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Abstract

This paper proposes a multi-prize noisy-ranking contest model. Contestants are ranked in descend-
ing order based on their perceived outputs, and rewarded by their ranks. A contestant�s perceivable
output increases with his autonomous e¤ort, but is subjected to random perturbation. Under plausible
conditions, the stochastic equivalence of the model presented in this paper with the family of (winner-
take-all and multi-prize) lottery contests built upon ratio-form contest success functions is established.
The model thus provides a plausible microfoundation for this family of often-studied contests. In addi-
tion, the approach taken in this paper reveals a common thread that connects a broad class of seemingly
disparate competitive activities (such as rent-seeking contests, patent race, research tournament, and
auctions with pre-auction investments) and uni�es them through a common performance evaluation
rule.
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1 Introduction

A wide class of competitive activities can be viewed as contests, in which all participants forfeit

scarce resources in order to compete for a limited number of prizes. The amount of e¤ort exerted

directly a¤ects whether or not one wins, but measurement errors, subjective biases and randomness

in the production processes may in�uence the outcomes as well.

A wide variety of theoretical frameworks of contest/tournament models is available in the eco-

nomic literature. They exhibit diverse technical characteristics and mirror various contexts.1 Cen-

tral to formally modelling contests is a mechanism that picks the winners and distributes the prizes.

In �imperfectly discriminatory contests�, where factors other than e¤ort may in�uence whether one

wins or loses, the selection mechanism is conventionally represented by a contest success function,

which maps contestants�e¤ort entries into the likelihood of every contestant winning each prize.

The lion�s share of the existing literature concerns itself with winner-take-all contests. One,

perhaps the most, widely adopted approach is the lottery contest model that assumes a ratio-form

contest success function, with the Tullock contest model as its most popular special case: The

likelihood that a contestant i wins Pi is given by the ratio of the output of his e¤ort to the total

output supplied by the entire cohort, i.e., Pi = gi(xi)=
nX
j=1

gj(xj), where the output production

function gi(xi) is usually an increasing function of e¤ort xi.2

This framework provides an intuitive and tractable speci�cation for the winning probabilities as

functions of e¤ort when other random factors may be involved in determining the winner. However,

a ratio-form contest success function does not directly apply to a multi-prize contest setting. In

order to model the widely observed competitive events where contestants vie for more than one

prize,3 Clark and Riis (1996b and 1998a) have introduced a clever �generalization� of the basic

Tullock contest model that allows a block of prizes to be distributed. By adopting ratio-form success

functions as its building block, this �multiple-winner nested contest model�hypothetically

conducts a series of conditionally independent (single-winner) �lotteries�and allows each of them

1Examples of applications include college admissions, in�uential politics, sports, war and con�ict, internal labor

market competition, etc. See Konrad (2007) for a thorough survey of economic studies on contests.
2Recent applications of ratio-form contest success functions can be seen in Wärneryd (2000), Yildirim (2005),

Morgan and Várdy (2006) and Hann, Hui, Lee and Png (2008), among many others.
3For instance, in internal labor markets, �rms often set aside a number of bonus packages to reward top performing

workers. Employees may compete to �ll multiple vacancies higher up in the organizational hierarchy.
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to �draw�one prize recipient until all the prizes are given away.4

The nested contest model o¤ers the most reasonable and convenient, as well as the most promi-

nent, alternative so far in determining multiple recipients of prizes in imperfectly discriminatory

contests.5 ;6 Nevertheless, the nature of this process requires further exploration: the economic ac-

tivities that underlie each single �lottery�, as well as the entire selection process, remain in a �black

box�. Furthermore, while Clark and Riis (1996b) point out that their procedure is �one of many

reasonable alternatives� to select winners, its popularity naturally raises the following question:

Is this nested model �the one� for imperfectly discriminatory multi-prize contests in the family

of lottery contests? Are there any other reasonable ways to model the winning probabilities in

multi-prize lottery contests? More fundamentally, how are the �sequential� lottery contest and

winner-take-all lottery contest intrinsically connected? This paper aims to address these issues.

As Konrad (2007) has pointed out in a thorough survey of economic studies on contests, a

contest can be naturally regarded as a competitive event where contestants expend costly e¤orts to

�get ahead of their rivals�. Based on this natural notion, a contest requires the contest organizer

to (at least partially) �order� the contestants based on a ranking system. While a ranking rule

should therefore underpin the winning mechanism, it remains less than explicit for the family of

lottery contests, especially in multi-prize settings.

This paper proposes a multi-prize contest model that selects prize recipients through a noisy

ranking of contestants. This framework borrows its technical form directly from consumers�discrete

choice econometric model (i.e. McFadden�s general extreme value model), but has a di¤erent

economic concern. In particular, the model involves a �xed number of economic agents (contestants)

who produce their output out of their input (e¤ort entries). Speci�cally, one�s observed output is

the sum of a deterministic component (a strictly increasing function of e¤ort) and a noise term

that could arise from numerous sources, e.g. observation error or perturbation in production. The

4As a result, the conditional probability that a remaining contestant will be selected in the next �draw� is

independent of the e¤ort entries of contestants selected in previous �draws�.
5Besides the studies conducted by Clark and Riis (1996b, 1998a), the application of lottery contest models in

multiple-winner settings have been discussed by Amegashie (2000), Yates and Heckelman (2001), Szymanski and

Valletti (2005) and Fu and Lu (2007 and 2008).
6Another approach to modelling multiple-winner contests is the multiple-prize all-pay auction model. A handful of

studies have contributed to this research agenda, including Barut and Kovenock (1998), Moldovanu and Sela (2001),

Moldovanu, Sela, and Shi (2007) and Siegel (2007).
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decision maker ranks these contestants by their observed outputs in descending order.7 That is, the

higher the observed output, the better a contestant�s rank. As a result, given a set of e¤ort entries

by contestants, and any (simultaneous) realization of noise terms, a complete ranking arises. The

decision maker assigns each agent a prize of his rank accordingly.8

We establish that this model (uniquely) generates an outcome that is stochastically identical

to that of a generalized multi-prize lottery contest. For any given e¤ort entry and production

functions, the ex ante likelihood of every possible prize distribution outcome perfectly coincides

with that in the multiple-winner nested contest model, which seemingly requires a sequential lottery

process.9 Furthermore, as will be illustrate later, our ranking model is based on a �favorable extreme

value ranking�(hereafter referred to as FEV ranking). These results rationalize the convenient

speci�cation of the multi-prize distribution rule assumed by Clark and Riis (1996b and 1998a):

The winning probabilities speci�ed by the �sequential� lottery contest model literally re�ect one

statistical property of this underlying (simultaneous) ranking system. As a winner-take-all lottery

is indeed a special case of the nested contest model (where only the �rst draw is of interest), the

winner-take-all lottery contest is thus integrated with a multiple-prize nested contest through a

(uniquely) hidden ranking system.

