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Abstract This paper examines a game-theoretic model of attack arehskefof mul-
tiple networks of targets in which there exist intra-netkstrategic complementarities
among targets. The defender’s objective is to succesdfigifgnd all of the networks
and the attacker’s objective is to successfully attack agtlene network of targets. In
this context, our results highlight the importance of madghsymmetric attack and
defense as a conflict between “fully” strategic actors witd@yenous entry and force
expenditure decisions as well as allowing for general ¢aticln structures for force
expenditures within and across the networks of targets.
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1 Introduction

In the literature on optimal defense from intentional dtttwere has been growing in-
terest in not only the attack and defense of isolated tartpettsalso networks of targets
and even complex supra-networks of targefhis move towards increasing network
complexity emphasizes the role that strategic complemi@éetaamong targets play in
creating structural asymmetries between the attack arehdefof such combinations
of targets. For example in complex infrastructure suptavaeks — such as communi-
cation systems, electrical power grids, water and sewagfers)g, oil pipeline systems,
transportation systems, and cyber security systems — tifiene exist particular targets
or combinations of targets which if destroyed would be sigfitto either: (a) disable
the entire supra-network or (b) create a terrorist ‘spedéac

In order to highlight the importance of modeling the asymmetttack and defense
of complex supra-networks as a conflict between ‘fully’ s&tghc actors with endoge-
nous entry and force expenditure decisions, we examinetaststheoretic model of the
attack and defense of a complex supra-network and allovhéoplayers to use general
correlation structures for force expenditures within aoas the networks of targets.
The supra-network of targets is made up of an arbitrary coatlmn of two simple types
of networks which capture the two extreme endpoints of alsxpe-redundency spec-
trum for network types. The maximal exposure network, whiehlabel aveakest-link
network is successfully defended if and only if the defender susfodly defends all tar-
gets within the network.The maximal redundancy network, which we labekst-shot
network is successfully defended if the defender successfullgrif at least one target
within the network. At each target the conflict is modeled ag#rministic contest in
which the player who allocates the higher level of force winestarget with probability
one. Given that the loss of a single network may be sufficeeither disable the entire
supra-network or create a terrorist ‘spectacular,’ we $omuithe case that the attacker’s

1 See for example Bier et al. (2007), Powell (2007a, b), andeRdsrff and Sandler
(2004).

2 See for example Bier and Abhichandani (2003), Bier et al0%}0and Clark and
Konrad (2007).

3 See for example Azaiez and Bier (2007), Hausken (2008), ewilih and Ben-Haim
(2008).

4 See Hirshleifer (1983) who coins the terms best-shot andegtdink in the context
of voluntary provision of public goods.
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objective is to successfully attack a single network, arad the defender’s objective is
to successfully defend all of the networks.

A distinctive feature of this environment is that a mixeéstgy is a joint distribution
function in which the randomization in the force allocattoreach target is represented
as a separate dimension. A pair of equilibrium joint disttibn functions specifies not
only each player’s randomization in force expendituresforh target but also the cor-
relation structure of the force expenditures within andasrthe networks of targets.
For all parameter configurations, we completely charaz#etihe unique set of Nash
equilibrium univariate marginal distributions for eaclaygr as well as the unique equi-
librium payoff for each player. Furthermore, in any equililmm we find that the attacker
launches an attack on at most one network of targets, ane éxét parameter config-
urations for which the attacker optimally launches no &ttaith positive probability.
While at most one network is attacked, the attacker randesroxer which network is
attacked, and each of the networks is attacked with pogtiveability. In the event that
a weakest-link network is attacked, the attacker optinmlaliywches an attack on only a
single target. When a best-shot network is attacked, thelat optimally attacks every
target in that network with a strictly positive force level.

As emphasized in thidational Strategy for Homeland Securitferrorists are strate-
gic actors.” However, much of the existing literature [@gaiez and Bier (2007), Bier
and Abhichandani (2003), Bier et al. (2005), Bier et al. (20Qevitin and Ben-Haim
(2008), Powell (2007a, b), and Rosendorff and Sandler (RP@dsumes that terrorists
(henceforth attackers) are not ‘fully’ strategic in the sehat the number of attacks
(which is usually set to one) is exogenously specified. Byogedizing the attacker’s
entry and force expenditure decisions, we examine not tveonditions under which
the assumption of one attack is likely to hold, but also eglassues such as how the
defender’s actions can decrease the number of terroretkatt Furthermore, the few
previous models which allow for the attacker to endogenoaokbose the number of
targets to attack [e.g. Clark and Konrad (2007) and Hausk@®q)P obtain the result

