
Estimating Dynamic Discrete Choice Models with Hyperbolic

Discounting, with an Application to Mammography Decisions∗

Hanming Fang† Yang Wang‡

December 29, 2008

Abstract

This paper extends the semi-parametric identification and estimation method for dynamic

discrete choice models using Hotz and Miller’s (1993) conditional choice probability (CCP)

approach to the setting where individuals may have hyperbolic discounting time preferences and

may be naive about their time inconsistency. We implement the proposed estimation method

to the decisions of undertaking mammography to evaluate the importance of present bias and

naivety in the under-utilization of mammography. Preliminary results show evidence for both

present bias and naivety.

Keywords: Time Inconsistent Preferences, Intrapersonal Games, Preventive Care

JEL Classification Number: C14, I1.

∗Preliminary. All comments are welcome. Please do not circulate without the authors’ permission.

†Department of Economics, Duke University, 213 Social Sciences Building, P.O. Box 90097, Durham, NC 27708-

0097 and NBER. Email: hanming.fang@duke.edu.

‡Department of Economics, Duke University, 213 Social Sciences Building, P.O. Box 90097, Durham, NC 27708-

0097. Email: yang.wang@duke.edu.



1 Introduction

Dynamic discrete choice models have been used to understand a wide range of economic be-

havior. The early dynamic discrete choice models that are empirically implemented tend to be

parametric;1 but recently, a growing list of authors have addressed the non- or semi-parametric

identification of dynamic discrete choice models. The earliest attempt in this regard is Hotz and

Miller (1993) which pioneered the approach of using conditional choice probabilities to infer about

choice-specific continuation values. Rust (1994a, 1994b) showed that the discount factor in stan-

dard dynamic discrete choice models are generically not identified; Magnac and Thesmar (2002)

expanded Rust’s non-identification results, and proposed exclusive restrictions that lead to the

identification of the standard discount factor (see more below).

All of the above-mentioned literature model the impatience of the decision makers by assuming

that agents discount future streams of utility or profits exponentially over time. As is now well

known, Strotz (1956, p. 172) showed that exponential discounting is not just an analytically

convenient assumption; without this assumption, intertemporal marginal rates of substitution will

change as time passes, and preferences will be time-inconsistent. A recent theoretical literature has

built on the work of Strotz (1956) and others to explore the consequences of relaxing the standard

assumption of time-consistent discounting. Drawing both on experimental research and on common

intuition, economists have built models of quasi-hyperbolic discounting to capture the tendency

of decision makers to seize short term rewards at the expense of long-term preferences.2 This

1The earliest formulation and estimation of parametric dynamic discrete choice models include Wolpin (1984) for

fertility choice, Miller (1984) for occupational choice, Pakes (1986) for patent renewal, and Rust (1987) for bus engine

replacement.

2A body of experimental research, reviewed in Ainslie (1992) and in several papers in Loewenstein and Elster

(1992), indicates that hyperbolic time discounting may parsimoniously explain some basic features of the intertemporal

decision making that are inconsistent with simple models with exponential discounting. Specifically, standard decision

models with exponential discounting are not easy to reconcile with commonly observed preference reversals: subjects

choose the larger and later of two prizes when both are distant in time, but prefer the smaller but earlier one as

both prizes draw nearer to the present (see Rubinstein 2003, however, for an alternative explanation of preference

reversals).
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literature studies the implications of time-inconsistent preferences, and their associated problems

of self-control, for a variety of economic choices and environments.3

A small list of empirical papers that attempted to estimate dynamic models with hyperbolic

discounting time preferences have followed the parametric approach (Fang and Silverman 2007,

Laibson, Repetto and Tobacman 2007 and Paserman 2007).4 Fang and Silverman (2007) empir-

ically implement a dynamic structural model of labor supply and welfare program participation

for never-married mothers with potentially time-inconsistent preferences. Using panel data on the

choices of single women with children from the NLSY 1979, they provide estimates of the degree

of time-inconsistency, and of its influence on the welfare take-up decision. For the particular pop-

ulation of single mothers with dependent children, they estimate the present bias factor and the

standard discount factor to be 0.338 and 0.88 respectively, implying a one-year ahead discount

rate of 238%. Laibson, Repetto and Tobacman (2007) used Method of Simulated Moments (MSM)

to estimate time preferences - both short and long run discount rates – from a structural buffer

stock consumption model that includes many realistic features such as stochastic labor income,

liquidity constraints, child and adult dependents, liquid and illiquid assets, revolving credit and

retirement. Under parametric assumptions on the model, the model is identified from matching the

model’s predictions of retirement wealth accumulation, credit card borrowing and consumption-

income co-movement with those observed in the data. Their benchmark estimates imply a 48.5%

short-term annualized discount rate and a 4.3% long-term annualized discount rate. Paserman

(2007) estimates the structural parameters of a model of job search with hyperbolic discounting

and endogenous search effort, using data on duration of unemployment spells and accepted wages

3For example, models of time-inconsistent preferences have been applied by Laibson (1997) and O’Donoghue and

Rabin (1999a,b) to consumption and savings; by Barro (1999) to growth; by Gruber and Koszegi (2001) to smoking

decisions; by Krusell, Kuruşçu, and Smith (2002) to optimal tax policy; by Carrillo and Mariotti (2000) to belief

formation; by Della Vigna and Paserman (2001) to job search.

4Also related, Arcidiacono, Sieg and Sloan (2007) estimates a parametric forward-looking dynamic discrete choice

model of smoking and heavy drinking for late-middle age men in the Health and Retirement Studey (HRS) and find

that a forward-looking model fits the data (mainly the age profile for heavy-drinking and smoking) better than a

myopic model. Their model assumes expotential discounting and thus does not incorporate the possibility that time

inconsistent preference may play a role in the consumption of alcohol and cigaretts.
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from the National Longitudinal Survey of Youth (NLSY 1979). Under parametric assumptions of

the model, identification of the hyperbolic discounting parameters comes from the variation in the

relative magnitude of unemployment duration and accepted wages. Indeed he found that his results

are sensitive to the specific structure of the model and on the functional form assumption for the

distribution of offered wages. For low-wage workers, he rejects the exponential discounting model

and estimates a one-year discount rate of about 149%.5

None of the above papers allow for the possibility that a hyperbolic discounting decision-maker

may also be naive. Most importantly, the identification of the present-bias and standard discount

factors in these papers are often based on parametric assumptions imposed on the model. To the

best of our knowledge, it is not known whether dynamic discrete choice models with hyperbolic

discounting preferences can be semi-parametrically identified using standard short-panel data that

are typically used in these papers.6

In this paper, we examine the conditions under which dynamic discrete choice models with

hyperbolic discounting time preference can be partially identified using short-panel (two periods)

data. We show that, if there exist exclusion variables that affect the transition probabilities of

states over time but do not affect the decision-makers’ static payoff functions, a condition that is

similar to that in Magnac and Thesmar (2002) necessary for the identification of dynamic discrete

choice models with standard exponential discounting, then we can partially identify the relevant

discount factors (present bias factor β, the standard discount factor δ, and the naivety parameter

β̃) in the sense that only β̃δ and β̃/β can be separately identified.

