
Price Discrimination through Refund Contracts in Airlines∗

Diego Escobari†, Paan Jindapon‡

October 5, 2008

Abstract

We show how a monopoly airline uses two ticket types, refundable and non-refundable,

to screen consumers with different willingness to pay. Our theoretical model suggests

that the difference between these two fares consists of refundability value and price

discrimination, and the fare difference diminishes as risk-averse passengers learn about

their individual demand uncertainty. Using an original dataset, we find that, after con-

trolling for unobserved seat- and flight-specific characteristics, the empirical evidence

from the U.S. airline industry supports our theory.
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1 Introduction

Consider a consumer who is thinking about buying a plane ticket in advance. At this

moment, he is not certain whether he will be able to travel on the date specified on the

ticket. Assume that his valuation of a seat on the corresponding flight is $500 and there is

no time value of money. If the airline offers him a refundable ticket, he will be willing to

pay up to $500 for the ticket today. If the ticket is not refundable, his willingness to pay

for such a ticket should be less than $500. In this paper, we propose a theory to explain

how a monopolist can use refund contracts to screen risk-averse consumers, and we provide

empirical evidence from the U.S. airline industry that supports this theory.

Under the expected utility framework, one may use Cicchetti and Freeman’s (1971)

option price, not to be confused with the price of a financial option, as an ex ante willingness

to pay for a private good. The option price is the maximum willingness to pay for the ticket

when it is bought in advance and the true state (travel or not travel) is not yet known. If

the probability that you can make the trip is 0.5, then the expected willingness to pay is

$250 which may be greater or smaller than the option price1. Considering a monopolist

who sells a non-refundable ticket in advance to heterogenous buyers, Cicchetti and Freeman

show that option prices exist and the monopolist who has perfect information can perfectly

price-discriminate by charging each individual his option price. In this paper, we apply

the option price concept to a monopoly problem with asymmetric information and explain

how a firm can use refund contracts as a means of second-degree price discrimination.

1When the state-dependent utility function is linear, the option price is equal to the expected willingness

to pay. However, Schmalensee (1972) and Graham (1981) show that, when state-dependent utility functions

are concave, the option price may be greater or smaller than expected willingness to pay.
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The idea in the model is simple; the firm offers two types of contracts, refundable tickets

and non-refundable tickets, to consumers who have either high or low willingness to pay for

a seat on the corresponding flight. The consumers privately know their type, but do not

know their demand when choosing a contract. We find that an optimal price menu consists

of a refundable price that attracts only the high-type consumers and a non-refundable price

that attracts only the low-type consumers. We extend the model to include the case where

the firm offers the two types of tickets in multiple periods prior to departure and potential

passengers learn about their individual demand as the date of departure approaches. On

any day before departure, having a refundable ticket is more valuable to the consumers

because circumstances may change and they can claim a refund if they do not want to

fly. Based on our model, we find that the difference between these two fares consists

of a quality component and a price-discrimination component. Moreover, as the date of

departure approaches, the consumers become more certain about their individual demand,

and the gap between the two fares diminishes. Using an original dataset from 96 monopoly

routes in the U.S. airline market, we find strong evidence supporting the predictions of

the model. Even though we focus on the airline industry throughout the paper, by no

means are results from the model restricted to this industry. This pricing behavior can be

observed in other industries where goods are sold in advance with a refundability option,

such as cruises and lodging.

Early papers on price discrimination under asymmetric information include Mussa and

Rosen (1978), Maskin and Riley (1984), and Landsberger and Meilijson (1985). To design

a contract extracting surplus from each type of consumer, Mussa and Rosen use quality

discounts, while Maskin and Riley use quantity discounts, and Landsberger and Meilijson
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use a time-decreasing price schedule. Recent literature on screening consumers in the airline

industry includes Gale and Holmes (1993), Dana (1998), Courty and Li (2000), and Akan

et at. (2008). Under a capacity constraint, when individual demand is uncertain, Gale

and Holmes (1993) use advance-purchase discounts to increase the firm’s expected profit

by improving efficiency in capacity utilization. Dana (1998) introduces advance-purchase

discounts as a means of price discrimination and improvement in capacity utilization in

competitive markets. Courty and Li (2000) suggest a theoretical model for a monopolist

that price discriminates via refund contracts consisting of a price that a buyer has to pay in

advance and a refund that the buyer can receive after he learns his valuation of the good.

In the first period, each traveler only knows the probability distribution of his valuation for

the ticket, and in the second period, he learns his actual value for the ticket. While Courty

and Li’s purpose is to find an optimal refund contract consisting of advance payment and

refundable amount, our goal is to find an optimal contract consisting of a non-refundable

price and a fully refundable price for each type. Another difference from Courty and Li

is that we allow consumers to be risk averse. Akan et al. (2008) present a generalization

of Courty and Li with consumers that learn their valuations gradually and with the seller

that can vary the length of time that the tickets are refundable.

Gale and Holmes (1993) is also related to our paper regarding the existence of individual

demand learning. They consider a monopolist who faces capacity constraints and wants

to expand output by diverting demand from a peak-time flight to an off-peak-time flight.

Consumers are uncertain about their individual demands and the monopolist benefits from

this by offering a discount for the off-peak flight together with an advance purchase re-

quirement. It is related to our paper in the sense that consumers in Gale and Holmes also
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learn about their demand over time to find out which flight they prefer. In our model there

is a single flight and consumers have to learn about whether or not to fly. While Gale

and Holmes consider the existence of a single fare at each point in time, in our model the

screening mechanisms works through an additional refundability option.