A handful of papers have worked to probe the micro-foundation of winner-take-all contest

success functions. In a seminal paper, Skaperdas (1996) has shown that the ratio-form contest

function is the only alternative that satis�es a number of axiomatic properties. This axiomatic

foundation, as pointed out by Skaperdas (1996) and Clark and Riis (1996a and 1997), reveals

the connection between the contest model, the probabilistic choice models (See Luce and Suppes,

7To provide an analogy, this scenario mirrors a standard moral hazard setting, in which the decision maker (an

employer) cannot observe or verify the e¤ort supplied by contestants (employees). Hence, he ranks the perceived

performance of contestants in order to determine their compensation and other rewards.
8According to Clark and Riis (1998a) and Fu and Lu (2007), this prize allocation rule maximizes the amount of

individual e¤ort in a multi-prize lottery contest (multiple-winner nested contest). As this paper will establish the

stochastic equivalence between our noisy ranking model and a multi-prize lottery contest, this prize allocation rule

also maximizes the expected output in our framework. This type of rank-ordered prize distribution rule has also been

discussed in studies by Glazer and Hassin (1988), Barut and Kovenock (1998), Moldovanu and Sela (2001), etc.
9The ex ante likelihood that a contestant is ordered on the l-th rank is equivalent to the probability that a

contestant is selected for the l-th draw in a multiple-winner nested contest.
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1965) and the discrete choice econometric models.10 ;11 To our best knowledge, the current paper is

the �rst one that explores the microeconomic underpinning of the generalized (multi-prize) lottery

contest model, and investigates its connection to other theoretical frameworks.

This paper is closely related to the literature that attempts to bridge di¤erent contest modelling

approaches. Baye and Hoppe (2003) reveal the strategic equivalence of research tournament models

(Fullerton and McAfee, 1999), Patent Race models (Dasgupta and Stiglitz, 1980) and winner-take-

all Tullock Contest models. Hirshleifer and Riley (1992) have derived single-winner ratio-form

contest success functions through contests based on noisy ranking. In addition to allowing for a

more generalized prize structure and output production technologies, this paper further expands

this family of models and �nds that it further accommodates auctions with pre-investment (Tan,

1992, Piccione and Tan, 1996 and Bergemann and Välimäki, 2006).

The technical isomorphism leads to the following, more fundamental, questions: (1) Why can

di¤erent classes of contests be uni�ed under the same umbrella (ratio-form contest success func-

tions)? (2) To what extent can such isomorphism continue to hold? What kind of competitive

activities can be abstracted as lottery contests? (3) Ultimately, how should the economic fun-

damentals behind this popular ratio-form contest success functions, and the popularity of this

functional form, be interpreted?

This paper introspectively scrutinizes the noisy-ranking model in order to address these ques-

tions. A rationale for these issues unfolds as the economic interpretation of the technical approach

(McFadden, 1973 and 1974) is developed: Although these models visualize di¤erent circumstances,

they all embody the FEV ranking. The statistical nature of the model presented here (FEV ranking)

allows us to deduce one naturally plausible economic interpretation for the particular competitive

activities covered within the framework of ratio-form success functions. It strongly indicates that

the evaluation mechanism underlying these contests essentially honors the most favorable shock

that is realized on each contestant�s performance, i.e., �the best shot� of each contestant. Such

an evaluation rule is explicitly witnessed in many real-life competitive events and conforms to a

10Assuming unmeasurable psychological factors, this literature investigates randomized choices of decision makers

(consumers) that result from stochastic ranking. Among others, McFadden (1973 and 1974) has demonstrated the

econometric implementation of modelling revealed choice among discrete alternatives while adopting a probabilistic

choice model.
11Clark and Riss (1996a) have pointed out the equivalence of a random choice model and lottery contests in the

winner-takes-all case.
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natural regularity. This hidden link uncovered in our analysis enables us not only to connect a

wide variety of observationally detached competitive activities, but also to explore in depth the

unobserved common thread that runs through these contests and imposes a conceptual limit on

the scope of this unity.

The rest of the paper is organized as follows. In Section 2, the model is set up, the analysis

is completed and the implications of this model are brie�y discussed. Section 3 elaborates upon

the economic implications of the results, and reinforces the argument by presenting the �dual�

problem within our benchmark model and other applications of FEV ranking in alternative settings

(auctions). Section 4 provides some concluding remarks.

2 A Multi-Prize Noisy-Ranking Contest Model

2.1 Setup

A multi-prize noisy-ranking contest model is proposed. I � 2 contestants, indexed by i 2 I ,

f1; 2; :::; Ig; simultaneously submit their e¤ort entries x = (x1; : : : xI), to compete for L 2 f1; 2; :::; Ig

prizes. The contest organizer observes a noisy signal (yi) about contestant i�s output and evaluates

their performance through this signal. Following McFadden (1973 and 1974), we assume that the

noisy signal (yi) is described by

log yi = log gi(xi) + "i; 8i 2 I; (1)

where the deterministic strictly increasing function gi(�) : R+ ! R+ measures the impact of contes-

tant i�s e¤ort xi,12 and the additive noise term "i re�ects the randomness in the production process

or the imperfection of the observation and evaluation process. gi(�) is named as the production

function of contestant i. De�ne g , fgi(�); i 2 Ig, which denotes the set of technologies. The idio-

syncratic noises " , f"i(�); i 2 Ig are independently and identically distributed. The additive-noise

ranking model (1) is equivalent to a multiplicative-noise ranking model

yi = gi(xi)~"i; 8i 2 I; (2)

where the noise term ~"i is de�ned as ~"i , exp "i.

The L prizes are ordered by their values, with V1 � V2 � : : : � VL. Each contestant is assumed

to be eligible for one prize at the most. As contestants�outputs accrue to the bene�ts of the contest
12De�ne log gi(xi) = �1 if gi(xi) = 0.
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organizer, the contest organizer ranks these contestants based on their performance evaluations (i.e.,

perceivable output log yi) in descending order. Prizes are allocated among contestants based on

their ranks, given the availability of the prizes. That is, the contestant who contributes the highest

perceivable output yi receives V1, the contestant who contributes the second highest perceivable

output then receives V2, and so on, until all the prizes are given away.13

When L = 1, the model degenerates into a winner-take-all contest, with the top-ranked con-

testant being the only winner. When L � 2, a multi-prize contest follows, which requires a more

complete ranking among contestants in order to implement its prize distribution rule. For any given

e¤ort entries x, a complete ranking among contestants immediately results from any realization of

the noise terms ". A fair tie breaking rule is assumed. The probability of a contestant i winning

a prize Vl is simply given by the probability that he is ranked at the l-th position. This setup

therefore embraces the notion that a contest is a competitive event where contestants compete to

�get ahead of others�(Konrad, 2007).14

While this model imposes virtually no restrictions on the technology gi(�) and the number of

prizes L, it follows McFadden (1973 and 1974) in assuming the random component "i to be drawn

from a type I extreme-value (maximum) distribution. When the cumulative distribution function

of "i is denoted by F (�), then we have

F ("i) = e
�e�"i ; "i 2 (�1;+1); 8i 2 I; (3)

and the density function is

f("i) = e
�"i�e�"i ; "i 2 (�1;+1); 8i 2 I: (4)

The performance evaluation mechanism underlying this formulation will be discussed in Section

3, which reveals the economic implications of this seemingly peculiar distribution. Note that when

"i follows a type I extreme-value (maximum) distribution, then ~"i , exp "i must follow a Weibull

(maximum) distribution.

