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Abstract

The U.S. airline industry went through tremendous turmoil in the
early 2000’s. There were four major bankruptcies and two major merg-
ers, with all legacy carriers reporting a large profit reduction. This pa-
per presents a structural model of the airline industry, and estimates
the impact of demand and supply changes on profitability. We find
that, compared with the late 1990s, in 2006, a) air-travel demand was
8% more price sensitive; b) passengers displayed a strong preference
for direct flights, and the connection semi-elasticity was 17% higher; c)
the changes of marginal cost significantly favored direct flights. These
findings are present in all the specifications we estimated. Together
with the expansion of low cost carriers, they explained more than 80%
of the decrease in legacy carriers’ variable profits.

1 Introduction

The airline industry went through tremendous turmoil in the early 2000’s
with four major bankruptcies and two mergers. In August 2002, US Airways
filed for bankruptcy. A few months later, United Airlines followed suit. It
stayed under Chapter 11 bankruptcy protection for more than three years,
the largest and longest airline bankruptcy in history. In September 2005,
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Delta Airlines and Northwest Airlines went bankrupt on the same day. By
then, four of the six legacy carriers were under bankruptcy reorganization.1

Only American and Continental managed to escape bankruptcy, but all
legacy carriers reported a large reduction in profits.2

On the other hand, when measured by domestic revenue passenger miles,3

the industry’s output had recovered from the sharp downturn after 9/11 by
2004 and has been trending up since (see Figure 1). The load factor,4 an-
other important measure of profitability, has increased steadily since 2001.
According to Figure 2, the average load factor for U.S. airlines rose from
71.2% in 1999 to 79.7% in 2006, and posted a record high of 80.5% in 2007.
If more passengers traveled and planes were fuller, what caused the financial
stress of most airlines?

Several recent developments provide potential explanations. One cate-
gory of explanations is related to changes in air-travel demand. Perhaps the
bursting of the dot-com bubble, or improvements in electronic communica-
tions, decreased the willingness-to-pay of business travelers. As the economy
cooled down, many companies imposed maximum reimbursement limits, and
even business travelers started to shop around for cheaper flights.

Another potential change in demand stems from the tightened security
regulations after 9/11. Passengers had to go through a strict security check,
and many items were no longer allowed in carry-on luggage. The extra lug-
gage handling, combined with stricter security regulations, had lengthened
the average travel time. In the meantime, with most flights full, it became
increasingly difficult for passengers to board a different plane in case of
missed connections or flight cancellations. Consequently, carriers found it
harder to charge high fares for connecting flights as passengers started to
search for alternatives.

The third important development is the option of purchasing airline tick-
ets on the internet. In 1996, most tickets were sold through the airline’s
reservation office or traditional travel agencies, with less than 0.5% sold on-
line.5 By 2007, online sales accounted for 26% of global sales, and as high as
50-60% in U.S.6 The proliferation of online sites that provided information

1The legacy carriers are: American Airlines, Continental Airlines, Delta Airlines,
Northwest Airlines, United Airlines, and U.S. Airways.

2As documented by Borenstein and Rose (2008), the airline industry’s profit has always
been quite volatile. However, the recent development in the 2000s seems to be extreme.

3Revenue passenger miles is the product of the number of revenue-paying passengers
aboard and the distance traveled (measured in miles).

4Load factor is the ratio of revenue passenger miles to available seat miles of a flight.
5Source: DOT report CR-2000-111.
6Source: SITA (2008).
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previously limited to travel agents made consumers much more conscious of
the fare availability and fare premiums across carriers and travel dates. The
various search engines (travelocity.com, expedia.com, etc.) dramatically re-
duced consumers’ search cost, and allowed them to easily find their most
desirable flights. All of these changes were likely to affect consumers’ sensi-
tivity to flights with different attributes (high vs. low fare tickets, direct vs.
connecting flights, frequent vs. less frequent departures, etc.).7

On the supply side, a variety of changes affected the industry’s mar-
ket structure and profitability. The most cited transition was the expan-
sion of the low cost carriers (LCC), whose market share of domestic origin-
destination passengers increased steadily over the past decade, from 22.6%
in 1999 to 32.9% in 2006.8 As a result, the legacy carriers were forced to
lower fares and offer competing service. Some legacy carriers shifted their
capacity to the more lucrative international markets, and reluctantly sur-
rendered part of the domestic markets to the LCCs.

The recent aviation technology progress, in particular the advent of re-
gional jets with different plane sizes, allowed carriers to better match the
aircraft with the market size, and hence enabled carriers to offer direct flights
to markets that used to rely on connecting services. In addition, with lower
labor costs than the traditional jets, regional jets became a popular choice
for carriers under financial pressure.9 On the other hand, the cost of jet fuel,
which accounts for roughly 15% of the operation cost, more than doubled
over the past decade.10

In this paper, we estimate a structural model of the airline industry, and
disentangle the impact of the various factors on the profitability of the legacy
carriers. We find that, compared with the late 1990s, in 2006, a) the price
elasticity of air-travel demand increased by 8%; b) passengers displayed
a strong preference for direct flights, and the connection semi-elasticity
was 17% higher; c) the changes of marginal cost significantly favored di-
rect flights. A more elastic demand, a higher aversion toward connecting
flights, and increasing cost disadvantages of connecting flights are the most
robust findings of our study and are present in almost all specifications we
estimated. These factors, together with the expansion of low cost carriers,

7Technically, “direct” means that passengers do not change planes between origin and
destination, while “non-stop” means that the flight does not stop between origin and
destination. In this paper, we use both terms to refer to flights that do not stop between
origin and destination.

8Data source: http://www.darinlee.net/data/lccshare.html.
9See Mozdzanowska (2004).
10See Borenstein And Rose (2008).
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explained more than 80% of the decrease in legacy carriers’ variable profits,
with changes in demand contributing to more than 50% of the reduction.

The remainder of the paper is structured as follows. Section 2 reviews
the related literature. Section 3 presents the model. Section 4 describes the
data sources. Section 5 proposes the empirical strategy. Section 6 discusses
the results. Section 7 presents the conclusions.

2 Literature review

There have been many empirical papers that study the airline industry.
Among the most recent ones, Borenstein (2005) reported that, adjusted for
inflation, airline prices fell more than 20% from 1995 to 2004. He also found
that premiums at hub airports declined, and that there was substantially
less disparity between the cheaper and the more expensive airports than
there had been a decade ago. Goolsbee and Syverson (2005) examined how
incumbents responded to the threat of Southwest entry. Puller, Sengupta,
and Wiggins (2007) tested theories of price dispersion and scarcity pricing
in the airline industry. Ciliberto (2008) analyzed dynamic strategic deter-
rence in the airline industry. Dana and Orlov (2008) studied the impact of
the internet penetration on airlines’ capacity utilization. Forbes (2008) ex-
ploited a legislative change in takeoff and landing restrictions at LaGuardia
Airport in 2000. She discovered that prices fell by $1.42 on average for each
additional minute of flight delay.

There are only a few discrete choice applications in the airline literature.
Peters (2006) simulated post-merger prices for five airline mergers in the
late 1980s, and found evidence that supply-side effects, such as changes in
marginal costs and deviations from the assumed model of firm conduct,
were important factors in post-merger price increases. Berry, Carnall, and
Spiller (hereafter BCS) (2007) focused on the evolution of the airline industry
toward a hub-and-spoke system after the deregulation in 1970s. They found
evidence of economies of density on longer routes. Armantier and Richard
(2008) investigated the consumer welfare consequences of the code-share
agreement between Continental Airlines and Northwest airlines. The results
suggested that the code-share agreement increased the average surplus of
connecting passengers, decreased the average surplus of nonstop passengers,
and did not impact consumers significantly on average. We contribute to
the literature by examining the recent developments in the airline industry
and analyzing how they contribute to the drastic profit reductions witnessed
in this industry.
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3 Model

We consider a model of airline oligopoly “supply and demand” in the spirit
of the recent literature on differentiated product markets following Berry,
Levinsohn and Pakes (BLP) (1995). Our model is particularly close to
BCS. The point of the present paper is not to provide any methodological
innovation, but to make use of the existing models to understand the recent
evolution of the industry.

For now, we think of U.S. airlines as offering a set of differentiated prod-
ucts in each of a large cross-section of “origin-and-destination” markets.
Airline products are differentiated by price, the number of connections, air-
line brand, the frequency of departures, and so forth. Ticket restrictions
(such as advanced-purchase and length-of-stay requirements) are important
elements of product differentiation that are not observed in our data. Nei-
ther do we observe certain flight-level details, such as the time of departure.
Thus, it is particularly important to allow for product-unobservable charac-
teristics that are correlated with price, as explained below.

3.1 Demand

The demand model is a simple random-coefficient discrete-choice model in
the spirit of McFadden (1981) and BLP. Like BCS, we use a “discrete-
type” version of the random coefficient model. Suppose there are R types
of consumers. For product j in market t, the utility of consumer i, who is
of type r, is given by

uijt = xjtβr − αrpjt + ξjt + νit(λ) + λ�ijt, (1)

where

• xjt is a vector of product characteristics,

• pjt is the product price,

• βr is the vector of “tastes for characteristics” for consumers of type r,

• αr is the marginal disutility of a price increase for consumers of type
r,

• ξjt is the unobserved (to researchers) product characteristic of product
j,
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• νit is a “nested logit” random taste that 1) is constant across airline
products; 2) differentiates “air travel” from the “outside” good,

• λ is the nested logit parameter that varies between 0 and 1, and

• �ijt is an i.i.d. (across products and consumers) “logit error.”

The utility of the outside good is given by

uiot = �i0t (2)

where �i0t is another logit error. The error structure

νit(λ) + λ�ijt

is assumed to follow the distributional assumption necessary to generate the
classic nested logit purchase probability for consumers of type r, where the
two nests consist of 1) all the airline products, and 2) the outside option
of not flying. If λ = 1, then ν ≡ 0, and the purchase probability of type
r consumers takes the simple multinomial logit form. If λ = 0, then the
i.i.d. �’s have no effect. With probability one, all type r consumers buy the
product with the highest xjtβr − αrpjt + ξjt. When λ ∈ (0, 1), the product
shares have the traditional nested logit form.

Specifically, conditional on purchasing some airline product, the percent-
age of type r consumers who purchase product j in market t is given by:

e(xjtβr−αrpjt+ξjt)/λ

Drt

where the denominator is:

Drt =
JX

k=1

e(xktβr−αrpkt+ξkt)/λ (3)

The share of type r consumers who make a purchase is:

srt (xt, pt, ξt, θd) ≡
Dλ
rt

1 +Dλ
rt

. (4)

Let γr denote the percentage of type r consumers in the population. The
overall market share of product j in market t is

sjt(xt, pt, ξt, θd) ≡
X
r

γr
e(xjtβr−αrpjt+ξjt)/λ

Drt
srt (xt, pt, ξt, θd). (5)

6



Notice that the vector of demand parameters to be estimated, θd, includes
the taste for product characteristics, βr, the disutility of price, αr, the nested
logit parameter, λ (which governs substitution to the outside good), and the
consumer-type probabilities γr.

Following BLP, we form moments that are the expectations of the un-
observable ξ interacted with exogenous instruments that are discussed in
section 5.2. Further details of the estimation method are found in BLP and
the related literature, but we provide a brief review here.