The paper is structured as follows. Section 2 presents the theoretical model. The two

period model with homogeneous consumers is developed in Section 2.1, where we show the

conditions under which the monopolist can make more profits by selling non-refundable

tickets in advance. Section 2.2 includes the existence of heterogeneous consumers and sets

the mechanism design problem that allows the seller to screen consumers and price discrim-

inate. The model’s implications for airline pricing are presented in Section 2.3. Section 3

presents the empirical analysis by describing the data (3.1), setting the empirical model

(3.2), and presenting the results (3.3) that provide empirical support for the predictions of

the theoretical model. Finally, Section 4 concludes.

2 Theoretical Analysis

2.1 Ex-ante willingness to pay

Consider a two-period model where, in period 1, a monopolist sells homogeneous goods

to risk-averse consumers whose demand for the good is either 1 or 0. Without knowing

his own demand with certainty, each consumer has to make a decision whether to buy the

good in period 1. Then, he learns his demand in period 2. For example, airlines sell plane

tickets in advance. Each potential passenger makes a decision about buying a ticket before

he knows with certainty whether he wants to fly or not on the date of departure.

Formally, let a and b be mutually exclusive states in which a consumer’s demand is 1 and
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0, respectively. The risk in the state of nature that each consumer faces is an individual risk

which is independent from those of other consumers. Let π denote the probability that state

a occurs and hence the probability that state b occurs is 1 − π. In other words, in period

2, each consumer will be willing to pay up to a surplus denoted by S > 0 with probability

π and 0 with probability 1− π. As a result, the expected surplus is equal to πS. Let w be

a consumer’s wealth and u0
s(w) and us(w) be utility functions in state s, for s = a, b, when

the good is unavailable and available to the consumer, respectively. For example, u0
a(w)

represents his utility function when he wants to travel but he does not have a ticket. Using

the definition of compensating variation, we derive S from ua(w − S) = u0
a(w) and since

the consumer does not want the good in state b, then ub(w) = u0
b(w).

We assume that, when the good is available for consumption, consumers prefer state

a to state b, i.e., ua(w) > ub(w), marginal utility of income in state a is higher than in

state b, i.e., u′
a(w) ≥ u′

b(w) > 0, and state-dependent utility functions are concave, i.e.,

u′′
a(w), u′′

b (w) ≤ 0 for all w. The firm sells goods in advance by offering a price menu

consisting of a (discounted) non-refundable price (D) and a refundable price (R). We

assume that expected utility theory holds and thus define

Ud(D) ≡ πua(w − D) + (1 − π)ub(w − D) (1)

as expected utility from buying the good at non-refundable price D, and

Ur(R) ≡ πua(w − R) + (1 − π)ub(w) (2)

as expected utility from buying the good at refundable price R. Note that there is no time

value of money. If a consumer buys a non-refundable ticket in period 1, his final wealth in

period 2 will be w−D irrespective of the state of nature. If the customer buys a refundable
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ticket instead and observes that the state of nature is a in period 2, he will claim a seat on

the plane and his final wealth will be w − R. If the state of nature is b, then he will claim

a refund and his final wealth will be equal to his initial wealth.

Since each consumer’s surplus is S, the reservation price for a refundable ticket is S

and the maximum willingness to pay for a non-refundable ticket is a real number θ such

that Ud(θ) = Ur(S). After the airline announces D and R at the beginning of period 1,

a consumer buys a non-refundable ticket if D ≤ θ and Ud(D) > Ur(R), and a refundable

ticket if R ≤ S and Ud(D) ≤ Ur(R).2 If D > θ and R > S, then he will not buy a ticket.

Given a price menu (D, R), the consumer’s decision to buy can be illustrated in Figure 1.

The (D, R) space is divided into three regions by U0 ≡ max{Ud(θ), Ur(S)} and the dashed

curve representing all (D, R) such that D ≤ θ, R ≤ S, and Ud(D) = Ur(R). Along the

dashed curve, R > D, dR
dD > 0, and d2R

dD2 < 0 if u′
a(w) > u′

b(w) > 0 and u′′
i (w) < 0. In region

1 the consumer buys a non-refundable ticket, in region 2 the consumer buys a refundable

ticket, and in region 3 the consumer does not buy any ticket. Note that the region 1

includes the vertical part of U0 except (S, θ), and the region 2 includes the horizontal part

of U0 and the dashed curve.

Let τ denote the difference between θ and the expected surplus, i.e., τ ≡ θ − πS.

The definitions of θ and τ are similar to Cicchetti and Freeman’s (1971) option price and

option value, respectively. Schmalensee (1972) and Graham (1981) show that when state-

dependent utility functions are concave, an option value (τ) can take either sign. Lemma

1 shows that, under the aforementioned assumptions regarding the utility functions in our

setup, θ ≥ πS and hence τ is positive.

2When Ud(D) = Ur(R), we assume, without loss of generality, that the consumer chooses a refundable

ticket over a non-refundable ticket.
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Lemma 1 If u′
a(w) ≥ u′

b(w) > 0 and u′′
s(w) ≤ 0 for s = a, b, then θ ≥ πS.

Proof Since u′′
a ≤ 0, then ua(w−πS) = ua(π(w−S)+(1−π)w) ≥ πua(w−S)+(1−π)ua(w),

which is equivalent to π[ua(w − πS) − ua(w − S)] ≥ (1 − π)[ua(w) − ua(w − πS)]. The

latter part is equal to (1 − π)
∫ w
w−πS u′

a(x)dx which is greater than (1 − π)
∫ w
w−πS u′

b(x)dx

because u′
a(w) ≥ u′

b(w) for all w. It follows that π[ua(w − πS) − ua(w − S)] ≥ (1 −

π)[ub(w) − ub(w − πS)] which can be rearranged as πua(w − πS) + (1 − π)ub(w − πS)] ≥

πua(w − S) + (1 − π)ub(w). Hence Ud(πS) ≥ Ur(S) = Ud(θ). Therefore, it follows that

