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plies a new monetary transmission mechanism and can be
used to analyze the effects of changes in aggregate risk and
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1 Introduction

In monetary policy analysis the focus has shifted away from monetary aggregates towards

short-run nominal interest rates. Consequently, the money market is widely neglected in the

analysis of transmission and optimality of monetary policy, and money demand is treated

as a redundant element. This link between the monetary instrument and the private sector

is replaced in current monetary macro-models by the consumption Euler equation, which is

also called the new IS-curve. It relates the policy rate to expected consumption growth and

inflation, and has become essential for monetary transmission and for the implementation

of optimal monetary policy. There are however issues with the empirical reliability of this

relationship.

Studies in finance provide broad evidence that consumption Euler equations fail when

they are applied to asset prices or the rate of returns on bonds (see Weil, 1989). This should

already cast doubt on the common practice in monetary policy analysis to assume that the real

central bank interest rate, which is close to the risk-free bond rate, is related to consumption

growth. But what is more worrying, in our view, are recent studies unveiling substantial

failures of (implied) consumption Euler interest rates to match money market rates: interest

rates generated by standard consumption Euler equations are negatively related to US money

market rates, while their spread is negatively related to the stance of monetary policy, i.e.

with the level of the money market rates (see Canzoneri et al., 2007, and Atkeson and Kehoe,

2008). Thus there seems to exist a non-negligible systematic wedge that separates interest

rates, which are claimed to be identical in macroeconomic theory. Put differently, observed

policy rates do not seem to be related to the two variables monetary policy is designed to

control, i.e. consumption and inflation, in the way standard models characterize.

In this paper we take a closer look at the implementation of monetary policy and show

that an explicit specification of central bank operations can contribute to the resolution of

this problem. We thereby aim at reconciling the empirical relationship between the policy

rate and variables determining the Euler rate, i.e. consumption growth and inflation. We

develop a macro-model with three interest rates: a discount rate for open market operations

controlled by the central bank (the repo rate), an interest rate on government bonds (the

bond rate), and the Euler rate. The model can explain systematic movements of the spreads

with the monetary policy stance and with aggregate uncertainty, and it can generate an

unambiguous liquidity effect. The liquidity premium on bonds, i.e. the spread between Euler

and bond rates, varies endogenously according to how much the private sector values the

transaction service of these assets. Consistent with Atkeson and Kehoe’s (2008) evidence,

our analysis shows that changes in the policy (repo) rate affect aggregate demand and inflation

to a smaller extend than implied by a conventional framework, where the central bank sets

the Euler rate.
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The model is based on a general equilibrium framework with sticky prices, where money

demand is introduced by a cash-in-advance constraint. It mainly differs from standard mon-

etary macro-models by three assumptions: First, we assume that financial markets are sep-

arated. The asset market, where agents trade interest bearing assets and cash, opens at the

end of each period. Before, the money market opens, where agents can acquire cash from the

central bank in exchange for interest bearing assets discounted with an interest rate set by

the central bank, i.e., the repo rate. Bonds can be cashed in the next period at the repo rate.

The bond rate is therefore closely linked to the expected future repo rate in open market

operations, while the mean spread between these rates increases with aggregate uncertainty

and investors’ relative risk aversion.

Second, we assume that only government bonds are eligible in open market operations,

while other assets (here, privately issued debt) cannot be cashed at the central bank. The

main assumption is that the amount of eligible assets is not unlimited. Access to money is

thus bounded by private sector government bond holdings and cannot be eased by holdings

of other securities issued by the private sector. Due to this property, government bonds are

perceived as more liquid by investors, which gives rise to a liquidity premium. Thus, in

equilibrium we observe a spread between the bond rate and the interest rate on privately

issued debt, which are not eligible for open market operations.2 The latter rate, which

actually corresponds to the above mentioned consumption Euler rate, thus differs from the

other rates, the bond rate and the repo rate, while the spreads depend on the state of the

economy. In particular, a higher repo rate raises the price of money in terms of bonds, i.e.

reduces the amount of received money per unit of bonds supplied to the central bank, which

leads to a decline in the liquidity premium.

Third, we assume that the central bank transfers its revenues to the fiscal authority.

Following central bank practice (see Meulendyke, 1998), we assume that it reinvests payoffs

from maturing securities in new interest bearing assets. The associated interest rate earnings

are then transferred to the fiscal authority, while financial wealth is held by the central bank

as the counterpart of outstanding money.3 As a consequence, the distribution of eligible

securities between the private sector and the central bank changes over time and, in particular,

varies with the monetary policy stance. This property can exert an additional effect of

monetary policy on the private sector behavior.

In this paper, we further examine the transmission of monetary policy shocks, either

modelled as shocks to a simple interest rate rule or as money growth shocks. When the

constraint in open market operations (“discounted value of bonds held by the private sector

2Bansal and Coleman (1996) endogenously derive a liquidity premium by assuming bonds reduce transac-
tions costs.

3This differs from the common assumption in general equilibrium macro-models that the central bank
transfers seigniorage (defined as the change in the monetary base) to the fiscal authority.
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≥ new money”) is binding, the model’s predictions leads to substantial deviations from results
generated by standard models. Consider, for example, an unexpected increase in the repo

rate, i.e. a positive innovation to a Taylor-type feedback rule for the repo rate. Since aggregate

demand is constrained by the amount of short-term bonds discounted with the repo rate (plus

money carried over from the previous period), which represents the amount of money the

private sector can get through open market operations, the higher repo rate has a negative

effect on the level of nominal consumption. Taking into account that prices are adjusted in

an imperfectly flexible way, monetary policy rather impacts on the level of real consumption

than on its growth rate, as implied by the consumption Euler-equation in standard models.

Due to the third assumption (s.a.), the rise in the repo rate further affects consumption

through its impact on the distribution of eligible securities. If, for example, monetary policy

is tightened by an increased repo rate, agents have to supply a relatively larger amount of

bonds in exchange for money. With reduced bond holdings, the constraint in the money

market tends to become even tighter in the next period, which is responsible for a hump-

shaped consumption response. Hence, a higher repo rate leads to a decline in the consumption

growth rate, which — together with lower expected inflation — implies the Euler-rate to fall,

consistent with empirical evidence (see Canzoneri et al., 2007).

Now suppose that the central bank controls the growth rate of money. When the open

(or money) market constraint is binding, it implies a simple negative relation between newly

injected money and the repo rate, since the stock of eligible bonds is predetermined by the last

period investment decision.4 As a consequence, a money injection leads to an unambiguous

liquidity effect, i.e. a decline in the repo rate and in the bond rate. At the same time, the

debt rate increases due to the well-known anticipated inflation effect. The latter typically

leads to a lack of a liquidity effect in standard sticky price models (see e.g. Christiano, et

al., 1997), which we also found for the version of model where the money market constraint

is not binding.

The paper is organized as follows. Section 2 presents empirical evidence on short-term

interest rates and spreads. In section 3, the model is developed. In section 4, we examine the

behavior of interest rates and spreads in the model. Section 5 presents responses to interest

rate and money supply shocks. Section 6 concludes.

2 Empirical behavior of interest rates

This section presents the empirical behavior of the different interest rates considered in the

model and the relationships between them. The model contains a policy rate Rm, an interest

rate R on an asset that the central bank accepts (at a discount) in exchange for money in

its open market operations, which measures the relative price of money outside open market

4This is of course due to the first above mentioned assumption on the timing of financial markets.
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operations, and the Euler rate Rd.