We first invert the market share equations (5) to solve for the vector
of demand unobservables ξt, as a function of the product characteristics,
prices, the observed market shares, and parameters:

ξt = s−1(xt, pt, st, θd) (6)

As in BCS, the multiple-type nested logit model requires us to slightly mod-
ify the contraction mapping method used in BLP. In particular, the “step”
between each iteration of ξt is multiplied by λ, the nested logit parameter:

11

ξMjt = ξM−1jt + λ [ln sjt − ln sjt(xt, pt, ξt, θd)] (7)

where M denotes the Mth iteration, sjt is the observed product share, and
sjt(xt, pt, ξt, θd) is defined by equation (5).

The moment conditions used in estimation are based on restrictions of
the form

E(ξ(xt, pt, st, θd) |zt) = 0, (8)

where zt is a vector of instruments. A classic GMM estimation routine notes
that these moment conditions imply

E(h(zt)ξ(xt, pt, st, θd)) = 0, (9)

for any vector of functions h(·). Intuitively, a method of moments estimation
routine chooses θd to make sample analogs of the expectations in (9) as close
to zero as possible.

The product-level unobservable ξjt accounts for a large number of prod-
uct characteristics, such as ticket restrictions and departure time, that are
absent from our data source.12 Prices are likely to be correlated with these

11We iterate until the maximum difference between each iteration is smaller than 10−12 :
||ξM − ξM−1||∞ = max

�
|ξM1 − ξM−11 |, ..., |ξMK − ξM−1K |

�
< 10−12. See Dube, Fox, and Su

(2008) for an illuminating discussion of the importance of a stringent convergence rule.
12 In practice, not all products are available at each point of time. For example, the

discount fares typically require the advanced purchase and tend to disappear first. This is
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product attributes. For example, refundable tickets are generally much more
expensive than non-refundable ones. We allow for an arbitrary correlation
between ξjt and prices, and instrument prices. We also allow for the possible
endogeneity of flight frequency. As we cannot allow for all product charac-
teristics to be endogenous, we treat a number of them (such as distance and
the number of connections) as exogenous.

Obviously, the instrument set should include exogenous variables that
help to predict endogenous characteristics (prices and flight frequencies).
The instruments also have to identify the parameters that govern substitu-
tion patterns across products in a market, such as the type specific para-
meters βr and αr, λ, and the share of each type γr. Intuitively, exogenous
variation in choice sets across markets greatly helps to identify substitution
patterns.13 Our specific choice of demand instruments (as well as cost in-
struments) is considered in section 5.2, after we introduce the data in more
detail.

Finally, we want to point out that a discrete r-type model is a parsimo-
nious way to capture the correlation of tastes for different product attributes.
Given the documented fact that some passengers (for example, the business
travelers) value the convenience of frequent departures and fewer layovers,
while other passengers (for example, the tourists) are more concerned about
prices and less sensitive to differences in flight schedules, it is important
to allow for correlations between taste parameters. A continuous random
coefficient model requires the estimation of k means and k(k+1)

2 covariance
elements. A discrete r-type model involves r∗k parameters, which are fewer
than k(k+3)

2 if we have many product attributes but a few types. Another ad-
vantage of the discrete type model is the convenience of the analytic formula
for the share equation, which is much simpler to evaluate than integrating
the random coefficients with continuous distributions. Given the large size
of our data sets (with more than 200k products in different markets), the
simplicity of an analytical formula dramatically reduces the computational
burden of the estimation.

similar to the “stock-out” phenomenon in other markets. We use ξj to capture a ticket’s
availability: ξj is high for products that are always available (or have fewer restrictions),
and low for others that are less obtainable (or with more restrictions). Admittedly, this is
a rough approximation. However, having an explicit model of the ticket availability when
we do not have the relevant data does not seem palatable. See Conlon & Mortimer (2008)
for an interesting study on stock-outs.
13Berry and Haile (2008) consider this argument more formally.
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3.2 Markups and Marginal Cost

We assume that prices are set according to a static Nash equilibrium with
multi-product firms. Following BLP, we compute equilibrium markups from
knowledge of the demand data and parameters. Let bjt(st, xt, pt, θd) denote
these markups. Marginal cost of product j in market t is:14

mcjt = pjt − bjt(st, xt, pt, θd) (10)

We posit a somewhat simpler version of marginal costs as compared to
BCS. The marginal cost function is given by

mcjt = wjtψ + ωjt (11)

where

• wjt is a vector of observed cost-shifters,

• ωjt is an unobserved cost shock, and

• ψ is a vector of cost parameters to be estimated.

Equation (10) and (11) imply that the cost-side unobservable is the dif-
ference between prices, markups, and the deterministic part of marginal
cost:

ωjt = pjt − bjt(st, xt, pt, θd)− wjtψ (12)

As with demand, we form moments that are the expectations of the cost-side
unobservable ω interacted with cost-side instruments:

E(h(zt)ω(xt, pt, st, θd, ψ)) = 0, (13)

where zt is a vector of instruments. These instruments can include:

• exogenous elements of the marginal-cost shifters, w, and
14The markup equation in matrix form is:

MC = P +

�
∂Q

∂P

�−1
Q

where Q = (q1t, ..., qJf ,t) = (s1t, ..., sJf ,t) ∗Mt,
�
∂Q
∂P

�
=

⎛⎜⎜⎝
∂q1t
∂p1t

...
∂qJf ,t

∂p1t

...
∂q1t
∂pJf ,t

∂qJf ,t

∂pJf ,t

⎞⎟⎟⎠ . Jf is

the number of products by firm f in market t, Mt is the market size, and sjt is defined
by equation (5).
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• exogenous demand-side instruments that help to predict the markup
term, bjt(·).

In addition to estimating the marginal cost parameter ψ, the supply side
restrictions in (13) also help to estimate the demand parameters θd, because
these parameters enter the markup term. We allow for an arbitrary depen-
dence between the cost shock ωjt and the unobserved product characteristic
ξjt. We also allow for arbitrary correlations of

¡
ξjt, ωjt

¢
among products

within the same market. Note, however, that nothing in the estimation
method allows us to estimate fixed costs.

4 Data

There are three main data sources for this study. The Airline Origin and
Destination Survey (DB1B), published by the U.S. Department of Trans-
portation (DOT), provides detailed information on flight fares, itinerary
(origin, destination, and all connecting airports), the ticketing and operat-
ing carrier for each segment, and the number of passengers traveled on the
itinerary at a given fare in each quarter.15 The flight frequency is constructed
using the scheduling data from Back Aviation Solutions, Inc. Flight delays
are extracted from the Airline On-Time Performance Data, also published
by DOT. In the following, we explain our market definition and sample
selection. See the appendix for further details.

4.1 Sample selection

The DB1B data is a 10% random sample of airline tickets from U.S. re-
porting carriers. Following Brueckner and Spiller (1994) and BCS, we kept
round-trip itineraries within U.S. continent with at most four segments. We
eliminated tickets cheaper than $25, with multiple ticketing carriers, or con-
taining the ground traffic as part of the itinerary.

A market is defined as a directional pair of an origin and a destination
airport. For example, Atlanta - Las Vegas is a different market from Las
Vegas - Atlanta. This allows for the characteristics of the origin city to
affect demand. As in BCS, the market size is the geometric mean of the
MSA population of the end-point cities.16

15The URL of the data source is (as of April, 2008):
http://www.transtats.bts.gov/DataIndex.asp.
16The data source (as of April 2008) for the MSA population is:

http://www.census.gov/population/www/estimates/CBSA-est2006-annual.html.
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We focused on airports located in medium to large metropolitan areas
with at least 850,000 people in 2006. There were 3,998 such markets in 1999
and 4,300 markets in 2006. These markets accounted for around 80% of
total passengers, and roughly overlapped with the top 4000 most traveled
markets, which is the scope of focus in many empirical studies.17

There are two reasons for excluding small markets. The first one is com-
putational: the estimation time increases substantially with the number of
markets and products. The small airports accounted for only one-fifth of the
passengers, but they constituted three-quarters of the markets and a third
of products. The main reason for excluding small markets, however, is the
drastic difference between large and small markets. Even within our selected
sample, the number of passengers and revenues in the largest markets are
hundreds of times larger than the smallest markets. As the demand pattern
and the operation cost are likely to be different among markets with diverse
sizes, it is difficult for our stylized model to capture all of these differences.

Six groups of airports are geographically close.18 Carriers in nearby
airports might compete against each other as consumers can choose which
airport to fly from. In one of our specifications, we group these nearby
airports, and define markets based on the grouped airports.

In 2006, our sample contains 700,000 unique records, or 163 records
per market. Given that the product shares need to be inverted at each
iteration, both the memory requirement and the estimation time increase
substantially with the number of products. In addition, conditioning on
observed characteristics, many records have very similar fares (for example,
a $325 ticket and a $328 ticket), and are not likely to be viewed by consumers
as distinctive products. Therefore, we aggregate the records using a set of
progressive fare bins conditioning on the itinerary and the ticketing carrier.19

In summary, our product is a unique combination of origin, connection,
destination, the ticketing carrier, and the binned fare. We have 226,532
products in 2006 and 214,809 products in 1999.

17For example, the Government Accounting Office (GAO) focuses on the top 5,000 most
traveled markets in their annual report of the airline industry.
18The six groups of airports are: Dallas-Ft Worth International and Love Field in Dal-

las TX, Baltimore Washington International, Dulles, and National in D.C., Midway and
O’Hare in Chicago IL, Kennedy, La Guardia, and Newark in New York NY, Los Angeles,
Burbank, and Long Beach in Los Angeles CA, San Francisco, Oakland, and San Jose in
San Francisco CA.
19 In the base case specification, we use the following set of bins: $20 for all tickets under

$700 (so tickets between $300 and $320 with the same itinerary and ticketing carrier are
aggregated as one product), $50 for tickets between $700 and $1,000, and $100 for tickets
above $1,000.
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Back Aviation Solutions’ schedule data report the departure time and
arrival time for all domestic flights. To generate the number of departures
for direct flights, we aggregate over all carriers that operate for a ticketing
carrier in a given market. The number of departures for connecting flights
are route specific. We restrict the connecting time to 45 minutes and 4 hours.
When there are multiple feasible connections, we only include the connection
with the shortest layover time.20 Using other departure measures, such as
all feasible connections between 45 minutes to 4 hours, and the minimum
number of departures between the two connecting segments, does not make
much difference.

To evaluate changes in demand and supply between the late 1990s and
the 2000s, we conducted the empirical analysis using two cross-section data:
the second quarter in 1999 and the second quarter in 2006. We chose 2006
to avoid the few years right after 9/11 when carriers were adjusting for the
changing security regulations.

4.2 Data summary

Table 1 reports the summary statistics of our sample. The top panel displays
the mean and standard deviation for all regressors used in the estimation.
There were several noticeable changes between 1999 and 2006. The average
fare, in 2006 dollars, decreased from $493 to $451, a reduction of 8.5%.
In 1999, 7.6% of the products were priced above $1,000; the fraction was
reduced to 4% in 2006. The average fare for connecting flights dropped by
12%, while the average fare for direct flights fell by only 4%. Figure 3 and
Figure 4 plot the fare density for direct and connecting flights, respectively.
Compared to 1999, fares of connecting flights were lower at each quantile
of the distribution in 2006. For direct flights, the fraction of both high fare
products (≥$1,000) and low fare products (≤$200) shrank, while that of
medium fare ones increased.