The intuition for why exclusion variables that affect the transition of state variables but not

static payoffs can provide source of identification for the discount factors can be simply described

as follows. Consider two decision-makers who share the same period-payoff relevant state variables

but differ in the pay differ only in the exclusion variables. Because their exclusion variables only

5There are other inferential studies about discount rates that exploit specific clear-cut intertemporal trade-offs. For

example, Hausman (1979), and Warner and Pleeter (2001) estimate discount rates ranging from 0 to 89% depending

on the characteristics of the individual and intertemporal trade-ooffs at stake.

6The exception is Fang and Silverman (2006), which argued that exponential discounting and hyperbolic discount-

ing models are distinguishable, using an argument based on observed choice probabilities.
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affect the transition of the payoff-relevant state variables, their effects on the choices in the current

period will inform us about the degree to which the agents discount the future. The intuition for

why β̃δ and β̃/β can be separately identified will be provided later in Section 2.4.

We also provide two estimation approaches that are intimately related to our identification

arguments. One approach is based on maximizing a pseudo-likelihood function and the other is

based on minimizing the estimated variance of the utility functions. Monte Carlo experiments show

that both estimators perform well in large samples, but in relatively small samples, the maximum

pseudo-likelihood based estimator performs better.

Our paper also represents an interesting intermediate case between the literature on estimating

dynamic discrete choice single-agent decision problems (see Miller 1984, Wolpin 1984, Pakes 1986,

Rust 1987, Hotz and Miller 1993 for early contributions and Rust 1994a, 1994b for surveys) and the

more recent literature on estimating dynamic games (Pakes and McGuire 1994, Pakes, Ostrovsky

and Berry 2007, Bajari, Benkard and Levin 2007). As is well-known, if an agent has hyperbolic

discounting time preferences, the outcome of her decision process can be considered as the equi-

librium outcome of an intra-personal game with the players being the selves at different periods.

There are two crucial differences, however, between the intra-personal games we analyze for agents

with time-inconsistent time preferences and those in the existing dynamic games literature. The

first key difference in that in our case, we do not observe the actions of all the players. More

specifically, the outcomes – choices and the evolutions of the state variables – we observe in the

data are affected only by the current selves, even though the current selves’ choices are impacted

by their perception of future selves’ actions. Secondly, the dynamic games literature (e.g. Bajari,

Benkard and Levin 2007) may allow for players to have different period payoff functions, in our

setting, however, the payoffs for the players – the current self and the future selves – differ only in

time preferences; moreover, under hyperbolic discounting, we are assuming a rather restricted form

of time preference differences between the players.

We also apply our identification and estimation method to investigate the role of time in-

consistent preferences in women’s mammography decisions. We consider a simple model where

mammogram can potentially lower the probability of death in the next two years, and it may lower
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the probability of bad health conditional on surviving in two years, but undertaking mammography

may involve immediate costs (most of which we would like to interpret as psychological and physical

costs instead of financial costs). In particular, we use the indicator for either the woman’s mother

is still alive or she died at age greater than 70 as the exclusive variable that does not enter the

instantaneous utility but affects the transition probability of other state variables that enter the

instantaneous utility function. Our preliminary estimates indicate that individuals exhibit both

present bias and naivety as β̃/β is estimated to be about 1.80, suggesting both β < 1 (present bias)

and β̃ > β (present bias). We also estimate β̃δ to be about 0.86. These suggest that both present

bias and naivety might have played an important role in the fact that nearly 25% of the women do

not undertake mammography each year, which is universally regarded as a very cost effective way

for early detection of breast cancer.

The remainder of the paper is structured as follows. In Section 2 we describe a general dynamic

discrete choice model with hyperbolic discounting time preferences and provide detailed analysis

for identification and estimation of the model, particularly the discount factors; we also evaluate

the performance of our proposed estimation method from Monte Carlo experiments. In Section

3 we provide the background information for mammography, which is the decision we examine in

our empirical application; we also describe the data sets used in our study and provide some basic

descriptive statics of the samples; we then provide details about the empirical specification of our

model of the decision for undertaking mammography and present the preliminary main estimation

results. In Section 4 we discuss a few important issues abstracted away in our analysis. Finally,

Section 5 concludes.

2 Dynamic Discrete Choice Model with Hyperbolic Discounting

Time Preferences

2.1 Basic Model Setup

Consider a decision maker whose intertemporal utility is additively time separable. The agent’s

instantaneous preferences are defined over the action she chooses from a discrete set of alternatives
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i ∈ I = {0, 1, ..., I} , and a list of state variables denoted by h ≡ (x, ε) where x, which for notational

simplicity includes time t, are observed by the researcher, and ε ≡ (ε1, ..., εI) are the vector of

random preference shocks for each of the I alternatives. We make the following assumption about

the instant utility from taking action i, ui (h) ≡ ui (x, ε):

Assumption 1 (Additive Separability) The instantaneous utilities are given by, for each i ∈ I,

ui (x, ε) = u∗i (x) + εi,

where (ε1, ..., εI) has a joint distribution G, which is absolutely continuous with respect to the

Lebesgue measure in RI .

We assume that the time horizon is infinite with time denoted by t = 1, 2, ... The decision-

maker’s intertemporal preferences is represented by a simple and now commonly used formulation

of agents’ potentially time-inconsistent preferences: (β, δ)-preferences (Phelps and Pollak 1968,

Laibson 1997, and O’Donoghue and Rabin 1999a):

Definition 1. (β, δ)-preferences are intertemporal preferences represented by

Vt (ut, ut+1, ...) ≡ ut + β
∞∑

k=t+1

δk−tuk

where β ∈ (0, 1], δ ∈ (0, 1].

Following the terminology of O’Donoghue and Rabin (1999a), the parameter δ is called the

standard discount factor and captures long-run, time-consistent discounting; the parameter β is

called the present-bias factor and captures short-term impatience. The standard model is nested

as a special case of (β, δ)-preferences when β = 1. When β ∈ (0, 1) , (β, δ)-preferences capture

“quasi-hyperbolic” time discounting (Laibson, 1997). We say that an agent’s preferences are time-

consistent if β = 1, and are present-biased if β ∈ (0, 1).

The literature on time-inconsistent preferences distinguishes between naive and sophisticated

agents (Strotz 1956, Pollak 1968, O’Donoghue and Rabin 1999a,b). An agent is partially naive if

the self in every period t underestimates the present-bias of her future selves, believing that her
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future selves’ present bias is β̃ ∈ (β, 1); in the extreme, if the present self believes that her future

selves are time-consistent, i.e. β̃ = 1, she is said to be completely naive. On the other hand, an

agent is sophisticated if the self in every period t correctly knows her future selves’ present-bias β

and anticipates their behavior when making her period-t decision.

Following previous studies of time-inconsistent preferences, we will analyze the behavior of an

agent by thinking of the single individual as consisting of many autonomous selves, one for each pe-

riod. Each period-t self chooses her current behavior to maximize her current utility Vt (ut, ut+1, ...) ,

while her future selves control her subsequent decisions.

More specifically, let the observable state variable in period t be xt ∈ X where X denotes

the support of the state variables and the unobservable choice-specific shock εit ∈ =, and εt =

(ε1t, ..., εIt) . We assume that X is a finite set and denote X = #X to be the size of the state space.