Spread between Euler and policy rates. This sub-section compares the empirical be-

havior of two interest rates that standard models equate, i.e. the Euler and policy rates. In

our model there is a third interest rate R, i.e. the interest rate on assets accepted by the

central bank in exchange for money in open market operations. In this sub-section we focus

on the spread between the fed funds rate and the Euler rate, given that empirically and in

the model both Rm and R move relatively close to each other and contrast significantly with

the behavior of Rd; thus for empirical comparison with the Euler rate we can interchangeably

use Rm or R, with only negligible quantitative differences (see below).

First, the empirical interest rate implied by standard Euler equations is computed. The

methodology is similar to Fuhrer (2000) and Canzoneri et al. (2007). In a standard Euler

equation, the inverse of the gross nominal interest rate Rd
t can be expressed as

1

Rd
t

= βEt

µ
uc,t+1
uc,t

Pt
Pt+1

¶
, (1)

where β is the discount factor, uc is marginal utility of consumption, and P is the price level.

With a standard CRRA utility function, leading to a marginal utility of consumption c−σt ,

and under conditional log-normality the Euler equation can be written as

1

1 + rdt
= β exp

"
−σ (Et log ct+1 − log ct)−Et log πt+1

+σ2

2 vart log ct+1 +
1
2vart log πt+1 + σcovt (log ct+1, log πt+1)

#
, (2)

where πt = Pt/Pt−1. Equation (2) is used to compute the implied standard Euler interest

rate rd, where the conditional moments are estimated from a six-variable VAR , Yt = A0 +

A1Yt−1 + vt, assuming v ∼ i.i.d.N (0,Σ), σ = 2 and β = .993. The variables included in Y

(1966Q1-2008Q2) are log per capita real personal consumption expenditures on nondurable

goods and services, log change in the deflator of that consumption, log price of industrial

commodities, log per capita real disposable personal income, federal funds rate, and log per

capita real non-consumption GDP. Moreover, a segmented (1974Q1) time trend is included

in A0.

Figure 1 displays the computed standard Euler interest rate rd and the fed funds rate

r, as well as the spread between these two rates, s1,t = rdt − rt, in percent. The Euler rate

averages at 11.4 percent, whereas the federal funds rate averages at 6.5 percent; thus the

average spread is about 5 percentage points. Inflation averages at 4.4 percentage points over

the period considered. The federal funds rate and the Euler rate, which should be identical

according to standard macroeconomic models, display no apparent co-movement. The fed

funds rate is strongly negatively correlated with the spread, a fact that has recently been

pointed out by Atkeson and Kehoe (2008), while replicating the Smets and Wouter’s (2007)

implied Euler rate. Thus, the unexplained wedge between the federal funds rate and the
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Figure 1: Euler and federal funds rates (%)

Euler rate commoves with the federal funds rate in a substantial way.

At low frequency, the Euler and federal funds rates are positively correlated, which is

mainly due to inflation trends (upward in the 1970s and then downward in the 1980s) that

move both rates in the same direction. These trends evidently distort the correlation be-

tween the Euler and policy rates in comparison to a theoretical environment with constant

steady-state inflation. In order to correct for these inflation trends and to isolate short-run

(business cycle) interest rate dynamics from longer term movements, we HP-filter the interest

rate series. The correlations between HP-filtered variables will be used to assess theoretical

moments of our model, which will be examined around a given steady-state inflation.

Figure 2 displays the same variables as in Figure 1 but HP filtered. The opposite of the

federal funds rate has been plotted in order to draw attention to the fact that there is a very

close match between fluctuations of the spread and of the opposite of the policy rate. Also,

the Euler and policy rates are negatively correlated at business cycle frequency.

Table 1 Empirical correlations

Standard Euler equation Our model’s Euler equation

corr(s1, r) −0.98 −0.90
corr

¡
rd, r

¢
−0.66 −0.57

Table 1 presents the (unconditional) correlations between the federal funds rate r, the Euler
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Figure 2: HP-filtered Euler and federal funds rates

rate rd, and the spread s1, using standard Euler equations as well as our own model’s Euler

equation.5 There is a strong (close to minus one) negative correlation between the spread and

the policy rate. The Euler rate and the policy rate are negatively correlated, as in Canzoneri

et al. (2007) in the case of real rates.6 The correlations presented in Table 1 are relatively

similar for both Euler rates.

Spread between policy and money market rates. In this subsection we briefly assess

the empirical counterpart of the spread between the policy rate Rm and interest rate R, which

measure the relative price of money inside and outside open market operations. For this we

assess monthly data for the effective federal funds rate and the (overnight and 3-month)

US$-LIBOR since January 2001. In general, the LIBOR lie slightly above the policy rate (see

appendix 9). The average spread between the federal funds rate and the overnight (3-month)

LIBOR has been 7 (25) basis points, when the spreads from the recent financial crisis period

(back to the 1st August 2007) are omitted.

5Details on this latter rate can be found derived in the appendix. The difference between the standard
Euler equation and our own model Euler equation is mainly due to a cash-in-advance constraint. Overall,
these two Euler rates differ only slightly, except in accelerating inflation (late 1970s) and disinflation (early
1980s) episodes, as well as around 1992 and 2003 with the drops in the policy rate.

6Canzoneri et al. (2007) reported correlation between real rates is smaller (−0.37) and they find a positive
correlation between nominal rates, which comes from the inflation trends, as explained above.
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3 The model

In this section we develop a macroeconomic framework where the asset market and the money

market are separated. There are four different types of agents: households, firms, the central

bank and the government. We abstract from gains of financial intermediation and assume

that households directly trade with the central bank in open market operations.

Households’ demand for money is induced by assuming that goods market transactions

cannot be conducted by using credit. This is modelled, for simplicity, by a cash-in-advance

constraint, i.e. by assuming that households have to hold money for goods market purchases.

Asset markets are separated. Households can get money from the central bank only in

exchange for securities in open market operations. They further invest in government bonds

and non-interest bearing money, and they can borrow and lend among each other using a full

set of nominally state contingent claims. To give a preview, financial markets separation will

lead to a spread between the bond and policy (repo) rates, whereas the spread between the

Euler and bond rates will be due to the special role of bonds in open market operation.

Throughout the paper, upper case letters denote nominal variables, lower case letter real

variables, and variables without an index (i or j) aggregate (or economy-wide) variables.

3.1 Timing of events

The timing of markets and the specification of open market operations will be important

for our results. We will focus on the case where only government bonds are eligible in open

market operations (like in Lacker, 1997, or Schabert, 2004). The timing of events in each

period is as follows:

There is a continuum of infinitely lived households indexed with i ∈ [0, 1]. A household
i enters a period t with nominal assets carried over from the previous period t− 1 :

MH
i,t−1 +Bi,t−1 +Di,t−1,

where MH denotes holdings of money, B government bonds, and D private debt.

1. Aggregate shocks materialize, labor is supplied by households, and goods are produced

by firms.

2. Households enter the money market, where money can be traded only in exchange

for eligible securities. We assume that the central bank supplies money via outright

sales/purchases and via repurchase agreements. The relative price of money Rm
t (for

both types of trades) is controlled by the central bank and will be called repo rate:

∆Bc
i,t/R

m
t = Ii,t,
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where Ii,t is the amount of money delivered to the household i and ∆Bc
i,t the amount

of bonds the CB gets. We assume that only government bonds are eligible

∆Bc
i,t ≤ Bi,t−1. (3)

When household i leaves the open market its bonds holdings equal Bi,t−1 −∆Bc
i,t.

3. Households enters the (final) goods market, where money is assumed to be the only

accepted means of payment. Thus goods market expenditures are restricted by money

carried over from the previous period plus additional money acquired from the central

bank via current period open market operations:

Ptci,t ≤ Ii,t +MH
i,t−1, (4)

where ci denotes purchases of the final consumption good and P its price level. When

household i leaves the goods market, its money stock equals Ii,t +MH
i,t−1 − Ptci,t.