The second pronounced development was the increasing number of direct
passengers. Figure 5 displays the percentage of U.S. domestic passengers on
direct flights from 1995 to 2006. It varied between 63% to 64.5% from 1995
to 2001, and steadily trended up since then. By 2006, more than 67.3% of
passengers traveled on direct flights. In our sample markets, the average
number of direct passengers in a market increased by 13% from 1999 to
2006, while that of connecting passengers diminished by 23%.

The trend away from connecting flights was universal — all legacy carriers

20The appendix explains in detail how this variable is constructed.
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flew fewer connecting passengers in 2006. American and Delta experienced
the largest reduction, with the total number of connecting passengers de-
creased by 29% and 40% from 1999 to 2006, respectively.

The declining number of connecting passengers during the sample period
appeared to be closely related to the recent ‘dehubbing’ phenomenon in the
airline industry. For example, Delta closed its hub in Dallas Ft. Worth
International airport in January 2005, and cut 26% of flights at its Cincinnati
hub in September 2005. US Airways downgraded Pittsburgh from a hub to a
focus city in 2004.21 By October 2007, it had reduced the daily departures
out of Pittsburgh from over 500 in 2000 to fewer than 70, and canceled
service to more than 90 destination cities. With a few exceptions, most
hubs serviced fewer connecting passengers in 2006 than in 1999.

As a result of the increasing number of direct flights, the average num-
ber of destination cities served by direct flights out of the origin airport
increased from 17 to 19. The average number of daily departures dropped
from 5.3 to 4.8, due to the carriers’ recent capacity reduction. The average
plane size reduced from 135 seats to 123 seats, which reflected the increas-
ing penetration of regional jets. All together, the six legacy carriers offered
77-78% of the products, accounted for 66% of passengers in 1999 and 61%
of the passengers in 2006.

The bottom panel of Table 1 documents the market average summary
statistics. Both the number of products and the number of carriers per
market declined slightly.22 During the sample period, 39% of the markets
experienced the LCC entry.

5 Empirical model

5.1 Model specification

As mentioned in section 3, there is a well-documented correlation between
the price sensitivity and preference for convenience (few connections and
frequent departures). Therefore, we allowed three type-specific parameters:
a constant, the fare coefficient, and the coefficient of the number of con-
nections. We found that it is important to have a type-specific constant,
which allowed the model to fit the aggregate shares for both expensive and

21 In the airline industry, a focus city is a location that is not a hub, but from which an
airline has non-stop flights to multiple destinations other than its hubs.
22This is probably a concequence of two major mergers in the 2000s: American merged

with Trans World in 2001, and American West merged with U.S. Airways in 2005.
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inexpensive tickets.23

We spent a considerable amount of time experimenting with three or
more types of passengers, without much success. The demand parameters
common to all types were fairly robust, but the type-specific parameters and
λ appeared to be sensitive to small changes in the model’s specification or
the choice of instruments. Sometimes multiple parameter vectors delivered
a similar fit for the data. Our conclusion is that the limited variation in the
instruments prevents precise estimates for an overly flexible model. With
two types, we can think of them as tourists and business travelers.

We also tried to model carriers’ choices of flight frequencies together with
the pricing decisions, but faced three major challenges. First, some carriers
mixed different aircraft on the same route. For example, large jets were typ-
ically reserved for dense traffic during peak time, while smaller regional jets
or turbo planes were often used for off-peak flights. Second, it was difficult
to measure flight frequencies for connecting flights, which affected our ability
to estimate marginal revenues generated by an additional departure. Lastly,
to model how carriers balance between larger planes with fewer flights and
smaller planes with more frequent flights, we need information on the type
of the aircraft used, the flight schedule, and the number of passengers on
each flight. In lack of such detailed data, we instrumented flight frequencies
without explicitly modeling how departures were determined. The exercise
of modeling departures directly is left for future research.

5.2 Instruments

As is typical of demand studies with endogenous prices, we need instruments
to identify the fare coefficients. One common strategy is to exploit the
rival product attributes and the competitiveness of the market environment.
All else being equal, products with closer substitutes have lower prices. A
standard instrument is the number of products. In our data, the number of
products in a market varies from 3 to 223, with an average of 53. However,
we were concerned about the endogeneity of this variable because of the
way it is constructed. A product is a group of tickets whose fares fall in
a fixed bin. By construction, a market with a wider price dispersion has a
larger number of products. Similar concerns extend to using rival product

23We also estimated the model with type-specific coefficients for flight frequencies and
the tour dummy. The parameters were similar across types, and there was not much
improvement in the model’s fit.
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attributes as instruments.24 We used the route level characteristics instead.
Our instruments along this line include the percentage of rival routes that
offer direct flights, the average distance of rival routes, the number of rival
routes, the number of all carriers, etc.

A second identification strategy searches for variables that affect costs
but not demand. One candidate is whether the destination is a hub for
the ticketing carrier. It affects the marginal cost of a flight, because larger
and more fuel efficient planes can be used on routes with denser traffic,
but is excluded from demand.25 The number of cities to which a carrier
flies nonstop flights from the destination airport, which reflects the carrier’s
size of operation at the destination airport, serves a similar role. We also
included a dummy for transferring at the hub, using similar arguments that
costs were lower if the flight connected at a hub.26

The third group of instruments included the 25th and the 75th quantile
of fitted fares.27 As documented by Borenstein and Rose (1994, 2007), there
was a wide fare dispersion across passengers traveling on the same route.
The 25th and the 75th fitted fare quantiles are nonlinear functions of the
exogenous route characteristics, and allow us to better capture the price
dispersion.

To construct instruments for flight frequencies, we first regressed segment
departures on characteristics of the end cities,28 and then included the fitted
segment departures as instruments.

The last group of instruments were the exogenous variables that directly
entered the share equation (5) and the marginal cost equation (10). Finally,
we included the interaction terms of the above variables provided they were
not highly colinear.

24For example, with a wide price dispersion and a large number of products, the sum
of rival product attributes will be high as well.
25Consumers value the hub status of the origin airport because of the frequent flier

programs, convenient flight schedules, or easy gate/parking access. Most of these consid-
erations do not apply to the destination airport.
26There are two countervailing factors that affect the marginal cost of a flight that passes

through a hub, or an airport with a large carrier presense. On the one hand, economies
of scale reduce costs; on the other hand, congestions and delays associated with denser
traffic tend to inrease costs. In either case, these variables are valid instruments.
27The fitted fares are obtained from quantile regressions of fares on the following ex-

ogenous variables: carrier dummies, segment and route level characteristics (distance,
difference in January temperatures between the end cities, whether in tourist places, etc),
market size (measured by population), number of competitors, and the carrier’s shares of
cities connected via nonstop flights at both the origin and the destination airport.
28The regressors that predict segment departures are similar to those in the fare quantile

regression, except that we also include the hub status of both end cities.
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5.3 Identification

The identification of most parameters is straightforward. Here we focus on
λ and the type-specific parameters. λ is identified from changes in the ag-
gregate market share when the number of products varies. In the extreme
case of λ = 0, all products are perfect substitutes. The aggregate share re-
mains fixed as the number of products changes, as long as the ‘best product’
does not change. On the other hand, if λ = 1, the nested logit demand is
reduced to a simple logit, and the aggregate market share is close to K

K+1
if there are K products with similar product attributes. Identification of
the type-specific parameters follows from the random coefficient literature,
as our model is a special case where the random coefficients take discrete
values. Briefly, these type specific parameters are identified from the sub-
stitution patterns among similar products when the mix of products varies
across markets.

5.4 Model limitations

One implicit assumption of our empirical model is that the network structure
and the carriers that serve each market are taken as given. Ideally, we would
like to model a three-stage game: a) first, carriers form their hubs; b) given
the hub structure, each carrier chooses the set of markets to serve; and c)
given these entry decisions, carriers compete in prices and the frequency of
flight departures. However, solving this game with a dozen of carriers and
thousands of markets is beyond our capability.

Alternatively, we focused on the last stage of the game and modeled
consumers’ choices between different products as well as carriers’ price de-
cisions. We instrumented prices and departures using variables related to
the network configuration, like the hub-spoke structure and the number of
carriers. The hubs were mostly formed in the 1980s and 1990s. Market en-
try decisions involve acquiring the gate access, optimizing flight schedules,
obtaining aircraft and crew members, and advertising to consumers, all of
which entail substantial fixed costs. The fact that capacity reduction is
costly and that carriers are in general cautious about serving a new market
suggest that the number of carriers is likely to be determined by long-term
considerations and uncorrelated with temporal demand shocks. This is ad-
mittedly a strong assumption, but is analogous to the standard assumption
in the discrete-choice demand literature that variation in the set of available
products and the number of firms across markets are exogenous (at least in
the short run).

16



As we did not observe the day-to-day variation in fares and flight avail-
ability, we did not allow consumers to choose strategically the date of pur-
chase. We also ruled out the dynamic considerations in firms’ pricing deci-
sions. Modeling the dynamic aspect is a difficult but promising topic. See
Ciliberto (2008) for an interesting study on the strategic deterrence in the
airline industry.29

Lastly, we did not observe the fixed cost of operating a flight, which
limited our ability to estimate changes in the net profit. Our profit estimates
should be interpreted as the variable profits.

6 Result

The parameters from the base case specification were presented first, fol-
lowed by results from eight other specifications. The profit estimates were
discussed next. Finally, we reported results from the counter-factual exer-
cises that are designed to isolate the effects of changes in demand, supply
and competition on legacy carriers’ profits.

6.1 Parameters

6.1.1 Demand parameters

Demand is affected by the following product attributes: fares, the number
of total connections round trip, the number of destinations,30 the average
daily departures, the total distance (in thousand miles) round trip, distance
squared, a tour dummy for airports in Florida and Las Vegas, the num-
ber of slot-controlled airports that the flight passes through,31 and carrier
dummies.32

29 In light of these concerns, we also presented demand estimates without using the
supply side of the model (see Table 3 and 4). We find similar patterns as in the base case
specification.
30A product’s number of destinations is the total number of cities to which its ticketing

carrier serves direct flights from the origin airport.
31Four airports were under the slot control during the sample period: the LaGuardia

airport and the Kenney airport in New York, the National airport in D.C., and the O’Hare
airport in Chicago.
32 In 1999, we included carrier dummies for American (the default group), American

West, Continental, Delta, Northwest, Trans World, United, U.S. Airways, Southwest, and
a dummy for all other carriers. In 2006, we added a dummy for Jetblue (which started
operation in 2000), and excluded dummies for American West (merged with U.S. Airways
in 2005) and Trans World (merged with American in 2001).
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We expect consumers’ utility to decrease with the number of connections.
The number of destination cities captures the value of the frequent flier
programs. The larger the number of cities for which consumers can redeem
frequent miles, the higher the value of these loyalty programs. In addition, a
carrier that flies to many destination cities is likely to have more convenient
gate access and offer better service.

The air-travel demand is usually U-shaped in distance. Short-haul flights
compete with cars and trains, which become worse substitutes as distance
increases, so demand initially grows with distance. As distance increases fur-
ther, travel becomes less pleasant and demand starts to decrease. We include
both distance and distance squared to capture the curvature of demand.

The tour dummy helps to fit the relatively high traffic volume in Florida
and Las Vegas that cannot be explained by the observed product attributes.
The slot variable captures the potential negative effect of congestion on air-
travel demand.