13The optimality of this prize allocation rule has been explained in footnote 8.
14This family of contest models includes Lazear and Rosen (1981), Nalebu¤ and Stiglitz (1983), etc. These models

link the top ranked contestant to a unique prize, while they di¤er in the output technology, the formulation of the

random component, and therefore the probability of a contestant winning the single prize given the e¤ort entries.
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2.2 The Equivalence to Lottery Contests

In this subsection, it will be shown that this noisy-ranking model is stochastically equivalent to the

family of lottery contests (winner-take-all lottery contests and multiple-winner nested contests).

In our setting, given the e¤ort entries x, a contestant i is ranked ahead of another j, if and only

if

log gi(xi) + "i � log gj(xj) + "j

, "j � "i + log
gi(xi)

gj(xj)
:

A contestant i would be top ranked if and only if

"j � "i + log
gi(xi)

gj(xj)
;8j 2 Infig:

In the setup of McFadden (1973 and 1974), the decision maker cares about the top-ranked

choice. The results established by McFadden (1973 and 1974) are therefore adapted to our contest

setting.

Lemma 1 For any given x � 0 such that
P
j2I gj(xj) > 0, the ex ante likelihood that a contestant

i achieves the top rank is

p(ijx) = gi(xi)P
j2I gj(xj)

; 8i 2 I: (5)

The proof is omitted as it is available from McFadden (1973 and 1974). By Lemma 1, the

probability of a contestant being top ranked can be expressed as the ratio of his output gi(xi)

to the sum of outputs contributed by all contestants. This winning probability coincides exactly

with the popularly assumed ratio-form contest success function of winner-take-all lottery contests,

provided that each contestant i produces the deterministic component of his output through a

technology gi(xi).

When L � 2; the model is a multi-prize contest. Furthermore, it should be noted that a multi-

prize contest is sensible only if I � 3.15 To fully describe a multi-prize contest, the probability of

each contestant winning each prize has to be completely characterized. To this end, the probabilities

of all possible complete (when L � I�1) or partial (when L � I�2) ranking must be explored. In

order to accomodate all these possibilities, we next study the complete ranking of all contestants

for a given set of e¤ort entries x.

15When I = 2 and L = 2, the contest simply boils down to a winner-take-all contest with a unique prize V = V1�V2.
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Suppose that K (1 � K � I � 2) contestants are ranked from top 1 to top K by the amount

of yi. Let ik indicate the index of the k-th ranked contestant. De�ne IK = fik; k = 1; :::;Kg,

which is the index set of the top ranked K contestants. We thus have yi1 � yi2 � � � � � yiK � yj ;

8j 2 
K+1 , InIK . Next, the conditional probability of a contestant n 2 
K+1 being the (K +1)-

th ranked is calculated. This probability is denoted by p(njNK ;x;YK), where NK = (i1; :::; iK)

denotes the sequence of the top K-ranked contestants; and YK = (yi1 ; :::; yiK ) denotes the sequence

of the observed outputs of the top K-ranked contestants.

Since "i are i.i.d., the conditional cumulative distribution function of "j ; 8j 2 
K+1 is described

by

F ("j jNK ;x;YK) = F ("j jyj < yiK )

= e�e
�"j
=e�e

��"j
; "j 2 (�1;�"j); 8j 2 
K+1; (6)

where �"j � log yiK � log gj(xj); 8j 2 
K+1. It therefore yields the density function

f("j jNK ;x;YK) = e
�"j�e�"j =e�e

��"j
; "j 2 (�1;�"j); 8j 2 
K+1: (7)

As implied by (6) and (7), the conditional distribution of "j ;8j 2 
K+1, only depends on the

minimum of fyik ; k = 1; :::;Kg, i.e., yiK ; because yi are ranked in descending order. The following

then results.

Lemma 2 For any given e¤ort entries x � 0 such that
P
j2N gj(xj) > 0, the probability that

a contestant n 2 
K+1 is the (K + 1)-th ranked, conditional on that contestants i1; i2; :::; iK are

respectively ranked from top 1 to top K, can be expressed as

p(njNK ;x) =
gn(xn)X

j2
K+1

gj(xj)
; 8n 2 
K+1: (8)

Proof. We �rst calculate p(njNK ;x;YK), which denotes the probability that a contestant n 2 
K+1
is the (K+1)-th ranked conditioning on that contestantsNK = (i1; i2; :::; iK) are respectively ranked

from top 1 to top K and their observed outputs are YK . Note that "n + log gn(xn) � log gj(xj) �
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�"j ;8"n 2 (�1;�"n); 8j; n 2 
K+1; j 6= n: We thus have

p(njNK ; YK ;x)

= Pr("j � "n + log gn(xn)� log gj(xj); 8j 2 
K+1; j 6= n:)

=

Z �"n

�1
[�j2
K+1;j 6=nF ("n + log gn(xn)� log gj(xj)jNK ;x;YK)]f("njNK ;x;YK)d"n

=

Z �"n

�1
[�j2
K+1;j 6=ne

�e�("n+log gn(xn)�log gj(xj))=e�e
��"j
]e�"n�e

�"n
=e�e

��"n
d"n

= (�j2
K+11=e
�e��"j )

Z �"n

�1
[�j2
K+1;j 6=ne

�e�("n+log gn(xn)�log gj(xj)) ]e�"n�e
�"n
d"n

= (�j2
K+11=e
�e��"j )

Z �"n

�1
exp[�"n � e�"n � (1 +

X
j2
K+1;j 6=n

gj(xj)

gn(xn)
)]d"n: (9)

Let �n;
K+1 = log(1 +
P
j2
K+1;j 6=n

gj(xj)
gn(xn)

) = log(
P
j2
K+1

gj(xj)
gn(xn)

); then

p(njNK ; YK ;x)

= (�j2
K+11=e
�e��"j )

Z �"n

�1
exp[�"n � e�("n��n;
K+1 )]d"n

= (�j2
K+11=e
�e��"j ) exp(��n;
K+1)

Z �"n��n;K

�1
exp[�"0n � e�"