4. Finally, the asset market opens. Before households trade in the asset market, current

labor income and dividends are paid back in cash to households. Further, government

bonds can be repurchased from the central bank with cash, i.e. household i can re-

purchase bonds BR
i,t using money M

R
i,t = BR

i,t. After repurchase agreements are settled,

money and bond holdings of household i equal

fMi,t = Ii,t +MH
i,t−1 + Ptwtni,t + Ptδi,t − Ptci,t −MR

i,t,eBi,t = Bi,t−1 −∆Bc
i,t +BR

i,t,

where wt denotes the real wage rate, nt working time and Ptδi,t dividends. In the asset

market, households borrow/lend and trade money and bonds among each other. They

can further buy bonds from the government at the price 1/Rt. Thus, the price of money

in terms of bonds in the asset market equals Rt. Hence, we can summarize the asset

market constraint of household i as

(Bi,t/Rt) +Et[qt,t+1Di,t] +MH
i,t ≤ eBi,t +Di,t−1 + fMi,t + Ptτ t, (5)

where Ptτ t denotes lump-sum government transfers and qt,t+1 is a stochastic discount

factor, which will be defined below.

Money cannot be issued by the private sector,
R fMi,tdi =

R
MH

i,tdi, while the total amount of

government bonds held by the private sector at the end of the period
R
Bi,tdi will depend on

how many bonds are issued and held by the central bank. In what follows we describe the

model in detail.
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3.2 Private sector

Households Households have identical asset endowments and identical preferences. House-

hold i maximizes the expected sum of a discounted stream of instantaneous utilities u :

E0

∞X
t=0

βtu (cit, nit) , (6)

where E0 is the expectation operator conditional on the time 0 information set, and β ∈
(0, 1) is the subjective discount factor. The instantaneous utility u is assumed to satisfy

ut = [(c
1−σ
i,t − 1) (1− σ)−1]− γni,t.

A household i is initially endowed with money Mi,−1, government bonds Bi,−1, and con-

tingent claims Di,−1. As described above, it faces three constraints in each period. In the

money market, it can acquire money Ii,t only to the amount of government bonds carried

over from the previous period Bt−1 discounted by Rm
t . The constraint (3) can be written as

Ii,t ≤ Bi,t−1/R
m
t . (7)

The constraint (7) will be called the open (or money) market constraint. It should be noted

that this model can also be applied to the case where the central bank withdraws money from

the private sector Ii,t < 0. For monetary injections to be positive in equilibrium a sufficiently

large fraction of money has to be supplied under repurchase agreements. Throughout the

analysis we will restrict our attention to the case where the central bank supplies money in

a way that ensures Ii,t ≥ 0.
Households are further assumed to rely on cash for transactions in the goods market.

Given that they can first trade with the central bank in open market operations, the cash-

in-advance constraint differs from Svensson’s (1985) cash-in-advance constraint by Ii,t:

Ptci,t ≤ Ii,t +MH
i,t−1. (8)

In the asset market, the government issues bonds, and households trade money and bonds

with each other. They can further borrow and lend using a full set of nominally state

contingent claims. Dividing the period t price of one unit of nominal wealth in a particular

state of period t + 1 by the period t probability of that state gives the stochastic discount

factor qt,t+1. The period t price of a payoff Djt in period t+1 is then given by Et[qt,t+1Djt].

Substituting out the stock of bonds and money held before the asset market opens, eBi,t andfMi,t, in (5), the asset market constraint of household i can be written as

(Bi,t/Rt) +Et[qt,t+1Di,t] +MH
i,t + (R

m
t − 1) Ii,t (9)

≤ Bi,t−1 +Di,t−1 +MH
i,t−1 + Ptwtni,t − Ptci,t + Ptδi,t + Ptτ t,
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where household i0s borrowing is restricted by the following no-Ponzi game condition

lim
s→∞

Etqt,t+sDi,t+s ≥ 0, (10)

as well as MH
i,t ≥ 0 and Bi,t ≥ 0. The term (Rm

t − 1) Ii,t measures the costs of money
acquired in open market operations. Maximizing the objective (6) subject to the money

market constraint (7), the goods market constraint (8), the asset market constraints (9)

and (10), for given initial values Mi,−1, Bi,−1, and Di,−1 leads to the following first order

conditions for working time ni,t, consumption ci,t, open market trades, as well as holdings of

contingent claims, bonds and money:

−ui,nt/wt= λi,t, (11)

ui,ct +
ui,nt
wt

=ψi,t, (12)

ui,ct
Rm
t

+
ui,nt
wt

= ηi,t, (13)

β

πt+1

λi,t+1
λi,t

= qt,t+1, (14)

βEt

∙
λi,t+1 + ηi,t+1

λi,t
π−1t+1

¸
=1/Rt, (15)

Et

h¡
Rm
t+1

¢−1 ¡
λi,t+1 + ψi,t+1

¢
π−1t+1

i
Et

£¡
λi,t+1 + ψi,t+1

¢
π−1t+1

¤ =1/Rt, (16)

where λi,t, ψi,t, and ηi,t denote the multiplier on the asset, goods, and open market constraint.

It should be noted that the multiplier on the open market constraint, which measures the

liquidity value of bonds, tends to decline with the policy rate (see 13), since a higher policy

rate reduces the amount of money for each unit of bonds supplied to the central bank. As

can be seen from the bond pricing equation (15), a rise in this multiplier tends to lower

the interest rate on bonds. This can generate a spread between the Euler and bond rates.

Equation (14) defines the Euler-rate (see below) that differs slightly from the standard Euler

rate (see 1) due to the cash-credit-good friction, which is measured by ψi,t. Equation (16),

which is derived from the first order condition on money holdings, implies that households are

indifferent between money and bonds, i.e., between both assets that facilitates goods market

transactions.

These effect will be analyzed below in detail. The following complementary slackness

conditions are satisfied in the household’s optimum

i) 0 ≤ bi,t−1π
−1
t /Rm

t − ii,t, ηi,t ≥ 0, ηi,t
¡
bi,t−1π

−1
t /Rm

t − ii,t
¢
= 0,

ii) 0 ≤ ii,t +mH
i,t−1π

−1
t − ci,t, ψi,t ≥ 0, ψi,t

¡
ii,t +mH

i,t−1π
−1
t − ci,t

¢
= 0,

where mH
i,t = MH

i,t/Pt, bi,t = Bi,t/Pt, and ii,t = Ii,t/Pt, and (9) and (10) hold with equality.
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Throughout, we will repeatedly refer to the rate of return on a nominally risk-free portfolio

of claims that deliver one unit of currency in each state. This interest rate Rd
t is given by

Rd
t = [Etqt,t+1]

−1 . (17)

In equilibrium households are willing to hold both types of money, i.e. money held under

repurchase agreements MR
i,t and under outright sales/purchases M

H
i,t . Changes in the compo-

sition of money supplied to the private sector might however affect the distribution of eligible

securities between the private sector and the central bank.

Production To facilitate a reasonable transmission of monetary shocks we will allow for

imperfectly flexible prices. We will introduce price stickiness in the standard way following

the New Keynesian literature. In particular, we assume that the final consumption good is

an aggregate of differentiated goods produced by monopolistically competitive firms indexed

with j ∈ [0, 1]. The CES aggregator of differentiated goods is y
�−1
�

t =
R 1
0 y

�−1
�

jt dj, with � > 1,

where yt is the number of units of the final good, yjt the amount produced by firm j, and

� the constant elasticity of substitution between these differentiated goods. Let Pjt and Pt

denote the price of good j set by firm j and the price index for the final good. The demand

for each differentiated good is yjt = (Pjt/Pt)
−� yt, with P 1−�t =

R 1
0 P

1−�
jt dj. A firm j produces

good yj employing a technology which is linear in labor: yjt = atn
α
jt, where a is a stochastic

productivity level satisfying at = a
ρa
t−1 exp εa,t, ρ

a ≥ 0and εa,t is i.i.d. normally distributed

with Et−1εa,t = 0. Hence, labor demand satisfies:

wt = mcjtαyjt/njt,

where mcjt denotes real marginal costs.