θ ≥ πS. �

Example 1. Consider an individual with a state-dependent utility function ua(w) =

w0.7 in state a and ub(w) = w0.6 in state b. We can see that u′
a(w) > u′

b(w) > 0 and

u′′
a(w), u′′

b (w) < 0 for all w > 0. This individual is considering buying a ticket for a flight

departing in the future. Assume that his initial wealth is 2,000 and his surplus for the flight

is 500. Thus his reservation price for a refundable ticket would be 500. If, as of today and

based on what he knows about his individual demand, the probability that he will demand

a seat on the departure date (π) is 0.5, he will be willing to pay 360 for a non-refundable

ticket because Ur(500) = Ud(360). Note that his ex-ante willingness to pay is higher than

his expected surplus (250). �

What should the monopolist do when the ex-ante willingness to pay is higher than the

expected surplus? If there are N customers similar to the individual in Example 1 and 50

percent of them have a positive demand on the date of departure, the airline will be able to

make more profit by selling these customers non-refundable tickets than selling refundable

tickets. The revenue from selling non-refundable tickets at 360 each would be 360N as
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opposed to 250N if refundable tickets are sold at 500 each and half of the buyers claim a

full refund. Therefore, the airline should set the non-refundable price at 360 and make the

refundable price greater than 500 so that everyone buys a non-refundable ticket. In the

next section, which considers more than one type of consumer, Lemma 1 implies that it is

profitable for the monopolist to sell non-refundable tickets to at least one type.

2.2 Price discrimination

Consider now the case of consumers with heterogeneous willingness to pay. There are two

types of consumers who privately know their own type: high type (h) and low type (l). They

either demand 1 unit of the good (one trip) in state a or 0 units in state b. For consumers

of either type, the probability that state a occurs is π. For i = h, l, type i consumer has

an initial wealth wi and a state-dependent utility function with u′
ia(w) ≥ u′

ib(w) > 0 and

u′′
is(w) ≤ 0 for s = a, b. If state a occurs, type i consumer is willing to pay Si which can

be derived from uia(wi −Si) = u0
ia(wi).

3 Without loss of generality, let Sh > Sl. We define

Uid(D) ≡ πuia(wi − D) + (1 − π)uib(wi − D), (3)

and

Uir(R) ≡ πuia(wi − R) + (1 − π)uib(wi), (4)

to be type i consumer’s expected utility if he buys a non-refundable ticket at price D and

a refundable ticket at price R, respectively. The maximum willingness to pay of type i

consumer for a non-refundable ticket is θi which can be derived from Uid(θi) = Uir(Si). We

define τi ≡ θi − πSi.

3See definition of u
0 in Section 2.1.

9



Let the numbers of type h and type l consumers in period 1 be Nh and Nl, respectively.

There are nh of type h and nl of type l consumers that demand the good in period 2.

Let nh = πNh and nl = πNl. The firm announces prices D and R at the beginning of

period 1 and the firm’s capacity is at least nh +nl. The information about each consumer’s

willingness to pay is private. To price discriminate via a price menu with R > D, the firm

has to sell non-refundable tickets to the type l consumers and refundable tickets to the

type h consumers. The firm’s problem can be described as follows.

max
D,R

NlD + nhR (5)

s.t.

Uhr(R) ≥ Uhd(D), (6)

Uld(D) ≥ Ulr(R), (7)

Uhr(R) ≥ Uhr(Sh), (8)

Uld(D) ≥ Uld(θl). (9)

The incentive-compatibility constraints (6) and (7) are required for the type h con-

sumers to prefer buying a refundable ticket and the type l consumers to prefer buying a

non-refundable ticket, while the participation constraints (8) and (9) are required for all

consumers with positive valuation to buy a ticket. We consider the two possibilities: 1)

θl > θh, and 2) θl ≤ θh.

Proposition 1 If θl > θh and Nl − Nh is large enough, the firm sets (D, R) = (θl, Sh).

Proof Constraints (8) and (9) imply R ≤ Sh and D ≤ θl. When the two constraints are

binding, i.e., D = θl and R = Sh, Uld(θl) = Ulr(Sl) > Ulr(Sh) and hence constraint (7)
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is satisfied. Since θl > θh, then Uhd(θl) < Uhd(θh) = Uhr(Sh) and hence constraint (6) is

satisfied. When (D, R) = (θl, Sh), the firm’s profit is equal to Nlθl + nhSh. If D > θl and

R = Sh or Sl, the corresponding profit will be nhSh or (nh + nl)Sl. If R > Sh and D = θh

or θl, the corresponding profit will be (Nh +Nl)θh or Nlθl. By Lemma 1, τi ≥ 0 for i = l, h.

When Sl < Sh, τi ≥ 0, and Nl > τh

θl−θh
Nh, the profit from selling with (D, R) = (θl, Sh) is

greatest. �

We illustrate this result in the (D, R) space in the left panel of Figure 2. We define

U0
i ≡ max{Uid(θi), Uir(Si)} for i = l, h. Region 1 satisfies constraints (6) to (9) and

the firm’s profit is maximized at point A. According to Proposition 1, the firm’s profit is

Nlθl + nhSh, while the ex-post consumer surplus is nl(Sl − θl) − (Nl − nl)θl. As a result,

social welfare is nlSl + nhSh. Note that when θl > θh, the consumer surplus of type h

consumers is fully extracted by the firm in the second period. This is not true for the case

where θl ≤ θh.

Proposition 2 If θl ≤ θh, Nl −Nh is large enough, and there exists a real number δ such

that Uhr(δ) = Uhd(θl) and δ ≥ θl

π , then the firm sets (D, R) = (θl, δ).

Proof If constraint (9) is binding, then D = θl. If constraint (6) is also binding, then

R = δ. Since Uhr(δ) = Uhd(θl), then δ ≥ Sl. It follows that Uld(θl) = Ulr(Sl) ≥ Ulr(δ) and

hence constraint (7) is satisfied. Since θl ≤ θh, then Uhr(δ) = Uhd(θl) > Uhd(θh) = Uhr(Sh)

and hence constraint (8) is satisfied. When (D, R) = (θl, δ), the firm’s profit is equal to

Nlθl+nhδ. If D > θh and R = Sh or Sl, the corresponding profit will be nhSh or (nh+nl)Sl.

