal propensity to save out of current wealth), �quasi-aggregation� is
obtained, in the sense that agents do not make large forecasting errors and do not su¤er large welfare losses
when behaving as if exact aggregation held.
The key to understanding why in the paper of Krusell and Smith the algorithm leads to good approxima-

tions even if only the �rst moment is used, is to realize that, apart from the (small number of) agents right
at the borrowing constraint all agents in their model have approximately the same marginal propensity to
save out of current wealth, so that quasi-aggregation is obtained. However, when agents di¤er with respect
to their age as in OLG models, in the absence of operative bequest motives their propensity to save will vary
greatly by age and thus quasi-aggregation is more likely to fail.
There are many cases where it is su¢ cient to describe the evolution of the capital stock as a function

of last period�s aggregate capital stock alone. In particular, if the law of motion for capital is not hit by
stochastic shocks, the OLS coe¢ cient estimates describe the evolution of the aggregate capital stock well,
independently of the magnitude of the productivity shocks and the aggregate shocks. The reason why this
result is likely to occur is that in this case the distribution of wealth does not change much along the
equilibrium path. A bad aggregate shock in�uences both the income of the young, the income of the middle
aged, and the income of the old. It is worth mentioning that Krueger and Kubler (2004) obtain better
measures of �t (R2) for TFP speci�cations that allow for larger-size technology shocks.
This suggests that the choice of the algorithm depends heavily on the application: when a model with

large number of generations and heterogeneity within generations is desired, Krusell and Smith�s approach
appears to be the only feasible way to proceed, whereas for fairly large OLG models without intragenerational
heterogeneity Krueger and Kubler (2004) provide a viable contender which maintains full rationality of
agents.

D.1 The One-Neighborhood Model

Here, we outline the algorithm used to compute the numerical equilibrium of our model without reloca-
tion. The individual state variables are represented by the vector (a;w; j), which includes idiosyncratic
productivity shocks, net wealth, and age. The endogenous aggregate state variable, � � � (a;w; j), is a
high-dimensional object. The exogenous aggregate variable is the population size, n. The combined vector
of state variables is (a;w; j; �; n). A numerical solution of the dynamic programming problem is proposed
in the spirit of Krusell and Smith (1998, 2006).
In models where prices are competitive, the current prices depend on aggregate capital. To know future

prices, it is necessary to know how the total capital stock evolves. Individual savings decisions do not equal
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the aggregate whenever markets are incomplete and households are hit with idiosyncratic shocks. Then, total
capital stock in the future is a nontrivial function of all the moments of the current distribution, and this
distribution is not invariant. Krusell and Smith (1998) propose a log-linear approximation for the evolution
of total capital which simpli�es things and gives a good �t. In our model, this is no longer true because
we cannot establish that aggregate housing stock is su¢ cient to determine prices (since housing markets are
segmented).
Let us specify the structure of the problem that will be relevant for our computational simulation.

Notice that we express the problem on the basis of the approximation suggested by Krusell and Smith (1998,
2006) for the high-dimensional distribution � (a;w; j). Let us assume that there is just one neighborhood,
q 2 f1g. Let us assume that households forecast future prices as depending on only the �rst moments of
the distribution, �, in addition to n14 . We denote the �rst moments for forecasting as M �

�
W; :::

�
, where

W represents the net wealth held in each neighborhood by the average resident household (conditional on
being located there).
We do not consider the mean productivity because by the law of large numbers idiosyncratic uncertainty

from the productivity shock cancels out. For all practical purposes we ignore the aggregate bondholdings
because by assumption bonds are an asset in zero-net supply. Hence, in equilibrium B should be equal to
zero in every state. All markets are integrated.
We summarize all the aggregate information that the �rst moments provide in terms of population

structure and net wealth with one aggregate variable: the mean net wealth across all ages, which we denote
W . In other words, M =

�
W
�
.