The first two columns in Table 2 present the parameters for the base case
specification in 1999 and 2006, respectively. Most parameters were precisely
estimated. Consistent with the story of the dot-com bubble burst and the
introduction of online ticketing sites, demand was more price sensitive in
2006. The price coefficient of tourists’ (labeled as type 1 in Table 2, 3, and
4) increased in absolute value from 0.78 to 1.05, and the price coefficient
of business travelers’ (labeled as type 2) rose from 0.07 to 0.10. In both
cases, the differences between the two periods are statistically significant.
The price elasticity was 31% larger for tourists and 43% larger for business
travellers. In the meantime, the estimated percentage of business travellers
rose from 41% to 49%, which moderated the increase in demand’s overall
price sensitivity. The aggregate price elasticity, which is the percentage
change in total demand when all products’ prices increase by 1%, was 1.55
in 1999, and rose to 1.67 in 2006. Gillen et al. (2003) conducted a survey
that collected 85 demand elasticity estimates from cross-sectional studies.33

The elasticities ranged from 0.181 to 2.01, with a median of 1.33. Our
estimates seemed quite reasonable.

Both the tourists and the business passengers exhibited a stronger prefer-
ence for direct flights in 2006. The connection semi-elasticity, or the percent-
age reduction in demand when a direct flight becomes a connecting flight,
jumped from 0.55 to 0.75 for the business travellers, and from 0.75 to 0.80

33Out of these 85 estimates, 80 were taken from Oum et al. (1986) and represented U.S.
city -pair routes. All 85 studies were conducted between 1981 and 1986 and are slightly
dated.
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for tourists. Combining both groups, the average connection semi-elasticity
increased by 17%, up from 66% to 77%. In other words, the number of pas-
sengers on a direct flight would reduce by almost four-fifths when a layover
is added to the route.

These two results — a higher price sensitivity and a higher aversion to-
ward connecting flights — were the most pronounced findings of changes in
demand, and were present in all specifications that we estimated. Both find-
ings are supported by the patterns (fare reductions and a smaller number
of connecting passengers) documented in section 4.2. While a fare reduc-
tion could also be rationalized by increasing competition or decreasing costs,
the fact that fares dropped in markets with and without LCC entry, and
that fares reduced more for connecting flights that became more costly to
operate,34 provided ample evidence of a demand change during our sample
period.

As we did not model carriers’ choice of hub airports, we could not exam-
ine how changes in demand affected the hub structure. However, it seems
quite possible that the reduced demand for connecting flights is directly re-
lated to the recent hub downsizing phenomenon. For example, when Delta
reduced the capacity that mostly served connecting passengers at its Cincin-
nati hub in 2005, it claimed that “connecting traffic is the least profitable
for the airline”.35

Many previous studies pointed out the existence of a hub premium: carri-
ers were able to charge higher fares for hub-originating flights, either because
they offered more convenient gate access, or the frequent flier program was
more valuable at hub airports. Borenstein (2005) and Boreistein and Rose
(2007) pointed out that the hub premium declined over the past several
years. Our parameter estimates were consistent with their findings. The
coefficient of the number of destinations — which we used to capture a car-
rier’s presence at the airport — dropped from 0.38 to 0.27. The result was
very similar with the hub dummy. Either the loyalty programs had become
less valuable, or the difference in service between hub airports (or airports
with a large carrier presence) and non-hub airports (or airports with a small
carrier presence) had narrowed.

All other demand parameters had the expected signs. For example,
demand increased in distance up to 1,600 miles (one-way) and then decreased
in distance. Tourist places attracted more consumers, and flights through
slot controlled airports had fewer passengers.

34See section 6.1.2 for discussions on changes in marginal costs.
35Source: Business Courier, September 7, 2005.
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The business type accounted for 41% and 49% of total passengers in
1999 and 2006, respectively (see the third panel in Table 6). According to
the 2001-2002 National Household Travel Survey, roughly 39% to 47% of
air travel was taken for business purposes, depending on whether personal
business trips were treated as business trips.36 Our model’s predictions
match closely with the survey.

Interestingly, λ decreased from 0.77 in 1999 to 0.72 in 2006, which sug-
gests that products became closer substitutes. It probably reflects the re-
duced differentiation among products offered by different carriers, as they
cut down services and competed more intensively on prices.

Overall, the carrier dummies were broadly consistent with the news re-
ports. In 1999, American (the omitted group in Table 2) and United had
the highest parameter values. They were also the most popular and success-
ful carriers in the late 1990s. During the sharp downturn following 9/11,
the legacy carriers, especially American and Delta, began to shift capacities
to the more lucrative international markets. These structural changes were
reflected in their negative carrier dummies in 2006. jetBlue had a large pos-
itive coefficient, which is consistent with its popularity due to high on-time
performance, new planes, free TV programs, etc. In fact, by 2006, it had
been voted the number one U.S. domestic airline by Conde Nast Traveler
five years in a row.37

6.1.2 Marginal cost parameters

Column 3 and 4 in Table 2 report the marginal cost parameters, which
includes a constant, the distance in thousand miles, the number of connec-
tions, a hub dummy (equal to 1 if the flight departs from, transfers at, or
lands at a hub airport), a slot dummy (equal to 1 if the flight passes through
a slot-controlled airport), and carrier dummies. As different aircraft were
used for short-medium haul routes and long haul routes, we allowed two sets
of cost parameters: one for markets shorter than 1500 miles, and the other
for markets longer than 1500 miles.38

36The National Household Travel Survey was conducted on 26,000 households. Accord-
ing to the survey, 56% of the trips longer than 50 miles were taken for pleasure, 16%
for business, 13% each for commuting and for personal business(trips taken for family,
personal, religious or medical reasons), and 3% for other reasons. Air travel accounted for
7% of pleasure trips, 18% of business trips, 5% of personal business trips, and none of the
commuting trips.
37Data source: http://en.wikipedia.org/wiki/JetBlue_Airways#Awards.
38The hub, slot, and carrier dummies were restricted to be the same for both short-

medium haul and long haul markets.

20



Two offsetting factors affect the marginal cost of connecting flights. On
the one hand, by channeling passengers from different origins and to different
destinations through the connecting airport, carriers can generate denser
traffic, increase the load factor, and defray costs with more passengers. On
the other hand, a large fraction of the fuel is consumed at the landings and
takeoffs. With two extra landings and takeoffs and a longer travel distance,
the fuel component of a connecting flight’s marginal cost is much larger than
that of a direct flight. The connection coefficient reflects the net effect of
these two countervailing factors. The same economies of scale argument for
connecting flights also applies to flights at the hub airports that tend to have
denser traffic. Costs are probably higher at slot controlled airports due to
the higher landing fees, etc.

The most noticeable difference between 1999 and 2006 was the connec-
tion coefficient, which changed signs during the sample period. In 1999,
there was evidence of scale economies for connecting flights. Conditioning
on other variables, the marginal cost of serving a connecting passenger on a
long route was $18 less than that of a direct passenger, or roughly 12% of
the average marginal cost. Unlike BCS that reported the existence of scale
economies only on longer routes, our estimated marginal cost of connecting
flights was lower on both long and short-medium routes in 1999.

The cost advantage of connecting flights disappeared in 2006. Condi-
tioning on other cost shifters, the marginal cost of a connecting flight was
$12 more expensive than that of a direct flight. The change is probably
driven by the increasing fuel cost in the sample period. Since the fraction of
fuel consumed at the takeoffs and landings could be as high as 40%, rising
fuel costs offset the benefit of denser traffic created by connecting flights.

All other parameters (except for the carrier dummies) were similar be-
tween the two periods, with the expected signs. Marginal cost increased
with distance, and was higher for routes that passed through slot-controlled
airports. Flights through hubs had a lower marginal cost.

The distance coefficient was smaller in 2006, which seemed somewhat
puzzling given the higher fuel cost. The change probably reflected a com-
bination of several factors, including reduced services and improved fuel
efficiencies.

As expected, jetBlue and Southwest had lower marginal costs than the
legacy carriers. Interestingly, American West also had a smaller marginal
cost than the legacy carriers. According to U.S. DOT Form 41, its total
operating cost per available seat mile (CASM) was the lowest among all
legacy carriers. The Continental’s coefficient in 2006 was comparable to
that of Southwest, which seemed an anomaly. These dummy variables pre-
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sumably reflected various carrier specific factors that were not captured by
the model.

As in most empirical studies, marginal cost is not directly observed. The
parameters are identified from a “residual” regression where we “regress” the
difference between the price and markup on cost instruments. To examine
the sensitivity of the marginal cost parameters to the over-identifying re-
strictions, we regressed the predicted marginal cost (the difference between
prices and the estimated markup) on variables that affected marginal cost
directly. The coefficients from the OLS regression were very similar to the
estimates from our full model, which suggested the robustness of the mar-
ginal cost instruments.39

Finally, we compared our cost estimates with the carriers’ reported op-
erating costs per available seat mile. The average was 11.4 cents (in $2006)
in 1999 and 12.5 cents in 2006. Our estimated marginal cost per mile was
around 6 cents, about half of the average reported operating costs, which
seemed plausible.

6.1.3 Other specifications

In the base specification, we estimated demand parameters (especially the
price sensitivity) using both the share equation (5) and the pricing equation
(10). As we were concerned about specification errors associated with our
stylized pricing equation, we estimated the model again using only the share
equation. The estimates are presented in the second column of Table 3A and
Table 4A. The most noticeable difference between column two and the base
case is the business traveler’s price coefficient in 2006, which was pushed to
the pre-imposed boundary of 0. The γ parameter, or the percentage of type
one passenger, was smaller than the base case, which leads to a noticeable
change in the type specific parameters (the parameters common to both
types are very robust). However, the elasticities were robust. The aggregate
price elasticity in 1999 was 1.69, similar to the other specifications. The
pattern of a stronger preference for direct flights remained almost identical
to the base case: the connection semi-elasticity was 0.68 in 1999 and 0.76
in 2006. This is particularly reassuring, since these estimates do not suffer
from potential specification errors associated with the pricing equation. The
results suggest that our broad findings of changes in demand reflect genuine

39Since there are no endogenous regressors in the marginal cost equation, these OLS
estimates are consistent (although less efficient). The similarity between the OLS estimates
and the estimates from our full model suggests that the results are not sensitive to our
choice of instruments.
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patterns in the data, and are not driven by our supply side assumptions,
although the precision of the estimates for business travelers is improved by
adding the supply side.

Flight delays could potentially explain the aversion toward connecting
flights, since the possibility of missing a connection is directly affected by
delays. However, there are a couple of problems with the current delay
statistics. First, in 1999, only the legacy carriers, Alaska and Southwest
reported the on-time performance. The regional carriers that contracted
with the legacy carriers and provided a significant amount of feeding traffic
did not report to DOT. Second, the delay statistics do not include passen-
gers’ waiting time for the extreme events like diverted flights or cancelled
flights. In column three, we reported the parameter estimates adding a delay
variable, which is the percentage of flights arriving more than 30 minutes
behind schedule. The connection’s coefficients bared changed. We experi-
mented with various other measures of delays, including the percentage of
flights with delays longer than 15 minutes, with or without canceled or di-
verted flights. None of these experiments explained the increased disutility
of connecting flights.