A strategy profile for all selves is σ ≡ {σt}∞t=1 where σt : X × =I → I for all t. It specifies for

each self her action in all possible states and under all possible realizations of shock vectors. For

any strategy profile σ, write σ+
t ≡ {σk}

∞
k=t as the continuation strategy profile from period t on.

To define and characterize the equilibrium of the intra-personal game of an agent with poten-

tially time-inconsistent preferences, we first introduce a useful concept: write Vt
(
xt, εt;σ+

t

)
as the

agent’s period-t expected continuation utility when the state variable is xt and the shock vector

is εt under her long-run time preference for a given a continuation strategy profile σ+
t . We can

think of Vt
(
xt, εt;σ+

t

)
as representing (hypothetically) her intertemporal preferences from some

prior perspective when her own present-bias is irrelevant. Specifically, Vt
(
xt, εt;σ+

t

)
must satisfy:

Vt
(
xt, εt;σ+

t

)
= uσt(xt,εt)

(
xt, εσt(xt,εt)t

)
+ δE

[
Vt+1

(
xt+1, εt+1;σ+

t+1

)
|xt, σt (xt, εt)

]
where σt (xt, εt) ∈ I is the choice specified by strategy σt, and the expectation is taken over both

the future state xt+1 and εt+1.

We will define the equilibrium for a partially naive agent whose period-t self believes that,

beginning next period, her future selves will behave optimally with a present-bias factor of β̃ ∈ [β, 1].

Following O’Donoghue and Rabin’s (1999b, 2001), we first define the concept of an agent’s perceived

continuation strategy profile by her future selves.
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Definition 1 The perceived continuation strategy profile for a partially naive agent is a strategy

profile σ̃ ≡{σ̃t}∞t=1 such that for all t = 1, 2, ..., all xt ∈ X , and all εt ∈ =I ,

σ̃t (xt, εt) = arg max
i∈I

{
ui (xt, εit) + β̃δE

[
Vt+1

(
xt+1, εt+1; σ̃+

t+1

)
|xt, i

]}
.

That is, if an agent is partially naive with perceived present-bias by future selves at β̃, then her

period-t self will anticipate that her future selves will follow strategies σ̃+
t+1 ≡ {σ̃k}

∞
k=t+1 . Given

this perception, the period-t self’s best response is called perception-perfect strategy profile.

Note, importantly, what the strategy profile σ̃ ≡{σ̃t}∞t=1 describes is the perception of the

partially naive agent regarding what her future selves will play. It is not what will generate the

actual play that we observe in the data. What we actually observe is generated from the perception-

perfect strategy profile that we define below.

Definition 2 A perception-perfect strategy profile for a partially naive agent is a strategy profile

σ∗ ≡ {σ∗t }
∞
t=1 such that, for all t = 1, 2, ..., all xt ∈ X , and all εt ∈ =I ,

σ∗t (xt, εt) = arg max
i∈I

{
ui (xt, εit) + βδE

[
Vt+1

(
xt+1, εt+1; σ̃+

t+1

)
|xt, i

]}
.

It is key to note the difference and connection between σ̃ and σ∗. σ̃ is the unobserved perception

of the partially naive agent regarding what her future selves will do, under the partially naive

assumption that her future selves does not suffer from the present bias as described by the parameter

β, but instead is governed by present bias parameter β̃ that may differ from β. σ∗ is what the self

in each period will optimally choose to do and that is what will be observed in the data. Note also

that when β and β̃ coincide, that is, when the agent is sophisticated, then σ∗ = σ̃.

2.2 Decision Process

Now we describe the decision process of the decision maker. First, define the current choice-

specific value function (deterministic component), Wi (x), as follows:

Wi(x) = ui(x) + βδ

∫
V (x′)π(x′|x, i)dx′, (1)
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where π(x′|x, i) denotes the transition probabilities for state variables x when action i is taken; and

V (·) is the perceived value function (i.e., the value function from strategy profile σ̃ defined above).

Specifically, V (·) satisfies the following recursion:

V (x) = Eεmax
i∈I

[
ui (x) + εi + β̃δ

∫
V (x′)π(x′|x, i)dx′

]
(2)

It is also useful to define the perceived forward choice specific value function:

Vi(x) = ui(x) + β̃δ

∫
V (x′)π(x′|x, i)dx′. (3)

Remark 1 It is important to note that when β̃ = β, i.e., when an agent is sophisticated, we have

that Wi (x) = Vi (x) . The key difference between the Bellman equations for partially naive hyperbolic

discounting model and an exponential or sophisticated hyperbolic discounting model is that there are

two value functions, Vi (x) and Wi (x) , for the former case, while there is only one value function

for the latter cases.

Now we make two additional assumptions about the transition of the state variables and the

distribution of the shocks.

Assumption 2 (Conditional Independence):

π(xt+1, εt+1|xt, εt, dt) = q(εt+1|xt+1)π(xt+1|xt, dt)

q(εt+1|xt+1) = q(ε).

Assumption 3 (Extreme Value Distribution): εt is i.i.d extreme value distributed.

Remark 2 It is well-known that the distribution of the choice-specific shocks to payoffs in discrete

choice models are not non-parametrically identified (see Magnac and Thesmar 2002, for example).

Thus one has to make an assumption about the distribution of ε. We make the extreme value

distribution assumption for simplicity, but it could be replaced by any other distribution G .

Under Assumptions 1- 3 and combine (2) and (3):

V (x) = Eεmax
i∈I
{Vi(x) + εi} = ln

{∑
i∈I

exp [Vi (x)]

}
. (4)
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Combining (1) and (3), we have that:

Vi (x)− ui (x) =
β̃

β
[Wi (x)− ui (x)] . (5)

Remark 3 Equation (5) clarifies that it is the fact that we allow for potential naivety in the

hyperbolic model that is creating the wedge between Wi (x) and Vi (x) : if β̃ = β, i.e., if agents

are sophisticated (even when they suffer from present bias), it would be true that Vi (x) = Wi (x) .

This is an important point because, as we see below in (6), the observed choice probabilities (our

data) would provide direct information about Wi (x), without needing any information about the

discount factors. When β̃ = β, it also provides direct information about Vi (x) ; but when β̃ and

β are potentially not equal, we can no longer learn about Vi (x) directly from the observed choice

probabilities.

With the above preliminary notations, now we can describe how the agent will make the choices

when the state variables are given by x. From Definition 2 for perception perfect equilibrium and

Equation (1), we know that the decision maker will choose i if and only if

i ∈ arg max
i∈I
{Wi (x) + εi} .

Thus the probability of observing action i being chosen at a given state variable x is:

Pi (x) = Pr
[
Wi (x) + εi > max

j∈I\{i}
{Wj (x) + εj}

]
=

exp [Wi (x)]∑I
j=1 exp [Wj (x)]

. (6)

2.3 Data and Preliminaries

Before we describe our results on identification, let us assume that we the data provides us with

the following information:

DATA:

• (Conditional Choice Probabilities) For all x ∈ X , we observe the choice probabilities

Pi (x) for all i ∈ I;
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• (Transitional Probabilities for Observable State Variables) For all (x, x′) ∈ X 2, all

i ∈ I, we observe the transition probabilities π (x′|x, i) ; we denote

π ≡
{
π
(
x′|x, i

)
:
(
x, x′

)
∈ X 2, i ∈ I

}
;

• (Short Panels) We have access to at least two periods of the above data, even though the

data results from a stationary infinite horizon model.