Population dynamics. Population �uctuations, in the absence of multiple neighborhoods and endogenous
relocation, are purely exogenous and can be computed as follows,

�1 = [n1] ;

�2 = [n2 + �1n1] ;

:::

�65 = [n65 + �1n64 + �2n63 + :::+ �64n1] ;

�66 = [n66 + �1n65 + �2n64 + :::+ �64n2] ;

:::

�t =

�X64

j=0
�jnt�j

�
; 8t � 65:

The survival rate is denoted �j , and describes the probability of a household of age j surviving one more
year. We assume that �j = 0 for all J � 65 and �0 = 115 .
In our calibration, we assume that the aggregate birth rate shocks are iid

�
n; �2n

�
16 . Hence, this means

that total population �t =
X64

j=0
�jnt�j can be viewed as an MA (65) stochastic process. Let us assume

that the survival rate takes the following geometric form, �j = �j with � 2 (0; 1). Then, we may conjecture
that the total population approximately takes the following form,

e�t = n+ �e�t�1 + ent;
14Limiting households to a �nite set of moments is an approximation because housing prices and interest rates do depend on

the entire distribution.

15This last assumption implies that there are no deaths at birth. Otherwise, it can be interpreted as saying that the birt rate
nt only counts newborns that survive to age one.

16The idyosincratic productivity shocks are also iid
�
a; �2a

�
.
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where ent � nt � n. It is possible to re-write the conjecture AR (1) process in MA (1) form as,

e�t =
n

1� � +
X64

j=0
�jent�j +X1

j=65
�jent�j

= �t + �
65e�t�65:

Since the AR (1) process e�t is ergodic for the mean, it can be said that the population dynamics would
follow a very close path to that marked by an AR(1) process. As a result, even though we do not introduce
persistence in the shocks, population dynamics will exhibit this feature. In fact, we know that,

E
�e�t� =

n

1� � ;

V
�e�t� =

�2n
1� �2 ;

CV
�e�t; e�t�j� = �j

�2n
1� �2 :

Hence, we can deduce that,
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�e�t�� �65E�e�t�65� = n
1� �65
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1�
�
�65
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CV (�t; �t�j) = CV
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65�65�j
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1� �2 = �2n�
j

h
1�

�
�65�j
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=
h
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�
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�2i
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65�j+65
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65�j�65
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1� �2 = 0 if j > 65;

which are the unconditional moments of the population dynamics in the model.

A comment on the budget constraint and the production function. Let us introduce a little bit
of notation on the household�s budget constraint which in sequential form can be expressed as,

ct + p
r
t bt+1 + ptit = yt + bt � � (1� �) ptht +

�
tt + (1� �) (1� �) pttht

�
;

ht+1 = (1� �)ht + it;

where it is investment, and pt is the price of a riskless bond today that promises one unit of the consumption
good tomorrow. By arbitrage, prt = r�1t where rt is the riskless interest rate. Naturally, pt is the price of
housing in the neighborhood, tbt is the real transfer of bonds through the �estate tax�in per capita terms,
and tht is the real transfer of housing capital through the �estate tax�in per capita terms.
Putting aside the transfer due to the estate tax, this budget constraint simply says that all income net

of property taxes combined with the returns on bonds ought to �nance consumption, investment in housing
capital and the demand for next period bonds. Transfers provide an external source of funding, which is out
of the control of the individual households.
The property taxes are paid at the beginning of period. However, housing investment on the stock of

capital was undertaken at the end of the previous period. At the point taxes are collected, the housing stock
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has already depreciated. Hence, taxes can only be collected on the depreciated value of the housing stock
and do not take advantage of the investments that the households might choose during the current period.
More compactly, we can combine these two constraints into one equation as follows,

ct + p
r
t bt+1 + ptht+1 = yt +

�
bt + t

b
t

�
+ (1� �) (1� �) pt

�
ht + t

h
t

�
:

This is the standard budget constraint that we study in this paper.
We use wt to de�ne individual asset wealth at the beginning of period t, a variable which we identify as,

wt � bt + (1� �) (1� �) ptht:

Hence, we can re-write the budget constraint as,

ct + p
r
t bt+1 + ptht+1 = yt + wt + t

b
t + (1� �) (1� �) pttht :

Further manipulation of the budget constraint gives us that,

ct + p
r
t bt+1 + ptht+1 = yt + wt + t

w
t ;

where twt � tbt + (1� �) (1� �) pttht is the per capita transfer of net real wealth through the estate tax
(conditional on location). The vector of prices that we seek to uncover is (prt ; pt), all of which ought to be
functions of (�; n) which we approximate as functions of

�
M;n

�
.

