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Abstract 
 
Declines in inventory investment account for a large fraction of the drop in output during 
a recession.  But the relationship between monetary policy and inventories is unclear.  
Four main puzzles have been identified in the literature on monetary policy and inventory 
investment -- the mechanism puzzle, the sign puzzle, the timing puzzle, and the cost 
shock puzzle. First, the mechanism puzzle.  Monetary policy changes the interest rate and 
should affect inventories, since the interest rate represents the opportunity cost of holding 
inventories.  In fact, VAR studies find that monetary policy affects inventories.  But 40 
years of empirical literature on inventories has generally failed to find any significant 
effect of the interest rate on inventories. Second, the sign puzzle.  Contractionary 
monetary policy raises the interest rate.  An increase in the interest rate should decrease 
inventories through the increase in opportunity cost.  VAR studies find that the short-term 
effect of contractionary monetary policy is to increase inventories.  Third, the timing 
puzzle.  Monetary policy induces transitory changes in the interest rate.  The effect of 
monetary policy on the interest rate largely disappears within one year.  But inventories 
begin to fall only after the transitory shock to the interest rate has largely dissipated.  
Fourth, cost shocks are a potential explanation for the stylized fact that production varies 
more than sales, but empirical work has found relatively little evidence that observable 
costs shocks affect inventories.  We use simulations of a theoretical model based on 
learning and regime shifts in the real interest rate to address all four puzzles.  
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I.  INTRODUCTION 
 

Inventory investment tends to decline precipitously during recessions.  Blinder 

and Maccini (1991) find that drops in inventory investment account for more than 80% of 

the fall in output during postwar recessions in the US.  In their Handbook of 

Macroeconomics chapter, Ramey and West (1999) document the large declines in 

inventory investment during recessions across most of the G-7 countries. 

 This paper focuses on the role of inventories in the monetary policy transmission 

mechanism.  Three main puzzles have been identified in the literature on monetary policy 

and inventory investment. 

 The first puzzle is the mechanism puzzle.  Monetary policy changes the interest 

rate and should affect inventories, since the interest rate represents the opportunity cost of 

holding inventories.  In fact, VAR studies find that monetary policy shocks affect 

inventories.1  But 40 years of empirical literature on inventories has generally failed to 

find any significant effect of the interest rate on inventories.  So how does monetary 

policy affect inventories? 

 In our theoretical model, the real interest rate is subject to persistent and transitory 

shocks.  Firms don’t react much to transitory shocks, but they do react to persistent 

shocks (regime changes).  The previous 40 years of empirical inventory research 

primarily used econometric techniques that emphasized high-frequency variation in the 

data, where there is much transitory variation in the interest rate without corresponding 

variation in inventories – and much transitory variation in inventories (due to their role in 

                                                 
1 See Bernanke and Gertler (1995), Christiano, Eichenbaum, and Evans (1996), and Jung and Yun (2005) 
for documentation of this fact. 
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buffering sales shocks) without corresponding variation in the interest rate.  Empirical 

tests based on cointegration techniques, which emphasize low-frequency (long-run) 

movements in the variables, provide support for our model by showing a strong statistical 

relationship between the interest rate and inventories. 

 The second puzzle is the sign puzzle.  Contractionary monetary policy raises the 

interest rate.  An increase in the interest rate should decrease inventories through the 

increase in opportunity cost.  VAR studies find that the short-term effect of 

contractionary monetary policy is to increase inventories. 

 Our solution to the puzzle is linked to the role of inventories in buffering demand 

(sales) shocks.  Our empirical results show that demand shocks dominate the high-

frequency movements in inventories.  Sales drop rapidly in the first few months 

following a contractionary monetary policy shock.  Inventories rise as they buffer 

negative sales shocks in the first few months following a contractionary monetary policy 

shock. 

 We test our solution to the sign puzzle by simulating the dynamic path of 

inventories in response to a monetary policy shock to assess whether the model produces 

the rise in inventories in the first few months after a contractionary shock that is observed 

in the actual data.  

 The third puzzle is the timing puzzle.  Monetary policy induces transitory changes 

in the interest rate.  The effect of monetary policy on the interest rate largely disappears 

within one year.  But inventories begin to fall only after the transitory shock to the 

interest rate has largely dissipated. 
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 Our solution to the timing puzzle works as follows.  Because of learning, the 

Bayesian probabilities of being in a given interest rate régime respond slowly to a change 

in the interest rate (in simulations of our model).  Although the effect of monetary policy 

on the interest rate tends to be short-lived, the effect on the probabilities is persistent.  

More than one third of the initial effect on the probabilities remains three years after the 

monetary policy shock.   

The main elements of our theoretical model are learning and the behaviour of the 

real interest rate.  The mean real interest rate tends to be highly persistent, with 

occasional large shifts.  For example, the mean real interest rate was around 2% during 

the 1960s and early 1970s but negative from the mid-to late 1970s and much higher 

through much of the 1980s.  As Garcia and Perron (1996) have shown, the behaviour of 

the real interest rate can be well captured by a Markov switching process with transitory 

fluctuations around persistent interest-rate regimes.  Our model incorporates this 

stochastic process for the real interest rate into the optimization problem faced by the 

firm. 

In the real world, no one posts a notice that the interest rate has shifted from a 

high-interest-rate regime to a low-interest-rate regime.  Instead, firms must try to infer the 

expected path of interest rates from their best guess about the current interest rate regime.  

This best guess must be based on observable data, including current and past interest 

rates.  Our theoretical model captures this by assuming that firms engage in a learning 

process. 

The fourth puzzle is the cost shock puzzle.  The standard inventory model with a 

convex production cost function predicts that firms should use inventories to smooth 
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production relative to sales.  But, many empirical studies find that production varies more 

than sales.  Cost shocks are a leading theoretical explanation for this stylized fact.  The 

problem is that the empirical studies tend to find little evidence that observable cost 

shocks affect inventories. 

Our solution to the cost shock puzzle shares features of our solution to other 

puzzles.  We argue that, because several types of shocks—sales, interest rate, cost-- are 

important for inventories, high-frequency techniques have difficulty detecting any 

particular shock, especially when there is a long lags between the realization of the shock 

and the impact on inventories.  We deal with the problem in two ways.  First, we use low-

frequency techniques to uncover a significant effect of cost shocks on inventories.  

Second, we then use the structural parameters from the cointegrating regressions and 

simulations to decompose the channels through which monetary policy shocks affect 

inventories to isolate the effects of cost shocks alone.  