Because we assume that our data is short panel as in Magnac and Thesmar (2002), we assume

that the structure of the model, denoted by b, is defined by parameters

b =
{(
β, β̃, δ

)
, G,

〈
ui (x) , Vi

(
x′
)
∀x ∈ X and x′ ∈ X

〉}
.

Note that the elements in b in our setting differs from those in Magnac and Thesmar (2002) in that

we have two additional parameters β and β̃ that measure present bias and naivety; moreover, the

interpretation of Vi (x′) in our paper differs from Magnac and Thesmar (2002). In their paper Vi (x′)

directly informs about the actual choice probabilities of the decision maker in the second period,

namely, Pr (i|x′) = Pr (Vi (x′) + εi > Vj (x′) + εj for all j 6= i) ; in our paper, Vi (x′) captures the

current self’s perception of the choice probability of the next period’s self. Another difference is

that in Magnac and Thesmar (2002), the vector {Vi (x′) : x′ ∈ X} are completely free parameters;

in our setting, however, they are subject to the restriction that they have to satisfy (2) and (3).

We denote by B the set of all permissible structures. Given any structure b ∈ B, the model

predicts the probability that an agent will choose alternative i ∈ I in state x ∈ X , which we denote

by P̂i (x; b) and is given by

P̂i (x; b) = Pr
{
ui(x) + εi + βδ

∫
V (x′)π(x′|x, i)dx′ = max

j∈I

[
uj(x) + εj + βδ

∫
V (x′)π(x′|x, j)dx′

]∣∣∣∣x, b} .
As is standard in the identification literature, we call the predicted choice probabilities P̂i (x; b)

as the reduced form of structure b ∈ B. We say that two structures b, b′ ∈ B are observationally

equivalent if

P̂i (x; b) = P̂i
(
x; b′

)
∀i ∈ I and x ∈ X .

A model is said to be identified if and only if for any b, b′ ∈ B, b = b′ if they are observationally

equivalent.
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2.4 Identification Results

We first describe identification of {(ui (x) , Vi (x)) : i ∈ I, x ∈ X} with for a given set of discount

factors
〈
β, β̃, δ

〉
. Then we provide conditions pertinent to the identification of

〈
β, β̃, δ

〉
.

For any given joint distribution G of ε̃ ≡ (ε1, ..., εI) , the choice probability vector P̃ (x) =

(P1 (x) , ..., PI (x)) is a mapping Q of W̃ (x) = (W0 (x) ,W1 (x) , ...,WI (x)) . Hotz and Miller (1993)

showed that the mapping Q can be inverted and one of the Wi (x) has to be normalized. That is,

one can find

Di (x) ≡Wi (x)−W0 (x) = Qi

(
P̃ (x) ;G

)
where Qi is the ith component of the inverse of Q. Under our Assumption 3 (that εi is iid extreme

value distributed), the mapping Qi is especially simple [following from (6)]:

Di (x) = Wi (x)−W0 (x) = lnPi (x)− lnP0 (x) . (7)

From (5), we have, for all i ∈ I,

Vi (x) =
β̃

β
Wi (x) +

(
1− β̃

β

)
ui (x) (8)

Together with (7), we have, for all i ∈ I\ {0} and x ∈ X ,

Vi (x)− V0 (x) =
β̃

β
Di (x) +

(
1− β̃

β

)
[ui (x)− u0 (x)] . (9)

Plugging (4) into (3), we have, for all x ∈ X ,

V0 (x) = u0 (x) + β̃δ
∑
x′∈X

ln

{∑
i∈I

exp
[
Vi
(
x′
)]}

π
(
x′|x, 0

)
= u0 (x) + β̃δ

∑
x′∈X

V0

(
x′
)
π
(
x′|x, 0

)
+ β̃δ

∑
x′∈X

ln

{∑
i∈I

exp
[
Vi
(
x′
)
− V0

(
x′
)]}

π
(
x′|x, 0

)
= u0 (x) + β̃δ

∑
x′∈X

V0

(
x′
)
π
(
x′|x, 0

)
+β̃δ

∑
x′∈X

ln

{∑
i∈I

exp

[
β̃

β
Di

(
x′
)

+

(
1− β̃

β

)[
ui
(
x′
)
− u0

(
x′
)]]}

π
(
x′|x, 0

)
(10)
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Similarly, for any i ∈ {1, ..., I} and for all x ∈ X , we can obtain the following analogously:

Vi (x) = ui(x) + β̃δ
∑
x′∈X

ln

{∑
i∈I

exp
[
Vi
(
x′
)]}

π
(
x′|x, i

)
= ui (x) + β̃δ

∑
x′∈X

V0

(
x′
)
π
(
x′|x, i

)
+ β̃δ

∑
x′∈X

ln

{∑
i∈I

exp
[
Vi
(
x′
)
− V0

(
x′
)]}

π
(
x′|x, i

)
= ui (x) + β̃δ

∑
x′∈X

V0

(
x′
)
π
(
x′|x, i

)
+β̃δ

∑
x′∈X

ln

{∑
i∈I

exp

[
β̃

β
Di

(
x′
)

+

(
1− β̃

β

)[
ui
(
x′
)
− u0

(
x′
)]]}

π
(
x′|x, i

)
(11)

Now consider the system of equations given by (9)-(11). We know that we have to normalize the

utility for the reference alternative 0, without loss of generality set u0 (x) = 0 for all x ∈ X . The

unknowns contained in the equation system include (I + 1) × X values for {Vi (x) : i ∈ I, x ∈ X}

and I × X values for {ui (x) : i ∈ I/ {0} , x ∈ X} , thus the total unknowns is (2I + 1) × X. It is

also easy to see that the total number of equations in the system is also equal to (2I + 1)×X.

Before we discuss whether the non-linear equation system (9)-(11) has a unique solution, let us

show how it is related to the existing case in the literature for the identification of dynamic discrete

choice models with exponential discounting (i.e., the case with β̃ = β = 1). In that case, (9) is

reduced to the well-known relationship

Vi (x)− V0 (x) = lnPi (x)− lnP0 (x) ; (12)

that is, in standard models the difference in the choice probabilities for alternative i and the

reference alternative 0 informs us about the difference in the value from choose i relative to the

value from choose 0. The potential naivety we allow in our setup breaks this direct relationship

between Pi (x) /P0 (x) and Vi (x)− V0 (x) .

Moreover, (10) is reduced to (using the normalization that u0 (x) = 0) :

V0 (x) = δ
∑
x′∈X

V0

(
x′
)
π
(
x′|x, 0

)
+ δ

∑
x′∈X

ln

[∑
i∈I

Pi (x′)
P0 (x′)

]
π
(
x′|x, 0

)
.