0
n ]d"0n

= (�j2
K+11=e
�e��"j ) exp(��n;
K+1) exp[�e�(�"n��n;K)]

= [gn(xn)�
X

j2
K+1

gj(xj)] � f(�j2
K+1 exp[e��"j ]) exp[�e
�(�"n��n;
K+1 )]g

= [gn(xn)�
X

j2
K+1

gj(xj)] � expf(
X

j2
K+1

e��"j )� e�(�"n��n;
K+1 )g: (10)

Note that

(
X

j2
K+1

e��"j )� e�(�"n��n;
K+1 )

= (
X

j2
K+1

e�("nK+log gnK (xnK )�log gj(xj)))

� expf�["nK + log gnK (xnK )� log gn(xn)� (log(
X

j2
K+1

gj(xj))� log gn(xn))]g

=
e�"nK

gnK (xnK )
f
X

j2
K+1

gj(xj)�
X

j2
K+1

gj(xj)g

= 0: (11)

(10) and (11) give

p(njNK ; YK ;x) = gn(xn)�
X

j2
K+1

gj(xj): (12)
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(12) is a very strong result as it states that p(njNK ; YK ;x) does not depend on YK : Aggregating

over all possible YK , we must have

p(njNK ;x) = gn(xn)�
X

j2
K+1

gj(xj); n 2 
K+1;K = 1; :::; I � 2; (13)

which completes the proof.

Q.E.D.

The implications of Lemma 2 are the following. Firstly it reveals that, given the top K ranked

contestants, the conditional probability of a contestant being ranked as the next is completely

independent of (xi1 ; : : : ; xiK ), the e¤ort entries of these top K ranked contestants. Secondly, it

shows that the conditional probability p(njNK ;x) can be conveniently written as a ratio-form

contest success function gn(xn)�
X

j2
K+1

gj(xj), which thus mimics a single-winner lottery among

the set of contestants who are ranked worse than level K.

Let the sequence fikgIk=1 denote a complete ranking among the I contestants, where ik is

the index of the k�th ranked contestant. Combining Lemma 1 and Lemma 2, the following can

therefore be concluded.

Corollary 1 For any given e¤ort entries x � 0 such that gi(xi) > 0;8i 2 I, the ex ante likelihood

of any complete ranking outcome fikgIk=1 can be expressed as

p(fikgIk=1) = �Ik=1
gik(xik)
IX

k0=k

gik0 (xik0 )

: (14)

Corollary 1 states that the ex ante likelihood of a complete ranking can be expressed as the

cumulative product of the conditional probability p(ikjNk�1;x) = gik(xik)=
IX

k0=k

gik0 (xik0 ) that the

contestant ik is ranked as the top among all contestants fik; ik+1; :::; iIg.16 As mentioned earlier,

the L prizes are awarded to the L contestants who contribute the highest yis, respectively, based on

their ranks. Thus, a prize distribution outcome is represented by the subsequent fikgLk=1 of fikgIk=1,

where ik denotes the index of the contestant who is ranked at the k-th position and receives Vk.

The probability of a prize distribution outcome fikgLk=1 is therefore determined in light of Corollary

1.
16This property was �rst non-constructively proposed by Luce and Suppes (1965) as a hypothetical decision rule.

It was �rst used in the econometrics literature by Beggs, Cardell and Hausman (1981). To our knowledge, it has not

been applied in the multi-prize contest literature.
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Theorem 1 For any given e¤ort entries x � 0 such that gi(xi) > 0;8i 2 I, the ex ante likelihood

of any prize distribution outcome fikgLk=1; L � 1 can be expressed as

p(fikgLk=1) = �Lk=1
gik(xik)
IX

k0=k

gik0 (xik0 )

: (15)

Note that Theorem 1 does not cover the case where gi(xi) = 0 for some contestants. Since ties

are fairly broken in our noisy ranking model, these contestants will be ranked among the bottom-

most in a random manner. From these results, the stochastic equivalence between our noisy-ranking

model and a generalized multiple-winner nested contest model that follows Clark and Riis (1996b

and 1998a) can be concluded. Clark and Riis (1996b and 1998a) extend winner-take-all Tullock

contests to allow for a block of prizes to be allocated among contestants. The selection mechanism

is conveniently illustrated as a sequential lottery process. Contestants simultaneously submit their

one-shot e¤ort entries x and the recipient of each prize is selected through a lottery among all

remaining candidates represented by a ratio-form contest success function. As each contestant

is eligible for one prize at the most, the recipient of a prize is immediately removed from the

pool of candidates who are eligible for the next draw. This procedure is repeated until all the

prizes are given away. If 
m is used to represent the index set of all remaining contestants for

the m-th draw for the m-th prize Vm, then for any contestant j 2 
m, he wins prize Vm with a

probability of fj(xj)X
i2
m

fi(xi)
if
X

i2
m
fi(xi) > 0. Here fi(�) : R+ ! R+ is the output function of

contestant i, which is assumed to be strictly increasing with e¤ort outlay xi. To the extent thatX
i2
m

fi(xi) = 0, i.e., fi(xi) = 0;8i 2 
m, prizes are randomly given away. Thus, the prize

distribution outcome of this nested contest is determined by a series of M independent lotteries

if M prizes are available. This nested contest is reduced to a standard winner-take-all lottery

contest when only one prize is available. This special case of single-prize contests is well studied by

Skaperdas (1996) and Clark and Riis (1996a, 1997) among others.

Let C(I, g(�), V) denote a multiple-winner nested Tullock contest with contestants I, output

functions g(�) and prizes V: The vector V = (V1; : : : ; VL) represents the ordered set of L prizes

with V1 � V2 � : : : � VL. Each contestant i is endowed with an output production technology

fi(xi) = gi(xi).

An intriguing question naturally arises: does there exist another distribution of the noise term

"i that could deliver the ratio-form winning probability as given by (15)? The answer is in the
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a¢ rmative when N = 2. Hirshleifer and Riley (1992) have shown one such example, which implies

that extreme value type I (minimum) distribution could also lead to this equivalence when only

two contestants are involved.17 However, the answer becomes negative for I � 3: This result is

highlighted in the following Theorem.

Theorem 2 When I � 3 and L � 1, the benchmark noisy ranking model (1) is equivalent to the

generalized multiple-winner nested contest model C(I, g(�), V) if and only if "i follows a type I

extreme-value (maximum) distribution.