The paper is organized as follows.  Section II introduces the model.  Section III 

describes how we identify monetary policy shocks and how we estimate the effect of 

monetary policy shocks on the Bayesian probabilities of being in a given interest rate 

régime.  Section IV explains how we use the cointegrating regression for inventories to 

calibrate the model.  Section V presents simulations of the effects of a monetary policy 

shock.  Section VI illustrates the pure interest rate effect and the broad interest rate 

effects (through sales and through costs) during a particularly interesting episode of 

recent U.S. macroeconomic history, the Volcker disinflation.  Section VII provides a 

summary and conclusion. 
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II. The Model 

The Firm’s Optimization Problem 

 Much of the inventory literature is based on the linear-quadratic inventory model, 

which emerged as a workhorse model that had enough subtlety to capture many of the 

complexities of the firm's inventory problem but that was tractable enough to be of 

genuine use in both theoretical and empirical research.2 Unfortunately, serious problems 

arise with the standard linear-quadratic framework as a way of modeling the 

cointegrating relationships among the I(1) variables that drive inventories.3 One 

important technical problem is that it is difficult to find stationary variables around which 

the nonlinear inventory Euler equation can be linearized. In this section, we introduce a 

new framework for the firm's inventory problem that is designed to smoothly incorporate 

I(1) variables. Our model includes production costs, adjustment costs, and inventory 

holding costs. A nice aspect of our model is that it carries over much of the tractability 

and many of the properties of the standard linear-quadratic framework. Most of the 

intuition that has been built up over decades of using the standard linear-quadratic model 

also carries over. 

 The representative firm is assumed to minimize the present value of its expected 

costs over an infinite horizon.  Real costs per period consist of production costs, 

adjustment costs, and inventory holding costs. 

 Production costs, tPC , are defined as  

                                                 
2 Some of the most brilliant minds in economics thought carefully about the complexities of the firm's 
inventory problem and developed the workhorse linear-quadratic inventory model. See especially Holt et 
al. (1960).  See Blinder and Maccini (1991) and Ramey and West (1999) for surveys of the literature. 
3 Hamilton (2002) discusses some of these issues. 
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 1 2
t t tPC Y Wθ θ=         (1) 

with 

 1 21 0θ θ> >  

where tY  is real output, and tW is an exogenous real cost shock, which we will associate 

with real input prices of variable factors of production.    Observe that average production 

costs, tJ , are  

 1 21t
t t t

t

PCJ Y W
Y

θ θ−= =  

and marginal production costs are 1 tJθ . 

 Adjustment costs, tAC , are 

 1
1

t
t t
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where y  is then steady state growth rate of output.  Adjustment costs, of course, capture 

the costs to the firm of changing output. 

 Inventory holding costs, tHC , are 

 
2

1
1 3 1

t
t t t

t

NHC X N
X

δ

δ δ−
−

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
      (3) 

with 
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 1 2 30 0 0δ δ δ> < >  

where tN  is the stock of finished goods inventories at the end of period t, tX  is the level 

of real sales, which is given exogenously.  Inventory holding costs consist of two basic 

components.  One, 
2

1
1

t
t

t

N X
X

δ

δ −⎛ ⎞
⎜ ⎟
⎝ ⎠

, captures the idea that, given sales, higher inventories 

reduce costs in the form of lost sales because they reduce stockouts.  The other, 3 1tNδ − , 

captures the idea that higher inventories raise holding costs in the form of storage costs, 

insurance costs, etc.4 

 Let tβ  be a variable real discount factor, which is given by 
t

t r+
=

1
1β , where  

tr  denotes the real rate of interest.  The firm’s optimization problem is to minimize the 

present discounted value of expected total costs, 

1

0
0 0

,
t

j t
t j

E Cβ
−∞

= =

⎡ ⎤
⎢ ⎥
⎣ ⎦

∑ ∏       (4) 

where 

                                                 
4 These two components underlie the rationale for the quadratic inventory holding costs in the standard 
linear-quadratic model.  The formulation above separates the components and assumes constant elasticity 
functional forms which facilitates log-linearization around constant steady states.  See Bils and Khan 
(2000) for a model that deals with market structure issues and also utilizes a constant elasticity 
specification of the benefits of holding finished goods inventories, though the benefits are embodied on the 
revenue side of the firm. 
 Observe that (3) implies a “target stock” of finished goods inventories that minimizes finished 
goods holding costs.  The target stock, *

tN , is 

                                        
2

1
1

* 3

1 2
t tN X

δδ
δ δ

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

so that the implied stock is proportional to sales.  This is analogous to the target stock assumed in the 
standard linear-quadratic model.  Note that the target stock is not the steady state stock of finished goods 
inventories.  The steady state stock minimizes total costs in steady state whereas the target stock merely 
minimizes inventory holding costs.   



 10

   2

1 2 1
1 1 3 1

1

t t t t

t t
t t t t t

t t
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δ
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  (5) 

 

subject to the inventory accumulation equation, which gives the change in inventories as 

the excess of production over sales,  

.1 tttt XYNN −=− −       (6) 

      

The optimality conditions that result from this optimization problem are 
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   (7)                
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    (8) 

 

where tξ  is the Lagrangean multiplier associated with the constraint (6) and 

1t t t tY N N X−= − + .  

To interpret the optimality conditions, ignore adjustment costs for simplicity, and 

eliminate the multiplier to reduce the optimality conditions to  

2

1 2 1 2

1
1 1

1 1 1 1 2 1 3 1 1 1 1 1
1

t
t t t t t t t t t t t t

t

NE Y W E E Y W
X

δ
θ θ θ θβ θ β β δ δ δ β β θ

−

− −
− − + − + + +

+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟+ + =⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
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Now, 1 21
1 1t t t tE Y Wθ θβ θ −
−  is the marginal cost of producing a unit of output today, 

1 21
1 1 1 1 1t t t t tE Y Wθ θβ β θ −
− + + +  is the discounted marginal cost of producing a unit of output 

tomorrow, and 
2 1

1 1 2 1 3
1

t
t t t

t

NE
X

δ

β β δ δ δ
−

− +
+

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟+⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 is the discounted marginal carrying 

costs of inventories, consisting of marginal holding costs plus the marginal interest 

charges which operate through the discounting process.  To have a unit of output 

available for sale tomorrow, the Euler equation thus states that the firm should equate the 

marginal cost of producing a unit of output today and carrying it in inventories to the 

discounted marginal cost of producing the unit of output tomorrow.   