According to Bratu and Barnhart (2005), when missed connections and
flight cancellations were factored in, the average passenger delay was two-
thirds longer than the official statistics. Given that the planes were fuller
in 2006, the problem of delays was probably much worse, as it was harder
to find seats on later flights in case of unexpected events. We expect that
a better measure of the actual connecting time would help to explain the
increased disutilities of connections.40

Six groups of airports are geographically close.41 In column four, we
define markets based on the grouped airports. For example, all flights from
either Midway or O’hare to Boston compete against each other. Products
are nonetheless still defined by their origin-destination airport pair. Com-
bining these airports affected 38% of the markets and doubled the number of
products in some of the largest markets. Perhaps not surprisingly, the λ co-
efficient was somewhat smaller, since consumers faced more similar choices
in the grouped markets. The aggregate demand elasticity was -1.68 in 1999,
and -2.01 in 2006, both were higher than the base case (which was -1.55

40Another possible explanation is the increasing marginal disutility of travel time. As
travel time increases (due to the long lines at the security check points, extra luggage
handling, and longer waits for boarding and getting off the plane), consumers become
increasingly less tolerant to connections that add additional travel time to the trip. We
are currently pursuing data that allow us to look at this issue in more detail.
41See footnote 18 for a list of these airports.
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and -1.67, respectively). With a more elastic demand, the marginal cost
estimate was also higher than the base case.

Our products were generated by aggregating over a set of fare bins. To
examine the robustness of the parameter estimates to changes in the bin
size, column five and six in Table 3 and 4 report results with a finer set
of bins and a rougher set of bins, respectively.42 The the aggregate price
elasticity in 1999 in column six was -1.38, somewhat smaller than the base
case. Most other elasticities were similar to the base case.

Some airports have higher traffic volume either because of historical rea-
sons, or because of convenient geographic locations that were not captured
by the model. In column seven, we added dummies to the 25 airports with
the largest population. Similar to many studies with fixed effects, demand
was less elastic, which lead to a lower estimate of the marginal cost in both
years.

One might argue that the discovery of a stronger preference for direct
flights was driven by changes in the supply side, rather than changes in
demand. During our sample period, low cost carriers expanded steadily,
and offered a higher fraction of point-to-point service. The more negative
connection coefficient in 2006 could be driven by the decreasing shares of the
legacy carriers who happened to offer more connecting flights. To address
this concern, we re-estimated the model only using markets that did not
experience LCC entry between 1999 and 2006. If LCC chose to enter markets
where people derive a higher value from direct services, then our connection
disutility parameter would be biased toward 0 in 2006. The results were
presented in the first two columns of Table 5. The layover semi-elasticity
was 0.67 in 1999, and 0.74 in 2006. Once again, we found evidence that
consumers preferred direct flights even in markets that were not affected by
LCC entry.43

As mentioned in the introduction section, the advent of new regional
jets allowed carriers to tailor the aircraft size to the size of the market
and provide point-to-point service to markets traditionally dependent on
connecting service. Another competing explanation for our finding is that
consumers’ preference has not changed, but there are more direct flights
available. To tease out the regional-jet effect, we restricted the sample to
markets longer than 1500 miles one way, which exceeded the range of most

42 In column five, the set of bins were $10 for fares under $300, $20 for fares between
$300 and $700, $50 for fares between $700 and $1000, and $100 for fares above $1000; in
column six, the bins were $50 for fares under $1000, and $100 for fares above $1000.
43The carrier dummies were not reported here, as there are too many parameters. Re-

sults are available upon request.
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regional jets. We lost about 70% of the markets, and our instruments had
much less variation compared to the full sample. Distance squared was
colinear with the distance variable and was omitted from the regressors.44

Demand was much more elastic than the base case, but the pattern of a
stronger preference for direct flights remained: the connection semi-elasticity
was 0.63 in 1999 and 0.80 in 2006.

We estimated many other specifications that are not reported here. For
example, we estimated a model restricting the cost parameters to be the
same across all markets for all specifications.45 We also experimented with
type-specific tour and flight frequency parameters. Our major findings —
more price sensitive demand, a much stronger preference for direct flights,
and changes in marginal cost favoring direct flights — were extremely ro-
bust and appeared in almost every set of parameter estimates. We are
convinced that these findings revealed inherent data patterns and were not
fabricated results of our modeling assumptions. The intuition for these re-
sults is straight forward: a negative supply shock should induce a smaller
quantity and a higher price. In our data, fewer passengers flew connecting
flights even though fares were lower uniformly in 2006 — at each quantile of
the fare distribution and in markets with or without entry of LCCs.

6.1.4 Marginal effects

To better understand the magnitude of the parameters, Table 6 tabulates
changes in demand with varying product attributes. The effect of carrier
airport presence on demand appears to be mild. Doubling the number of
destinations for all products raises the aggregate demand by 11% in 1999
and 9% in 2006. On the other hand, adding one daily departure to all flights
drives up the aggregate demand by 6% in 1999, and 16% in 2006. Changes
in distance barely affect demand; in contrast, both the tour dummy and
the slot variable have a significant impact. Adding the tour dummy to all
products boosts the number of passengers by 32% in 1999 and 39% in 2006,
while congestion in slot controlled airports reduces demand by 22%. These
marginal effects do not vary much across specifications.

44There is only one set of cost parameters, since all markets are longer than 1500 miles.
45Results are available upon request. The cost parameters were more robust when we

restricted them to be the same across the long-haul and the short-medium haul markets,
but we prefer our reported specifications as there were significant cost differences between
these markets (for example, the type of aircraft used were different).
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6.1.5 Elasticities, marginal cost, and markups

In Table 7 and 8, we summarize the elasticities, the percentage of each
type of passengers, marginal cost and markups for different specifications.
The aggregate price elasticity ranged from -1.37 to -1.69 in 1999, and -1.58
to -2.01 in 2006. The increase in price elasticity over the sample period
varied from 6.5% to 20%, with an average of 13%. The connection semi-
elasticity was relatively stable across different specifications, with an average
increase of 16%. The scale economies of connecting flights appeared to have
disappeared over the sample period, and the increase in connecting flights’
marginal cost was much bigger than that of direct flights. Rising costs,
combined with lower fares, led to a sizeable reduction of the markups of
connecting flights.

The Lerner index, or the ratio of markups to fares, for the top 10% most
expensive products dropped substantially over the sample period, from 90%
in 1999 to less than 70% in 2006. The reduction in the profitability of these
high-end products, together with the shrinking profit of connecting flights,
was an important explanation of the legacy carriers’ financial stress in recent
years.

6.2 Profit and revenue estimates

The average number of products offered by a carrier in a given market was
slightly different between 1999 and 2006. To avoid the complication of the
changing number of products (which might reflect the changing dispersion
of prices rather than the changing number of distinct products), we analyze
a carrier’s average profit and revenue per market, instead of the average
profit per product. We also focus on the legacy carriers throughout this
analysis. We first report the profit estimates and the counter factual results
using the base case parameters, then describe the general patterns over all
counter-factual exercises.

Table 9 displays the legacy carriers’ profit and revenue separately for
connecting flights and direct flights. For connecting flights, 2006 witnessed
fewer passengers, lower revenues, higher costs, and lower profits. Compared
with 1999, the average demand shrank by 14%, and the average fare was
12% lower. As a result, the average revenue was reduced by 25%, and profit
fell even further, by 32%. Profit for the top 10% most expensive products
decreased by 56%, which was driven by a bigger reduction in fares and
demand among these high-end products.

The picture for direct flights was much more complicated. The average
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number of direct passengers per carrier per market increased by 8%, but the
average revenue was down by 6%, and the average profit was 16% lower. A
closer look at the changes across different quantiles of the fare distribution
revealed that all of the profit reduction occurred among the 10% most ex-
pensive products. In 1999, these 10% products generated an average profit
of $477k per carrier per market, and accounted for 32% of total profits from
all direct flights. By 2006, profits from the top 10% products declined to
merely $150k, and constituted only 12% of total profits. As our parameter
estimates suggested, demand in 2006 was more price sensitive. Even though
consumers displayed a stronger preference for direct flights, they had in gen-
eral stayed away from the high-end products and switched to flights with
low or medium fares. Profits and revenues from the bottom 90% flights were
about 8-10% higher in 2006 than in 1999. However, the higher profitability
from the low- and medium-fare flights was overwhelmed by the drastic profit
declines among the most expensive flights. Profits from all direct flights fell
by 16%.

When we combine both direct and connecting flights, the legacy carriers
transported 4% more passengers, but generated 9% fewer revenues and 19%
fewer profits in 2006 than in 1999.

6.3 Counter-factual analysis

To examine how legacy carriers’ profits were affected by a) the change of
demand; b) the change of marginal cost; and c) LCC’s expansion, we calcu-
lated the counter-factual profits and revenues for the following five different
scenarios:

• using 2006 observed product attributes and marginal cost parameters,
but 1999 demand parameters;

• using 2006 observed product attributes and marginal cost parameters,
but 1999 demand parameters and ξj that ‘replicates’ its distribution
in 1999;

• using 2006 observed product attributes and demand parameters, but
1999 marginal cost parameters;

• using 2006 observed product attributes, demand and marginal cost pa-
rameters, but excluding LCCs from the markets they entered between
1999 and 2006;
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• using 2006 observed product attributes, but 1999 demand and mar-
ginal cost parameters, ξj that replicates its distribution in 1999, and
excluding LCCs from the markets they entered during the sample pe-
riod.

In each exercise, we solve for a new vector of the optimal prices that
satisfy the first order conditions incorporating changes specified above.46

The first exercise quantifies the effect of the changes of demand, including
the increased price sensitivity and the higher aversion to connecting flights.

As discussed in section 3.1, ξj , the utility from the unobserved product
attributes (like the refundability, advance purchase requirements, etc.), plays
an important role in determining demand. The difference in ξj between
1999 and 2006 was a combination of changes in taste and changes in the
unobserved product characteristics. If these product attributes were similar
across the two years, then the difference in ξj reflected changes in consumers’
utility from these attributes, and constituted an important component of the
demand change. In the second exercise, we incorporated changes in ξj by
replicating its 1999 distribution conditional on fares separately for direct
and connecting flights. For example, given all direct flights priced at $350,
we replaced the first quantile of ξ06j with the first quantile of ξ99j , etc. Then
we solved for the counter-factual prices using 1999 demand parameters and
the constructed vector of ξj .

47

The third exercise analyzed the effect of changes in the marginal cost on
legacy carriers’ profit, the fourth one examined the competition from LCCs,
while the last exercise combined all factors discussed above.

Table 10 summarized the counter factual results for connecting flights.
Overall, the model did a decent job explaining the profit change for con-
necting flights. Replacing the 2006 demand parameters with the 1999 ones
explained 58% and 61% of the profit and revenue reduction, respectively.
Results were similar when we incorporated ξj ’s 1999 distribution.

Using the 2006 demand parameters but the 1999 cost parameters ac-
counted for about 9% of the profit and revenue decrease between 1999 and
2006. The marginal cost was higher in 2006, which led to higher fares, a
lower demand, and a lower profit.