If R > Sh and D = θh or θl, the corresponding profit will be Nhθh or (Nh + Nl)θl. By

Lemma 1, τi ≥ 0 for i = l, h. When Sl < Sh, τi ≥ 0, Nl > θh−θl

θl
Nh, and δ > θl

π , the profit
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from selling with (D, R) = (θl, δ) is greatest. �

We graphically derive δ in the right panel of Figure 2. Region 2 contains all the price

vectors satisfying the constraints (6) to (9) and the firm maximizes profit at point B. The

value of δ in Proposition 2 has to be so low that a refundable ticket is more attractive than

a non-refundable ticket to type h consumers, but it has to be higher than Sl so that type

l consumers find a non-refundable ticket more attractive than a refundable ticket when

D = θl. Moreover, it has to be high enough so that it is profitable to separate two groups

of customers. The difference Sh − δ is a gain to type h consumers with positive surplus,

because the firm has to lower the refundable price to make a refundable ticket attractive

to them. When θl ≤ θh, the firm’s profit is Nlθl + nhδ, the ex-post aggregate consumer

surplus is nl(Sl−θl)−(Nl−nl)θl +nh(Sh−δ), and hence social welfare is nlSl +nhSh. Note

that, as an information rent, nh(Sh − δ) is transferred from the firm to type h consumers.

This information rent does not exist in the case where θl > θh. To illustrate this result,

consider the following example

Example 2. Let the individual in Example 1 be a type l consumer whose surplus is 500.

We already know that when π = 0.5, the optimal non-refundable price is 360. Now assume

that type h consumers, whose state-dependent utility functions are ua(w) = 2w in state

a and ub(w) = w in state b, have an initial income of 2,000 and a surplus of 1,000. We

find that Uhd(360) = Uhr(720). Hence the seller’s optimal refundable price is 720. With

the price menu (360,720), type l consumers buy a non-refundable ticket at 360 and type h

consumers buy a refundable ticket at 720. �
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2.3 Implications for the empirical analysis

We can apply our model to airline pricing, where refundable and non-refundable tickets

are available in multiple periods prior to consumption. As described in (3) and (4), if

a consumer of type i buys the good in advance at a non-refundable price D, then his

expected utility is Uid(D), and if he buys the good in advance at a refundable price R,

then his expected utility is Uir(R). The good in the market is an airline seat in a flight

departing on day t = 0. The firm starts offering tickets T days in advance, i.e., on day

t = T , and offers these tickets everyday after that until the flight departs at t = 0 or until

the flight sells out, whichever comes first. The firm offers a daily price menu consisting

of a non-refundable price D(t) and a refundable price R(t). Similarly to the previous

section, we assume that there are two types of consumers: type h whose surplus is Sh and

type l whose surplus is Sl, with Sh > Sl. There are Nh and Nl consumers of type h and

type l, respectively on each day.4 On day T , consumers of both types enter the market.

Depending on the non-refundable price D(T ) and on the refundable price R(T ), each type

chooses one of the following actions: buy a non-refundable ticket, buy a refundable ticket,

or leave the market. On the following day, another group arrives. Each consumer in this

group either buys a non-refundable ticket at price D(T − 1), buys a refundable ticket at

price R(T − 1), or leaves the market. The situation repeats everyday until departure,

with consumers using the decision rule described in the previous section.5 On day t, the

4As seen in Proposition 2, Nh and Nl can take different values. We only need Nl−Nh to be large enough

for the pricing strategy to be profitable.
5This formulation assumes independence across time periods, where each new group of individuals in

unrelated to the previous group. The empirical formulation initially considers this case, but later relaxes

this assumption to allow for dynamics.
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probability that individuals will fly on the date of departure is π(t). This probability can as

well be interpreted as the knowledge, at the time of purchase, that an individual has about

his individual demand. In an extreme case where a consumer who buys a ticket at exactly

the same moment he walks into the aircraft, i.e. at t = 0, he is clearly very certain about

traveling, and hence π(0) = 1. Since consumers who buy in advance are less certain about

their travel demand, then π is expected to be lower. Therefore, it is reasonable to assume

that π(t) is decreasing in t: as the flight date approaches, individuals are expected to know

more about their demand. Because π(t) is decreasing in t, θi(t) is also decreasing in t, for

i = h, l. Since Sh > Sl, then θh(t) > θl(t) for all t = 0, . . . , T . The firm that can sell two

types of ticket, refundable and non-refundable, will set prices according to Proposition 2,

that is, on day t, D(t) = θl(t) and R(t) = δ(t). Consider the following example.

Example 3. There are two types of passengers. A type l passenger has a state-dependent

utility function ua(w) = w0.7 and ub(w) = w0.6 with a surplus for the flight equal to 500.

A type h passenger has a state-dependent utility function ua(w) = 2w and ub(w) = w with

a surplus of 1,000. Both types have an initial wealth of 2,000. From Example 2, in which

the probability of flying (π) is 0.5, we find that an optimal price menu is (360,720). In this

example we solve for price menus given various values of π in [0.5,1] interval. This result

is illustrated in Figure 3. �

From the above example, we obtain an important empirical implication from the theory.

The difference between the refundable and non-refundable fare, δ(t) − θl(t) decreases as

π increases. This implies that as the departure date nears and consumers learn about

their individual demands, the gap between refundable and non-refundable fares closes.