 In the Appendix, we show that linearizing the optimality conditions around steady 

state values yields a linearized Euler equation:  

 

( ){ [ ]

}

1 1 1 1 2 1 1 1

2

2 1 1 1

1 ln ln ln ln ln ln

ln 2 ln ln 0

t t t t t t t

t t t t

E J Y Y J W W N X

Y Y Y Jr c

θ θ β θ θ β βψ

γ β β θ

− + + +

+ + +

⎡ ⎤ ⎡ ⎤− − + − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ Δ − Δ + Δ + + =⎢ ⎥⎣ ⎦

 (9) 

 

where J  is steady state average production cost, 1 Jθ  is steady state marginal production 

cost, ( ) ( ) 2 1

2 2 11 1NR x
δ

ψ δ δ δ
−

⎡ ⎤= − −⎣ ⎦  is steady state marginal inventory holding costs, 

N
NR
X

=  is the steady state inventory/sales ratio, ( )A yγ ′′= , 
r+

=
1

1β ,  r  is the 

unconditional mean real interest rate, x  is the steady state growth rate of sales, y  is the 

steady state growth rate of output, and a bar above a variable denotes a steady state value. 
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A key innovation in Maccini, Moore and Schaller (2004) is to assume that the real 

interest rate follows a three-state Markov switching process.5  This is consistent with 

empirical patterns in real interest rates—See Garcia and Perron (1996) and the empirical 

work in Maccini, Moore and Schaller (2004).  Specifically, we assume that the real 

interest rate follows 

 tSSt tt
rr εσ ⋅+=                                           (10) 

where tε ~ i.i.d. N(0,1) and where St  ∈ {1, 2, 3} follows a Markov switching process.  

Let  1 2 3r r r< < , so that when St = 1 the real interest rate is in the low-interest-rate regime, 

when St = 2 the real interest rate is in a moderate interest rate regime, and when St = 3 the 

real interest rate is in a high-interest-rate regime. St and tε  are assumed to be  

independent. Denote the transition probabilities governing the evolution of St by 

1Prob( | ).ij t tp S j S i−= = =  Collecting these probabilities into a matrix we have  

    
11 21 31

12 22 32

13 23 33

.
p p p

P p p p
p p p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

   

 We assume that the firm knows the structure and parameters of the Markov 

switching process but does not know the true real interest rate regime.  The firm must 

therefore infer St from observed interest rates. We denote the firm’s current probability 

assessment of the true state by πt.  That is,    

1

2

3

Prob( 1| )
Prob( 2 | )
Prob( 3 | )

t t t

t t t t

t t t

S
S
S

π
π π

π

= Ω⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = Ω⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= Ω⎣ ⎦ ⎣ ⎦

,      

                                                 
5 For a comprehensive discussion of Markov switching processes, see Hamilton (1994, Chapter 22). 
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where the firm’s information set, tΩ , includes the current and past values of rt.  Here, 

itπ is the firm’s estimate at date t of the probability that the real interest rate is in regime i. 

To understand the learning process, consider how the firm uses its observation of 

the current real interest rate to develop its probability assessment, tπ .  Beginning at the 

end of period t-1 the firm uses 1tπ − together with the transition probabilities in P to form 

beliefs about the period t interest rate state prior to observing tr .  That is the firm 

evaluates ( )| 1 t 1Prob S |  it t tiπ − −≡ = Ω for i = 1, 2, 3  using  

1 | 1

2 | 1 1

3 | 1

t t

t t t

t t

P
π
π π
π

−

− −

−

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

        (11) 

Once the firm enters period t and observes tr , it uses the prior probabilities from (11) 

together with the relevant conditional probability densities to update tπ according to 

Bayes’ rule.  Specifically, 

 | 1
3

| 1
1

(r | )
for 1,2,3.

(r | )

it t t t
it

jt t t t
j

f S i
i

f S j

π
π

π

−

−
=

⋅ =
= =

⋅ =∑
     (12) 

Thus, the firm uses Bayes’ rule and its observations of the real interest rate to learn about 

the underlying interest rate regime. 

Given 1tπ − , the term 1 1rt tE − +  in equation (9) can be computed as  

2
1 1 v 1 1 1 1 2 2 1 3 3 1r rt t t t t tE P π γ π γ π γ π− + − − − −

′= = + +         (13) 

where v 1 2 3r [r , r , r ]′ =  and  [ ] 2
1 2 3 vr ' Pγ γ γ ≡ . Since 1 1 2 1 3 1 1t t tπ π π− − −+ + =  by definition, 

we can eliminate 2 1tπ −  from the right hand side of  (13) to obtain   
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           ( ) ( )1 1 1 2 1 1 3 2 3 1 2rt t t tE γ γ π γ γ π γ− + − −= − + − + .           (14) 

Now, to isolate the expected real interest rate in the linearized Euler equation, 

partition (9) so that 

( ){ [ ]

}

1 1 1 1 2 1 1 1

2

2 1 1 1 1

1 ln ln ln ln ln ln

ln 2 ln ln 0

t t t t t t t

t t t t t

E J Y Y J W W N X

Y Y Y JE r c

θ θ β θ θ β βψ

γ β β θ

− + + +

+ + − +

⎡ ⎤ ⎡ ⎤− − + − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ Δ − Δ + Δ + + =⎢ ⎥⎣ ⎦

      (15)         

 

Then, substitute (14) into (15) to get  

 
( ){ [ ]

}
( ) ( )

1 1 1 1 2 1 1 1

2

2 1

1 1 2 1 1 3 2 3 1 2

1 ln ln ln ln ln ln

ln 2 ln ln

0

t t t t t t t

t t t

t t

E J Y Y J W W N X

Y Y Y

J c

θ θ β θ θ β βψ

γ β β

θ γ γ π γ γ π γ

− + + +

+ +

− −

⎡ ⎤ ⎡ ⎤− − + − + −⎣ ⎦ ⎣ ⎦

⎡ ⎤+ Δ − Δ + Δ⎢ ⎥⎣ ⎦

+ − + − + + =⎡ ⎤⎣ ⎦

     (16) 

 

We now derive the decision rule for optimal inventories that is implied by the 

firm’s optimization problem.  Assume now that sales and real input prices follow 

independent AR(1) processes and that the current information set of the firm includes 

lagged values of sales, input prices and interest rates.  In the Appendix, we show that the 

linearized Euler equation, (16), may be written as a fourth-order expectational difference 

equation.  Denote 1λ  and 2λ  as the stable roots of the relevant characteristic equation.  

We then show in the Appendix that the firm’s actual inventory position is 
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( )0 1 2 1 1 2 2 1 1

1 1 1 3 3 1

ln ln ln ln lnt t t X t W t

t t t

N N N X W

uπ π

λ λ λ λ

π π

− − − −

− −

= Γ + + − +Γ +Γ

+Γ +Γ +
            (17) 

where   

     0X
>

Γ
<

, 0WΓ < ,        1 0πΓ > ,           3 0πΓ <  

( )Y Y X
t t t

N

Ru u u
R

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 is an inventory shock that consist of a production shock, 

1ln lnY
t t t tu Y E Y−= − , and a sales forecast error, 1ln lnX

t t t tu X E X−= − . 