We consider a nominal rigidity in form of staggered price setting as developed by Calvo

(1983) and Yun (1995). Each period firms may reset their prices with the probability 1 −
φ independently of the time elapsed since the last price setting. The fraction φ ∈ [0, 1)
of firms is assumed to adjust their prices with steady state inflation rate π, where πt =

Pt/Pt−1, such that Pjt = πPH,jt−1. In each period a measure 1−φ of randomly selected firms
sets new prices ePjt in order to maximize the expected sum of discounted future dividends

Ptδjt = (Pjt − Ptmct) yjt : maxPjt Et
P∞

s=0 φ
sqt,t+s( ePjtyjt+s − Pt+smct+syjt+s), s.t. yjt+s =ePjt−�P �

t+syt+s. For φ > 0, the first order condition is given by

ePjt = �

�− 1
Et
P∞

s=0 φ
s
£
qt,t+syt+sP

�+1
t+s mct+s

¤
Et
P∞

s=0 φ
s
£
qt,t+syt+sP �

t+s

¤ . (18)

Aggregate output is yt = (P ∗t /Pt)
�nαt , where (P

∗
t )
−� =

R 1
0 P

−�
jt dj and thus (P

∗
t )
−� = φ

¡
P ∗t−1

¢−�
+

(1− φ) eP−�t . Under flexible prices φ = 0, real marginal costs are given by mcjt =
ε−1
ε .

11



3.3 Public sector

The public sector consists of a government and a central bank. The government issues bonds

BT , which are either held by households
R
Bi,tdi = Bt or by the central bank

R
Bc
i,tdi =

Bc
t : B

T
t ≥

R
Bi,tdi+

R
Bc
i,tdi. It further receives payments Ptτ

m
t from the central bank and

transfers financial wealth Ptτ t to the households. Its flow budget constraint thus reads¡
BT
t /Rt

¢
+ Ptτ

m
t = BT

t−1 + Ptτ t.

The supply of government bonds will not be irrelevant for the conduct of monetary policy

and for monetary transmission. In order to specify bond supply in a neutral way, we assume,

for simplicity, that government bonds are issued at a constant growth rate Γ satisfying:

Γ > β : BT
t = ΓB

T
t−1.

The central bank supplies money in exchange for government bonds in open market operations

in form of outright sales/purchases MH
t and repurchase agreements MR

t . Before the money

market opens, the central bank’s stock of government bonds equals Bc
t−1 and the stock of

outstanding money equals MH
t−1. It then receives an amount of bonds ∆B

c
t in exchange for

money It, and after repurchase agreements are settled its holdings of bonds reduces by BR
t

and the amount of outstanding money by MR
t = BR

t . Before the asset market opens, where

the central bank can invest in government bonds Bc
t , it holds an amount of bonds equal toeBc

t = ∆B
c
t +Bc

t−1 −BR
t . Its budget constraint is given by

(Bc
t/Rt) + Ptτ

m
t = ∆B

c
t −BR

t +Bc
t−1 +MH

t −MH
t−1 −

¡
It −MR

t

¢
.

Following the operational practice of central banks we assume that it rolls over their maturing

assets (see e.g. Meulendyke, 1998, ch.7). Thus, we assume that the central bank also enters

the asset market at the end of each period, and reinvests in bonds to the amount that equals

its current stock of maturing debt Bc
t = eBc

t . Further using B
R
t =MR

t and ∆Bc
t = Rm

t It, the

budget constraint can be simplified to (Bc
t /Rt)−Bc

t−1 =MH
t −MH

t−1 + (R
m
t − 1) It − Ptτ

m
t .

Following common practice (see Meulendyke, 1998), we assume that the central bank

transfers interest earnings from asset holdings to the government.

Ptτ
m
t = Bc

t (1− 1/Rt) .

Note that these transfers will bot be negative in equilibrium, such that the central bank

will never demand funds from the government.7 Accordingly, its bond holdings will evolve

7Note that this is different in models, where central bank tranfers seigniorage (defined as the change in
the monetary base) to the government in each period. A discussion of government transfers and central bank
independence can be found in Sims (2003).
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according to

Bc
t −Bc

t−1 = Rm
t It −

¡
It −MH

t +MH
t−1
¢
. (19)

Regarding the implementation of monetary policy, we assume that the central bank conducts

monetary policy by using simple instrument rules, which contain a stochastic element to allow

for monetary policy shocks. We consider two alternatives. For the benchmark specification

of monetary policy, we assume that the central bank sets the repo rate Rm
t . The repo rate

might be set contingent on its own lags and on current inflation to allow for inertia and a

Taylor-rule-type interest rate setting. It might further change in an unpredictable way

Rm
t =

¡
Rm
t−1
¢ρ
(Rm)1−ρ (πt/π)

ρπ(1−ρ) exp ερt . (20)

where ρ ≥ 0 and ερt is normally i.i.d. with Et−1ε
ρ
t = 0 and variance varερ ≥ 0. The long-

run repo rate, Rm > 1, and the target inflation rate, π > β, can be chosen by the central

bank. Alternatively, we will also assume that the central bank controls the growth rate of

money, where the growth rate is allowed to be serially correlated and might change in an

unpredictable way.

In contrast to (standard) models, where repurchase agreements are not considered, the

central bank has an additional role: It can decide on whether money is traded in form of

outright sales/purchases or in form of repurchase agreements. For simplicity, we assume

that it exogenously controls the ratio of money holdings under both types of open market

operations Ω:

MR
t = Ω ·MH

t ,

or MR
t =Mt

Ω
1+Ω , where Ω ≥ 0 and Mt is the total money supply, Mt =MH

t +MR
t .

Finally, substituting out central bank transfers in the government budget constraint shows

that the government transfers revenues from debt issuance and central bank profits to the

households: Ptτ t =
¡
BT
t /Rt

¢
−BT

t−1 +Bc
t (1− 1/Rt).

3.4 Rational expectations equilibrium

In equilibrium, there will be no arbitrage opportunities and markets clear, nt =
R 1
0 njtdj =R 1

0 nitdi and yt =
R 1
0 yjtdj =

R 1
0 citdi = ct. Households will behave in an identical way and

aggregate asset holdings satisfy ∀t ≥ 0 :
R
Di,tdi = 0,Z

MH
i,tdi=

Z fMi,tdi =MH
t ,

Z
MR

i,tdi =MR
t ,

Z
Bi,tdi = Bt,Z

Ii,tdi= It =MH
t −MH

t−1 +MR
t , BT

t = Bt +Bc
t .

Since government bonds are the single eligible security, its distribution between the central

bank and the private sector will matter. Given that the government issues bonds according

to a constant growth rate Γ, household bonds holdings change according to Bt − Bt−1 =

13



(Γ − 1)BT
t−1 − Bc

t + Bc
t−1. Further using (19), the evolution of bonds held by households

satisfies

Bt −Bt−1 = (Γ− 1)BT
t−1 −Rm

t

¡
MH

t −MH
t−1 +MR

t

¢
+MR

t . (21)

Thus, private sector holdings of bonds tend to decrease with a higher repo-rate and to increase

— for a given injection It — with a larger fraction of money held under repurchase agreements.