Finally, we de�ne the production function in this economy as,

yt � at (gt)
�j l

�j
t ;

which is both a function of labor, lt, and per capita government spending (conditional on location), gt.

The problem of the individual household. The problem of an individual household born into this
school district can be represented as follows,

V
�
a;w; j;M;n

�
= max

c;l;b0;h0
u (c;mh0; l) + �j�

X
a0;n0

V
�
a0; w0; j + 1;M

0
; n0
�
F a (a0 j a)Fn (n0 j n) ;

where,

u (c;mh0; l) =
c1�� � 1
1� � + �s

(mh0)
1�
 � 1

1� 
 � �l
l1+'

1 + '
;

subject to,

c+ prb0 + ph0 = ag�j l�j + w + tw; 8j 2 f1; :::; Jg ;
(c; l) � 0; w0 � b0 + (1� �) (1� �) p0h0 � �wj ; 8j 2 f1; :::; Jg ;
M

0
= K

�
M ;n; n0

�
:

There are e¤ectively three control variables in practice, (l; b0; h0), since consumption is pined down by the
budget constraint.
The Aiyagari-style borrowing constraint implies that,

b0 � �wj � (1� �) (1� �) p0h0; 8j 2 f1; :::; Jg :

For all intensive purposes, this is a borrowing constraint that implies housing is being used as a collateral.
Alternatively, we could impose a more complex �nancing constraint in terms of the debt service ratio, which
would takes the following form,

b0 � �$jag
�j l�j ; 8j 2 f1; :::; Jg :
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We may start with the �rst borrowing constraint because of its simplicity. Notice, however, that the way in
which we de�ne b0 counts �interests and principal�, since these bonds are sold at a discount whenever they
are issued.

Government spending and Estate Taxes. In order to close the model,we need to specify the govern-
ment spending in education and the �involuntary�transfers through the estate tax. In equilibrium, it must
hold that the average net wealth satis�es that,

W � B + (1� �) (1� �) p
�
M;n

�
H

= (1� �) (1� �) p
�
M;n

�
H;

where the second equality follows from the fact that bonds are in zero net-supply, i.e. B = 0. Therefore,
average net wealth should be proportional to the value of the average house in the neighborhood at the
beginning of the period (net of taxes and depreciation). The implicit �estate taxes�and the budget constraint
for the school districts are expressed in aggregate terms as follows,

T b =
XJ

i=1
(1� �i)

Z
1fj=igbd�;

Th =
XJ

i=1
(1� �i)

Z
1fj=ighd�;

and,

G = � (1� �) p
�
M;n

��XJ

i=1
�i

Z
1fj=ighd� + T

h

�
= � (1� �) p

�
M;n

��Z
hd�

�
;

where J = 64. We de�ne the relevant measures of per capita real wealth transferred through the �estate
taxes�or converted into education units through government spending as follows,

tb � (�)�1 T b; th � (�)�1 Th; g � (�)�1G:

Transfers and government spending are de�ned in terms of the physical housing stock exchanged and the
real borrowing. We can, therefore, re-express the per capita spending and net wealth transfers in each
neighborhood as,

g � � (1� �) p
�
M;n

�
H

=
� (1� �)

(1� �) (1� �)W;

tw � tb + (1� �) (1� �) p
�
M;n

�
th;

where H is the average housing capital in the neighborhood. Let us assume that the survival rate one more
period is constant and independent of age (although it drops to zero at 65), i.e. �i = �. Then, we can write
the per capita net wealth transfer more compactly as,

tw � (1� �)
�
B + (1� �) (1� �) p

�
M;n

�
H
�

= (1� �)
�
(1� �) (1� �) p

�
M;n

�
H
�

= (1� �)W:

These are the only two additional expressions that we care about in order to close our model, and they
can all be expressed in terms of average net wealth in each neighborhood. The speci�cation with constant
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survival rates until the end of their lifetime greatly simpli�es the model, and serves to make our economy
more tractable.
NOTE: I believe there are already a number of good reasons why we should move towards a model in

which the survival rate is constant (as expressed before). The loss of realism I believe would be compensated
by greater tractability. However, we should be careful to apply this. It might be better to use exponential
death rate as a more correct approximation.