5 Utilizing probabilistic contest success functions [Clakd Konrad (2007) utilize
the Tullock contest success function, Hausken (2008)zasliboth the Tullock and
difference-form contest success functions], Clark and r&dn(2007) and Hausken
(2008) examine a single weakest-link network and a supraark consisting of any
arbitrary combination of weakest-link and best-shot neksdas in this paper, a suc-
cessful attack on any one network is sufficient to disableethire supra-network],
respectively.
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that even when the attacker’s objective is to disable asingtwork — and the attacker
derives no additional benefit from successfully disablirg@than one network — the
attacker optimally chooses to attack every target in evetyark with certainty. By
showing that in all equilibria of our model the attacker omily engages in a from of
stochastic guerilla warfare in which they attack at mostmet@vork of targets (but with
positive probability each network is chosen as the one tataeked), our results also
provide a sharp contrast with existing models of ‘fully’attgic attackers.

Section 2 presents the model of attack and defense with netwbtargets. Section 3
characterizes a Nash equilibrium and explores propettigge@quilibrium distributions
of force. Section 4 concludes.

2 The Model
Players

The model is formally described as follows. Two players, tacker,A, and a defender,
D, simultaneously allocate their forces across a finite nupmbe 2, of heterogeneous
targets. The players’ payoffs depend on the compositionachef the networks of
targets in the supra-network. We examine a supra-netwankisting of any arbitrary
combination of two types of simple networks.

The targets are partitioned into a finite numlker 1 of disjoint networks, where
network j € {1,...,k} consists of a finite numbar; > 1 of targets withz'j‘:1 nj = n.
Let N; denote the set of targets in netwojkLet % denote the set of weakest-link
networks andZ denote the set of best-shot networks.

In abest-shot networthe network is successfully defended if the defender alésca
at least as high a level of force to at least one target withénrtetwork. Conversely,
an attack on a best-shot network is successful if the attadlecates a higher level of
force to each target in the network. Lét(x5) denote the level of force allocated by the
attacker (defender) to targetDefine

s 1 ifVieN X >x

lj—

0 otherwise

Observe that for each target, the player that allocatesig¢fehlevel of force wins that
target, but in order to win the network the attacker must Mlinfahe targets. In a best-
shot network, a tie arises when player A allocates a levebafef to each target in the
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network that is at least as great as player D’s allocatiod,there exists at least one
target in the network to which the players allocate the sawel lof force. In this case,
the defender wins the network.

In the second type of network, which we labelvaakest-link networkhe network
is successfully defended if the defender allocates at Bsakigh a level of force to all
targets within the network. Conversely, an attack on a watalkaek network is successful
if the attacker allocates a higher level of force to any tangéhe network. Define

W 1 if3ieN; \xiA>xiD.
0 otherwise
Again, in the case of a tie, the defender is assumed to wineatveank.

The players are risk neutral and have asymmetric objectifesattacker’s objective
is to successfully attack at least one network, and thelatagayoff for the successful
attack of at least one networkyg. The attacker’s payoff function is given by

n .
Tl (XA, XD) :VAmaX<{'JB}jegg’ {’}N}je’iﬂ> _.Z\XIA‘
i=

The defender’s objective is to preserve the entire supraerk, and the defender’s pay-
off for successfully defending the supra-networks The defender’s payoff function
is given by

n

TS (X, XD) = Vp (1— max({lJB}je%, {I}N}]e//>> —;xiD.

The force allocated to each target must be nonnegative.

It is important to note that our formulation utilizes the-pdy auction contest suc-
cess functiorf. Within the all-pay auction literature it is well known théiet equilibrium
of the game in which the players have differing unit costsesfources is equivalent
up to a linear scaling of the equilibrium of the game with aeyetric valuations. This
result extends directly to the environment examined here tlaus, our focus on asym-
metric valuations also covers the case in which the playave Wiffering unit costs of
resources.

Also observe that in the formulation described above thessnptwork is a weakest-
link supra-network. That is if the defender loses a singlevoek then the entire supra-
network is inoperable. By interchanging the identities [aypr A and player D, our

6 See Baye, Kovenock, and de Vries (1996).
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results on weakest-link supra-networks apply directlyhite tase of best-shot supra-
networks (where a best-shot supra-network is a supra-mketwbich is successfully
defended if the defender successfully defends at least @meork).