 

III.  MONETARY POLICY 

First-Stage VAR 
 
 We identify monetary policy shocks by estimating a six-variable semi-structural 

VAR using the method of Bernanke and Mihov (1998).  The variables in the VAR are 

divided into two blocks of three variables each.  The non-policy or “macroeconomic” 

block, which is unrestricted, consists of the natural logarithms of real sales ( ln tX ), the 

GDP deflator, and real input prices ( ln tW ).6  The policy block, which consists of total 

reserves, non-borrowed reserves, and the federal funds rate, is restricted using plausible 

assumptions about the market for bank reserves.  These restrictions, together with the 

assumption that policy shocks only affect the macroeconomic variables after a one-month 

lag, are sufficient to identify the unobserved structural monetary policy shocks.     

The VAR model is  

                                                 
6 We found that the inclusion of input prices was sufficient to address the price puzzle and so do not add a 
commodity price index. 
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0 0

v
n n

Z Z

t i t i i t i t
i i

B C AZ Z P
− −

= =

= + +∑ ∑       (14) 

 
0 0

v
n n

P

t i t i i t i t
i i

D G AP Z P
− −

= =

= + +∑ ∑       (15) 

where Z denotes the vector of macroeconomic variables and P denotes the vector of 

policy variables. , , , , ,  and Z P
i i i iB C A D G A are matrices, v  and vZ

t t are vectors of mutually 

uncorrelated structural shocks.  The assumption that policy variables have no 

contemporaneous affect on macroeconomic variables7 requires that 0 0C = .  

 Re-write equation (15) so that only lagged values of the policy variables appear 

on the right-hand-side. The result is  

  
1 1

0 0
0 1

( ) ( ) u
n n

t i t i i t i t
i i

I G D I G GP Z P− −

− −
= =

= − + − +∑ ∑     (16)  

where,  

 
1

0
u ( ) vP

t t
I G A−= − .        (17)  

Note that u t , the vector of residuals from the policy-block VAR, is orthogonal to the 

residuals from the non-policy block.  If the elements of 1
0( ) PI G A−−  are known we can 

use (17) to recover the unobservable structural shocks, vt , from the observable policy-

block residuals.  

 To obtain the restrictions necessary to identify the elements of 1
0( ) PI G A−−  

Bernanke and Mihov (1998) consider the market for federal funds.  Omitting time 

                                                 
7 This assumption is plausible for the monthly data used in this paper, and for the monthly and bi-weekly 
data in Bernanke and Mihov (1998) but would be less plausible for lower frequency data.   
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subscripts let FFRu  denote innovations in the federal funds rate, and let dv denote 

exogenous shocks to the demand for total reserves.  Innovations in total reserve demand, 

TRu , are then given by  

 TR FFRu u dvα= − +         (18) 

where 0α ≥ . Also, if DISCu  denotes innovations in the discount rate, then BRu , which 

denotes innovations in the demand for borrowed reserves, is given by 

 BR FFR DISCu (u u ) bvβ= − − +        (19) 

where bv  denotes exogenous shocks to the demand for borrowed reserves and where 

0β ≥ .  Innovations in the demand for non-borrowed reserves, D
NBRu , are by definition 

 D
NBR TR BRu u u= − .        (20) 

Use (18) and (19) to substitute for the terms on the right-hand side of (20), and assume 

that changes in the Fed’s discount rate are infrequent and largely anticipated, so that 

DISCu 0= . The result is   

  D
FFR NBR

1u u
d bv v

α β α β α β
⎛ ⎞ ⎛ ⎞⎛ ⎞−

= + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
.      (21) 

 Innovations in the supply of non-borrowed reserves, S
NBRu , are governed by 

Federal Reserve policy. Let  

 S
NBRu d d b b sv v vφ φ= + + .       (22) 

Here sv is an exogenous shock to the supply of non-borrowed reserves. The policy 

parameters,  and d bφ φ , describe how the Fed will react to shocks to the demand for total 

reserves and borrowed reserves, respectively.  Consider two examples.  If the Fed is 
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targeting non-borrowed reserves, it will set = 0d bφ φ =  and, in so far as it is possible, 

hold the supply of non-borrowed reserves constant. If instead the Fed is targeting the 

federal funds rate, it will set =1 and 1d bφ φ = − . With =1dφ , a positive shock to the 

demand for total reserves will be accommodated by an equal increase in the supply of 

non-borrowed reserves.  A positive shock to the demand for borrowed reserves, holding 

total reserves constant, will cause a decline in the demand for non-borrowed reserves.  

With 1bφ = −  this will be offset by an equal decline in the supply of non-borrowed 

reserves. Since D S
NBR NBRu = u  in equilibrium use (22) to substitute for D

NBRu in (21) to obtain 

 FFR
1 1 1u

d b
d s bv v vφ φ

α β α β α β
⎛ ⎞ ⎛ ⎞⎛ ⎞− − +

= + −⎜ ⎟ ⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠ ⎝ ⎠
.    (23) 

Combine equations (18), (22), and (23) to give equation (17) with 

[ ]t TR NBR FFRu u u u′ ≡ , tv d s bv v v′ ⎡ ⎤≡ ⎣ ⎦ , and     

( )

( ) ( )
1

0

1 1 1

= 1

1 1 1

d b

d b

d b

ZI G A

α α α
φ φ

α β α β α β

φ φ

φ φ

α β α β α β

−

−
− + +

+ + +

−

− − +
−

+ + +

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥

⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠

  

 Let ˆ
TΩ denote the estimated variance-covariance matrix of the policy-block 

residuals. That is,  

 
1

1ˆ ˆ ˆu u
T

T t t
tT k =

⎛ ⎞ ′Ω = ⎜ ⎟−⎝ ⎠
∑  
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where û t is the vector of policy-block residuals obtained by estimating the VAR in 

equations (14) and (15).8  Since ˆ
TΩ is a (3x3) symmetric matrix it has six unique 

elements.  Next, note from (17) that  

 ( ) ( )1 1
t t 0 t t 0(u u' )= (v v )Z ZE I G A E I G A− − ′⎡ ⎤ ⎡ ⎤′− −⎣ ⎦ ⎣ ⎦ . 

Since the elements of tv are i.i.d. and mutually orthogonal by assumption, we can write   

 

2

2
t t

2

0 0
(v v ) 0 0

0 0

d

s

b

E
σ

σ
σ

⎡ ⎤
⎢ ⎥′ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The matrix t t(u u )E ′ is, of course, also (3x3) and symmetric.  Equating t t(u u )E ′ to ˆ
TΩ  

therefore places six restrictions on the seven unknown structural parameters: 

2 2 2, , , , , ,  and d b
s d bα β φ φ σ σ σ .  At least one more restriction is needed to identify these 

parameters and, hence, the elements of ( ) 1
0

PI G A−− .  