46 In solving for the optimal prices, we restricted the first order condition to be smaller
than 10−9. The convergence was slow for the third and fourth counter-factual exercise, so
we set the tolerance level to 10−8. There was not much difference in the profit estimates
using different tolerance level.
47We replicate ξj ’s distribution conditioning on fares because the unobserved attributes

are likely to be very different between cheap tickets and expensive ones.
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Around 40% of the markets experienced LCC entry during the sample
period.48 Compared with the change of demand, competition from LCCs
had a modest impact on connecting flights’ profit. Removing LCCs ex-
plained 15% of a legacy carrier’s profit drop in markets affected by entry,
or 8% when averaged over all markets. There are a couple of explanations
for this somewhat modest impact. First, many new products introduced
by the low cost carriers were direct flights. As discussed below, LCC entry
accounted for a much larger fraction of the direct flights’ profit reduction.
Second, the legacy carriers had gradually developed strategies (for example,
lowering fares, adding departures) to compete with low cost carriers.

When we incorporated all factors, the model was able to replicate 72%
of the profit reduction during the sample period. The model performed
well even when we look at high-fare and low-fare products separately. It
explained 81% of the profit change for the bottom 90% products, and 60%
of the profit change for the top 10% most expensive products.

Results for direct flights were presented in Table 11. Using the 1999 de-
mand parameters and the ξj ’s 1999 distribution, the predicted profit from
all direct flights was close to the observed level in 1999.49 As the marginal
cost was higher in 1999, using 1999 cost parameters reduced profits by 4%.
Removing LCCs explained 25% of the legacy carriers’ profit reduction in
markets that experienced LCC entry, and 12% when averaged over all mar-
kets. Combining all factors, we were able to replicate 94% of the observed
changes in direct flights’ profits.

We would like to point out that even though the model replicated the
average profit, but it did not fit very well the profit increase for low-and-
medium-fare products and the profit decrease for the high-fare products.
For example, using the 1999 demand parameters, the predicted profit was
comparable to 1999’s observed profit for the bottom 90% products, but was
only 28% of the observed profit for the top 10% products. It became clear
to us that the model did not have the ability to fit different quantiles of the
data distribution, and could only explain changes in the mean.

As the marginal cost was higher in 1999, using 2006 demand parameters
and 1999 cost parameters reduced profits by 4%. Removing LCCs explained
25% of the legacy carriers’ profit reduction in markets that experienced LCC

48Some of these markets already had low cost carriers in 1999 (like Air Tran, Frontier,
or Southwest). A market experienced LCC entry if a new low cost carrier established a
service in that market between 1999 and 2006.
49ξj was an important factor in determining demand for the high-end products. Its

dispersion among the high-end direct flights was much wider in 1999 than in 2006. Repli-
cating ξj ’s distribution in 1999 helped us to duplicate demand for the high-fare flights.
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entry, and 12% when averaged over all markets. Combining all factors, we
were able to replicate 94% of the observed changes in direct flights’ profits.

We repeated the above counter-factual exercises for all other specifica-
tions and summarized the results in Table 12. For connecting flights, changes
in demand accounted for around 46-56% of the profit reduction, changes in
cost, 9-33%, and entry of LCCs, 6-8%. For direct flights, demand was by far
the most important factor. LCC’s expansion contributed to 8-18% of the
profit reduction. The changes of marginal cost had mixed effects. In four
specifications (including our base case), the marginal costs of direct flights
were lower in 2006, while in the other two specifications, the marginal costs
were higher in 2006. When we combine all factors, the model replicated
66-87% of connecting flights’ profit decline, and 77-126% for direct flights.

7 Conclusions

We found that compared to the late 1990s, air-travel demand was more
price sensitive in 2006. Passengers displayed a stronger preference for direct
flights. In addition, the change of marginal cost favored direct flights. These
three factors, together with the expansion of LCCs, explained more than
80% of the observed reduction in legacy carriers’ profits. Despite the press’
emphasis on the increasing fuel costs and the competition from LCCs, the
change of demand was also a very important explanation for the legacy
carriers’ profit losses.

We conclude with some caveats. First, as costs were not directly ob-
served, we obtained estimates of costs from our admittedly stylized supply
side equation. Therefore, the exact magnitude of the impact of changes of
costs on profitability should be interpreted accordingly. In addition, our
estimates were changes in variable profits, not changes in net profits, be-
cause we did not observe fixed costs. Second, we found that the impact of
LCC entry in the 2000s was modest compared to the change of demand. If
the expansion of LCCs contributed to the change of demand via affecting
consumers’ search behavior and their awareness of the fare dispersion, then
LCCs’ general equilibrium effect could be much larger. Lastly, our study
was static and did not include dynamic considerations, like the choice of ca-
pacity, network formation, or improvements in the technological efficiency.
Modeling these dynamic elements is an interesting question for future re-
search.
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8 Appendix: constructing departures and flight
delays

In this section, we explain how we constructed flight frequencies and the
delay variable. The scheduling data from Back Aviation Solutions reported
the scheduled departure time and arrival time for all flights operated by
U.S. carriers that file with Official Airline Guides. Obtaining the number of
departures for direct flights was straight forward: we counted the total num-
ber of flights by all carriers that operated for a ticketing carrier in a given
market. Constructing the number of departures for connecting flights was
slightly more involved. We combined the schedules of all carriers that oper-
ate for a ticketing carrier in a given market, and restricted the connecting
time to 45 minutes and 4 hours. When there were multiple feasible connec-
tions, only the connection with the shortest layover time were included.50

DOT publishes the flight-level on-time arrival data for non-stop domestic
flights.51 We first obtained the on-time performance for each operating
carrier for each airport pair, and then aggregated over the operating carriers
using the number of departures as weights to generate the delay measure for
each ticketing carrier in each airport pair. For connecting flights, the delay
variable was the average over the two segments.

50Suppose we have the following flight schedule among airports A, B, C: 1) flight 1001
departs from A at 8am, arrives at B at 2pm; 2) flight 1002 departs from A at 10am and
arrives at B at 4pm; 3) flight 1003 departs from B at 5:30pm and arrives at C at 7:30pm.
Even though both flight 1001 and 1002 can be connected with flight 1003, we only count
the connection with the shortest layover time. In this example, the carrier operates one
connecting departure in market A-C.
51 In 1999, only the major carriers — American, Continental, Delta, Northwest, Trans

World, United, and US Air, plus Alaska, American West, and Southwest reported the
delay statistics to DOT. In 2006, some of the largest regional carriers reported the delay
statistics as well.
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Variable Mean Std. Mean Std.
Fare (2006 $100) 4.93 3.17 4.51 2.59
Product Share 1.42E-04 6.37E-04 1.42E-04 5.26E-04
Direct Flight 0.37 0.48 0.43 0.49
No. Daily Departures 5.25 3.41 4.83 2.85
No. Destinations (100 cities) 0.17 0.28 0.19 0.31
Hub 0.16 0.37 0.16 0.36
HubMC 0.85 0.36 0.72 0.45
Distance (1000 miles) 2.73 1.40 2.78 1.42
Distance2 (1000 miles) 9.42 8.44 9.72 8.66
Tourist Place (FL/LAS) 0.13 0.33 0.13 0.34
Slot-Control 0.36 0.76 0.36 0.75
SlotMC 0.21 0.41 0.21 0.40
Plane Size (100) 1.35 0.33 1.23 0.34
Delay>=30 Minutes 0.14 0.07 0.13 0.07
American 0.16 0.37 0.18 0.39
Continental 0.10 0.29 0.08 0.28
Delta 0.19 0.39 0.15 0.36
American West 0.05 0.22
NorthWest 0.09 0.28 0.08 0.28
Trans World 0.09 0.28
United 0.13 0.34 0.14 0.34
US Air 0.10 0.30 0.15 0.36
JetBlue 0.01 0.12
SouthWest 0.04 0.20 0.09 0.29
Other Carrier 0.05 0.22 0.11 0.31
No. Observations 214809 226532

Market Average
No. Products 53.73 38.52 52.68 36.67
No. Carriers 3.51 2.00 3.30 1.88
No. Direct Passengers (1000) 20.13 40.45 22.75 43.66

No. Connecting Passengers (1000) 3.52 4.10 2.71 3.13
No. Markets w/ LCC Entry 1569
No. Observations 3998 4300

1999 2006
Table 1: Summary Statistics for the Data Set

Note: Hub=1 if the origin airport is a hub; HubMC=1 if either the origin, the connecting airport, or 
the destination is a hub. Tourist Place=1 if the origin airport is in Las Vegas or Florida. Slot-
Control is the number of slot-controlled airports the route of product j passes through. SlotMC=1 if 
Slot-Control>0. Delay is the percentage of flights arriving more than 30 minutes later than the 
scheduled arrival time.



Demand Variables 1999 2006 Cost Variables 1999 2006

Fare 1 -0.78* -1.05* Constant_short 1.07* 1.16*
(0.02) (0.03) (0.06) (0.06)

Connection 1 -0.53* -0.59* Distance_short 0.26* 0.19*
(0.02) (0.03) (0.01) (0.01)

Constant 1 -5.79* -5.68* Connection_short -0.06* 0.07†
(0.19) (0.19) (0.03) (0.04)

Fare 2 -0.07* -0.10* Constant_long 1.61* 1.59*
(0.00) (0.00) (0.08) (0.07)

Connection 2 -0.31* -0.51* Distance_long 0.09* 0.04*
(0.02) (0.02) (0.01) (0.01)

Constant 2 -8.56* -8.60* Connection_long -0.09* 0.06
(0.40) (0.30) (0.03) (0.04)

No. Destination 0.38* 0.27* HubMC -0.02 -0.05*
(0.03) (0.02) (0.01) (0.01)

No. Departures 0.04* 0.11* SlotMC 0.08* 0.03*
(0.00) (0.00) (0.01) (0.01)

Distance 0.30* 0.53*
(0.04) (0.04)

Distance2 -0.05* -0.08*
(0.01) (0.01)

Tour 0.30* 0.36*
(0.03) (0.03)

Slot-Control -0.19* -0.18*
(0.01) (0.01)

lambda 0.77* 0.72*
(0.01) (0.01)

gamma 0.69* 0.63*
(0.12) (0.11)

Demand Carrier Dummy Cost Carrier Dummy
Other Carriers -0.18* 0.06* Other Carriers -0.03 -0.22*

(0.03) (0.02) (0.02) (0.02)
American West -0.19* American West -0.22*

(0.03) (0.02)
Continental -0.22* 0.07* Continental -0.03* -0.19*

(0.02) (0.02) (0.01) (0.01)
Delta -0.13* -0.21* Delta -0.10* -0.15*

(0.02) (0.02) (0.01) (0.01)
NorthWest -0.15* 0.07* NorthWest -0.02 -0.04*

(0.02) (0.02) (0.01) (0.01)
Trans World -0.17* Trans World 0.02

(0.02) (0.01)
United 0.16* 0.08* United -0.05* -0.06*

(0.02) (0.02) (0.01) (0.01)
US Air -0.19* 0.06* US Air -0.08* -0.11*

(0.03) (0.02) (0.01) (0.01)
JetBlue 0.39* JetBlue -0.32*

(0.06) (0.04)
SouthWest -0.05 0.08* SouthWest -0.12* -0.19*

(0.03) (0.02) (0.02) (0.02)
Function Value 49.37 58.07
Observations 214.8k 226.5k

Table 2: Base Case Parameter Estimates -- 1999 & 2006

Note: See Table 1 for the variable definitions. * and † denote significance at the 5% and 10% confidence level, 
respectively. Standard errors are in parentheses.