Figure 1 provides a representative supra-network congisti 5 networks (A, B, C,
D, and E). Networks A, C, and E are weakest-link (series) asts/with two targets
each. Networks B and D are best-shot (parallel) networkk Wive targets each. In
order to preserve the entire supra-network player D’s diveds to preserve a path
across the entire network. If a single target in networks AQICE is destroyed then the
supra-network is inoperable. Conversely, in networks Baradl of the targets must be
destroyed in order to render the supra-network inoperable.

[Insert Figure 1 here]

Strategies

It is clear that there is no pure strategy equilibrium fosstbiass of games. A mixed
strategy, which we term distribution of force for playeri is ann-variate distribution
functionR : R} — [0,1]. Then-tuple of playei’s allocation of force across thetargets
is a random-tuple drawn from then-variate distribution functior®,.

Model of Attack and Defense with Networks of Targets

The model of attack and defense with networks of targets;hwwve label

ADN{{NJ-}J.G%,{N,—}je,,/,vA,vD},
is the one-shot game in which players compete by simultastg@nnouncing distri-
butions of force, each target is won by the player that prewithe higher allocation of

force for that target, ties are resolved as described alaoveplayers’ payoffsii and
TH, are specified above.

3 Optimal Distributions of Force

It will be useful to introduce a simple summary statistic @fhcaptures both the asym-
metry in the players’ valuations and the structural asymietarising in the supra-
network.
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Definition 1 Leta =Vp/(VA[Y jex Nj +3 jez n_l,-]) denote thaormed relative strength
of the defender

Several properties of this summary statistic should bechdirst, the normed rela-
tive strength of the defender is increasing in the relataleation of the defender to the
attacker {p/va), and is decreasing in the level of exposure arising in tipeasaetwork
QjewNj+Yjcz n—lj). In particular, the defender’s exposure is increasing@rtumber
of weakest-link targetsy(;.,» nj), and is decreasing in the number of targets within each
best-shot networky » n—lj).

For all parameter ranges, Theorem 1 establishes the urégset: (i) the players’
equilibrium expected payoffs and (ii) the players’ sets oivariate marginal distribu-
tions. Theorem 1 also provides a pair of equilibrium disttibns of force for all param-
eters ranges. Case (1) of Theorem 1 examines the paramategucations for which
the defender has a normed relative strength advantage, k€l. Case (2) of Theorem
1 addresses the parameter configurations for which the diefdras a normed relative
strength disadvantage, i@.< 1. It is important to note that the stated equilibrium dis-
tributions of force -variate distributions) are not unique. However, in Projpass 1-3
we characterize properties of optimal attack and deferegehtid in all equilibria.

Theorem 1 For all feasible parameter figurations of the game AQNj } iz, {N; }jew
Va,Vp} (i-e., \a,Vp > 0 and N # 0 for all j) there exists a unique set of Nash equilib-
rium univariate marginal distributions and a unique equirium payoff for each player.
One such equilibrium is for each player to allocate his feraecording to the following
n-variate distribution functions.

(1) If a > 1, then for player A anck € [jcy[0,va]" X [1jez(0, 12]"

'nj

N Siew Yien, X + 3 jesMinien {X}
VD

1

Similarly for player D andk € []jcy [0, Va]™ x [1je#l0, ‘r’]—’j*]”i

o o)) o)
VA 1 va |
jew je#

The expected payoff for player Asand the expected payoff for player D is(t —

1.



(2) If a < 1, then for player A and € [jcx/[0, ava]™ x Hjegg[o,an—\?\]nj

- 2jew 2ieN; X + Yies miniENj{Xl}
VD

PA (X)

Similarly for player D andk € [1jcy [0, ava]™ x [1jc%[0, “n—‘;A]”J'

P (X) =1—a+min ({—mln{x }‘GNJ} 7{Zi€NjX } )
VA jew VA ez

The expected payoff for player DA@sand the expected payoff for player A jg ¥ —
a).