 Beranke and Mihov (1998) examine five alternative sets of identifying 

restrictions.  Four of these sets impose two additional restrictions so that the model is 

over identified.  For example, as explained above, the set of restrictions consistent with 

targeting the federal funds rate is =1 and 1d bφ φ = − . Bernanke and Mihov call their fifth 

set the “just identified” model as it imposes the single additional restriction that 0α = .  

This restriction is motivated by Strongin’s (1995) argument that the demand for total 

reserves is inelastic in the short run. Impulse-response functions show that a monetary 

policy shock has qualitatively similar effects under all five sets of restrictions. We 

                                                 
8 We use a constant term plus 6 lags of the six variables, therefore k = 37. 
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therefore take the simplest approach to identification, the just identified model.  We set 

0α = and solve t t(u u )E ′ = ˆ
TΩ for the remaining six structural parameters. 

 To estimate the VAR we use monthly data from December 1961 through August 

2004.  In the macroeconomic block we obtain monthly observations of the GDP deflator 

using the state-space procedure of Bernanke, Gertler, and Watson (1997). 9 In the policy 

block, following Bernanke and Mihov (1998) we render total reserves and non-borrowed 

reserves stationary by measuring each as a ratio to a 36-month moving average of total 

reserves. 10  

We report the results of our estimation in Table 1. For the most part, our estimates 

are similar to Bernanke and Mihov’s.  The estimate of β is positive and indicting that an 

increase in the federal funds rate relative to the discount rate leads to an increase in the 

demand for borrowed reserves. However, our estimate of bφ is not significantly different 

from zero, perhaps reflecting the declining role that borrowed reserves have played since 

the mid 1980s. The estimate of dφ is positive and close to one.  This suggests that the Fed 

dampens fluctuations in the federal funds rate by accommodating shocks to the demand 

for reserves. 

 

 

 

 

                                                 
9 This procedure uses several monthly series on prices to infer the unobserved monthly value of the GDP 
Deflator. 
10 There is a dramatic spike in the reserves data in the months of September and October 2001, following 
the September 11th attacks.  We eliminate this spike by interpolating the series form August 2001 to 
November 2001. 
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Table 1 

Parameter Estimates for the Just Identified Model  

(assumes 0α = ). 

       β         dφ        bφ        dσ       bσ      sσ  
0.049 
(0.026) 

0.831 
(0.047) 

0.010 
(0.141) 

0.011 0.021 0.011 

Estimates for the sample 1961:12 through 2004:8. Standard errors in parentheses. 

 

 Having identified the parameters that characterize the money market it is then 

possible to identify the monetary policy shocks by inverting equation (17) to obtain  

 ( )
TR11

0 NBR

FFR

u
u
u

d

s z

b

v
v I G A
v

−−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

      (24) 

The middle row of this equation is  

 ( ) ( ) ( )TR NBR FFRu 1 u us d b b d bv φ φ φ αφ βφ= − + + + − −    (25)  

Inserting the policy-block residuals for TR NBR FFRu , u , and u  on the right-hand side of (25) 

yields the time series of monetary policy shocks, { }
1

Ts
t t

v
=

.   

The Link between Monetary Policy and the Probabilities 

 We use a straightforward procedure to estimate the effect of monetary policy 

shocks on the probabilities: we estimate a three-variable vector autoregression, with 

monetary policy shocks, 1π , and 3π  (using six lags of each variable).11  Figure 1 shows 

the impulse response function of 1π  to a one-standard-deviation easing of monetary 

                                                 
11 We do not include the probabilities in the Bernanke-Mihov VAR because there is too much collinearity 
between the probabilities and the interest rate. 
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policy.  As the impulse response function shows, easing monetary policy increases the 

probability of the low interest rate state.  The effect of monetary policy on 1π  is hump-

shaped and peaks about six months after the shock.  At the peak, a one-standard-deviation 

easing of monetary policy increases the probability of being in the low interest rate 

régime by about 0.044.  The effect of monetary policy on 1π  is quite persistent, with 

more than half the peak effect still present two years after the shock. 

 Results are similar when we look at the effect of monetary policy on 3π .  

Loosening monetary policy reduces the probability of the high interest rate régime.  The 

impulse response function is again hump-shaped, with an inflection point about six 

months after the shock.  The ergodic probability of the high interest state is about 0.19.  

The 0.033 decrease in 3π  therefore represents a decrease of about 17% in the likelihood 

of the high real interest rate regime (relative to the ergotic probability).  As in the case of 

the probability of the low interest rate regime, the effect of a monetary policy shock is 

quite persistent.   

 

 IV. CALIBRATION 

 The key to our calibration is the cointegrating regression for inventories. Using 

our model, it is possible to derive the mathematical relationships between the structural 

parameters and the coefficients of the cointegrating regression. This is of tremendous 

value for two reasons. First, decades of research based on stationary econometric 

techniques has produced little consensus on the structural parameters.12 Second, recent 

                                                 
12 See Ramey and West (1999) for a good survey of the empirical estimates based on the traditional, 
stationary econometrics. 
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work based on the cointegrating regression for inventories has produced evidence that the 

real interest rate and observable cost shocks have a statistically significant effect on 

inventories.13 

Derivation of Cointegrating Vector 

We show in the appendix that the log-linearized Euler equation can be written as  

 

{ }1 1 1 1 3 3 1ln ln ln 0t t t X t W t t tE N b X b W b bχ π π− −+ − − − − =                         (26) 

 

where 1tχ is stationary, and where  

( )( )1 11 1
1X

J
b

β θ θ
βψ

− − −
= +  , 

2 1(1 )W
Jb θ θβ

βψ
= − − , 

1
1 1 2( ) Jb θγ γ

βψ
= − − , 

and 

1
3 3 2( ) Jb θγ γ

βψ
= − − . 

Assume that ln tX , ln tW , 1 1tπ −  and 3 1tπ −  are I(1).14 Equation (26) then implies 

that ln tN  is I(1) and that log inventories, log sales, the log of the cost shock, and the 

probabilities will be cointegrated with cointegrating vector    

                                                 
13 See Maccini, Moore, and Schaller (2004). Using traditional, stationary econometrics techniques, it has 
been difficult to find statistically significant evidence of a role for either the real interest rate or observable 
cost shocks. 
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[ ]1 31, , , ,X Wb b b b− − − −                                                           (27) 

The Structural Parameters and the Cointegrating Regression 

When the cointegrating vector is expressed in the form of a regression, ln tX , 

ln tW , 1 1tπ − , and 3 1tπ −  will be on the right hand side of the equation, so their coefficients 

will have signs opposite to those shown in the cointegrating vector above.  We estimate 

the cointegrating regression using Stock and Watson’s (1993) DOLS procedure and 

report our estimates in Table 5 and Section V below. 