Proof. Suppose the equivalence holds for L � 2; then we must have that the equivalence also

holds for L0 = L � 1 for the following reasons. Given that (15) holds for L � 2; we thus obtain

the probability of any prize distribution outcome fikgLk=1: The probability of prize distribution

outcome fikgL
0
k=1 is then observed: While the ranks of �rst L

0 prize recipients are �xed as the same

as those in fikgLk=1, the L-th winner can be any one among those who is not among fikgL
0
k=1:

According to (15), we must have p(fikgL
0
k=1) =

P
iL2InfikgL

0
k=1
p(fikgL

0
k=1; iL) = �L

0
k=1

gik (xik )
IX

k0=k

gik0 (xik0 )

:

This result means that as long as the benchmark noisy ranking model (1) is equivalent to the

generalized multiple-winner nested contest model for a particular L � 2 under our ranking rule,

the equivalence must also hold for L0 = 1:

Yellot (1977) has shown some nice results, which imply that when there are more than three

contestants (I � 3) and L0 = 1, the winning probabilities take the form of (15) if and only if

"i follows a type I extreme-value (maximum) distribution. Speci�cally, combining his Lemma 1

(p.116), De�nition 3 (p.120) and Theorem 5 (p.135) leads to the uniqueness of type I extreme-value

(maximum) distribution for "i, which leads to the ratio-form winning probability (15) for L0 = 1.

Q.E.D.

Thus, Theorem 2 establishes the (unique) stochastic equivalence of the noisy-ranking contest

model with a generalized multiple-winner nested contest that is built upon ratio-form contest success

functions.

Consequently, the �sequential�lottery process conveniently �visualizes�a hidden noisy ranking

process, while the contest itself does not rely on a sequentially implemented selection mechanism.

Indeed, a noisy ranking system under the guise of a lottery process has been �uncovered� by
17This result can also be derived from the race-type contest setting presented in Section 3.1. More details will be

provided at a later point.

13



Theorem 2! From the perspective of noisy ranking, it is clear that this framework represents

the most natural generalization of winner-take-all lottery contests in the context of multi-prize

competition. We conclude that the the �multiple-winner nested contest model�and winner-

take-all lotteryy contest can be integrated into a unifying framework through a unique underlying

ranking system. Hence, the �multiple-winner nested contest model�is indeed a very natural

choice for modeling imperfectly discriminatory multi-prize contests.

Clark and Riis (1998a), as well as Fu and Lu (2008), have provided a complete solution for

the multiple-winner nested contests when contestants are symmetric. These results, by Theorem

2, also solve the equilibrium of the noisy-ranking model (1) when contestants are assumed to be

identical.

3 A Micro Foundation of Ratio-Form Contest Success Functions

This section further explores the economic implications of our model. As mentioned in Section 1,

this paper is inspired by and closely linked to the study conducted by Baye and Hoppe (2003). They

have established the strategic equivalence of research tournament (Fullerton and McAfee, 1999),

Patent Race (Dasgupta and Stiglitz, 1980) and a winner-take-all Tullock contest. Our results follow

in the vein of these pioneering studies, and will allow us to further expand the family of competitive

activities that can be uni�ed within an integral framework. On top of this, our results enable us

to address a more fundamental question: Why could these seemingly disparate models be uni�ed?

The ties are revealed as the setup of our noisy ranking model is closely scrutinized. The

perceivable output (log yi) is assumed to contain a deterministic and a random component, which

follows an extreme value type I (maximum) distribution. Following Lazear and Rosen (1981), the

observed output (log yi) of a contestant could be interpreted as the sum of its expectation and a

random shock. Type I Extreme value distributions (Gumbel) are the limiting distributions of the

maximum or minimum of a large collection of i.i.d. random observations from the same arbitrary

continuous distribution on support (�1;1). The type I extreme value (maximum) distribution

is pertinent in a circumstance where (only) the maximum value of a collection of random shocks

is of interest. By assuming this distribution, together with the fact that contestants are ranked

in descending order, the model therefore depicts a selection mechanism where the performance of

each contestant is ordered by the most favorable shocks to his observed performance. This ranking

system is named a �favorable extreme value ranking�(FEV Ranking).
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One possible intuitive framework for this ranking rule is that the decision maker (the contest

organizer) honors the �best shot�of each contestant�s repeated attempts when their performance

is subject to random perturbation.18 This winning rule can be a man-made one. For instance,

weight lifters are ranked in the Olympic Games by their most successful tries. More plausibly, this

winning rule captures a natural regularity that is common in many real-world competitive events:

it represents the situations where only the best performance is observable to the decision maker.

To provide an analogy of this point, an architect would submit only his best idea to a design

competition. A lawyer will pro¤er only the most favorable evidence in court, while the strongest

case prevails.19 Indeed, on many occasions, only the best performance of a contestant is observed.

The seemingly peculiar type I extreme value (maximum) distribution adopted in Section 2.1 in

fact captures the essence of a broad class of competition activities. Our benchmark model thus

approximates a performance evaluation scheme that is based on the �best luck�of contestants.

In light of the isomorphism between our model and contests built upon ratio-form success

functions, this argument sheds light on the hidden mechanism in the black box of the family of

lottery contests. A lottery contest model could also be understood as a representation of a noisy

ranking system that orders contestants based on their best performances. The prevalence of such

an evaluation scheme, as has been argued above, thus supports the extensive application of lottery

contest models, and strengthens the plausibility of this family of models.

In the rest of this section, the proposed argument is dialectically elaborated upon. First, the

�dual�problem is presented to our original model, i.e., a multi-prize race model. Its equivalence

to a multiple-winner nested contest is established. A FEV ranking is intuitively �uncovered�

that con�rms and reinforces our argument. In addition, FEV ranking is shown to be present in an

alternative type of contests, which are directly adapted from models of auctions with pre-investment,

and the economic implications of this ranking system in this setup are illustrated. Finally, �the

antithesis� to our argument is presented. A model is provided that cannot be abstracted as a

standard lottery contest, as the FEV ranking is missing.

18This visually intuitive interpretation is not the unique explanation for this ranking system. More details can be

found in Section 3.2.
19This court judging rule is extracted from Baye, Kovenock and de Vries (2005).
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3.1 The �Dual�Problem: A Multi-Prize Race Model

Baye and Hoppe (2003) have established the strategic equivalence of a patent race and a standard

Tullock contest. In this subsection, we show that �FEV ranking� is also �uncovered� beneath

models of racing competitions, i.e., the type of competitive events where participants are better

rewarded by accomplishing a speci�c task faster than others.

A generalized racing model is �rst proposed that allows for more than one prize. The framework

of Dasgupta and Stiglitz (1980) is adopted in this regard. Each of I contestants chooses a lump-sum

e¤ort xi. A contestant i would accomplish a task (e.g. making a scienti�c discovery) by the time

ti with a probability (i.e. a Weibull minimum distribution) of

	(tijxi) = 1� e�zi(xi)ti ; xi; ti � 0; (16)

where zi(xi) represents the hazard rate of contestant i, i.e., the conditional probability of accom-

plishing this task between ti and time ti + �ti. Conditional on e¤ort entry x, tis are i.i.d. The

hazard rate zi(xi) is a strictly increasing function of the expenditure xi. De�ne z(�) , (zi(�)):

Diverging from Dasgupta and Stiglitz (1980), we allow for a number of contestants to receive

tangible rewards. Assume that L 2 f1; 2; :::; Ig prizes (denoted by V = (V1; V2; :::; VL)) are to be

awarded to contestants. That is, the contestant who �nishes �rst receives prize V1, the contestant

who �nishes second receives V2, and so on.20 Given e¤ort entries x; each conditional realization of

(ti) determines the ranking of contestants and the prize distribution outcome accordingly. Based

on the very nature of a race, this type of competition may also be intuitively interpreted as a

noisy-ranking contest: contestants are ranked in ascending order based on the amount of time they

spend on accomplishing the given task, and a contestant is better rewarded for the realization of a

smaller ti.