Proof The proof of the uniqueness of the players’ equilibrium eteé payoffs and sets
of univariate marginal distributions is given in the appendhis proof establishes that
the pair ofn-variate distribution functions given in case (1) congétan equilibrium
within the case (1) parameter range. The proof of case (2)akgous. The appendix
(see Lemma 5) establishes that in anjuple drawn from any equilibriunm-variate
distributionPy playerA allocates a strictly positive level of force to at most onevoek
of targets. If the network which receives the strictly posilevel of force is a weakest-
link network, then exactly one target in that network reesia strictly positive level
of force. While not a necessary condition for equilibriuimne By described in Theorem
1 also displays the property that when the network whichivesehe strictly positive
level of force is a best-shot network the force allocatedachetarget in that network
is an almost surely increasing function of the force alledab any of the other targets
in that network. The appendix (see Lemma 5) also establitia¢n anyn-tuple drawn
from any equilibriunm-variate distributior?; playerD allocates a strictly positive level
of force to at most one target in each best-shot network gétar

We will now show that for each player each point in the suppbtheir equilibrium
n-variate distribution functioq Py,Po} given in case (1) of Theorem 1 results in the
same expected payoff, and then show that there are no ptefdakiations from this
support.

We begin with the case in which player A attacks a single targa single weakest-
link network. The probability that playek wins targeti in network j € # is given
by the univariate marginal distributid® (x,, {{VA}i/eN.,\x;’\:o}i’E“//’ {{X—{j}i/eNj,}j/E@).
Given that playeD is using the equilibrium strategsh described above, the payoff to
playerA for any allocation of forcexa € R". which allocates a strictly positive level of
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force to a single targetin a weakest-link networl € 7 is
T (Xa, Pb) = VaPh (Xa) — Xa.

Simplifying,

X -

T (Xa, Pb) = Va <—A) — Xy =0.

Va
Thus the expected payoff to play&ifrom allocating a strictly positive level of force to
only one target in any weakest-link network is 0 regardldsgtoch target is attacked.

Next, we examine the case in which player A attacks a single dl®ot network. The

probability that playeA wins every target in network € % is given by then;-variate
marginal distributiorPD({x'A}ieNj,{{vA}i/eNj,}j/ea,/,{{x—?}i/e,\,j,}j,eﬂu/#j), which we
will denote asIDBIj({xL\}ieNj). Given that playeD is using the equilibrium stratedyy
described above, the payoff to play®for any allocation of forcexa € R} which allo-
cates a strictly positive level of force only to the targetsibest-shot network € 4,
and allocates zero forces to every other network is

T (X o) = VAR5 (i) = 3 X

Simplifying,
ZiENj X:A

m\(xA,Po)sz< i ) _-%XA:O‘

Thus, the expected payoff to play&from allocating a strictly positive level of force to
only one best-shot network is 0 regardless of which best+sttwork is attacked.

For playerA, possible deviations from the support include allocatirsgritly posi-
tive level of force to: (a) two or more targets in the same vesakink network, (b) two
or more targets in different weakest-link networks, (c) tvanore best-shot networks,
and (d) any combination of both weakest-link and best-shtwarks.

Beginning with (a), the probability that play&rwins both targetsandi’ in network
j € # is given by the bivariate marginal distribution
Po (X, X, {{VAYiren, jirzi e} jren { {78 Yinen, }jess), which we will denote aBL" (X, xh).
The payoff to playeA for any allocation of forcea € R which allocates a strictly pos-
itive level of force to two targets i’ in a weakest-link network € # is

T (Xa, Pb) = VaP} (XiA) + VAPB (XD - VAPBV (Xiéu XEO/\> — Xy — XK-
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Simplifying,

W ming Xy, X, -
NS A

The case of playeh allocating a strictly positive level of force to more tharottargets
in a weakest-link network follows directly. Clearly, in amptimal strategy playeA
never allocates a strictly positive level of force to morartione target within a weakest-
link network.

The proof for type (b) deviations follows along similar Is1elhus, in any optimal
strategy playeA never allocates a strictly positive level of force to morartione target
within a weakest-link network of targets or in different Weat-link networks.

For type (c) deviations, the probability that play®wins all of the targets in both
best-shot networkg, ' € % is given by the(n; + nj/)-variate marginal distribution
Pb ({Xa }ien;un, {{vatiren, Fjrew {{%}i”eNj// }irem|jn+,ir)» Which we will denote as

Pg‘j,Nj/ ({xiA}ieN,-uN,-/> . The payoff to playeA for any allocation of forcea € R") which

allocates a strictly positive level of force to exactly twesl-shot networks, j' € % is

T (Xa, Pb) =
Nj7Nj/

VAP’D\Ij <{XiA}ieN,-) +VAPDNV <{XiA}ieNj/) _VAPD <{XI;A}ieNjUNj/> - gN Xl;ac
1eN;U il

Simplifying,

T (X, Pb) = —vamin { 2ich, XIA, Ziehy X }
Va Va

The case of playeA allocating a strictly positive level of force to more tharotest-
shot networks follows directly. Clearly, in any optimalatgy playeA never allocates
a strictly positive level of force to more than one best-steitvork.