D.2 Conjecture and Implementation

Conjecture for the pricing equations. Following in the spirit of Krusell and Smith (1998, 2006) we
conjecture a log-linear approximation of the pricing equations

�
pr
�
H;n

�
; p
�
H;n

�	
in these terms,

ln pr = pra0 + p
r
a1 lnH if n = na;

ln p = pa0 + pa1 lnH if n = na;

ln pr = prb0 + p
r
b1 lnH if n = nb;

ln p = pb0 + pb1 lnH if n = nb;

ln pr = prc0 + p
r
c1 lnH if n = nc;

ln p = pc0 + pc1 lnH if n = nc:

Conjecture the law of motion for housing capital. We de�ne the aggregate state in terms of housing
capital, but we exploit the fact that the net wealth in each neighborhood is intimately related to the stock
of housing in each neighborhood since in equilibrium,

W = (1� �) (1� �) p
�
H;n

�
H:

Slightly abusing notation, we rede�ne the vector of moments with which we approximate the distribution of
this model asM =

�
H
�
(instead ofM =

�
W
�
). We also guess a parameterized functional form corresponding

to the law of motion for M =
�
H
�
, which satis�es that,

M
0
= K

�
M ;n; n0

�
:

Analogous to Krusell and Smith (1998), we choose the following log-linear approximation,

lnH
0
= a0 + a1 lnH if n = na;

lnH
0
= b0 + b1 lnH if n = nb;

lnH
0
= c0 + c1 lnH if n = nc;

assuming that the aggregate population shock is characterized with 3 di¤erent states. That makes for a total
of 6 free parameters. Moreover, notice that given this approximation, the steady state of housing capital
takes the following form,

lnH
0
= lnH = lnH

�
=

a0
1� a1

if n = na;

lnH
0
= lnH = lnH

�
=

b0
1� b1

if n = nb;

lnH
0
= lnH = lnH

�
=

c0
1� c1

if n = nc;

which implies that the housing stock in each neighborhood can take up to three di¤erent values depending
on the realization of the population shock. In a stationary equilibrium in which the housing stock is identical
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in each population state, the coe¢ cients of the law of motion must satisfy the following constraint,

a0
1� a1

=
b0

1� b1
=

c0
1� c1

:

This implies that we can reduce the number of free parameters by 2 imposing the following intercepts,

a0 =
b0

1� b1
(1� a1) ; c0 =

b0
1� b1

(1� c1) :

NOTE: We may not want to impose the restrictions on the coe¢ cients that we impose here and in our
previous attempt at coding the model. It is too restrictive.

The implementation of the approximation. Equipped with all these conjectures we can specify the
problem of an individual household at any point in time in the following terms,

V
�
a;w; j;H;n

�
= max

l;b0;h0
u
�
ag�j l�j + w + tw � p

�
H;n

�
b0 � p

�
H;n

�
h0;mh0; l

�
+

+�j�
X

a0;n0
V
�
a0; b0 + (1� �) (1� �) p

�
K
�
H;n; n0

�
; n0
�
h0; j + 1;K

�
H;n; n0

�
; n0
�
F a (a0 j a)Fn (n0 j n) ;

where,

u (c;mh0; l) =
c1�� � 1
1� � + �s

(mh0)
1�
 � 1

1� 
 � �l
l1+'

1 + '
;

g � � (1� �) p
�
H;n

�
H;

tw � (1� �) (1� �) (1� �) p
�
H;n

�
H;

subject to,

(c; l) � 0; b0 + (1� �) (1� �) p
�
K
�
H;n; n0

�
; n0
�
h0 � �wj ; 8j 2 f1; :::; Jg ;

H
0
= K

�
H;n; n0

�
; pr

�
H;n

�
; p
�
H;n

�
:

Solving this problem would give us the following set of policy rules,

l = l
�
a;w; j;H;n

�
;

b0 = b
�
a;w; j;H;n

�
;

h0 = h
�
a;w; j;H;n

�
:

But given the fact that we have conjectured the form of the pricing equations based on a pair of aggregate,
it is not clear that we can guarantee that the markets clear. In other words, we cannot guarantee that our
pricing equations are a solution to the general equilibrium model.
Instead, we are going to use a two-stage algorithm in the spirit of Krusell and Smith (2006). For the

two-stage algorithm to work, we need to rede�ne the problem of the household with an intermediate step. We
shall assume that the current prices for bonds and housing are given and that the households forecast future
prices based on the conjectures for the pricing equations and the housing capital, i.e. H

0
= K

�
H;n; n0

�
,

pr
�
H;n

�
, and p

�
H;n

�
. Under these conditions, we can write the intermediate problem of the household as,

bV �a;w; j;H;n� = max
l;b0;h0

u
�
ag�j l�j + w + tw � prb0 � ph0;mh0; l

�
+

+�j�
X

a0;n0
bV �a0; b0 + (1� �) (1� �) p �K �H;n; n0� ; n0�h0; j + 1;K �H;n; n0� ; n0�F a (a0 j a)Fn (n0 j n) ;
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where,

u (c;mh0; l) =
c1�� � 1
1� � + �s

(mh0)
1�
 � 1

1� 
 � �l
l1+'

1 + '
;

g � � (1� �) pH;
tw � (1� �) (1� �) (1� �) pH;

subject to,

(c; l) � 0; w0 � b0 + (1� �) (1� �) p
�
K
�
H;n; n0

�
; n0
�
h0 � �wj ; 8j 2 f1; :::; Jg ;

H
0
= K

�
H;n; n0

�
; pr

�
H;n

�
; p
�
H;n

�
:

Solving this problem would give us the following set of policy rules,

bl = bl �a;w; j; pr; p;H;n� ;bb0 = bb �a;w; j; pr; p;H;n� ;bh0 = bh �a;w; j; pr; p;H;n� ;
which now clearly depend on the current prices prevailing in the economy. These policy rules conditional on
current prices are going to be essential to make sure that any algorithm that we design to implement this
model guarantees that all markets clear.

Brief description of the algorithm. Step 1. Start with a conjecture for the functional form ofK
�
H;n; n0

�
,

pr
�
H;n

�
, and p

�
H;n

�
. Let me denote the vector of coe¢ cients that characterizes the law of motion as �,

and the vector of coe¢ cients that characterize the pricing equations as �. Propose an initial guess for the
coe¢ cients of all these equations, i.e. �0 and �0.
Step 2. By backward induction, solve the household�s intermediate problem described through the value

function bV �a;w; j;H;n�. The procedure could be as in our previous version of the model. This should give
us the following set of policy rules as a function of current prices,

bl = bl �a;w; j; pr; p;H;n� ;bb0 = bb �a;w; j; pr; p;H;n� ;bh0 = bh �a;w; j; pr; p;H;n� :
Therefore, we need to extend the grid to include interest rates and house price.
Step 3. Simulate the economy using the policy functions obtained in step 2 in order to compute fB;HgTt=0.

In each period, we compute the aggregate bondholdings and the aggregate housing capital in each neigh-
borhood by adding up the individual rules of each household given a pair of current prices (pr; p). We keep
changing the current pricing vector until the bond and housing markets clear in that period.
(a) Bond market clearing requires that aggregate bondholding be equal to zero, i.e. B = 0, since the

bonds are in zero-net supply.
(b) Housing market clearing requires that we aggregate the housing decisions of all agents residing in one

neighborhood and divide by the total resident population in that neighborhood. This measure tells us the
average housing capital for next period from individual decisions based on the current state of the economy
and the current prices. Based on the current aggregate state and the law of motion for capital, we have a
conjecture for what average housing capital in the neighborhood must be in the following period. Market
clearing in the housing market is attained whenever the average of housing capital coming from individual
decisions coincides with the aggregate state for capital according to the law of motion we conjectured.
NOTE: This approach would ensure that the markets clear in each period. Labor might be a problem

that we would need to consider later on to make the model work, although in this problem there is no labor