Throughout, we will however focus on the case where the central bank sets its instru-

ment such that the goods market constraint (8) is strictly binding (ψt > 0).8 A rational

expectations equilibrium can then be defined as follows:

A rational expectations equilibrium is a set of sequences {ct, nt, yt, wt, mt, bt, b
T
t , R

m
t ,

Rd
t , Rt, Pt}∞t=0 satisfying the firms’ first order conditions and the production technology,

the households’ first order conditions (11)-(16) and the transversality condition, the binding

goods market constraint Ptct =MH
t +MR

t , the open market constraint

bt−1
Rm
t πt

≥ mR
t +mH

t −mH
t−1π

−1
t ,

and bt−bt−1π−1t = (1−Γ)bTt−1π−1t −Rm
t

¡
mH

t −mH
t−1π

−1
t

¢
− (Rm

t − 1)mR
t , for Γ = bTt πt/b

T
t−1,

a given monetary policy and initial values M−1 ≥ 0, B−1 > 0, and P−1 > 0.

Note that under a non-binding open market constraint, bt−1/πt > Rm
t

¡
mR

t +mH
t −mH

t−1π
−1
t

¢
,

the evolution of government bonds will neither affect the equilibrium allocation nor the asso-

ciated price system. If however the open market constraint is binding, bt−1/ (Rm
t πt) = mR

t +

mH
t −mH

t−1π
−1
t , household bond holdings matter and (21) reduces to Bt = (Γ− 1)BT

t−1+M
R
t .

3.5 Steady state

In the following analysis, the two cases of a binding and a non-binding open market constraint

(7) will be treated separately, which facilitates analyzing the mechanisms that are responsible

for the main results.9 Throughout the analysis, we are especially interested in the case where

the money market constraint is binding. For this we assume that the central bank conducts

monetary policy in a way that induces the rate of return on government bonds to be lower

on average than the rate of return on private debt in equilibrium. Households then tend

to economize on bond holdings, i.e. they will not hold more bonds than necessary for their

money market trades. If however both returns are identical, households can borrow and

invest in bonds without costs such that the money market constraint will not be binding.10

In order to analyze the two regimes in a separate way, we first briefly examine steady

states with a binding and a non-binding open market constraint. We then assume that

8 In the long-run, this is ensured by the nominal interest rate R being larger than one.
9The set of equilibrium conditions for both cases can be found in the appendix 8.2.
10Likewise, if the central bank simply declares both assets as eligible for open market operations, the private

sector can freely create any amount of private debt that can be used in exchange for money, such that the
private sector never runs out of eligible securities.
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monetary policy is conducted in a way to implement one particular steady state and that

aggregate shocks are sufficiently small, so that we can analyze the properties of the economy

in the neighborhood of this steady state. A steady state value of an endogenous variable xt

will not carry a time index, x.

To examine the two cases, we combine (14), (15), and (17), to give the following steady

state condition

η/λ =
³
Rd −R

´
/R. (22)

The spread between the debt rate Rd and the bond rate R thus determines if the multiplier

on the open market constraint is positive η > 0, which indicates a binding open market

constraint.

Suppose that the central bank conducts money policy in a way that the average repo-rate

Rm approaches the debt rate Rd (π/β) in a steady state. As can be seen from (16), which

leads to the condition R = Rm in a steady state, the interest rate on government bonds R

will then be identical to the interest rate on private debt Rd in the steady state and the

multiplier on the open market constraint will then be equal to zero η = 0. The steady state

is then characterized by R = Rd = Rm,

π/β = Rd, c−σ/α = Rd (γ/α) ε/ (ε− 1) , m = c, m = mH +mR, mR = ΩmH . (23)

If however the central bank chooses an average repo-rate Rm that is strictly smaller than

Rd = π/β, there exists a steady state with a binding open market constraint satisfying

b

Rmπ
= mH

¡
1− π−1

¢
+mR, (24)

(23), R = Rm, and b
¡
1− Γπ−1

¢
= mR

¡
1− Γπ−1

¢
. Since the latter condition together with

(24) would only be consistent with Γ 6= π and MH
t ≥ 0 for deflationary equilibria, we restrict

our attention to the case where the growth rate of bonds equals the steady state inflation rate

Γ = π. For this, we assume that the central bank chooses its inflation target and eventually

adjusts the set of eligible assets if the growth rate of bonds differs from the inflation target,

which is not considered in this paper.

If, for example, Γ < π, the central bank might accept also a fraction of private debt

in open market operations. If Γ > π, it might accept only a fraction of government bonds

in open market operations. Thus, by deciding on the set of eligible securities, the central

bank actually decides on the maximum amount of money that can be traded in open market

operations.
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4 Interest rate spreads

In this section, we examine the relation between the three interest rates, i.e., the repo rate

Rm, the bond rate R, and the debt rate Rd. The bond rate Rt and the repo rate Rm
t are

closely related to each other as can be seen from (16). The spread between these two rates,

which depends on second order effects and is relatively small, will be examined below. Before,

we will take a look at the relation between the debt rate Rd
t and the bond rate Rt, which will

differ whenever the money market constraint is binding. Otherwise, the spread equals zero.

For the analysis of both spreads we will use simple versions of the model, to facilitate

the derivation of analytical results, as well as numerical examples, which are based on pa-

rameter values (given in table A1, see appendix 8.3) and computed by using a second order

approximation at the deterministic steady state (see Schmitt-Grohé and Uribe, 2004).11

4.1 Bond rate vs. debt rate

Households are willing to hold government bonds even if the bond rate is lower than the

debt rate, since bonds exhibit an additional liquidity value. Due to lower interest earnings,

households will economize on bond holdings such that the money market constraint is binding.

This property has already been used for the steady state analysis (see 22), where the central

bank can implement a long-run equilibrium with a binding money market constraint if the

repo rate is set at a value lower than π/β. Outside the steady state, the debt-bond spread

will not be constant over time and will in particular depend on the monetary policy stance,

since the valuation of liquidity will depend on the money market conditions.

This property can be shown by applying a simplified version (A) of the model without
technology shocks and with flexible prices, constant supply of government bonds, a linear

production technology, perfect competition, preferences satisfying σ = 1, money being sup-

plied under repurchase agreements only and an exogenous repo rate. This version A is thus

characterized by φ = ρπ = var(εa) = 0, Γ = α = σ = 1, ρ > 0, and Ω = �→∞.

Proposition 1 Consider version A of the model where the open market constraint is binding,
Rm < π/β. The spread between the debt rate Rd

t and the bond rate Rt decreases with i.) the
variance of repo rate innovations ερt and ii.) the current level of the repo rate.

(Details can be found in appendix 8.4.) The debt-bond spread s1,t = Rd
t −Rt is a measure for

the liquidity value of bonds and can also be interpreted as a liquidity premium. It particularly

depends on the ability of bonds to be converted into means of payments, i.e. money, in open

market operations. If these costs of exchanging bonds against money Rm
t are high or more

uncertain, the liquidity value of bonds and thus the liquidity premium declines (see 13).

To get some numbers for the spread s1,t, we use a sticky price version of the model with

some standard parameter values for quarterly data (σ = 2, α = 0.66, φ = 0.8, ρ(a) = 0.9, and

11For the computation we used dynare.
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� = 6). To roughly match the average interest rate values found in the data, we apply an

inflation rate of π = 1.0108 (for an annual rate of 4.4% , see section 2), a low discount factor

β = 0.984, a target repo rate equal to Rm = 1.015, leading to a steady state spread Rd −R

equal to 120 basis points per quarter implying a spread of 503 basis points per year. We

further set the inflation feedback ρπ either equal to zero or equal to 1.5.
12 Finally, the ratio

between repo-money and money supplied outright Ω, which we found to vary substantially

between different sample periods, is set equal to 0.5.