Demand Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Fare 1 -0.78* -1.14* -0.78* -0.80* -0.80* -0.69* -0.74*
(0.02) (0.49) (0.02) (0.02) (0.02) (0.02) (0.02)

Connection 1 -0.53* -0.47* -0.53* -0.53* -0.45* -0.63* -0.55*
(0.02) (0.07) (0.02) (0.02) (0.02) (0.02) (0.02)

Constant 1 -5.79* -4.66 -5.84* -5.47* -6.05* -5.77* -6.33*
(0.19) (4.05) (0.19) (0.18) (0.19) (0.17) (0.15)

Fare 2 -0.07* -0.09 -0.07* -0.06* -0.07* -0.07* -0.07*
(0.00) (0.07) (0.00) (0.00) (0.00) (0.00) (0.00)

Connection 2 -0.31* -0.37* -0.31* -0.31* -0.28* -0.40* -0.36*
(0.02) (0.04) (0.02) (0.02) (0.02) (0.01) (0.01)

Constant 2 -8.56* -8.35* -8.59* -8.48* -8.64* -8.07* -8.64*
(0.40) (3.60) (0.40) (0.40) (0.40) (0.36) (0.27)

No. Destination 0.38* 0.32* 0.34* 0.34* 0.36* 0.40* 0.48*
(0.03) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02)

No. Departures 0.04* 0.05* 0.04* 0.06* 0.03* 0.05* 0.05*
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Distance 0.30* 0.35* 0.27* 0.33* 0.35* 0.26* 0.29*
(0.04) (0.06) (0.04) (0.04) (0.04) (0.04) (0.04)

Distance2 -0.05* -0.05* -0.05* -0.05* -0.05* -0.05* -0.05*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Tour 0.30* 0.32* 0.30* 0.34* 0.27* 0.31* 0.29*
(0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.03)

Slot-Control -0.19* -0.18* -0.21* -0.11* -0.19* -0.20* -0.13*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Delay 0.76*
(0.14)

lambda 0.77* 0.72* 0.77* 0.69* 0.76* 0.79* 0.83*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

gamma 0.69* 0.52 0.70* 0.72* 0.70* 0.70* 0.68*
(0.12) (1.77) (0.12) (0.12) (0.12) (0.11) (0.09)

Demand Carrier Dummy
Other Carriers -0.18* -0.14* -0.08* -0.02 -0.19* -0.18* -0.10*

(0.03) (0.05) (0.04) (0.03) (0.03) (0.03) (0.03)
American West -0.19* -0.19* -0.17* -0.11* -0.22* -0.14* -0.13*

(0.03) (0.04) (0.03) (0.02) (0.03) (0.03) (0.02)
Continental -0.22* -0.20* -0.20* -0.17* -0.23* -0.21* -0.14*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Delta -0.13* -0.13* -0.10* -0.10* -0.10* -0.20* -0.11*

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
NorthWest -0.15* -0.13* -0.11* -0.10* -0.14* -0.17* -0.13*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Trans World -0.17* -0.16* -0.15* -0.13* -0.19* -0.13* -0.12*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
United 0.16* 0.16* 0.18* 0.18* 0.17* 0.13* 0.10*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
US Air -0.19* -0.18* -0.19* -0.16* -0.19* -0.19* -0.16*

(0.03) (0.03) (0.03) (0.02) (0.03) (0.03) (0.02)
SouthWest -0.05 -0.04 -0.01 0.01 -0.04 -0.06† 0.05†

(0.03) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03)

Table 3A: Demand Parameter Estimates from Different Specifications -- 1999

Note: See Table 3B for explanations of the specification in each column, no. of observations, and function 
values.



Cost Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Constant_short 1.07* 1.07* 1.29* 0.85* 0.88* 0.81*
(0.06) (0.06) (0.06) (0.06) (0.07) (0.07)

Distance_short 0.26* 0.26* 0.28* 0.26* 0.26* 0.23*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection_short -0.06* -0.06* -0.02 0.01 -0.08* -0.08*
(0.03) (0.03) (0.03) (0.02) (0.03) (0.03)

Constant_long 1.61* 1.61* 1.92* 1.38* 1.38* 1.30*
(0.08) (0.08) (0.07) (0.08) (0.09) (0.09)

Distance_long 0.09* 0.09* 0.10* 0.09* 0.10* 0.07*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection_long -0.09* -0.10* -0.07* -0.02 -0.10* -0.10*
(0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

HubMC -0.02 -0.02 -0.08* -0.03* 0.00 0.00
(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

SlotMC 0.08* 0.08* 0.11* 0.08* 0.09* 0.06*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Cost Carrier Dummy
Other Carriers -0.03 -0.02 -0.04† -0.03 -0.04* -0.02

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
American West -0.22* -0.22* -0.26* -0.20* -0.22* -0.20*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
Continental -0.03* -0.03* -0.02 -0.02† -0.03* -0.03*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Delta -0.10* -0.10* -0.12* -0.09* -0.10* -0.09*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest -0.02 -0.02 -0.04* -0.01 -0.01 -0.01

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Trans World 0.02 0.02 0.01 0.03* 0.00 0.02†

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United -0.05* -0.05* -0.07* -0.05* -0.03* -0.04*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air -0.08* -0.08* -0.11* -0.08* -0.06* -0.07*

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
SouthWest -0.12* -0.12* -0.19* -0.12* -0.10* -0.10*

(0.02) (0.02) (0.03) (0.02) (0.02) (0.02)

Function Value 49.37 46.54 49.44 40.22 51.15 42.90 44.89
Observations 214.8k 214.8k 214.8k 214.8k 238.5k 147.3k 214.8k

Table 3B: Cost Parameter Estimates from Different Specifications -- 1999

Note: See Table 1 for the variable definitions. Column one is the base case. Column two does not use 
the markup condition. Column three adds delays to demand. Column four groups nearby airports. 
Column five and six use a finer and a rougher set of fare bins, respectively. Column seven includes 25 
airport dummies. * (†) denotes significance at the 5% (10%) confidence level. Standard errors are in 
parentheses.



Demand Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Fare 1 -1.05* -1.49* -1.06* -1.13* -1.09* -0.96* -1.04*
(0.03) (0.37) (0.03) (0.03) (0.03) (0.03) (0.03)

Connection 1 -0.59* -0.33* -0.56* -0.46* -0.48* -0.72* -0.62*
(0.03) (0.11) (0.03) (0.02) (0.02) (0.03) (0.03)

Constant 1 -5.68* -4.50 -5.61* -4.85* -5.87* -5.44* -6.06*
(0.19) (3.89) (0.19) (0.24) (0.20) (0.22) (0.17)

Fare 2 -0.10* 0.00 -0.10* -0.10* -0.10* -0.09* -0.10*
(0.00) (0.06) (0.00) (0.00) (0.00) (0.00) (0.00)

Connection 2 -0.51* -0.60* -0.53* -0.67* -0.50* -0.52* -0.55*
(0.02) (0.06) (0.02) (0.03) (0.02) (0.02) (0.02)

Constant 2 -8.60* -9.16* -8.55* -8.39* -8.64* -8.40* -8.85*
(0.30) (3.23) (0.30) (0.34) (0.31) (0.37) (0.24)

No. Destination 0.27* 0.20* 0.29* 0.26* 0.27* 0.25* 0.43*
(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)

No. Departures 0.11* 0.10* 0.11* 0.13* 0.09* 0.12* 0.12*
(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Distance 0.53* 0.55* 0.53* 0.41* 0.52* 0.55* 0.58*
(0.04) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04)

Distance2 -0.08* -0.08* -0.08* -0.05* -0.08* -0.09* -0.09*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Tour 0.36* 0.37* 0.35* 0.41* 0.34* 0.37* 0.34*
(0.03) (0.04) (0.03) (0.04) (0.03) (0.03) (0.03)

Slot-Control -0.18* -0.18* -0.17* -0.10* -0.18* -0.19* -0.13*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Delay -0.82*
(0.11)

lambda 0.72* 0.67* 0.72* 0.63* 0.72* 0.72* 0.77*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

gamma 0.63* 0.49 0.63* 0.60* 0.63* 0.65* 0.61*
(0.11) (1.69) (0.11) (0.14) (0.12) (0.13) (0.09)

Demand Carrier Dummy
Other Carriers 0.06* 0.13* 0.04† 0.14* 0.03 0.07* 0.11*

(0.02) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)
Continental 0.07* 0.13* 0.09* 0.14* 0.09* 0.06* 0.11*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Delta -0.21* -0.24* -0.23* -0.21* -0.19* -0.29* -0.22*

(0.02) (0.04) (0.02) (0.02) (0.02) (0.02) (0.02)
NorthWest 0.07* 0.08* 0.04† 0.11* 0.06* 0.07* 0.08*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
United 0.08* 0.14* 0.09* 0.14* 0.09* 0.06* 0.03*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
US Air 0.06* 0.11* 0.02 0.13* 0.07* 0.02 0.06*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
JetBlue 0.39* 0.55* 0.38* 0.56* 0.24* 0.53* 0.46*

(0.06) (0.08) (0.06) (0.05) (0.06) (0.06) (0.06)
SouthWest 0.08* 0.19* 0.08* 0.11* 0.10* 0.06* 0.14*

(0.02) (0.04) (0.02) (0.02) (0.02) (0.03) (0.02)
Note: see Table 4B for explanations of the specification in each column.

Table 4A: Demand Parameter Estimates from Different Specifications -- 2006



Cost Variables
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Constant_short 1.16* 1.16* 1.30* 1.02* 1.22* 1.07*
(0.06) (0.06) (0.05) (0.06) (0.06) (0.06)

Distance_short 0.19* 0.19* 0.22* 0.19* 0.21* 0.17*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection_short 0.07† 0.10* 0.25* 0.14* -0.03 0.05
(0.04) (0.04) (0.03) (0.03) (0.04) (0.04)

Constant_long 1.59* 1.58* 1.73* 1.40* 1.73* 1.44*
(0.07) (0.07) (0.07) (0.07) (0.07) (0.07)

Distance_long 0.04* 0.04* 0.06* 0.04* 0.06* 0.04*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Connection_long 0.06 0.10* 0.27* 0.16* -0.07† 0.05
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

HubMC -0.05* -0.05* -0.07* -0.06* -0.06* -0.05*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

SlotMC 0.03* 0.03* 0.06* 0.03* 0.03* 0.02*
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Cost Carrier Dummy
Other Carriers -0.22* -0.22* -0.22* -0.22* -0.27* -0.22*

(0.02) (0.02) (0.02) (0.01) (0.02) (0.01)
Continental -0.19* -0.18* -0.11* -0.18* -0.22* -0.20*

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
Delta -0.15* -0.15* -0.15* -0.13* -0.19* -0.15*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
NorthWest -0.04* -0.04* -0.06* -0.03* -0.04* -0.05*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
United -0.06* -0.06* 0.00 -0.04* -0.09* -0.07*

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
US Air -0.11* -0.10* -0.03† -0.10* -0.13* -0.12*

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
JetBlue -0.32* -0.30* -0.16* -0.32* -0.36* -0.39*

(0.04) (0.04) (0.05) (0.04) (0.05) (0.04)
SouthWest -0.19* -0.18* -0.19* -0.21* -0.18* -0.19*

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
Function Value 58.07 49.59 57.38 40.48 60.84 43.86 52.20
Observations 226.5k 226.5k 226.5k 226.5k 257k 146k 226.5k

Table 4B: Cost Parameter Estimates from Different Specifications -- 2006

Note: See Table 1 for the variable definitions. Column one is the base case. Column two does not use 
the markup condition. Column three adds delays to demand. Column four groups nearby airports. 
Column five and six use a finer and a rougher set of fare bins, respectively. Column seven includes 25 
airport dummies. * (†) denotes significance at the 5% (10%) confidence level. Standard errors are in 
parentheses.