At the day of the flight, when individual demand uncertainty is resolved, there will only
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prevail a single price. There does not exist any additional benefit from buying a refundable

ticket. The seller can no longer separate consumer types based on their individual demand

uncertainty. Section 3 seeks to find support for this empirical prediction. Moreover, the

rate at which fares get closer together gives us important information about what the

carrier believes is the speed at which consumers learn about their individual demand. In

addition to this prediction, Figure 4 shows that the difference in fares can be broken down

in two parts: the difference in quality Sl − θl(t), and the price discrimination component

δ(t) − Sl(t).

3 Empirical Analysis

3.1 Data

To see if actual airline fares are consistent with the theoretical model, we collected from

the online travel agency expedia.com the lowest refundable and lowest non-refundable one-

way economy-class posted fares for 96 flights that departed on June 22nd, 2006. Following

Stavins (2001), we focus on a single day, Thursday, to avoid having to control for price

differentials associated with systematic peak load pricing. Some days are known to be more

congested than others, therefore systematic peak load pricing suggests higher prices during

these more congested days. The data forms a panel with 96 cross section observations and

28 observations in time. Each cross section observation corresponds to a specific carrier’s

non-stop flight between a city pair. Fares were recorded every three days, with the first

cut in time corresponding to 82 days prior to departure and the last to one day prior to

departure. The carriers considered are American, Alaska, Continental, Delta, United, and

US Airways. The share of each of the carriers’ flights on the dataset was chosen to be close
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to the share of the carrier in the U.S. market.

By picking non-stop flights and one-way fares, we control for price differences asso-

ciated with fare restrictions and cost differences associated with round trip tickets (e.g.,

Saturday-night-stay, minimum- and maximum-stay) as well as controlling for variation in

prices related to more sophisticated itineraries (e.g., travelers connecting to different cities).

Dealing with non-stop tickets is particularly important in our model because for round-trip

tickets, the traveler may also be uncertain about the return portion of the ticket. By picking

economy-class tickets we control for other potential sources of consumer’s heterogeneity, as

first-class travelers may behave differently from economy-class travelers. Moreover, there

also exists price dispersion associated with frequent flyer programs, as some consumers ob-

tain tickets from miles earned from previous trips with the carrier. These rewarded tickets

are excluded from the sample. The goal in this section is to use a restricted sample of

tickets to find if there is support for the empirical predictions from the model. Complex

itineraries, additional fare classes, round-trip tickets, or international destinations would

make the results easier to generalize to the entire industry, but would impose an impor-

tant burden on the empirical section. Price dispersion could then be the result of different

dimensions of price discrimination, marginal cost pricing, or product differentiation. In

this paper we do not attempt to explain multiple sources of price dispersion in the airline

industry; we aim to explain the difference of refundable versus non-refundable fares.

A monopoly route, as defined by Borenstein and Rose (1994), is a route on which a

single carrier operates more than 90 percent of the weekly direct flights. Following a similar,

but stricter criterion, all 96 routes in the sample are considered monopoly routes, as the

carrier in the route is the sole supplier of non-stop service between the city pair. Tickets
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with one or more stops and first-class travel tickets are considered to be of a significantly

different quality.

To illustrate the data, Figure 4 shows the average of refundable and non-refundable

fares across all 96 monopoly routes at different points prior to departure. Because routes

with higher average fares have a greater weight on the dynamics of the average fares across

flights, Figure 4 partials out the flight fixed effects from average fares. The figure shows

that if carriers do not vary in their flight specific characteristics, there is a strong tendency

for non-refundable fares to increase faster than refundable fares. Comparing this graph

with its theoretical counterpart, Figure 3, it shows that as the flight date nears, consumers

resolve their individual demand uncertainty.

3.2 Empirical model

As explained in the previous section, the construction of the dataset controls for various

sources of price dispersion in airline ticket pricing that arise within the same flight. This

allows us to focus on refundable and non-refundable fares for the same flight at different

points in time prior to departure. In this section we present the empirical specification

and explain how we control for unobserved time-invariant flight-specific characteristics and

unobserved time-variant seat-specific characteristics.

The panel structure of the data allows us to estimate the model controlling for time-

invariant flight-specific characteristics. Even though we chose to call them unobserved

flight-specific characteristics because each cross-sectional observation in the panel is a flight,

it is important to notice that each flight belongs to a carrier and to a route. Hence, we

are controlling for unobserved carrier-specific characteristics and unobserved route-specific
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characteristics as well. This represents a control for all time-invariant characteristics in-

cluded as regressors in Stavins (2001), who used a cross section of tickets in her analysis.

Flight-specific characteristics include aircraft type and information about congestion that

is known at the time the flight is scheduled (for example, an 8:00 a.m. flight may be priced

differently from an 11:00 a.m. flight); route-specific characteristics include route distance

and airport characteristics; and carrier-specific characteristics include managerial capac-

ity and brand loyalty associated with a frequent flyer program. All these time-invariant

characteristics can be associated with various sources of costs that arise at the flight-level.

There are, however, important cost components that arise at the individual seat-level

that are part of the unobserved seat-specific characteristics. These change from seat to seat

and could depend, among other things, on the number of days to departure, the number of

available seats in the aircraft, the probability that expected demand will exceed capacity,

and current and expected fuel costs. Borenstein and Rose (1994) and Dana (1998, 1999)

explain the existence of different cost components that change from seat to seat and arise

because of capacity constraint.

Borenstein and Rose (1994) consider two cost-based sources of price dispersion. Both

are types of peak-load or congestion pricing. The first source is systematic peak-load pricing

which reflects variations in the expected shadow cost of capacity at the time the flight is

scheduled. This implies that higher fares will be set in congested periods known at the

time of departure. Under the assumption that systematic peak load pricing affects all

tickets in the aircraft in the same way, this one can be regarded as an unobserved flight-

characteristic. The second cost-based source is stochastic peak-load pricing, and refers to

uncertainty in the aggregate demand at the flight level once capacity choices are made. At
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any point prior to departure, higher fares will be set if the flight is expected to be peak,

i.e., demand is likely to be greater than allocated capacity. The resulting variation in prices

will be a consequence of price flexibility and how airlines learn about aggregate demand

as the departure date nears and there are fewer seats available in the aircraft. Stochastic

peak-load pricing changes from seat to seat and over time and is regarded as an unobserved

time-variant seat-specific characteristic.