Denote by R(I, z(�), V) this multi-prize race model and C(I, z(�), V) a multiple-winner nested

Tullock contest with contestants I, technology z(�) and prizes V: The following result will �rst be

presented and its micro foundation will later be built.

Theorem 3 A multi-prize race R(I, z(�), V) is stochastically equivalent to a multiple-winner nested

Tullock contest C(I, z(�), V).
20For instance, imagine a number of �rms that are engaged in process R&D competition that is not perfectly

patentable. The earlier a �rm discovers the secret of a cost-reduction technology, the higher its accumulated pro�t.

16



Proof. For given expenditure entries x such that for
X
j2I
zj(xj) > 0, a �rm i could leapfrog all

others with a probability of

Pr(tj � ti; j 2 I; j 6= i) =
1Z
0

zi(xi)e

�ti
X
j2I

zj(xj)

dti

=
zi(xi)X

j2I
zj(xj)

; 8i 2 I; (17)

which perfectly mimics the odds of winning in a generalized Tullock lottery contest with (increasing)

output functions zi(xi).

Suppose ~K (1 � ~K � I � 2) contestants are ranked as the �rst to the ~K-th in ascending order

according to (ti), with contestant ik ranked as the k-th one. De�ne ~I ~K = fik; k = 1; :::; ~Kg:We thus

have ti1 � ti2 � � � � � ti ~K � tj ; 8j 2 ~
 ~K+1 = In~I ~K . Next, consider the conditional probability of a

contestant n 2 ~
 ~K+1 being the (
~K + 1)-th ranked. This probability is denoted by q(nj~N ~K ;x; T ~K),

where T ~K = (ti1 ; :::; ti ~K );
~N ~K = (i1; :::; i ~K). This conditional probability is simply

q(nj~N ~K ;x; T ~K) = Pr(tn � tj ; j 2 ~
 ~K+1 ; j 6= njtn � ti ~K )

=

1Z
ti ~K

zn(xn) exp(�tn
X

j2~
 ~K+1

zj(xj))dtn� exp(�ti ~K
X

j2~
 ~K+1

zj(xj))

=
zn(xn)X

j2~
 ~K+1

zj(xj)
;8n 2 ~
 ~K+1: (18)

This strong result states that q(nj~N ~K ;x;T ~K) does not depend on T ~K : Aggregating over all

possible T ~K , we must have that conditioning on contestants i1; i2; :::; iK being respectively ranked

from top 1 to top K, the probability that a contestant n 2 ~
 ~K+1 is the (
~K + 1)-th ranked is

q(njNK ;x) = zn(xn)�
X

j2
K+1

zj(xj); n 2 ~
 ~K+1;K = 1; :::; I � 2: (19)

It can therefore be seen from (18) and (19) that the resulting prize distribution outcome is stochas-

tically equivalent to that of a multiple-winner nested contest with output functions zi(xi).

Q.E.D.

The Source of Equivalence: FEV Ranking in the Dual Model

Theorem 3 states the stochastic equivalence of our multi-prize race model and a nested lottery

contest model of Section 2 where more than one prize is available. A micro foundation remains to
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be laid for this equivalence. It will now be shown that the argument proposed for our benchmark

model of Section 2 continues to apply and that a selection mechanism that implements a FEV

ranking is also hidden beneath the race model.

Theorem 4 A multiple-winner race R(I, z(�), V) is equivalent to a descending-order noisy-ranking

contest (1) with the set of output functions z(�) and the noises " that are individually and indepen-

dently distributed following an extreme value type I (maximum) distribution.

This result may not be very surprising, as the equivalence of the multi-prize race model and

a multiple-winner nested contest model has already been established. A dedicated technical proof

will not be laid out; instead, the reasoning will be presented in the following discussion. The hidden

ties that connect all these models will surface as we set out to establish the result.

It is worth noting that ti (the time the contestant i takes to �nish a given task) can be modelled

as the product of two multiplicatively separable components as follows

ti = hi(xi)qi; 8i 2 I; (20)

where ti; qi 2 (0;1) and hi(xi) , z�1i (xi). In other words, ti is jointly determined by the de-

terministic component hi(xi), which depends only on one�s e¤ort entry, and a stochastic term qi.

Obviously, the function hi(�) : R+ ! R+ strictly decreases with one�s e¤ort. As suggested by

simple statistical facts, ti follows a Weibull (minimum) distribution of (16) if and only if qi fol-

lows a Weibull (minimum) distribution with c.d.f. 1� e�qi . Under this assumption, model (16) is

equivalent to model (20).

Model (20) can be further equivalently expressed as

log ti = log hi(xi) + �i; 8i 2 I; (21)

where i.i.d idiosyncratic noises �i � log qi follow an extreme value type I extreme-value (minimum)

distribution.21 The c.d.f. and p.d.f. of �i can respectively be expressed as follows,

�(�i) = 1� e�e�i ; �i 2 (�1;+1); 8i 2 I; and (22)

'(�i) = e�i�e
�i ; �i 2 (�1;+1); 8i 2 I: (23)

A closer look reveals that an ascending-order model (21) is in fact equivalent to the benchmark

framework set up in Section 2.1. Note that model (21) can be equivalently expressed as

log eyi = log zi(xi) + �i; 8i 2 I; (24)
21The extreme value type I (minimum) distribution is also known as a �log-Weibull�distribution.
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where eyi = t�1i and �i = log q�1i . Note that when �i = log qi follows an extreme value type

I extreme-value (minimum) distribution, �i must follow an extreme value type I extreme-value

(maximum) distribution as given by (3). Based on simple statistical facts, the extreme value type

I (maximum) distribution is simply the inverse of its �minimum�counterpart (the extreme value

type I (minimum) distribution). Consequently, ranking (ti) of model (21) in ascending order is

equivalent to ranking (t�1i ) of model (24) in descending order. In short, the race model (21) is

the �dual�of the benchmark model proposed in Section 2.1. This observation immediately results

in Theorem 4, which reveals why our multi-prize race model is equivalent to a multiple-winner

nested contest (Theorem 3). Clearly, the above equivalence result means that our race type model

is equivalent to a generalized multiple-winner nested contest model if and only if qi in (20) follows

a Weibull (minimum) distribution.