For simplicity, denote the X × 1 vector {V0 (x)}x∈X as V0; write the X ×X matrix π (x′|x, 0) as

Π0, and write the X × 1 vector
{

ln
[∑

i∈I
Pi(x

′)
P0(x′)

]}
x∈X

as m. The above equation can be written
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as

V0 = δΠ0 (V0 + m) .

Thus,

V0 = (I−δΠ0)−1 δm.

Given this unique solution of V0, (12) immediately provides Vi (x) for all i ∈ I/ {0} and all x ∈ X .

To obtain ui (x) for i ∈ I\ {0}, note that (11) implies that

ui = Vi − δΠiV0 − δΠim, (13)

where Vi and ui are X × 1 vectors of {Vi (x)}x∈X and {ui (x)}x∈X respectively, Πi is the X ×

X matrix π (x′|x, i) . Thus we can conclude that in the standard exponential discounting model,

{ui}i∈I\{0} and {Vi}i∈I are identified once δ,G and {u0 (x)}x∈X are fixed. This replicates the

proof of Proposition 2 in Magnac and Thesmar (2002).7

The system of equations is no longer linear in the more general case we consider there. Denote

by z the X × 1 vector

ln

{∑
i∈I

exp

[
β̃

β
ln
Pi (x′)
P0 (x′)

+

(
1− β̃

β

)
ui
(
x′
)]}

x′∈X

. (14)

Note that there is a crucial difference between the vector m we defined earlier for the case β̃ = β

and z: m contains only observables and thus can be treated as known; in contrast z here depends

on unknown current payoffs {ui (x) : i ∈ I\ {0}} , thus cannot be considered as an observable. With

this in mind, we can write (10) in matrix form as

V0 = β̃δΠ0V0 + β̃δΠ0z.

Thus,

V0 =
(
I−β̃δΠ0

)−1
β̃δΠ0z

Now (11) can be written in matrix form as

Vi = ui + β̃δΠiV0 + β̃δΠiz (15)

= ui + β̃δΠi

[(
I−β̃δΠ0

)−1
β̃δΠ0z

]
+ β̃δΠiz (16)

7The only difference is that our argument above indicates that V0 does not have to be fixed. It can be identified

from the model.
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Finally, note that (9) can be written in matrix form as

Vi −V0 =
β̃

β
Di +

(
1− β̃

β

)
ui. (17)

where Di denotes the X × 1 vector {lnPi (x)− lnP0 (x)}x∈X . Thus, we have

β̃

β
Di +

(
1− β̃

β

)
ui + V0 = ui + β̃δΠiV0 + β̃δΠiz

β̃

β
Di −

β̃

β
ui + V0 = β̃δΠiV0 + β̃δΠiz

ui = Di +
β

β̃

(
I− β̃δΠi

)
V0 − βδΠiz

= Di + βδ
(
I− β̃δΠi

)(
I−β̃δΠ0

)−1
Π0z− βδΠiz

= Di + βδ

[(
I− β̃δΠi

)(
I−β̃δΠ0

)−1
Π0−Πi

]
z

Let

U =


u1

...

uI

 ,D =


D1

...

DI


both be (I ×X)× 1 vector with ui and Di stacked together; and let

B =


(
I− β̃δΠ1

)(
I−β̃δΠ0

)−1
Π0−Π1

...(
I− β̃δΠI

)(
I−β̃δΠ0

)−1
Π0−ΠI


be a (I ×X)×X matrix. Then we have

U = D+βδBz. (18)

Proposition 1 β, β̃ and δ are not separately identified; however, β̃δ and β̃/β may be separately

identified.

Let us make several useful remarks: First, if β̃δ and β̃/β are separately identified (see more

identifying assumptions below) we can in fact learn quite a lot qualitatively about β and β̃, even

though β,δ and β̃ are not separately identified. For example, suppose that we find that β̃/β > 1,
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then we can in fact conclude that β < 1 and β̃ > β. That is, we can conclude from β̃/β > 1 both

that individuals have present bias (because β < 1) and individuals are naive about their present

bias (because β̃ > β).

Second, Proposition 1 also tells us that with two-period panel data, the present bias factor β and

the standard discounting factor δ can not be non-parametrically identified under a sophisticated

model (i.e., β = β̃). To see this, the sophisticated model assumption β = β̃ restricts β̃/β = 1, thus

Proposition 1 tells us that only β̃δ can be identified from two-period panel data sets. This is not

surprising, as there is no distinction between the perceived present bias factor β̃ and the standard

discounting factor in their treatment for payoffs a period from now. Thus any identification for β

and δ under full sophistication must rely on non-stationarity in the model and more than three-

periods of panel data (see Fang and Silverman 2008, Paserman 2007, Laibson et al. 2007)

Third, Proposition 1 also tells us that in a fully naive model (i.e., β̃ = 1), β and δ can be

possibly identified (under identification assumption provided below, for example) even with two-

period panel data. The intuition here again is quite straightforward: even in a two-period model, a

naive decision-maker treats β and δ asymmetrically in the sense that she is naive about her present

bias (i.e., she naively believes that she does not suffer from present bias, i.e. β̃ = 1, even though her

present bias is β); but she is never naive about her standard discount factor δ (that is, she believes

that she discounts future payoffs in the rate of δ). It is this asymmetric treatment of present bias

β and the standard discounting δ by naive decision-makers that makes it possible to separately

identify β and δ even with just two-period panel data sets. Note that this discussion further sheds

light on why β and δ are not separately identified from two-period panel data when individuals are

sophisticated (there is no such asymmetric effect of present bias and standard discounting).

In order to identify βδ and β̃/β, we need additional assumptions:

Assumption 4 (Unique Solution) For any values of β̃δ and β̃/β and {u0 (x) : x ∈ X} , (18)

has a unique solution.

Under the above assumption, we can uniquely identify ui (x) for all i ∈ I\ {0} and x ∈ X and

Vi (x) for all i ∈ I and x ∈ X for any given pair
〈
βδ, β̃/β

〉
.
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Now we discuss conditions for identification related to
〈
β, β̃, δ

〉
. This discussion is closely

related to that in Magnac and Thesmar (2002). We impose the following restriction exclusion

assumption:

Assumption 5 (Exclusive Restriction) Suppose that there exists variables (x1, x2) ∈ X 2 with

x1 6= x2, but:

• for all i ∈ I, ui (x1) = ui (x2) ;

• for some i ∈ I, π (x′|x1, i) 6= π (x′|x2, i) .

More specifically, to satisfy the restriction exclusion assumption, there must be a variable that

does not directly affect the contemporaneous utility parameters for any action ui, but the variable

may matter for choices because it affects the transition of state variables. The extent to which

individuals’ choice probabilities differ at state x1 and x2 reveals information about the discount

factors. This is the key intuition from Magnac and Thesmar’s (2002) result where they are interested

in identifying a single long-term discount factor δ. In their setting, if δ = 0, i.e., if individuals are

completely myopic, then the choice probabilities would have been the same under x1 and x2; to the

extent that choice probabilities differ at x1 and x2, it reveals information about the degree of time

discounting. Their intuition, however, can be easily extended to the hyperbolic discounting case,

as we will exploit in the proposed estimation strategy below.