Note from the definitions of 3and Wb b  that  

2
3 3 2

1Wb
b

β θ
γ γ
−

=
−

.         (28) 

Since, 2 3, ,  and β γ γ are given from our estimates of the Markov switching model we 

invert (28) and use our estimates of 3and Wb b  to obtain a baseline value for 2θ  from 

3 2
2

3

ˆ
ˆ1
Wb

b
γ γθ

β
−

=
−

.         (29) 

Similarly, note from the definitions of 3and Xb b  that  

( )1
3 2 3

1 1 1Xb
b

β θ
γ γ

− −
= −

−
.        (30) 

We invert (30) and use our estimates of 3and Xb b to obtain a baseline value for 1θ  from 

                                                                                                                                                 
14 This is confirmed by unit root tests. Since π1t-1 and π3t-1 have a restricted range, one might wonder 
whether it is better to model them as I(0) or I(1). We note two points.  First, in careful applied econometric 
research, variables with restricted ranges, such as the nominal interest rate, are modeled as I(1) variables 
when they are highly persistent.  (See, e.g., Stock and Watson (1993) and Caballero (1994).)  Second, unit 
root tests indicate that π1t and π3t are I(1).   
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2 3
1

3

ˆ11 ˆ 1
Xb

b
γ γθ

β
⎛ ⎞⎛ − ⎞−

= + ⎜ ⎟⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠
.        (31) 

Finally, note from the definitions of 3 and b ψ  that  

( )
( ) ( ) 2

2 3 1
3 ( 1)

2 2 11 1N

J
b

R x
δ

γ γ θ

β δ δ δ
−

−
=

⎡ ⎤− −⎣ ⎦
       (32) 

Rearranging (32), using the estimate of 3b , and imposing the normalization that 1 1δ = , 

we obtain 

( ) ( ) ( ) 2( 1)3
2 2 1

2 3

ˆ
1 1N

b R x J
δ

β δ δ θ
γ γ

−
⎡ ⎤− − =⎣ ⎦−

.     (33) 

 With 1θ  determined from equation (31), Equation (33) gives a single restriction 

on the value of 2δ . We have assumed that 2 0δ < .  We therefore search numerically over 

2 ( ,0]δ ∈ −∞  to find the value of 2δ  that satisfies (33).15   

Using Estimates of the Markov Switching Model for the Real Interest Rate 

2 3, ,  and β γ γ  are obtained from our estimates of the Markov switching model. 

We obtain estimates of the parameters of the stochastic process for the real interest rate, 

the elements of P and rv, from our estimation of the three-state Markov-switching model.  

Those estimates are  

11 21 31

12 22 32

13 23 33

0.98 0.02 0.00
0.02 0.96 0.05
0.00 0.02 0.95

p p p
P p p p

p p p

= = =⎡ ⎤
⎢ ⎥= = = =⎢ ⎥
⎢ ⎥= = =⎣ ⎦

 

and 

                                                 
15 Our numerical search shows that only one value of 2δ  satisfies (29).   
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1

v 2

3

r -1.37
r r 1.77

r 5.04

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ≡ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

Together these estimates imply that the unconditional mean of the monthly real interest 

rate is r =0.001 , which gives 0.999β = .  

Stationary Ratios 

, ,  and N YR R x J  are steady-state ratios. For , ,  and N YR R x  we use the sample 

average values of t tN X , t tY X , and 1t tX X+Δ , respectively, as reported in Table 2.  

 

                                                       Table 2 

Steady State Ratios 

NR  YR  J  x  

0.468 1.001 0.734 0.00108 

 

 

Note from 1 2
t t t tJ Y W Yθ θ=  that J denotes the steady state value of average 

production costs.  Based on data from the 1992 Census of Manufacturing, we estimate 

production costs to be 73.4% of total output and set 0.734J = .  

Completing the Calibration  

The only cost function parameter left to be determined is the parameter that 

governs adjustment costs, γ .  Since the adjustment costs cannot be identified from the 
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long-run equilibrium cointegrating relationship, for our baseline setting we assume that 

there are no adjustment costs and set 0.γ =  

 We have, therefore, used our estimates of the cointegrating regression (combined 

with estimates of the parameters of the Markov-switching model, and the empirical data 

on the steady- state ratios) to calibrate the structural parameters 1 2 1 2, , , ,  and θ θ δ δ γ . The 

baseline values of the structural parameters of the cost function are reported in Table 3. 

The resulting values of the decision rule coefficients are reported in Table 4. 

 

Table 3 

Parameters of the Cost Function, Baseline Values 

1θ  2θ  1δ  2δ  γ  

41.936 59.321 1 -0.458 0 

 

 

 

Table 4 

Coefficients in the Decision Rule 

1λ  2λ  XΓ  WΓ  1πΓ  3πΓ  

0.944 0 0.021 -0.051 0.0016 -0.0011 
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V.  THE PUZZLES 

1. The Mechanism Puzzle 

Monetary policy changes the interest rate and should affect inventories, since the 

interest rate represents the opportunity cost of holding inventories.  Previous VAR studies 

find that monetary policy shocks affect inventories.  However, an extensive empirical 

literature -- stretching over four decades and using a variety of empirical techniques -- 

has found little evidence that the interest rate affects inventories.  This is the mechanism 

puzzle. If the interest rate doesn't affect inventories, how does monetary policy influence 

inventories? If the interest rate does affect inventories, why have more than 40 years of 

empirical studies failed to find the relationship? 

 In our theoretical model, the real interest rate is subject to persistent and transitory 

shocks.  Transitory shocks have little effect on inventories, but firms do react to persistent 

shocks (regime changes).  Until Maccini, Moore, and Schaller (2004), empirical 

inventory research primarily used traditional, stationary econometric techniques. These 

techniques tend to emphasize high-frequency movements in the data, where there is much 

transitory variation in the interest rate without corresponding variation in inventories – 

and much transitory variation in inventories (due to their role in buffering sales shocks) 

without corresponding variation in the interest rate.   

 In this subsection, we present new econometric evidence on the long-run 

determinants of inventories. Compared to the majority of previous empirical work on 

inventories, our innovation is to use nonstationary econometric techniques, specifically 

cointegration. Relative to Maccini, Moore, and Schaller (2004), we make two important 

innovations. First, we explore the effect of finite sample bias on the estimated 
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coefficients in the cointegrating regression for inventories. Using simulations of our 

model, we find that standard cointegrating regressions can lead to large biases in the 

estimated coefficients. Second, we propose a simple, feasible approach that substantially 

reduces the bias. We use Monte Carlo simulations to verify that this approach works. 

Details are provided in an appendix. 

Table 5 
Estimated Cointegrating Regression 

 
Constant Time X π1 π3 W 

1.573 
(18.200) 

0.000 
(-39.170) 

0.381 
(4.530) 

0.100 
(11.267) 

-0.036 
(-5.377) 

-0.897 
(-5.781) 

 
DOLS estimates of the cointegrating vector with (t-statistic). 
 