Model (21) thus provides a micro foundation for model (16). The multi-prize race model, as

well as its �tweak�model (21), is underpinned by the same �ordering mechanism�as the model

presented in Section 2.1. Both represent an evaluation mechanism that honors �the most favorable

shock�, which lays a common foundation for all the equivalence results we have established.

In order to see this, note that the random term �i in (21) follows an extreme-value (minimum)

type I distribution, which is also known as �log-Weibull (minimum)� distribution. A Weibull

(minimum) distribution describes the timing of �the minimum�from a collection of random samples

from an arbitrary distribution with a support on [0;1).22 This fact, together with the ascending-

order ranking rule, naturally corresponds to a selection mechanism that honors �the best luck�,

when the output is �bad�to the decision maker, and contestants get ahead of others by contributing

less of their observed outputs: Under such circumstances, �the most favorable shock� is seen by

the realized minimum. A race directly exhibits such characteristics: One secures a more favorable

rank by accomplishing one�s task as quickly as possible, i.e., by making ti as �small�as possible.

Particularly in a R&D race towards a successful innovation, a competing party�s entry, i.e., the

innovation time, depends on its �rst successful (parallel) experiment.

This setup is derived by manipulating a race model. However, it is worth noting that this model

could also be applied to other competitive events, where contestants win by reducing the amount

of their �devalued�outputs, e.g., pollution.

22This is the reason that it is the inverse of the extreme value type I maximum distribution.

19



3.2 FEV Ranking in Auction Models

The nature and function of �FEV ranking�are further elaborated upon through an auction model

with pre-investment, which is adapted from Tan (1992) and Piccione and Tan (1996). A buyer is to

procure one unit of a novel good. I �rms compete for this contract. The production cost Yi of each

�rm is randomly drawn from a continuous distribution with the c.d.f F (y) on the �xed support

[y; y]. However, a �rm i could invest a costly R&D e¤ort xi to reduce its production cost, which

makes its production cost randomly drawn from the distribution

Gi(yi) = Pr(Yi < yi) = 1� [1� F (yi)]hi(xi); (25)

where hi(xi) is a strictly increasing function of xi. That is, the greater the amount of e¤ort exerted,

the more likely the realized production cost is to be low. After the R&D investment, �rms bid to

compete for this contract, and the lowest bidder wins. Hence, in a monotonic Bayesian equilibrium,

the �rm with the lowest realized cost receives the contract.

For any given set (yi), the outcome of the contest is determined by ranking yi in ascending

order. We de�ne variables Zi = log 1
[1�F (Yi)] ; i = 1; 2; :::; I: Obviously, Zi represents a uniform

monotonic transformation of Yi across all i. Thus, ranking the realizations of Zis in ascending

order is equivalent to the competition rule of the original model.

Theorem 5 The auction model (25) with pre-investment is equivalent to a lottery contest and the

benchmark contest model (1) of FEV-ranking .

Again, a dedicated proof is not provided, but the work is laid out below to demonstrate the

connection of this model to a lottery contest. This objective is ful�lled by �nding the distribution

function of the random variable Zi. We have

Pr(Zi < zi) = Pr(log
1

[1� F (Yi)]
< zi)

= Pr(
1

[1� F (Yi)]
< ezi)

= Pr(F (Yi) < 1� e�zi)

= Pr(Yi < F
�1(1� e�zi)): (26)

By the de�nition of Gi(yi), we obtain

Pr(Zi < zi) = 1� [1� F (F�1(1� e�zi))]hi(xi)

= 1� e�hi(xi)zi ; (27)
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which indicates that Zi follows a Weibull (minimum) distribution. As the realizations of Zis are

to be ranked in ascending order, the model setup is therefore equivalent to a standard race model

with a hazard rate of hi(xi). By the previous argument, it further boils down to a lottery contest,

and can be rewritten by simple manipulation as a FEV ranking model. As a result, a �rm i would

win the contract with an ex ante likelihood of pi =
hi(xi)P
j2I hj(xj)

. It deserves to be noted that the

likelihood of winning does not depend on the underlying distribution F (�).

An alternative auction model with pre-investment would deliver the same outcome. Let I �rms

compete for a procurement contract. The buyer chooses the most valuable product. Initially, the

value Yi of each �rm�s product is distributed as F (y) on a common support. Each �rm i could

invest a costly R&D e¤ort xi to enhance the value of its product, which makes yi randomly drawn

from the distribution

Gi(yi) = Pr(Yi < yi) = [F (yi)]
hi(xi); (28)

where hi(xi) is a strictly increasing function of xi. That is, the greater the e¤ort, the more likely

that a higher value will be realized. It is apparent that this setting simply represents the dual

model of (25).

This type of investment-auction model has been adopted and studied in a number of scholarly

papers (Tan (1992), Piccione and Tan, 1996) on auctions, which are detailed in the survey con-

ducted by Bergemann and Välimäki (2006).23 The technical isomorphism thus allows us to connect

economic �ndings from di¤erent �elds and integrate these diverse literatures.

However, two remarks must be made. Firstly, in this auction model with pre-investment, the

investment impacts the distribution of Yi through the power term hi(xi), while F (�) can be any

continuous cumulative distribution function. It is a curiosity as to how this popular and convenient

setting can be economically interpreted. Secondly, the economic link between this type of pre-

investment competition model and our benchmark FEV ranking model remains to be explained.

Its economic interpretation naturally emerges from the research tournament model proposed

by Fullerton and McAfee (1999). In the research tournament model, each �rm i hires ni scientists

to conduct R&D and each scientist can come up with an idea. The value of the idea follows a

continuous distribution with the common c.d.f F (�). The �rm picks the most valuable idea to

23 It should be noted that these papers assume symmetric investment and identical technology as they mainly study

the bidding strategies of bidders in the auction stage. They focus on di¤erent strategic aspects of the game from the

literature on regularly structured contests.
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compete with other �rms. Denote the value of the best idea by Yi. Apparently, Yi follows a

continuous distribution with the c.d.f Gi(yi) = Pr(Yi � yi) = [F (yi)]
ni . As shown by Baye and

Hoppe (2003), as well as our previous analysis, a �rm i wins with a probability ni
IP
j=1

nj

. This research

tournament, by its rule, thus directly exempli�es a contest that honors the best shot of each �rm,

and ranks competing �rms according to the realized favorable extreme values! This further explains

why the likelihood of winning in Fullerton and McAfee (1999) does not depend on the underlying

distribution F (�): As illustrated in our analysis, in the resulting model (27) in the form of extreme

value distribution, F (�) is rather irrelevant.

3.3 The �Antithesis�: An Example of Non-Lottery Contests

So far we have proposed a micro foundation, i.e., a ranking system, which underpins a wide range of

contests. This permits us to connect varieties of seemingly disparate models on the one hand, while

it imposes a limit on this unity on the other: This family of contests may not include competitive

events that do not honor �the most favorable shocks�when picking the winners.