For notational simplicity, we will divide the state variables into two groups (xr, xe) where xr

refers to the state variables that directly enter the contemporaneous payoff function ui (xr) and xe

refers to the state variables that satisfy the exclusive restriction assumption (i.e., they do not enter

the contemporaneous payoff function but affects the state transition probabilities).

If is also useful to note that so far, our discussion has focused on short-panel (two period)

data sets under stationarity assumption. Having two-period data allows one to non-parametrically

estimate the transition probabilities π (x′|x, i) ; stationarity ensures that looking at a two-period

slice of a potentially long panel is sufficient.8

8Fang and Silverman (2006) considered a case without stationarity (specifically a finite horizon model) and showed
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2.5 Estimation Strategies

We propose two related two-step estimation strategies. The first step for the two estimation

strategies are the same: estimate from the data the choice probabilities Pi (x) for all i ∈ I and all

x ∈ X , as well as the state transition probabilities π (x′|x, i) for all i ∈ I and all (x′, x) ∈ X 2.

The second step of both estimation strategies involves two loops. (1) In the inner loop, we solve

equation (18) for a given pair of values for
〈
βδ, β̃/β

〉
for ui (x) for all i ∈ I\ {0} and all x ∈ X

where we normalize u0 (x) = 0 for all x ∈ X . Note the role played by Assumption 4. (2). In the

outer loop, we maximize an objective function (to be stated below) over values of
〈
βδ, β̃/β

〉
. The

two estimation strategies differ in the objective function used in the outer loop.

In the first estimation strategy, we take the ûi (x) solved from the inner loop and impose (by

Assumption 5) the restriction that

ûi (xr) =
∑

{(xr,x̃e):x̃e∈Xe}

ûi (xr, x̃e) (19)

where Xe is the set of possible values for the payoff irrelevant state variables xe we discussed in

Assumption 5. We then use the above utility function ûi (xr) to predict the pseudo-choice proba-

bilities for the individuals in a given state x ∈ X . Denote the pseudo-choice probabilities as P̃i (x) .

The first estimation strategy will maximize the pseudo-likelihood by iterating over combinations

of
(
βδ, β̃/β

)
. Under the maintained model, at the true values of

(
βδ, β̃/β

)
, ûi (xr, x̃e) as solved

from the inner loop should be independent of x̃e, the payoff irrelevant state variables, and thus

ûi (xr) as calculated in (19) would be exactly equal to ûi (xr, x̃e) for all x̃e ∈ Xe. Thus the pair of(
βδ, β̃/β

)
that maximizes the pseudo-likelihood of the observed choices is a consistent estimator.

In the second estimation strategy, we exploit the identifying assumption 5 in a somewhat differ-

ent manner. We know that at the true values of β̃/β and β̃δ, for all x̃e ∈ Xe,the standard deviation

of ûi (xr, x̃e) with respect to x̃e should be 0, because Assumption 5 requires that ui(xr, x̃e) does

that β and δ could be potentially identified without exclusion restriction if the researcher has access to at least three-

period panel data.
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not depend on x̃e. Therefore the estimator for β̃/β and β̃δ in our second estimation strategy is

(β̃/β, β̃δ) = arg min
{β̃/β,β̃δ}

f(β̃/β, β̃δ)

= arg min
{β̃/β,β̃δ}

∑
xr∈Xr

∣∣∣std [ûi (xr, x̃e; β̃/β, β̃δ)]∣∣∣ .
2.6 Monte Carlo Experiments

In this section we provide Monte Carlo evidence for the identification of discount factors in a

dynamic discrete choice model using the two estimation methods described above. In this simple

Monte Carlo exercise, we consider a 2-choice decision problem facing an agent with infinite horizon

and stationary state transition. There are two state variables x1 and x2. The state variable

x1 ∈ {0, 1, 2, 3, 4, 5}, affects both instantaneous utility and state transition; while state variable

x2 ∈ {0, 1, 2, 3}, affects only the state transition.9 When a = 1, instantaneous utility is u1 (x1) =

α0 + α1x1; when a = 0, instantaneous utility is simply u0 (x1) = 0 for all x1. The true parameters

are α0 = −0.1, α1 = 0.5, β̃/β = 1.2, and β̃δ = 0.8. We estimate the discount factors and

corresponding utility parameters 5, 000 times for various sample sizes, to show the differences in

performance of these two estimation methods. Results are shown in Table 1. Table 1 shows that

both estimation methods do an excellent job in recovering the true parameter values of in large

samples. For the Monte Carlo sample size analogous to our actual estimation sample (12,500),

the maximum pseudo-loglikelihood method seems to perform better. As a result, we will use the

maximum pseudo-loglikelihood method in our empirical exercise.

9The state transition matrices are generated as follows. We first generate two random matrices M0 and M1

each with dimension #X1 ×#X2 = 6 × 4 = 24, with each entry a random number generated from a uniform [0, 1]

distribution. We then normalize the entry in each row by its row sum to ensure a proper probability matrix. The

resulting matrices are denoted Π0 and Π1. The (j, k)-th entry of matrix Πi where (j, k) ∈ {1, ..., 24}2 is the probability

that (x′1, x
′
2) takes on k-th combination condition on (x1, x2) taking on j-th combination in this period and action

chosen is i ∈ {0, 1} . The matrices Π1 and Π0 are assumed to be known by the decision maker; and are directly taken

to be the state transition probabilities in our Monte Carlo exercise reported in Table 1.
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Estimation Method Maximizing Pseudo-Loglikelihood Minimizing Variance of Utilities

Parameters β̃δ β̃/β α0 α1 β̃δ β̃/β α0 α1

True Values 0.8 1.2 -0.1 0.5 0.8 1.2 -0.1 0.5

Sample Size: 240, 000

Mean 0.828 1.246 -0.100 0.500 0.824 1.240 -0.100 0.500

Std. Dev. 0.076 0.124 0.008 0.003 0.084 0.121 0.009 0.003

Sample Size: 120, 000

Mean 0.823 1.244 -0.100 0.500 0.817 1.235 -0.100 0.500

Std. Dev. 0.086 0.146 0.012 0.005 0.096 0.136 0.012 0.005

Sample Size: 12, 500

Mean 0.766 1.243 -0.104 0.503 0.765 1.253 -0.105 0.503

Std. Dev. 0.172 0.234 0.037 0.016 0.186 0.234 0.038 0.016

Table 1: Monte Carlo Results Under the Two Proposed Estimation Methods.

Notes: n is the sample size. For each sample size, we generate 5000 random simulation samples. The Mean, Median

and Standard Deviations of the estimated parameters are with respect to the 5000 samples.
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3 Application: Empirical Application: Mammography Decisions

3.1 Background on Mammography

Breast cancer is the third most common cause of death, and the second leading cause of cancer

death, among American women. The U.S. Preventive Services Task Force recommends mammog-

raphy screening for women beginning at age 50 every 12-33 months in order to reduce the risk of

death from breast cancer (DHHS 2002). From birth to age 39, one woman in 231 will get breast

cancer (< 0.5% risk); from age 40-59, the chance is 1 in 25 (4% risk); from age 60-79, the chance is

1 in 15 (nearly 7%). Assuming that a woman lives to age 90, the chance of getting breast cancer

over the course of an entire lifetime is 1 in 7, with an overall lifetime risk of 14.3%.10

Breast cancer takes years to develop. Early in the disease, most breast cancers cause no symp-

toms. When breast cancer is detected at a localized stage (it hasn’t spread to the lymph nodes),

the 5-year survival rate is 98%. If the cancer has spread to nearby lymph nodes (regional disease),

the rate drops to 81%. If the cancer has spread (metastasized) to distant organs such as the lungs,

bone marrow, liver, or brain, the 5-year survival rate is 26%.