Details to be incorporated in the notes to the table (or perhaps elsewhere): – 
Probabilities dated t-1 – New PRM Variable 
Manufacturing finished goods, linearly detrended specification, new data, new sample 
period 
 

Table 5 presents the estimated cointegrating regression. The key coefficients for 

the mechanism puzzle are those on 1π  and 3π , the probabilities that the economy is in the 

low and high real interest rate regime, respectively. Theory predicts that the coefficient 

on 1π  should be positive and the coefficient on 3π  should be negative, since a lower real 

interest rate reduces the opportunity cost of holding inventories. The data confirm both of 

these theoretical predictions.  The coefficients on both 1π  and 3π  are significantly 

different from zero. Relative to Maccini, Moore, and Schaller (2004), our econometric 

approach provides stronger evidence for the statistical significance of 1π . 
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The solution to the mechanism puzzle therefore seems to run as follows. The real 

interest rate does affect inventories, but this relationship is obscured by transitory shocks 

when researchers use traditional, stationary econometric techniques. 

2. The Sign Puzzle 

Stimulative monetary policy reduces the interest rate.  A decrease in the interest 

rate should increase inventories through the reduction in opportunity cost.  VAR studies 

find that the short-term effect of stimulative monetary policy is to decrease inventories.16 

This is the sign puzzle. 

To verify whether the sign puzzle exists in our data, we estimate a VAR similar to 

that described in Section III. The only difference is that we include inventories in the 

macroeconomic block. This allows us to calculate the impulse response function of 

inventories to a monetary policy shock (where the monetary policy shock, as elsewhere in 

this paper, is identified using the Bernanke-Mihov (1998) identification strategy). The 

response of inventories to a one-standard-deviation stimulative shock to monetary policy 

is shown in Figure 3. As found in other studies, our data show that the initial response of 

inventories is to decrease. 

Does our calibrated model reproduce this negative initial response of inventories 

to a stimulative monetary policy shock? To address this question, we start with the 

decision rule for inventories implied by the model. In the absence of adjustment costs, the 

decision rule states that current inventories depend on last period's inventories, sales, 

input costs, and 1π  and 3π . To calculate the path of inventories in response to a monetary 

policy shock, we can simply substitute in the impulse response functions of sales, input 
                                                 
16 This stylized fact is documented in Bernanke and Gertler (1995), Christiano, Eichenbaum, and Evans 
(1996), and Jung and Yun (2005). 
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costs, and the probabilities (using the Bernanke-Mihov specification described in Section 

III to identify monetary policy shocks and calculate the impulse response functions). We 

use the model to derive the structural parameters from the estimated coefficients of the 

cointegrating regression (as discussed in Section IV). 

Figure 4 presents the theoretical response of inventories to a stimulative monetary 

policy shock, based on our model. As the figure shows, the initial response of inventories 

is to decrease, as in the empirical impulse response function in Figure 3. Intuitively, the 

key to understanding our model's success in matching the empirical sign puzzle is the 

role of inventories in buffering demand (sales) shocks.  Demand shocks dominate the 

high-frequency movements in inventories.  Sales rise in the wake of a stimulative 

monetary policy shock.  Production does not respond immediately, so inventories fall as 

they buffer the positive sales shock. 

3. The Timing Puzzle 

 Monetary policy induces transitory changes in the interest rate.  The effect of 

monetary policy on the interest rate largely disappears within one year.  But inventories 

begin to fall only after the transitory shock to the interest rate has largely dissipated.17 

The transitory effect of a monetary policy shock on the interest rate is illustrated in 

Figure 5 (which is based on our data and the Bernanke-Mihov VAR discussed above). 

Within nine months, the Fed funds rate returns to its pre-shock level. It is only many 

months later that inventories rise above their pre-shock level, as shown in Figure 3. The 

peak effect of the monetary policy shock on inventories occurs years after the shock. This 

is the timing puzzle: If monetary policy affects inventories through opportunity cost, why 
                                                 
17 This stylized fact is documented in Bernanke and Gertler (1995), Christiano, Eichenbaum, and Evans 
(1996), and Jung and Yun (2005). 
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is the movement of inventories in the theoretically predicted direction delayed until well 

after the interest rate returns to its pre-shock level? 

 Regime switching and learning provide part of the explanation for the timing 

puzzle. Because of learning, the Bayesian probabilities of being in a given interest rate 

régime respond slowly to a change in the interest rate.  Although the effect of monetary 

policy on the interest rate tends to be short-lived, the effect on the probabilities is 

persistent.  This can be seen in Figure 1, where more than one-third of the effect of the 

monetary policy shock on 1π  is still present three years after the shock. 

 Production smoothing also plays a role. Some intuition may be helpful. In a 

production smoothing inventory model, the cost function is convex.  This means that it is 

cheaper to produce at an intermediate level of output, rather than sometimes producing at 

low output and sometimes producing at high output.  This makes the production level 

sticky:  firms would prefer to produce at their usual (intermediate) output level, even 

when hit by transitory shocks.  The more convex the cost function, the stickier output is. 

In general, the previous literature has treated the interest rate as constant, so the 

standard intuition focuses on sales and cost shocks.  Interest rate shocks work a bit 

differently, but much of the standard intuition still applies.  An interest rate shock 

changes the desired long-run inventory level.  However, changing output (away from the 

usual level) is expensive because of the convexity of the cost function.  If firms recognize 

that the interest rate shock is purely transitory, they will adjust output (and therefore the 

stock of inventories) little, if at all.  Because firms are reluctant to adjust output, the 

change in the stock of inventories is delayed. 
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Figure 6 illustrates how the combination of learning and production smoothing 

delays the response of inventories. As discussed above, the peak response of 1π  and 3π  

occurs about six months after the monetary policy shock. Figure 6 shows the response of 

the inventories, based on the calibrated model, when the only variation comes from 1π , 

and 3π . (The other variables that enter the decision rule -- sales and input costs -- are held 

constant at their pre-shock levels.) With the combination of learning (which leads to a 

slow and persistent response of 1π , and 3π ) and production smoothing (which stretches 

out the response of inventories to 1π , and 3π ), the peak response of inventories in the 

calibrated model occurs about two years after the shock. 

 As noted above, it is the convexity of the cost function that spreads out the 

response of inventories to shocks.  The convexity of the cost function is measured by the 

parameter 1θ .  In Figure 7, we illustrate the effect of changes in 1θ  on the impulse 

response function for inventories.  If we set 1θ  equal to half the value implied by the 

cointegrating regression estimates, the peak effect on inventories occurs seven months 

earlier. 