On the other hand, Dana (1998, 1999) considers the existence of two different measures

of costs associated with each ticket. He assumes that carriers commit to a schedule of

prices and cannot depart from this schedule as sales progress. The first measure of cost is

the unit marginal costs of production, or operational marginal cost. This corresponds to

the cost incurred only with the seats that are sold. The second is the unit cost of capacity,

which is called effective cost of capacity when adjusted by the probability that the ticket

is sold. The key idea here is that different seats within the same flight will have different

selling probabilities, hence different effective costs of capacity. Both of these costs can be

viewed as unobserved time-variant seat-specific characteristics.

Obtaining a measure for these alternative legitimate cost definitions would be a formidable

task. It would require, at a minimum, information about each seat’s selling probability and

expectations about the demand each time a seat is sold. The difficulty in measuring or

controlling for these costs, and any other cost that can change across seats, e.g., fuel costs,

has limited the availability of empirical papers that assess price discrimination practices

in airlines. Stavins (2001), who looks at the implied price differentials due to ticket re-

strictions, such as the Saturday night stay-over restriction and advance purchase discount

restrictions, is an important contribution. However, to correctly point out that a pricing
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strategy is discriminatory, price differences should be net of all cost components. Stavins

regards those ticket restrictions as being fully price discriminatory. The problem is that

those ticket restrictions are understood to solve the peak-load pricing problem as well

(see Courty and Li, 2000 p. 716). Dana (1999) states that price differences associated

with ticket restrictions potentially consist of a price discrimination component, a peak-

load pricing component, and a quality component, which can be used to analyze demand

uncertainty for a perishable asset.

To control for all these unobserved time-variant seat-specific characteristics, we take ad-

vantage of the fact that both posted fares, refundable and non-refundable, were obtained

at the same point in time for the same seat in the aircraft. Therefore, taking the difference

between these two fares wipes out all unobserved seat-specific characteristics. This price

difference, illustrated in Figure 3 as δ−θl, isolates the price discrimination and quality com-

ponents. By looking at the dynamics of this price difference, we can analyze the individual

demand learning implied by the airlines’ pricing strategy. The logarithmic specification of

the dynamic reduced form model that we will estimate is given by

ln(REF )ijt − ln(NONREF )ijt = α[ln(REF )ij,t−1 − ln(NONREF )ij,t−1]

+β1DAY ADVijt + β2∆LOADijt + νij + εijt, (10)

where the subscript i refers to flight, j to route, and t is time. Let νij denote the un-

observable flight specific effect and εijt denote the remaining disturbance. Also ln(REF )

is the natural logarithm of the price for the refundable ticket, ln(NONREF ) is the nat-

ural logarithm of the price for the non-refundable ticket, DAY ADV is the number of

days in advance prior departure the posted fares where recorded, and LOAD is the num-

ber of occupied seats as a fraction of total seats in the aircraft. ∆LOAD, defined as
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∆LOADijt = LOADij,t − LOADij,t−1, is a measure of sales in period t.

From the summary statistics presented in Table 1, we can calculate that refundable

fares are, on average, 50.87% larger than non-refundable fares. As expected, variation

in fares across flights is very close for both fare types, but non-refundable fares appear

to have more within flight variation than refundable fares. Given that refundable fares

are higher than non-refundable fares, the theoretical framework predicts that β1 should

be positive−as departure date nears and consumers learn about their individual demand,

the gap between these two fares decreases. The variable ∆LOAD is included to take into

account the possibility that sales may not be uniform over time. The theoretical framework

assumes that the number of tickets sold in each period is constant; however, this may not

be the case as more tickets are usually sold closer to departure. Figure 5 illustrates the

evolution of sales by showing a nonparametric regression of daily sales as a percentage

of total capacity on days prior departure using the observations across the 96 monopoly

flights. The bandwidth of 1.53 was obtained by least squares cross-validation. There are

few transactions 48 days or more prior to departure, and sales are larger during the last

month.

The coefficient α is not of direct interest, but including a dynamic component in the

equation relaxes the strict exogeneity assumption common to static panel data models

and allows us to assume only weak exogeneity of the regressors. Consistent estimates of

the parameters can then be obtained using the difference and system GMM estimators

proposed in Holtz-Eakin et.at. (1988), Arellano and Bond (1991), Arellano and Bover

(1995), and Blundell and Bond (1998). These estimation procedures create a more flexible

empirical specification by allowing consumers to behave dynamically, while controlling for
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unobserved flight-specific characteristics. Weak exogeneity of ∆LOAD means that sales

in period t can be affected by current and past realizations of the differences in fares, but

must be uncorrelated with future realization of the error term. Consumers observe previous

differences in fares, implying that the decision to buy a ticket today can be affected by

previous price levels. Furthermore, weak exogeneity does not mean that consumers do not

take into account expected future changes in fare differences in their decisions to buy or

not to buy a ticket; it means that future unanticipated shocks in fare differences do not

influence the decision to buy a ticket.

If consumers are very certain about their travel plans, then carriers will not be able to

gain much from offering a menu of fares. The true benefit of screening among travelers

comes from the fact that various days before departure, individuals do not know exactly

their valuations for a ticket, and the seller can exploit this imperfect knowledge by making

the consumer reveal information gradually. Therefore, measuring the speed at which the

price gap closes reveals what the carrier’s pricing strategy implies about consumers’ indi-

vidual demand learning. Equation (10) assumes that the speed at which consumers obtain

private information about their individual demand is constant. A straight forward way

to test for nonlinearities would be to include a quadratic and cubic term for DAY ADV .