Table 2 Average spread Es1,t under interest rate shocks

var (ερ) = 0.0001 var (ερ) = 0.0005 var (ερ) = 0.001

ρπ = 0 477 b.p. 342 b.p. 172 b.p.

ρπ = 1.5 489 b.p. 400 b.p. 288 b.p.

Table 2 presents values for the average spread between the debt rate and the bonds rate,

E0s1,t = E0
¡
Rd
t −Rt

¢
. Starting with a steady state value of 120 basis points, it decreases

with larger variances of repo rate innovations ερt , while this effect is less pronounced when

the repo rate is endogenously adjusted (ρπ = 1.5). The numerical results thus support claim

i.) in proposition 1.

Table 3 Unconditional correlations

Interest rate shocks Technology shocks

ρπ = 0 ρπ = 1.5 ρπ = 1.5

corr(s1,t, Rm
t ) −0.996 −0.997 −0.861

corr
¡
Rd
t , R

m
t

¢
−0.885 −0.907 −0.830

Table 3 further presents the correlation between the debt rate and the repo rate as well as the

correlations between the spread s1,t and the repo rate. The columns refer to only one type of

shock. Both, the debt rate and the spread are found to be highly negatively correlated with

the repo rate, while the correlations are slightly smaller under technology shocks. Overall,

these finding supports the claim ii.) made in the proposition. The correlations of the spread

further correspond to the empirical results presented in section 2 and in other studies (see

Atkeson and Kehoe 2008, and Canzoneri et al., 2007). Though the model overstates the

negative correlation between the debt rate and the repo rate compared to the numbers in

section 2, we can conclude that the debt rate hardly mimics the policy rate in all cases.

12 In contrast to standard sticky price models a passive interest rate policy does not give rise to local
equilibrium indeterminacy when the money market constraint is binding. The reason is that nominal debt
serves a nominal anchor like a constant money supply. A local determinacy analysis of a simplified model
version can be found in Schabert (2004).
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4.2 Repo rate vs. bond rate

As discussed in the previous section, the interest rates on bonds and debt only differ when

the open market constraint is binding. In contrast, there will in general be a spread between

the repo rate and the bond rate, regardless whether the open market constraint is binding or

not. This can be seen from the household optimality condition (16), which can by using (11)

and (12) be rewritten as

1/Rt = Et

¡
1/Rm

t+1

¢
+

covt
£¡
1/Rm

t+1

¢
, (uct+1/πt+1)

¤
Et [uct+1/πt+1]

(25)

In order to hold both, money and bonds, households demand the rate of return on bonds to

compensate for the costs of converting bonds against money in next period’s open market

operations. Up to first order, the current bond price equals the expected price of money.

However, the price of a government bond 1/Rt will be smaller than the expected future price

of money Et

¡
1/Rm

t+1

¢
, if the covariance on the RHS of (25) is negative, i.e., if the real repo

rate Rm
t+1 is positively related to the marginal utility of consumption divided by the inflation

rate, uct+1/πt+1. This covariance can be shown to be strictly negative under a binding

open market constraint, where a higher repo rate tends to reduce current consumption and

inflation.

To show this, we apply a simplified version of the model. Here, we again assume that

prices are flexible, the supply of government bonds is constant, production is linear, firms

are perfectly competitive, and that money is supplied under repurchase agreements only. In

contrast to version A, we now allow for higher degrees of relative risk aversion, σ > 1, and

assume that the central bank endogenously adjusts the repo rate in a non-inertial way, ρπ > 0,

ρ = 0, and varερ = 0 and with i.i.d. technology shocks. This version B is thus characterized
by φ = ρ(a) = 0, Γ = α = 1, σ > 1, ρπ > 0, varερ = 0, and Ω = �→∞.

Proposition 2 Consider version B of the model where the open market constraint is binding,
Rm < π/β. The price of government bonds is smaller than the expected future price of money
(1/Rt) < Et

¡
1/Rm

t+1

¢
. The average bond rate Rt further increases with the households’

relative risk aversion and with the variance of productivity shocks.

(Details can be found in appendix 8.5.) While the covariance is strictly negative, the bond rate

further increases for a given repo rate, if aggregate uncertainty or the relative risk aversion

increases. In both cases investors want to be compensated by a higher bond rate.

Table 4 Spread E0s2,t for technology shocks

σ = 2 σ = 5

var (εa) = 0.01 0.34 b.p. 0.75 b.p.

var (εa) = 0.02 0.68 b.p. 1.51 b.p.
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Applying the parameter values from above (with ρπ = 1.5, see table A1), we find small

positive numbers for the spread s2,t = Rt − Rm
t . As shown in table 4, they lie in between

0.3 basis-points and 1.5 basis-points, where the latter is obtained for a high variance of the

technology shock var (εa).13 The results for different values for σ and for var (εa) support

the claims made in the second part of proposition 2. Overall, the model is able to explain

the positive spread between the policy rate and the bond rate, thought the average spread

between the federal funds rate and the 3month-libor presented above (25 b.p.) is much larger

than the model’s predictions.

5 Monetary transmission

In this section we examine responses to repo rate innovations and money supply shocks to

disclose the monetary transmission mechanism in our model. Throughout the analysis we

report results for the case where the open market constraint is binding, unless the opposite

is explicitly mentioned.

5.1 Responses to interest rate shocks

Consider a positive innovation to the repo rate satisfying (20) with ρ = 0.9. Figure 1 presents

the impulse responses of interest rates and macroeconomic aggregates for the case where the

repo rate is exogenously set (blue solid line: ρπ = 0) and for the case where it follows a Taylor

type feedback rule (ρπ = 1.5, green marked line). An increase of the repo rate by 1% from its

steady state value leads to a rise in the bonds rate by less than one percent, which accords to

(25). The debt rate decreases on impact and is closely followed by the rate R-Euler, which is

the rate implied by a standard Euler equation, βEt [uc,t+1/(uc,tπt+1)] = 1/R
Euler
t ; the latter

has no meaningful role in our model and is only computed to facilitate comparisons (see

section 2). The spread between the debt rate and the bond rate decreases, as predicted in

proposition 1. The impact response of the spread almost equals the size of its steady state

value.14

Regarding the responses of macroeconomic aggregates, figure 3 further shows that infla-

tion, real balances, and output decline in a hump-shaped way, which is qualitatively consistent

with standard VAR evidence. It should be noted that hump-shape impulse responses are usu-

ally not generated by simple sticky price models (like the version of our model without the

money market constraint). Hump-shaped impulse responses, which are also found in the

data, can also be generated by considering additional frictions or rigidities (see Christiano et

al., 2005). Here, it is mainly driven by the dynamics of households’ real bond holdings bHt ,

which falls in response to the monetary contraction.

13The variances are small enough so that the multiplier on the open market constraint remains positive
after a productivity shock hits the economy.
14The multiplier on the open market constraint is thus positive after the interest rate shock.
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Figure 3: Responses (in % dev. from st.st.) to an interest rate shock

On the one hand, the real value of government bonds should increase, since inflation

fall. Yet, the amount of bonds held by the central bank tends to rise by higher interest

rates and by less repo money (see 19). Thus, a monetary tightening does not only lead to

contractionary effects on impact, but subsequently shifts the distribution of bond holdings

towards the central bank. With depleting eligible securities, households can acquire less

money in the subsequent periods, such that the initial contraction in consumption will even

be enhanced. Thus, the dynamics of bond holdings affects the transmission of monetary

policy shocks, which relies on the assumption that the central banks does not transfer its

wealth to the household at the end of each period.