 Figure 7 illustrates another interesting point. In the existing inventory literature, it 

has been very hard to pin down the convexity of the cost function. In their survey paper, 

Ramey and West (1999) report a wide range of estimates. Using the cointegrating 

regression to calibrate 1θ , we obtain a value of 1θ  that leads to a theoretical impulse 

response function that is similar to the empirical impulse response function. If we move 

too far away from this value of 1θ , the theoretical impulse response function no longer 

matches the empirical impulse response function. As Figure 7 illustrates, using a value of 
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1θ  that is 50% smaller leads to a peak response of inventories that is too large (about 

twice as large as the empirical peak response). Using a value of 1θ  that is much larger 

than the calibrated value from the cointegrating regression (e.g., 50% larger) leads to a 

theoretical impulse response function that no longer even qualitatively resembles the 

empirical impulse response function. 

 This point has both methodological and substantive economic implications. 

Methodologically, it suggests that good estimates of a well-specified cointegrating 

regression may provide a better technique for calibrating model parameters. 

Economically, it narrows the range of plausible estimates of the convexity of the cost 

function. For example, it rules out the possibility of a concave cost function.18  

4. The Cost Shock Puzzle 

 In the standard inventory model, the firm tends to smooth production. When there 

is a transitory shock to sales, production changes less than sales. If these are the main 

type of shocks faced by the firm, production should vary less than sales. Empirically, 

however, a number of studies have shown that production varies more than sales. One 

explanation is cost shocks. A favorable cost shock tends to make it cheaper to produce 

now than in the future.  Cost shocks are a leading explanation for the stylized fact that 

production varies more than sales. The problem with this explanation is that most 

empirical studies find that observable cost shocks have no significant effect on 

inventories. The literature has therefore tended to be pushed toward the somewhat 

uncomfortable position that unobservable cost shocks account for one of the leading 

                                                 
18 This is important, because, as Ramey (xx) points out, increasing returns to scale (i.e., a concave cost 
function) provide a potential explanation for some of the big stylized facts about inventories, such as the 
fact that the variance of output is greater than the variance of sales. 
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stylized facts about inventories.19 The cost shock puzzle can be summarized as follows: 

Cost shocks play a useful theoretical role in explaining the behavior of inventories, but it 

is hard to find empirical evidence that observable cost shocks affect inventories. 

 We make some progress on the cost shock puzzle. The intuition for our results 

shares features of our earlier discussion of other puzzles. As we have seen, the convexity 

of the cost function implies that the effect of shocks is spread out over time. Theory 

suggests that several types of shocks -- sales, interest rate, and cost -- are important for 

inventories, making it difficult for older econometric techniques, which emphasize high-

frequency variation in the data, to detect the effect of any particular shock, especially 

when there may be a long lag between the realization of the shock and its impact on 

inventories.  

Econometric techniques that emphasize low-frequency movements in the data 

provide a more promising method of estimating the effect of cost shocks. We illustrate 

this in two ways. First, we use a cointegration approach to test whether observable input 

costs have a significant effect on inventories. Second, we use our theoretical model of 

inventories to extract structural parameters from the cointegrating regression and then 

decompose the channels -- sales, interest rate, and costs -- through which a monetary 

policy shock affects inventories, so that we can isolate the effect of costs.  

In Section IV, we show that our theoretical model implies that real input costs 

appear in the cointegrating regression for inventories with coefficient Wb . Table 5 reports 

that the estimated value of Wb  is -0.897, which is negative, as predicted by our model 

                                                 
19 This issue is discussed in greater detail in two major surveys of the inventory literature -- Blinder and 
Maccini (1991) and Ramey and West (1999). 



 36

(and, more generally, by economic theory). Table 5 also reports that the t-statistic on Wb  

is -5.781. Thus, the cointegrating regression provides statistically significant evidence 

that observable costs affect inventories. 

Do observable costs play an economically important role in determining inventory 

movements? One way to address this issue is to use our model to calculate the impulse 

response function of inventories to a monetary policy shock. More precisely, we can use 

the model to shut down some of the channels through which monetary shocks affect 

inventories -- specifically, the sales and interest rate channels -- so that we can observe 

the cost channel in isolation. Figure 9 presents the impulse response function of real input 

costs to a stimulative monetary policy shock. The response of W is hump-shaped, with 

the peak response occurring about a year after the shock. Figure 10, which is based on 

our model, illustrates the effect of this change in real input costs on inventories (holding 

sales and the real interest rate constant). Because higher input costs discourage firms 

from holding inventories, inventories fall. Because of the convexity of the cost function, 

the maximal effect on inventories occurs more than a year after the peak in the response 

of W to the monetary policy shock. The magnitude of the pure cost effect is about half as 

large at its peak as the overall movement in inventories, but in the opposite direction. If 

input costs had no effect on inventories, the peak effect of a monetary policy shock on 

inventories would be about 50% larger. Relative to most of the previous literature, these 

results are striking. Based on our model (and on our calibration of the structural 

parameters, using the cointegrating regression), observable costs have an economically 

important effect on inventory movements. 
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VI. The Volcker  Disinflation 

 (Forthcoming) 

 

VII.  Conclusions 

          (Forthcoming)
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Figure 1 
The Effect of a Monetary Policy Shock  

on the Probability of the Low Interest Rate Regime 
 

 
 
The solid line presents the impulse response function of 1π  (the probability of the low real interest rate 
regime, as perceived by the firm) to a one-standard-deviation stimulative monetary policy shock. The 
horizontal axis shows time in months. 
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Figure 2 
The Effect of a Monetary Policy Shock  

on the Probability of the High Interest Rate Regime 
 

 
 
The solid line presents the impulse response function of 3π  (the probability of the high real interest rate 
regime, as perceived by the firm) to a one-standard-deviation stimulative monetary policy shock. The 
horizontal axis shows time in months. 
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Figure 3 
Empirical Response of Inventories to a Stimulative Monetary Policy Shock 
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Figure 4 
Theoretical Response of Inventories to a Stimulative Monetary Policy Shock 
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Figure 5 
Empirical Response of the Fed Funds Rate to a Stimulative Monetary Policy Shock 
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Figure 6 
Theoretical Response of Inventories to a Stimulative Monetary Policy Shock 

(Varying Only the Probabilities) 
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Figure 7 
Theoretical Response of Inventories to a Stimulative Monetary Policy Shock 

The Effect of the Convexity of the Cost Function  
 

 
 

The dashed line shows the response of inventories based on setting θ1 (the parameter that 
controls the convexity of the cost function) equal to 0.5 times the value obtained when 
the parameters are calibrated using the cointegrating regression. The solid line is based on 
setting θ1 equal to the value obtained based on the cointegrating regression. 
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Figure 8 
Empirical Response of Real Input Costs to a Stimulative Monetary Policy Shock 

 

 
 



 47

 
Figure 9 

Theoretical Response of Inventories to a Stimulative Monetary Policy Shock 
(Varying Only Real Input Costs) 

 

 
 
 

 