To illustrate this point, a contest model is provided that hosts a di¤erent performance evaluation

rule. One salient example is the noisy ranking contest model suggested by Hirshleifer and Riley

(1992). Two contestants simultaneously submit their e¤ort entries x1 and x2, and they are ranked

by their composite output qixi, where qi is a random variable that follows a Weibull (minimum)

distribution with c.d.f. F (qi) = 1�e�aqi . The contestant with the higher output wins, thus output

needs to be ranked in descending order. It can be easily veri�ed that given the set of e¤ort entries,

the ex ante winning odd of a contestant is exactly identical to a standard Tullock success function

xi
x1+x2

; i = 1; 2.

However, the equivalence of this model with a lottery contest does not hold when there are

more than two contestants. Consider a more generalized variation of this model. Assume that

the deterministic component of the composite output takes the form of qigi(xi), where gi(xi) is a

strictly increasing function of the e¤ort outlay xi. Obviously, linear technology gi(xi) = xi is a

special case of this setting. When I = 3, and when only one prize is available, contestant 1 wins

with a probability of

P1 = 1� g2(x2)

g1(x1) + g2(x2)
� g3(x3)

g1(x1) + g3(x3)

+
g2(x2)g3(x3)

g1(x1)g3(x3) + g2(x2)g3(x3) + g1(x1)g2(x2)
: (29)
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The proof is provided in the Appendix.

This setting results in a well de�ned contest success function, while it appears in a di¤erent form

from lottery contests. The source of this dichotomy is not di¢ cult to technically detect as we look at

the distribution of the noise term. The Weibull (minimum) distribution indicates the distribution of

the incidence of the �minimum�among a collection of shocks. By referring to (20), readers would

immediately realize that this model is no di¤erent from our race model except for the winning

rule. One wins in a race by a smaller observed output qixi in model (20). By way of contrast,

a contestant in Hirshleifer and Riley�s model (1992) wins by a larger output. Consequently, this

model is underpinned by an �unfavorable extreme value�ranking. Literally, the decision maker does

prefer a higher output and ranks contestants by observed outputs in descending order. However,

he does not honor the best shot, but ranks the performances based on their �weakest links�.

This mechanism contradicts the one beneath our model (21) and represents di¤erent economic

activities from those that underlie lottery contests. It may mirror these contests when the worst per-

formance matters (the most) for a win and contestants compete by improving their own blindsights.

A close analogy is high-pro�le board game competitions such as Chess Olympic Championships. A

loss is often perceived to be a result of making the most harmful misplay despite of other marvelous

moves. This dichotomy in the underlying performance evaluation mechanism thus drives this ob-

served disparity when the number of participants exceeds two, and excludes this type of contest

from the family of models that can be represented as standard lottery contests.

4 Concluding Remarks

This paper has set forth a multi-prize contest model that links its prize distribution outcome to

the ranking of contestants based on their noisy performances. The performance of a contestant is

modelled as the sum of a deterministic output of his spontaneous e¤ort and a random component.

Contestants exert their one-shot e¤ort simultaneously, and the ordered prizes are awarded to the

best performers by their ranks.

It has been found that if the contestants are evaluated and ranked by their �most favorable

shocks� in a collection of attempts, our noisy-ranking model delivers exactly the same success

functions as a lottery contest. Stochastic equivalence can therefore be established between our

noisy-ranking contest model and the family of lottery contests. The implications of this result

are multi-fold. Firstly, it provides an alternative interpretation of lottery contests, in particular,
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the multiple-winner nested contest model (Clark and Riis, 1996b and 1998a): a noisy ranking

system can be uncovered beneath its literally sequential lottery process. Secondly, this result il-

luminates a hidden common thread that connects a wide variety of seemingly disparate contests

within the framework of ratio-form contest success functions: underlying all these contests is a

common winning mechanism that honors contestants�most favorable shocks! Thus, this result

provides a behavioral foundation that underpins the family of commonly adopted lottery contest

models. Finally, our result nevertheless imposes a limit on the boundary of this broad class of mod-

els: the family of contests that can be united in the framework of lottery contests may not include

competition schemes that do not honor �the most favorable shocks�on contestants�performance.
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5 Appendix: The Proof of the �Antithesis�

Here, it is proven that when there are three contestants (I = 3); the noisy-ranking contest model

presented in Section 3.2 does not deliver a standard lottery contest.

Following Hirshleifer and Riley (1992), we utilize a formulation with multiplicative noise term:

yi = qigi(xi); (A.1)

where the qi follows a Weibull minimum distribution with c.d.f. 1� e�qi . (A.1) can be equivalently

expressed as

log yi = log gi(xi) + log qi: (A.2)

This distribution of "i , log qi is a type I extreme-value (minimum) distribution. The c.d.f.

and p.d.f. of "i are thus

F ("i) = 1� exp(�e"i); and (A.3)

f("i) = e"i�e
"i : (A.4)

Consider the case of three contestants (I = 3). Given e¤ort xi; contestant 1 wins with the

following probability

Z +1

�1
[�j=2;3F ("1 + log g1(x1)� log gj(xj))]f("1)d"1

=

Z +1

�1
[(1� exp(�e"1+log g1(x1)�log g2(x2)))(1� exp(�e"1+log g1(x1)�log g3(x3))]e"1�e"1d"1

= 1�
Z +1

�1
exp(�e"1+log g1(x1)�log g2(x2)) � e"1�e"1d"1

�
Z +1

�1
exp(�e"1+log g1(x1)�log g3(x3)) � e"1�e"1d"1

+

Z +1

�1
exp(�e"1+log g1(x1)�log g2(x2)) � exp(�e"1+log g1(x1)�log g3(x3)) � e"1�e"1d"1
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= 1�
Z +1

�1
exp("1 � e"1(1 +

g1(x1)

g2(x2)
))d"1 �

Z +1

�1
exp("1 � e"1(1 +

g1(x1)

g3(x3)
))d"1

+

Z +1

�1
exp("1 � e"1(1 +

g1(x1)

g2(x2)
+
g1(x1)

g3(x3)
))d"1

= 1�
Z +1

�1
exp("1 � e

"1+log(1+
g1(x1)
g2(x2)

)
)d"1 �

Z +1

�1
exp("1 � e

"1+log(1+
g1(x1)
g3(x3)

)
)d"1

+

Z +1

�1
exp("1 � e

"1+log(1+
g1(x1)
g2(x2)

+
g1(x1)
g3(x3)

)
)d"1

= 1� g2(x2)

g1(x1) + g2(x2)
� g3(x3)

g1(x1) + g3(x3)

+
g2(x2)g3(x3)

g1(x1)g3(x3) + g2(x2)g3(x3) + g1(x1)g2(x2)
:
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