For a smaller fraction of repo money, Ω =MR
t /M

H
t , the impact of an interest rate shock,

in particular, the responses of the macroeconomic aggregates, are less pronounced. (The

impulse responses to interest rate shocks for Ω = 0.1 are given in the appendix.) Thus, our

model predicts that the size of interest rate shock effects depends on the way the central bank

conducts open market operations.

Figure 4 shows impulse responses to a one percent repo rate innovation for a version of the
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Figure 4: Responses (in % dev. from st.st.) to an interest rate shock for a non-binding money
market constraint

model where the money market constraint is not-binding.15 Since the stock of government

bonds is now irrelevant and the bond rate and the debt rate are identical, the responses of

the latter, the spread s1,t, and of bonds are not presented. The inflation feedback of the

policy rule is set equal to ρπ = 1.5 (blue solid line) and ρπ = 2.5, since determinacy now

requires the Taylor-principle. The effects of the same policy shock on inflation and on output

are much more pronounced than for a binding money market constraint. Here, the output

response does not exhibit a hump-shape, since the distribution of asset holdings is irrelevant.

5.2 Money supply shocks and liquidity effects

This section reports the effects of money injections modelled by innovations to the growth

rate of money holdings MH , i.e.

logµt = ρµ logµt−1 + εµt , µt =MH
t /MH

t−1,

where µ = π and εµt is normally i.i.d. with Et−1ε
µ
t = 0 and ρ ≥ 0. The amount of money

supplied under repurchase agreements satisfies MR
t = Mt

Ω
1+Ω , as before. Figure 5 shows

impulse responses to a positive one percent deviation from the steady state money growth

rate for different degrees of serial correlation, ρµ = 0.5 and ρµ = 0.9.

A shock to the money growth rate leads to a decline in the repo rate Rm
t and in the closely

linked bonds rate Rt. The simple reason is that a binding open market constraint implies a

15For this version of the model we used a standard value for the subjective discount factor (β = 0.99).
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Figure 5: Responses (in % dev. from st.st.) to a money supply shock

negative relation between money injections and the repo rate for a given level of nominal debt,

Bt−1/Rm
t = It. Thus, both rates exhibit an unambiguous liquidity effect. At the same time

the debt rate Rd
t (as well as the standard Euler-rate R

Euler
t ) is rising in accordance with to

the usual anticipated inflation effect. Like in the case of interest rate shocks, output displays

a hump-shaped impulse response function. The spread between the debt rate and the bond

rate Rd
t −Rt increases, since households need more bonds to acquire the new amount of cash.

When the constraint is not binding, the impulse responses are closely related to the

responses of standard models, except for the small difference between the repo rate and the

bond rates (see figure 6). The impact on inflation and output is identical to the case of a

binding open market constraint, while the responses of the interest rate substantially differ.

The repo rate Rm
t and the bond rate Rt, which equals the debt rate Rt = Rd

t , unam-

biguously rise in response to a money growth shock with a high autocorrelation. If the serial

correlation of the money growth rate is smaller, both rates first rise and then fall below their

steady state values. Thus, in both cases the model does not generate clear liquidity effects,

like in most standard sticky price models (see Christiano et al., 1997).
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Figure 6: Responses (in % dev. from st.st.) to a money supply shock for a non-binding
money market constraint

Productivity shocks. Finally, we want to take a quick look at impulse responses to a 1%

innovation to the technology parameter, which are shown in figure 7 for different degrees of

price stickiness (φ = 0.8 and φ = 0.7). The increase in productivity leads, as usual, to a

rise in output and to an immediate decline in inflation. Given that the Taylor-rule links the

repo rate to the inflation rate, both also decline, while the debt rate increases on impact.

The response of the bond rate is less pronounced, such that spread s2 between the bond rate

and the repo rate also increases. Further, the spread s1 = Rd − R also increases, since the

expansion is associated with a rise in money demand that raises the liquidity premium.

6 Conclusion

Remains to be written
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Figure 7: Responses (in % dev. from st.st.) to a 1% productivity shock
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8 Appendix

8.1 Computation of the Euler rate

In section 2, the empirical Euler interest rate rd implied by our model has been computed as

1

1 + rdt
= β exp

"
−σ (Etct+1 − ct)−Etπt+1 −Etr

m
t+1 + rmt +

σ2

2 vartct+1 +
1
2vartπt+1

+1
2vartr

m
t+1 + σcovt (ct+1, πt+1) + σcovt

¡
ct+1, r

m
t+1

¢
+ covt

¡
πt+1, r

m
t+1

¢# .
8.2 Equilibrium conditions

A rational expectations equilibrium under a binding money market constraint and a binding

goods market constraint is a set of sequences {ct, nt, yt, wt,m
R
t ,m

H
t ,mct, R

m
t , R

d
t , Rt, bt, πt}∞t=0

satisfying

mR
t +mH

t = ct, (26)

mR
t = Ωm

H
t , (27)

bt−1
Rm
t πt

= mR
t +mH

t −mH
t−1π

−1
t , (28)

βEt
uct+1
πt+1

=
−unt
wt

, (29)

wt = mctαyt/nt, (30)

1/β = Rd
tEt
−unt+1 (nt+1) /wt+1

−unt (nt) /wt
π−1t+1, (31)

Rt =
Etuct+1 (ct+1)π

−1
t+1

Et

¡
Rm
t+1

¢−1
uct+1 (ct)π

−1
t+1

, (32)

yt = atn
α
t , (33)

and either mct =
ε−1
ε and yt = ct for flexible prices or (18) with ePjt = ePt, and P

1−�
t =

φ (Pt−1)
1−� + (1− φ) eP 1−�t , yt = (P ∗t /Pt)

�nαt , where (P
∗
t )
−� = φ

¡
P ∗t−1

¢−�
+ (1 − φ) eP−�t for

sticky prices, and a sequence for household’s bond holdings satisfying

bt − bt−1π
−1
t =(Γ− 1)bTt−1π−1t −Rm

t

¡
mH

t −mH
t−1π

−1
t

¢
− (Rm

t − 1)mR
t , (34)

bTt =Γb
T
t−1π

−1
t , (35)

the tvc’s, and {at}∞t=0, for a monetary policy (20) and initial asset endowments. For con-
venience, we neglect higher order terms of the aggregate supply constraint log (πt/π) =

βEt log (πt+1/π) + χ log (mct/mc), where χ = (1 − φ)(1 − βφ)/φ (for a precise analysis of

aggregate supply under sticky prices, see, e.g., the working paper version of Schmitt-Grohé

and Uribe, 2007).

If the money market constraint is not binding, the sequence of bonds is irrelevant and the
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model can be reduced to a set of equilibrium sequences for {ct, nt, yt, wt,mt,mct, R
m
t , Rt, πt}∞t=0

given by (30)-(33) mt = ct, uct = Rm
t
−unt
wt

and either mct =
ε−1
ε for flexible prices or

log (πt/π) = βEt log (πt+1/π) + χ log (mct/mc) for sticky prices, the tvc’s, and {at}∞t=0, for a
monetary policy (20) and initial values.