A screening – mammogram – is the best tool available to find breast cancer before symptoms

appear. Mammography can often detect a breast lump before it can be felt. Mammography can

save lives by finding breast cancer as early as possible. For women between over the age of 50,

mammography have been shown to lower the chance of dying from breast cancer by 35%.11 Leading

experts, the National Cancer Institute, the American Cancer Society, and the American College of

Radiology recommend annual mammography for women over 40.

10As a useful comparison, breast cancer has a higher incidence rate than lung cancer in the US. In 2004, there were

217, 440 new cases for breast cancer in US.

11Finding breast cancers early with mammography has also meant that many more women being treated for breast

cancer are able to keep their breasts. When caught early, localized cancers can be removed without resorting to

breast removal.
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3.2 Data

The data used in this analysis are from the Health and Retirement Study (HRS). The HRS is a

nationally representative biennial panel study of birth cohorts 1931 through 1941 and their spouses

as of 1992. The initial sample includes over 12,652 persons in about 7,600 households who have

been interviewed every two years since 1992. The most recent available data are for year 2006 (wave

8). The survey history and design are described in more details in Juster and Suzman (1995). Since

the HRS started asking women questions about their usage of mammography in 1996, our sample

is limited to women interviewed in the HRS from 1996 to 2006. We focus on the age group 51 to

64, and exclude those observations with missing values for any of the critical variables.12 We also

exclude those who have ever been diagnosed of (breast) cancer,13 since those who are diagnosed

of cancer might be of a different group who do not make decisions on mammography or any other

preventive health care the same way as do others. Our final sample consists of 12,506 observations

for 7,067 individuals.

3.3 Descriptive Statistics

Table 2 provides summary statistics of the key variables for the sample we use in our empirical

analysis. The sample of women we select are aged from 51 to 64 (note that we are combining two-

period panels using individuals that appear in two consecutive samples), with an average age of

57.8. A large majority of the sample are white (78%) and married (70.5%). The average household

income is about 50K dollars. 23% of the sample have a self-reported bad health and about 76% of

the women undertook mammogram in the survey year. About 1.5% of the women died who were

surveyed in a wave died within two years. Finally, about 75% of the mothers of the women in our

sample are either still alive or died at age greater than 70.

12The key variables are marital status, white, self-rated health, household income, and mammography usage (see

the summary statistics table).

13For those who entered in 1992 (i.e. the first wave), we know whether they have been diagnosed of breast cancer.

But for those who entered HRS in latter waves, we only know whether cancer have been diagnosed of since the survey

from 1994 did not ask about breast cancer specifically.
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Variable Mean Std. Dev. Min Max Obs.

Age 57.81 3.95 51 64 12506

White .781 .413 0 1 12506

Married .705 .456 0 1 12506

Household Income 50,038 69,122 101 2.14E+6 12506

Log of Household Income 10.32 1.07 4.61 14.57 12506

Bad Health .230 .421 0 1 12506

Mammogram .758 .428 0 1 12506

Death .015 .121 0 1 12506

Mother Still Alive or Died After Age 70 .749 .433 0 1 12506

Bad Health (t+ 1) .249 .432 0 1 12319

Household Income (t+ 1) 48,976 .288 177,517 103 1.76E+07 12319

Table 2: Summary Statistics of Key Variables in the Estimation Sample.

Note: The last two variables in the table are observed only for those who survive to the second period.

3.4 Decision Time Line

Figure 1 depicts the time line for mammography decisions for women in our sample. As we

mentioned earlier, we only consider women who are alive and have not yet been diagnosed with any

cancer (thus not breast cancer) in the first period. Given her period-1 state variables, she makes

the decision of whether to undertake mammography. Mammography detects breast cancer with

very high probability, though not for certain, if the woman has breast cancer. In that event, early

detection of breast cancer will lead to higher survival probability.

To fully capture the diagnostic nature of mammography, we would need to have information

about whether the woman has breast cancer at any period, and estimate the probability of detecting

breast cancer with (P1 in Figure 1) and without (P2) mammogram. However, we do not have access

to such data. In HRS, even though we have information on women’s mammography choices from

1996 on and we know whether their doctors have told them that they have any cancer, we do not
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Figure 1: The Timeline for Mammography Decisions

have information on which kind of cancer they have been diagnosed of.14

Due to these data issues, we decide to go directly from the mammography decision to the

live/death outcome and health status if alive (see our empirical specification below), without going

through the intermediate step (having breast cancer or not). That is, we simply capture the

ultimate effect of undertaking mammography as to lower the probability of dying, and to lower the

probability of being in bad health status if alive.

3.5 Empirical Specification

In this dynamic discrete choice model, each agent decides whether to get mammography or not.

It is clear from the previous section on identification, we need to impose some normalization of the

14Even for those over age 65 with matching Medicare claim data, the number of observations is not big enough for

us to get the needed probabilities of being diagnosed with breast cancer with and without mammography stratified

by all the state variables we want to control in our model such as age, race, health status, income, and marital status.
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contemporaneous utilities.

Let us first be specific about the state variables we use in our empirical specification. They in-

clude: Age (Age); Marital Status (Married); Bad Health (BadHealth) which indicates whether

the individual self reports bad health; Log of Household Income (LogIncome), Death (Death)

and whether her mother is still alive or died at age greater than 70 (Mother70)

Each woman decides whether to undertake mammography (i = 1 if she does and i = 0 if she

does not). We normalize the individual’s instantaneous utility at the death state to be zero. Note

that no decision is necessary if one reaches the death state.

If an individual stays alive, then we specify her utility from taking mammogram relative to not

taking mammogram as:

u1 (x)− u0 (x) = α0 + α1BadHealth + α2LogIncome + εt, (20)

where “BadHealth” is a binary variable indicating whether the agent is in bad health or not at

time t; “LogIncome” denotes the household income of the agent at time t, α0 and α1 are the utility

parameters, and εt denotes the utility shock at time t. It is important to remark that even though

the other state variables Age, White and Married do not show up in the above specification, it

does not mean that these variables do not affect the instantaneous utility of the individual; what

it means is that these variables affect the instantaneous utility under action 1 (mammogram) and

action 0 (no mammogram) in exactly the same way.

The agents make their decision about whether to get mammography by comparing the expected

summations of current and discounted future utilities from each choice. Individuals are uncertain

about their future survival probabilities, and if alive, the transition probabilities of future health and

household income. These probabilities depend on their choice about whether to get mammography

or not; time-variant state variables including their lagged health status, their lagged household

income, and their age, denoted as A; and time-invariant state variables including their race, denoted

by a binary variable White, their marital status Married, and the longevity of their mothers,

denoted by the binary variable Mother70 which takes value 1 if the mother is still alive or died

at the age older than 70 and 0 otherwise.