However, these alternative specifications are still restrictive. To address this issue more

accurately, we also estimate a more flexible nonparametric panel data regression model

with fixed effects of the form

ln(REF )ijt − ln(NONREF )ijt = g(DAY ADVijt, ∆LOADijt) + νij + εijt, (11)

where g(·) is an unknown smooth function, and as before νij is the flight fixed effect and

εijt is the remainder effect. The fixed effects to control for flight-specific characteristics
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are kept outside the smoothing function to avoid the curse of dimensionality. Even though

we enjoy greater flexibility with this specification, a drawback is that we need to assume

strict exogeneity. Given the nature of the regressors, DAY ADV is discrete and ∆LOAD is

continuous, g(·) will be estimated using kernel methods for mixed data types as explained

in Racine and Li (2004) and Li and Racine (2007). The smoothing parameters will be

calculated with least squares cross-validation.

3.3 Results

The results from the estimation of Equation (10) are reported in Table 2. For comparison

purposes, the first column shows the OLS estimates of the pooled regression model. The

figures in parentheses are t-statistics based on heteroskedasticity-consistent estimates of

the asymptotic standard errors. Here, DAY ADV has no significant effect on the price

gap; however, this specification does not control for flight-, route- and carrier-specific char-

acteristics. To control for these characteristics, the second column presents the within

flight regression estimates. Exploiting the panel structure of the data allows control for

all time-invariant regressors that affect price dispersion included in Borenstein and Rose

(1994) and Stavins (2001), as well as controlling for other unobserved flight-, carrier-, and

route-specific characteristics. Consistent with the theoretical predictions, the within flight

estimates show that the coefficient on DAY ADV is positive and highly significant, mean-

ing that the carriers’ pricing strategy implies that consumers learn their preferences as the

flight date nears.

The third and fourth columns report the two-step first-differenced GMM panel estima-

tor as proposed in Holtz-Eakin et.al. (1988) and Arellano and Bond (1991). The t-statistics
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in parentheses are based on the Windmeijer finite-sample correction for the standard er-

rors of the two-step estimates. The GMM difference panel estimator works by taking first-

differences in Equation (10) to eliminate time invariant flight and carrier specific character-

istics and assumes that the error term, ε, is not serially correlated. Moreover, in this estima-

tion the series ∆LOADijt may be endogenous in the sense that ∆LOADijt is correlated with

εijt and earlier shocks, but ∆LOADijt is uncorrelated with εij,t+1 and subsequent shocks.

Then, lagged values of ∆LOADijt are valid instruments in the first-differenced equation.

Column three uses ∆LOADij,t−2 as instrument, while column four uses ∆LOADij,t−3 and

earlier as instruments.6 To deal with the problem that the new error term, εijt − εij,t−1, is

correlated with the lagged dependent variable, ln(REF )ij,t−2 − ln(NONREF )ij,t−2 is also

used as an instrument. Consistent with the theoretical section, DAY ADV is positive and

significant in both GMM difference specifications.

To address the validity of the specifications, columns 3 and 4 also report three tests.

To test the hypothesis that the error term, εijt, is not serially correlated we test whether

the differenced error term is second-order serially correlated. The p-values reported for the

serial correlation test provide modest support for a valid specification. To test the overall

validity of the instruments we provide a Sargan test of over-identifying restrictions. The

validity of lagged levels dated t− 2 as instruments for column 3 and of lagged levels dated

t−3 (and earlier) as instruments for column 4 is not rejected in any of the specifications at

conventional significance levels. The difference Sargan test reported in column 4 that tests

the validity of the additional instruments, t − 3, in this specification accepts its validity.

Blundell and Bond (1998) point out one statistical shortcoming with the GMMdifference

6
DAY ADVijt is considered strictly exogenous in these estimations, since it was selected by the researcher

to change every three days from 82 days in advance to 1 day in advance.
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estimator. When the explanatory variables are persistent over time, lagged levels of these

variables are weak instruments for the regression equation in differences. To reduce the

potential bias and imprecision of the difference estimator, we use the system estimator as

suggested in Blundell and Bond (1998). This system estimator combines the regression in

differences with the regression in levels. The instruments for the regression in levels are

the lagged differences of the corresponding variables. The validity of the instruments relies

on the following additional assumption: There is no correlation between the differences of

∆LOAD and the flight-specific effects, but there may be correlation between the levels of

∆LOAD and the flight specific effects.

Columns 5 and 6 of Table 2 report the two-step system GMM estimator, with the

figures in parentheses being t-statistics based in the Windmeijer robust estimator. The

serial correlation test still shows mild support to the assumption of no serial correlation,

while the Sargan and the difference Sargan provide strong support for the validity of the

instrument list and the additional set of instruments used in column 6. DAY ADV is

positive and highly significant, providing now even stronger support to the theoretical

predictions.

Table 3 presents the results for fares in levels. The estimates are very similar to the ones

reported in Table 2 with one important difference. Now the serial correlation test provides

strong support to the assumption of no serial correlation in all four GMM specifications.

Sargan and difference Sargan tests support the validity of the instruments and an additional

set of instruments. As suggested by the theory, DAY ADV is positive and highly significant

in the system GMM specifications. When comparing the within specification with the GMM

specifications, it is interesting to notice that once we control for the potential endogeneity
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of ∆LOAD, it is no longer statistically significant. None of the estimated coefficients in

the GMM specifications show a significant coefficient for our proxy for sales, meaning that

the exogenous component of ∆LOAD has no impact on the price gap. This in evidence

that the effect of ∆LOAD on fare differences reported in the within specification comes

just from the interaction from previous fare differences and sales.