Demand Variables 1999 2006 1999 2006
Fare 1 -0.85* -1.20* -0.88* -1.60*

(0.03) (0.04) (0.05) (0.10)

Connection 1 -0.48* -0.53* -0.53* -0.54*
(0.02) (0.04) (0.03) (0.05)

Constant 1 -5.68* -5.38* -3.44* -1.74*
(0.31) (0.39) (0.95) (0.75)

Fare 2 -0.07* -0.11* -0.06* -0.12*
(0.00) (0.00) (0.00) (0.00)

Connection 2 -0.36* -0.48* 0.00 -0.55*
(0.02) (0.03) (0.11) (0.04)

Constant 2 -8.55* -8.75* -8.88† -7.36*
(0.71) (0.60) (5.00) (0.80)

No. Destination 0.38* 0.26* 0.39* 0.27*
(0.03) (0.03) (0.06) (0.05)

No. Departures 0.05* 0.12* 0.02* 0.07*
(0.00) (0.01) (0.01) (0.01)

Distance 0.31* 0.51* -0.16* -0.14*
(0.05) (0.05) (0.02) (0.02)

Distance2 -0.05* -0.08*
(0.01) (0.01)

Tour 0.18* 0.18* 0.51* 0.63*
(0.05) (0.04) (0.05) (0.05)

Slot-Control -0.15* -0.18* -0.16* -0.17*
(0.01) (0.01) (0.01) (0.01)

lambda 0.75* 0.72* 0.75* 0.67*
(0.01) (0.01) (0.02) (0.01)

gamma 0.71* 0.63* 0.85 0.57
(0.21) (0.23) (0.76) (0.35)

Cost Variables
Constant_short 1.09* 1.24*

(0.06) (0.06)
Distance_short 0.29* 0.23*

(0.01) (0.01)
Connection_short 0.04 0.09†

(0.03) (0.05)
Constant_long 1.66* 1.68* 3.13* 2.22*

(0.09) (0.09) (0.13) (0.10)
Distance_long 0.10* 0.05* 0.04* 0.06*

(0.01) (0.01) (0.01) (0.01)
Connection_long 0.04 0.09 -0.12* 0.10†

(0.04) (0.06) (0.06) (0.06)
HubMC -0.08* -0.07* -0.01 -0.13*

(0.02) (0.01) (0.04) (0.02)
SlotMC 0.10* 0.05* 0.10* 0.04*

(0.01) (0.01) (0.02) (0.01)

Table 5: Robustness Check

Markets w/o LCC Entry Markets Longer than 1.5k Miles

Note: column one and two only use markets that did not experience LCC entry between 1999 and 2006. 
Column three and four use markets longer than 1500 miles that are less likely to be affected by the regional 
jets.



1999 2006
No. Destination Doubles 11% 9%
Add One Daily Departure 6% 16%
Distance up 10% -1% -1%
Tour Dummy Changes from 0 to 1 32% 39%
Slot Changes from 0 to 1 -22% -22%

Carrier Dummy Changes from 0 to 1
Other Carrier -20% 8%
American West -20%
Continental -24% 9%
Delta -15% -24%
NorthWest -17% 9%
Trans World -19%
United 22% 11%
US Air -20% 7%
JetBlue 58%
SouthWest -5% 10%

Table 6: Percentage Changes in Demand When Product Attributes Change

Note: the top panel displays the percentage change in market demand when the relevant 
product attribute is changed as specified. For example, in 2006, adding one departure to all 
products increases the market demand by 16% on average. The bottom panel reports changes 
in demand for the relevant carrier. For example, in 2006, changing Continental's carrier 
dummy from 0 to 1 increases its average market demand by 9%.



Price Elasticity
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Type One -5.01 -7.81 -5.01 -5.64 -4.90 -4.77 -4.40
Type Two -0.44 -0.65 -0.44 -0.46 -0.42 -0.48 -0.43
Both Types -1.96 -2.16 -1.96 -2.35 -1.95 -1.63 -1.62
Aggregate Price Elasticity -1.55 -1.69 -1.55 -1.68 -1.53 -1.38 -1.37

Connection Semi-Elasticity
Type One 0.75 0.73 0.75 0.78 0.69 0.79 0.74
Type Two 0.55 0.64 0.55 0.59 0.51 0.63 0.58
All 0.66 0.68 0.66 0.71 0.61 0.71 0.66

Percentage of Passengers
Type One 0.59 0.47 0.59 0.64 0.57 0.58 0.54
Type Two 0.41 0.53 0.41 0.36 0.43 0.42 0.46

Price Elasticity
Base
Case

No
MC Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Type One -6.55 -6.57 -8.09 -6.41 -6.66 -6.10
Type Two -0.63 -0.63 -0.70 -0.61 -0.63 -0.60
Both Types -2.10 -2.15 -2.94 -2.15 -1.97 -1.89
Aggregate Price Elasticity -1.67 -1.70 -2.01 -1.63 -1.66 -1.58

Connection Semi-Elasticity
Type One 0.80 0.63 0.79 0.77 0.74 0.86 0.80
Type Two 0.75 0.83 0.76 0.88 0.75 0.76 0.76
All 0.77 0.76 0.77 0.83 0.74 0.80 0.77

Percentage of Passengers
Type One 0.51 0.47 0.52 0.59 0.48 0.55 0.48
Type Two 0.49 0.53 0.48 0.41 0.52 0.45 0.52

Table 7A: Elasticity Estimates from Different Specifications -- 1999

Table 7B: Elasticity Estimates from Different Specifications -- 2006

Note: the aggregate price elasticity measures the percentage change in total demand when all products' prices 
increase by 1%. Connection semi-elasticity measures the percentage change in product j's demand when it 
switches from a direct flight to a connecting flight, fixing other products' attributes. 



Marginal Cost ($)
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Connecting Flights 160 160 190 153 141 125
Direct Flights 149 149 170 126 132 120
All Products 156 156 183 142 138 123

Lerner Index
Connecting Flights 0.60 0.60 0.53 0.60 0.69 0.69
Direct Flights 0.66 0.66 0.61 0.68 0.78 0.74
All Products 0.63 0.63 0.56 0.63 0.72 0.71

Marginal Cost ($)
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

Connecting Flights 167 173 229 165 157 149
Direct Flights 138 137 158 120 147 124
All Products 155 158 199 145 153 139

Lerner Index
Connecting Flights 0.56 0.54 0.41 0.54 0.60 0.60
Direct Flights 0.66 0.66 0.60 0.66 0.69 0.69
All Products 0.60 0.59 0.49 0.60 0.64 0.64

Table 8A: Marginal Cost and Lerner Index from Different Specifications -- 1999

Table 8B: Marginal Cost and Lerner Index from Different Specifications -- 2006



All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares
All flights 17.80 11.77 6.03 26.38 19.79 6.60
Direct 14.95 10.17 4.77 21.90 16.62 5.29
Connecting 2.86 2.14 0.72 4.48 3.64 0.84

All flights 14.46 12.19 2.27 23.92 20.72 3.19
Direct 12.53 11.03 1.50 20.53 18.31 2.23
Connecting 1.94 1.62 0.32 3.38 2.93 0.45

All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares

2.86 2.14 0.72 4.48 3.64 0.84

1.94 1.62 0.32 3.38 2.93 0.45

2.47 1.97 0.50 4.05 3.43 0.63

2.45 1.91 0.54 3.95 3.27 0.68

2.02 1.64 0.38 3.51 2.99 0.52

2.01 1.62 0.39 3.51 2.97 0.54

2.59 2.04 0.56 4.15 3.45 0.69
Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of the 
optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.

Table 10: Carrier Profit and Revenue Per Market for Different Counter-Factual Scenarios: 
Connecting Flights

1999 Base Case

Table 9: Carrier Profit and Revenue Per Market

1999

2006

Year

Profit ($100k) Revenue ($100k)

Profit ($100k) Revenue ($100k)

Different Scenarios

2006 Base Case

All Factors

1999 Demand 
Parameters
1999 Demand 
Parameters and ξ

1999 MC Parameters

No LCC Expansion



Different Scenarios All Fares
Bottom 

90% Fares
Top 10% 

Fares All Fares
Bottom 

90% Fares
Top 10% 

Fares

1999 Base Case 14.95 10.17 4.77 21.90 16.62 5.29

2006 Base Case 12.53 11.03 1.50 20.53 18.31 2.23

1999 Demand 
Parameters 10.97 9.62 1.35 18.08 16.28 1.80
1999 Demand 
Parameters and ξ 15.06 11.72 3.34 22.11 17.67 4.44

1999 MC Parameters 11.99 10.41 1.58 19.85 17.48 2.36

No LCC Expansion 12.81 11.20 1.61 20.85 18.49 2.36

All Factors 14.80 11.46 3.34 22.03 17.55 4.48

Revenue ($100k)

Table 11: Carrier Profit and Revenue Per Market for Different Counter-Factual Scenarios: 
Direct Flights

Profit ($100k)

Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of 
the optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.



Different Scenario
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

1999 Demand Parameters and ξ 0.56 0.46 0.49 0.56 0.53 0.54
1999 MC Parameters 0.09 0.14 0.33 0.14 0.11 0.20
No LCC Expansion 0.08 0.08 0.08 0.08 0.08 0.06
All Factors 0.72 0.66 0.87 0.76 0.70 0.77

Different Scenario
Base
Case Delay

Combine
Airports

Small
Bin

Large
Bin

Airport 
Dummy

1999 Demand Parameters and ξ 1.05 1.02 0.85 1.29 0.70 0.87
1999 MC Parameters -0.22 -0.23 -0.20 -0.16 0.18 0.07
No LCC Expansion 0.12 0.11 0.18 0.14 0.08 0.08
All Factors 0.94 0.90 0.77 1.26 0.90 0.98

Table 12A: Percentage of Profit Changes Explained by Different Counter-Factual Scenarios -- 
Connecting Flights

Table 12B: Percentage of Profit Changes Explained by Different Counter-Factual Scenarios -- 
Direct Flights

Note: we use 2006 product attributes for all counter-factual exercises. In each row, we solve for a new vector of 
the optimal prices that satisfy the first order conditions incorporating the parameter changes as specified.



Figure 1: U.S. Domestic Revenue Passenger Miles (Bill.)
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Source: MIT Airline Data Project. 

 
 
 
 

Figure 2: U.S. Airlines' System Load Factors 
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 Source: MIT Airline Data Project. 
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Figure 3: Direct Flights' Fare Dispersion 1999 -- 2006

 
Source: US DOT DB1B via BTS. Calculation based on the sample markets. 
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Figure 4: Connecting Flights' Fare Dispersion 1999 -- 2006

 
Source: US DOT DB1B via BTS. Calculation based on the sample markets. 



Figure 5: Percentage of Direct Passengers in U.S.
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 Source: US DOT DB1B via BTS. Author’s calculation. 
 
 
 
 

Figure 6: Percentage of Connecting Passengers by 
Carrier -- 1999 and 2006
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Source: US DOT DB1B via BTS. Calculation based on the sample markets. 

 