8.3 Parameter values

Table A1: Benchmark parameter values

β γ σ Γ = π mc φ α s Ω ρ ρπ var(ερ) var(εa)

0.984 2 2 1.0108 0.833 0.8 0.66 0.012 0.5 0.9 1.5 0.0001 0.0001

8.4 Appendix to proposition 1

Applying the parameter restrictions φ = ρπ = 0, Γ = α = σ = 1, ρ > 0, and Ω = �→∞, the
version A of the model with a binding money market constraint, bt−1

Rm
t πt

= mt, can be reduced

to the following system in b, π,R, and Rd:

βEt
Rm
t+1

bt
=

γ

at
, bt =

1

Rm
t πt

bt−1 (36)

1/β = Rd
tEt

at
at+1

π−1t+1, Rt = EtR
m
t+1, (37)

and the policy rule Rm
t =

¡
Rm
t−1
¢ρ
(Rm)1−ρ exp ερt , where consumption has been eliminated

with bt−1
Rm
t πt

= ct. Since this system is log-linear, and shocks are log-normally distributed, all

variables are also log-normal. Thus, the two conditions in (36) can be written as

Et logR
m
t+1 + (1/2)vart(logR

m
t+1) = log bt − log at + log γ/ log β

log bt = − logRm
t − log πt + log bt−1

where we used that logEtR
m
t+1 = Et logR

m
t+1+(1/2)vart(logR

m
t+1) and vart (xt+i) = Etvar (xt+i).

Using the logged policy rule logRt = ρ log
¡
Rm
t−1
¢
+ (1− ρ) log (Rm) + εt and defining κ =

log γ − log β, we get the solution for real bonds and inflation

log πt=− (1 + ρ) logRm
t + log bt−1 − log at − (1/2)vart(logRm

t+1)− (1− ρ) logRm + κ(38)

log bt= ρ logRm
t + log at + (1− ρ) logRm + (1/2)vart(logR

m
t+1)− κ (39)

To assess the spread between the debt rate and the bonds rate, we apply the conditions in

(37), which can be combined to

Rt/R
d
t = βEtR

m
t+1Et

at
at+1πt+1
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Taking logs and using logEtR
m
t+1 = Et logR

m
t+1 + (1/2)vart(logR

m
t+1), the ratio Rd

t /Rt can

be written as

− log(Rd
t /Rt) = log at + log β +Et logR

m
t+1 + (1/2)vart(logR

m
t+1) + logEt[a

−1
t+1π

−1
t+1]

Rewriting the last term logEt[a
−1
t+1π

−1
t+1] by using logEt[a

−1
t+1π

−1
t+1] = Et (− log at+1 − log πt+1)+

(1/2)vart (− log at+1 − log πt+1) and vart (− log at+1 − log πt+1) = vart(log at+1)+vart (log πt+1)+

2covt (log at+1, log πt+1), we get

− log(Rd
t /Rt) = (1− ρa) log at +Et logR

m
t+1 −Et log πt+1 + log β

+(1/2)vart(logR
m
t+1) + vart(log at+1) + vart (log πt+1)

+2covt (log at+1, log πt+1)

where the first order terms in the productivity level have been merged using log at = ρa log at−1+

εa,t. Eliminating Et log πt+1 with (38), gives

log(Rd
t /Rt) =− log at − ρ (ρ+ 2) logRm

t + log bt − (1/2)Et[vart+1(logR
m
t+2)]

−(1/2)vart(logRm
t+1)− vart(log at+1)− vart (log πt+1)

−2covt (log at+1, log πt+1)− (1− ρ) logRm + κ− log β

and further log bt with (39),

log(Rd
t /Rt) =−ρ (1 + ρ) logRm

t − log β − (1/2)vart(logRm
t+2)

−vart(log at+1)− vart (log πt+1)− 2covt (log at+1, log πt+1)

Using that (38) implies vart (log πt+1) = (1 + ρ)2 vart
¡
logRm

t+1

¢
+ vart (log at+1) as well as

covt (log at+1, log πt+1) = −vart log at+1, leads to

log(Rd
t /Rt) =−ρ (1 + ρ) logRm

t − log β

−(1/2)vart(logRm
t+2)− (1 + ρ)2 vart

¡
logRm

t+1

¢
Finally, using vart

¡
logRm

t+1

¢
= var (ερ) and vart(logR

m
t+2) =

¡
1 + ρ2

¢
var (ερ), we get

log
³
Rd
t /Rt

´
= −ρ (1 + ρ) logRm

t −
³
(1/2)

¡
1 + ρ2

¢
+ (1 + ρ)2

´
var (ερ)− log β

implying that the spread Rd
t −Rt decreases with Rm

t and var (ερ).

8.5 Appendix to proposition 2

We want to assess the spread between the bond rate and the repo rate for the version B of
model satisfying φ = ρ(a) = 0, Γ = α = 1, σ > 1, ρπ > 0, varερ = 0, and Ω = �→∞. Thus,
the model can be summarized by (36)-(37) and a policy rule satisfying Rm

t = Rm(πt/π)
ρπ .
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Applying the latter and the conditions in (36), the covariance on the RHS of (25) can easily

be shown to satisfy

covt
£¡
1/Rm

t+1

¢
, (uct+1/πt+1)

¤
= (Rm/πρπ)σ−1 b−σt covt

h
π
−ρπ
t+1 , π

σρπ+σ−1
t+1

i
< 0

implying 1/Rt < Et

¡
1/Rm

t+1

¢
. In order to examine the impact of the relative risk aversion and

of aggregate uncertainty on the bond rate, we derive the solutions for bt and πt. Eliminating

the repo rate in (36), we get two conditions for the equilibrium sequences of bt and πt:

log bt= ρπEt log πt+1 + log at + (1/2)ρ
2
πvart(log πt+1) + κ2

(1 + ρπ) log πt=− log bt + log bt−1 + κ3

where κ2 = − log γ+log β+logRm− ρπ log π and κ3 = − logRm+ ρπ log π. Since the model

is log-linear, all variables will finally be log-normally distributed. We further know that the

solutions can be written as

log πt= δπb log bt−1 + δπa log at + δπvvart (log at+1) + δπ

log bt= δbb log bt−1 + δba log at + δbvvart (log at+1) + δb

where the δ0s are unknown constants. Inserting these solutions in (36), the unknown coeffi-

cients can easily be identified:

log πt=
1

1 + ρπ
log bt−1 − log at −

(1/2)ρ2π
1 + ρπ

vart (log at+1) + κ5, (40)

log bt=(1 + ρπ) log at + (1/2)ρ
2
πvart (log at+1) + κ4, (41)

where κ4 = exp(log β−log γ+ logRm−ρπ log π
ρπ+1

) and κ5 = exp(− (ρπ+2)(logR
m−ρπ log π)+(ρπ+1)(log β−log γ)

(ρπ+1)
2 ).

We now want to solve for the bonds rate, which satisfies (16) or

Rt =
Etc

−σ
t+1π

−1
t+1

Et

¡
Rm
t+1

¢−1
c−σt+1π

−1
t+1

Using the solutions for inflation and bonds (40)-(41), we get

Et

¡
c−σt+1/πt+1

¢
= (Rm/πρπ)σ a−1t (κ5)

σρπ+σ−1 (κ4)
− 1
1+ρπ e(1/2)vart(log at+1)((σ−1)(σ+2σρπ+σρ

2
π−1))

Et

£¡
1/Rm

t+1

¢ ¡
c−σt+1/πt+1

¢¤
= (Rm/πρπ)σ−1 a−(1+ρπ)t κ−14 κ

(ρπ+1)(σ−1)
5 e(1/2)(((σ−1)(1+ρπ))

2−σρ2π)vart(log at+1)

The solution for the bond rate can thus be written as

Rt = a
ρπ
t · exp [ρπ (2σ − ρπ + 2σρπ − 2) (1/2) vart (log at+1)] · (Rm)

1
ρπ+1 π

− ρπ
ρπ+1
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Taking unconditional expectations (E0) and using that E0a
ρπ
t = exp ρ2π(1/2)vart (log at+1) =

exp ρ2π(1/2)var (ε
a
t ) for ρ

a = 0, the mean of the bond rate is given by

E0Rt = exp [ρπ (σρπ + σ − 1) var (εat )] · (Rm)
1

ρπ+1 π
− ρπ
ρπ+1

and thus increases with var (εat ) and σ.
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