The results above show that consumers learn about their individual demands, but says

little about the speed at which consumers learn. Fares’ rate of convergence is assumed to be

constant because all specifications are linear on DAY ADV . Alternative specifications could

include a quadratic of cubic terms; however, we opted for a more flexible nonparametric

model as represented in Equation (11). Nonparametric regression results for Equation (11)

are illustrated in Figure 6. Because fares are in logarithms and days prior to departure is a

time measure, the slope of the nonparametric regression can be interpreted as the speed at

which carriers expect consumers to learn about their demands. While there is some learning

throughout the time horizon considered, most of the learning takes place during the last

two weeks prior to departure. This is when most of the individual demand uncertainty is

resolved. By looking at Figure 5, we can see that the existence of two different fares is

justified because the bulk of ticket sales occur during the last month prior to departure,

when consumers’ individual demand uncertainty is still important and the seller can use

this uncertainty to extract more surplus from the consumer. In this case refunds act as an

insurance against some uncertainties related to consumption.

The fact that individual demand uncertainty is not resolved by the time consumers buy

a ticket contrasts some other alternative price dispersion models for airlines, including Dana

(1999). He considers that all individual demand uncertainty is fully resolved at the moment
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of purchasing the ticket. In this case price dispersion is driven by capacity constraints, in

particular the combination of costly capacity and demand uncertainty.

4 Conclusion and Discussion

The paper sets out to show the importance to airlines of offering a menu of prices, namely

refundable and non-refundable fares. The theory section investigates the conditions un-

der which a monopolist can increase its profits by offering different refund contracts in

advance. We show that airlines can price discriminate when buyers with heterogeneous

willingness to pay are uncertain about their demand for travel. The fact that individual

demand uncertainty is not fully resolved by the time the individual buys a ticket is used

by the seller to price discriminate and extract more surplus. In our model, buyers can use

refund contracts to insure against uncertainty in consumption. One implication from the

theoretical model is that the gap between refundable and non-refundable fares is a function

of the individuals’ travel uncertainty. If there is no uncertainty in individual demand, there

is no difference in buying a refundable or a non-refundable ticket, hence there should be

no difference between these two fares.

The empirical section looks at the dynamics of prices in 96 monopoly routes and tests

whether the individual demand uncertainty implied by the carrier’s pricing strategy are

resolved as the departure date approaches. After controlling for unobserved time-invariant

flight-, carrier-, and route-specific characteristics, unobserved time-variant seat-specific

charateristics, and potential sources of endogeneity, the results show that the theoreti-

cal predictions are empirically supported. Second degree price discrimination in the form

of refund contracts shrinks as the departure date nears. Nonparametric regressions show
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that most of the individual demand uncertainty is resolved during the last two weeks, when

the opportunity for price discrimination declines.
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Figure 1: Type of ticket to buy in (D, R) space
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Figure 2: Type of ticket to buy in (D, R) space for heterogeneous buyers
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Figure 4: Average refundable and non-refundable fares at different t while controlling for

flight specific characteristics
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Figure 5: Nonparametric regression of daily sales on days to departure
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Figure 6: Nonparametric regression of difference on log of fares on days to departure

Table 1: Summary statistics

Variables Mean Std. Dev. Min. Max. Obs.

REF

overall 494.486 169.181 144.000 1715.310 2628

between 156.974 144.000 735.497 96

within 64.167 141.262 1474.299 27.375a

NONREF

overall 327.749 171.588 64.000 914.000 2628

between 156.654 74.107 665.786 96

within 70.204 164.642 852.249 27.375a

DAY ADV 41.500 24.238 1.000 82.000 2688

LOAD 0.591 0.241 0.038 1.000 2688

Notes: a Number of observations in time = T̄ , with one observation

every three days.
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Table 2: Regression estimates (prices in logs)

OLS Within GMM difference GMM system

levels groups t − 2 t − 3 t − 2 t − 3

ln(REF )ij,t−1 − ln(NONREF )ij,t−1 0.944 0.697 0.879 0.868 0.788 0.790

(120.459) (19.049) (8.904) (9.357) (10.663) (11.193)

DAY ADVijt/103 1.086 1.664 0.998 1.040 1.629 1.571

(0.536) (11.326) (2.541) (2.873) (4.971) (4.979)

∆LOADijt −0.001 0.180 0.232 0.138 −0.160 −0.112

(−0.006) (2.016) (0.713) (0.567) (−0.545) (−0.484)

Serial correlation testa(p-value) 0.032 0.037 0.035 0.035

Sargan testb(p-value) 0.133 0.178 0.691 0.988

Difference Sargan testc(p-value) 0.463 1.000

Notes: The dependent variable is [ln(REF )ijt − ln(NONREF )ijt] and the number of observations is 2519.

t-statistics in parentheses based on White heteroskedasticity robust standard errors for the first and second

columns. t-statistics in parentheses based on Windmeijer WC-robust estimator for the GMM specifications. a

The null hypothesis is that the errors in the first-difference regression exhibit no second-order serial correlation

(valid specification). b The null hypothesis is that the instruments are not correlated with the residuals (valid

specification). c The null hypothesis is that the additional instruments t − 3 are not correlated with the

residuals (valid specification).

Table 3: Regression estimates (prices in levels)

OLS Within GMM difference GMM system

levels groups t − 2 t − 3 t − 2 t − 3

REFij,t−1 − NONREFij,t−1 0.940 0.648 0.906 0.908 0.757 0.760

(92.828) (10.131) (3.658) (3.817) (7.106) (7.128)

DAY ADVijt 0.387 0.488 0.290 0.311 0.479 0.456

(5.459) (9.361) (1.585) (1.695) (5.054) (4.881)

∆LOADijt 17.537 67.696 195.139 124.231 7.859 11.439

(0.581) (2.467) (1.840) (1.194) (0.086) (0.152)

Serial correlation testa(p-value) 0.410 0.411 0.410 0.410

Sargan testb(p-value) 0.084 0.155 0.691 0.988

Difference Sargan testc(p-value) 0.566 1.000

Notes: The dependent variable is [REFijt − NONREFijt]. See notes on Table 2.
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