49



market per se. What makes this complex is that now there is a two-layer approximation. The approximation
on prices might be in�uenced by the conjecture on the law of motion.
Step 4. Use the simulated data to obtain a new estimate for �j+1 and �j+1 in the following way. First,

�x the pricing parameters at their initial guess �0. Second, sort the data
�
nt; Ht

	
according to the aggregate

shock nt: for all n 2 fna; nb; ncg, if nt = n, then y� = lnHt+1 and x� = lnHt. For all n 2 fna; nb; ncg,
obtain �j+1 as OLS estimates of regressions of the following form,

y� = an0 + an1x� + "� ;

where "� is the error term of the regression. Also compute measures of �t for this regression (the standard
error and the R2 of the regression su¢ ce). Repeat steps 2 and 3 until convergence is achieved, i.e. �j+1 �!
��. In a �rst pass, if convergence is not achieved, try with another initial guess for �0.
Step 5. Use the simulated data to obtain a new estimate for �j+1 and �j+1 in the following way. First,

�x the law of motion parameters at the values they converged to in step 4, i.e. ��. Second, sort the data�
nt; p

r
t ; pt; Ht

	
according to the aggregate shock nt: for all n 2 fna; nb; ncg, if nt = n, then yr� = ln prt ,

y� = ln pt and x� = lnHt. For all n 2 fna; nb; ncg, obtain �j+1 as OLS estimates of regressions of the
following form,

yr� = prn0 + a
r
n1x� + "

r
� ;

y� = pn0 + pn1x� + "� ;

where "r� and "� are the error terms of the regression. Also compute measures of �t of these regressions (the
standard error and the R2 of the regression su¢ ce). Repeat steps 2 and 3 until convergence is achieved, i.e.
�j+1 �! ��.
Step 6. Using the converging parameters coe¢ cients estimated in step 5, we �x �� in step 4 and repeat

the simulation. If the new parameters for the law of motion of capital after running step 4 a second time,
i.e. ���, coincide with the values derived in the �rst pass, i.e. ��, then stop. If not, keep iterating until the
parameters of the law of motion and the pricing equations are consistent with each other.
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Table 2: Sensitivity Analysis for the Model
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Figure 1: Housing Prices in the U.S., 1975-2005
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Note the peak in 1979 matches the peak population for 18 year olds. In 1985 housing prices reach their lowest value
at a point when the population of 18-year olds is still declining. Note that the peak in 1978 is also at the nadir
of the baby bust - at that point demographers were uncertain of a baby echo. As the baby echo began, one would
not expect that housing prices would fall conditioned only on the number of 18-year olds. Individuals began to
anticipate the increased future population and housing prices took account of this.
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Figure 2: The Baby Boom Demographic Patterns

N:A:

Note the peak in 1979 matches the peak population for 18 year olds. In 1985 housing prices reach their lowest value
at a point when the population of 18-year olds is still declining. Note that the peak in 1978 is also at the nadir
of the baby bust - at that point demographers were uncertain of a baby echo. As the baby echo began, one would
not expect that housing prices would fall conditioned only on the number of 18-year olds. Individuals began to
anticipate the increased future population and housing prices took account of this.
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Figure 3: Correlation of Population Growth Rates by Age and the Housing Price Index
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Note the peak in 1979 matches the peak population for 18 year olds. In 1985 housing prices reach their lowest value
at a point when the population of 18-year olds is still declining. Note that the peak in 1978 is also at the nadir
of the baby bust - at that point demographers were uncertain of a baby echo. As the baby echo began, one would
not expect that housing prices would fall conditioned only on the number of 18-year olds. Individuals began to
anticipate the increased future population and housing prices took account of this.
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Figure 4: Actual and Fitted House Prices based on the Toy Model.

Note that the in-sample properties of the Toy model deteriorate from the 1990s, while the model performs relatively
well until then (see also Mankiw and Weil, 1989). During the 90s, it overestimates the house prices, while afterwards
it underestimates the price increase.
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