The exclusion restriction variable for our empirical analysis is Mother70. We make the plau-
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sible identifying assumption that Mother70 affects the transition matrix of the key state variables

(BadHealth and Death) that directly enter into the instantaneous utilities, but Mother70 itself

does not directly affect the instantaneous utilities. In the preliminary results below, we will show

evidence for this assumption.

3.6 Preliminary Results

3.6.1 First Step Estimates

As we noted earlier, our estimation strategy has two steps. In the first step, we need to use

the data to estimate choice probabilities, and the state transitions. Here we report these first-step

estimation results. The choice probabilities and the death probability are estimated using Logit

regressions; but the transition of BadHealth and LogIncome are estimated non-parametrically.

Reduced Form Result for the Determinant of Mammogram Table 3 produces the reduced

form Logit regression results for the determinants of whether a woman will undertake mammogram

in a given year. There are two statistically significant coefficient estimates: high income women are

more likely and whites are less likely to undertake mammograms with both coefficient estimates

significant at 1%. While the rest of the coefficient estimates are not significant, their signs are

plausible: women whose mothers are still alive or died after age 70 are less likely, women with bad

health are less likely, and married women are more likely, to undertake mammograms.15

Determinants of the Probability of Dying in Two Years Table 4 reports the Logit regres-

sion results for the probability of dying in two years. It shows that on net, undertaking mammogram

lowers the probability of death (notice that the average age of the sample is about 58 years). Not

15Table 3 is a shorter version of the actual regressions we used to measure the choice probabili-

ties where we also include many interactions among the variables included in Table 3: Mother70×Age,

Mother70×Age2, BadHealth×Age, BadHealth×Age2, White×Mother70, White×hLogIncome,

White×Age, White×Age2, Married×Mother70, Married×LogIncome, Married×Age, Mar-

ried×Age2, White×Married, White×Married×LogIncome. The results from this flexible Logit regressions

are harder to interpret than those in Table 3.
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Variable Coeff. Est. Std. Err. t-stat.

Mother70 -.028 .050 -0.57

BadHealth -.0067 .0531 -0.13

LogIncome .378∗∗∗ .024 15.57

Age .172 .174 0.98

Age2 -.0014 .00151 -0.95

White -.209∗∗∗ .0547 -3.82

Married .0427 .052 0.82

Constant -7.65 5.03 -1.52

Table 3: Determinants of Mammography Decisions: Reduced Form Logit Regression Results.

surprisingly, women with bad health are more likely to die, but mammogram reduces the probabil-

ity of dying conditional on bad health. Also note that women whose mother are either still alive or

died after age 70 are less likely to die, suggesting a genetic link of longevity between mothers and

daughters.

Evolution of Bad Health in Two Years Figure 2 depicts a subset of the results from the

non-parametric estimation of the evolution of BadHealth for a selective combinations of the

other state variables and the mammogram choice. For example, Panel (a) shows that probability

of having bad health in period 2 is higher for women with bad health in period 1 conditional on

undertaking mammogram in period 1 and their mothers are either still alive or died after age 70.

Panel (b) showed that women with longer living mothers are less likely to experience bad health.

Panel (c) and (d) showed that undertaking mammogram lowers the probability of bad health in

period 2. Also note from all panels that the probability of bad health decreases with household

income.
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Figure 2: Non-parametric Estimate of the Determinants of Bad Health in Two Years
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Variable Coeff. Est. Std. Err. t-stat.

Mammogram 1.94 2.550 0.76

Mammogram×Age -0.04 0.043 -0.92

Mammogram×BadHealth -0.04 0.333 -0.12

Mother70 -0.25∗∗ 0.160 -1.54

BadHealth 1.72∗∗∗ 0.275 6.25

LogIncome -0.183∗∗∗ 0.078 -2.35

Age 0.294 0.667 0.44

Age2 -0.0016 0.006 -0.29

White -0.126 0.167 -0.75

Married -0.100 .174 -0.57

Constant -14.1 19.6 -0.72

Table 4: Determinants of Probability of Dying in Two Years.

3.6.2 Utility Parameters and Discount Factors

Here we report the preliminary estimation results for the parameters in the utility function

specification (20) and the identified discount factor combinations β̃/β and β̃δ. We found that

having bad health lowers the utility of undertaking mammography relative to not undertaking

mammography, consistent with our earlier finding in Table 3 that women with bad health are less

likely to undertake mammography. We found that the relative utility of undertaking mammography

increases with household income, consistent with the finding in Table 3 that women with higher

household incomes are more likely to undertake mammography.

More interestingly, we estimate that β̃/β to be 1.80 and β̃δ to be around 0.86. We still need

to calculate the standard error for these estimates. But these point estimates shows that women

exhibit substantial present bias (β < 1) as well as naivety about their present bias (β̃ > β) when

making mammography decisions.

Our estimates for βδ = β̃δ×β/β̃ = 0.86/1.80 ≈ 0.48. This can be compared with the estimate in

Fang and Silverman (2007) where they estimate β to be 0.338 and δ to be 0.88, with βδ ≈ 0.30 for
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Variable Coeff. Est. Std. Err.

Utility Function Parameters

BadHealth -0.29

LogIncome 0.51

Constant -4.66

Discount Factor Combinations

β̃/β 1.80

β̃δ 0.86

Table 5: Preliminary Parameter Estimates for Utility Function and Combinations of Discount

Factors.

a group of single mothers with dependent children. It is important to note that our sample period

is two years, while Fang and Silverman’s sample period is one year; also the sample of women here

are older and have very different social economic status (e.g. education, income, marital status)

from the sample in Fang and Silverman.

4 Discussions

4.1 Unobserved Heterogeneity

4.2 Unobserved State Variables

4.3 Role of Non-stationarity and Longer Panels

5 Conclusion

This paper extends the semi-parametric identification and estimation method for dynamic dis-

crete choice models using Hotz and Miller’s (1993) conditional choice probability (CCP) approach

to the setting where individuals may have hyperbolic discounting time preferences and may be

naive about their time inconsistency.

Our analysis showed that the three discount factors, the present bias factor β, the standard
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discount factor δ and the perceived present bias factor β̃ for naive agents can not be separately

identified; however, with identifying exclusive restrictions, we can identify two combinations of the

above three parameters, namely, β̃/β and β̃δ. The key identifying restriction is that there exists

variables that do not directly enter the instantaneous utility function but affect the transition of

other payoff relevant state variables.

Our discussion on identification also makes it clear that, with variables that satisfy the identi-

fying exclusive restrictions, β and δ can not be separately identified in a fully sophisticated model

with hyperbolic discounting time preferences (i.e. β̃ = β) with two-period short panel data; but

they could be separately when the agents are assumed to be naive about their present bias (i.e.

β̃ = 1).

We proposed two estimation strategies based on the identification argument, and implement

the proposed estimation method to the decisions of undertaking mammography to evaluate the

importance of present bias and naivety in the under-utilization of mammography. Preliminary

results show evidence for both present bias and naivety. The preliminary estimate of β̃/β is about

1.80 and β̃δ is about 0.86.
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