The case of type (d), follows along similar lines. Thus, tkygezted payoff from each
point in the support of tha-variate distributiorPy results in the same expected payoff,
0, and there exist no allocations of force which have a higkpected payoff.

The case for playdD follows along similar lines. O
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While the equilibrium distributions of force stated in Them 1 are not uniquéjt
is useful to provide some intuition regarding the existenfdis particular equilibrium
before moving on to the characterization of properties ¢ihogl attack and defense that
hold in all equilibria (Propositions 1-3). The supports loé tequilibrium distributions
of force stated in Theorem 1 are given in Figure (2). Panglan( (ii) of Figure (2)
provide the supports for the attacker and defender, respigtin the case that there is
one weakest-link network with two targeis= 1, 2). Panels (iii) and (iv) of Figure (2)
provide the supports for the attacker and defender, respictin the case that there is
one best-shot network with two targets{1, 2) and one weakest-link network with one
target ( = 3).

[Insert Figure 2]

Across all of the Panels (i)-(iv), i&r = 1 then each player randomizes continuously
over their respective shaded line segments. In the eventhitbalefender has a normed
relative strength advantage ¢ 1), the defender’s strategy stays the same, but the at-
tacker now places a mass point of size (1/a) at the origin and randomizes contin-
uously over the respective line segments with the remaipiogability. Conversely, if
the defender does not have a normed relative strength adyagt < 1) then it is the
defender who places a mass point (of sized) at the origin.

Beginning with Panels (i) and (ii), recall that if the attaclsuccessfully attacks a
single target in a weakest-link network the entire netwarldisabled. As shown in
Panel (i) the attacker launches an attack on at most ond.tdmsuccessfully defend a
weakest-link network, the defender must win every targétiwithe network. As shown
in Panel (ii) the defender’s allocation of force to targes an almost surely strictly
increasing function of the force allocated to target Note that if the attacker launches
an attack on at most one target, then the probability thasamgle attack is successful
depends only on the univariate marginal distributions efdefender’sr{-variate joint)

7 For example, in the case (1) parameter range of Theorem hemrexguilibrium strat-
egy for player D is to use the distribution of force

() (5]
VA ) iew VA iex
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distribution of force. In addition, the defender’s expecterce expenditure depends
only on his set of univariate marginal distributions, amat, & given set of univariate
marginal distributions, is invariant to the correlationusture® Finally, note that for
the given correlation structure in the defender’s supgmahgl (ii)] the probability that
the attacker launches at least one successful attack depahdon the maximum of
his force allocations across the two targets. That is, gthendefender’s distribution
of force, if there exists any points in the support of theckeas's distribution of force
in which xiA > x;i > 0 with positive probability, then the attacker can strigtigrease
his expected payoff by changing xgi = 0 in all such points. In such a deviation, the
probability of at least one successful attack is unaffedbed the attacker's expected
force expenditure decreases. Thus, at each point in theswgd@n optimal distribution
of force the attacker launches at most one attack.

Panels (iii) and (iv) examine a simple supra-network witk best-shot network and
one weakest-link network . In Panel (iii), note that the gtta launches an attack on
at most one network. In the event that the best-shot netveoaktacked, the attacker’s
allocation of force to targatis an almost surely strictly increasing function of the forc
allocated to target-i. In Panel (iv), note that the defender allocates a striablyitive
level of force to at most one of the targets in the best-shtwaork, and that level of
force allocated to the weakest-link network is an almosglsuncreasing function of
the level of force allocated to the best-shot network. Giverse correlation structures,
the intuition for the attacker launching an attack on at noo& network in the supra-
network follows along the lines given above for the wealiedt-network in which at
most one target was attacked.

We now characterize the qualitative features arising ia@llilibrium distributions of
force. Proposition 1 examines the number of networks tleasenultaneously attacked
as well as the number of targets within each network that ianalt&aneously attacked
and defended. Propositions 2 and 3 examine the likelihoatthe attacker optimally
chooses to launch an attack on any given network, and thiéhliael that the attacker
launches no attack or the defender leaves the supra-netwdefended.

Proposition 1 In any equilibrium{Pa, Pp }:

1. Player A allocates a strictly positive level of force taabst one network.

8 More formally, for a given set of univariate marginal dibtrion functions, the ex-
pected force expenditure is invariant to the mapping intoiat jdistribution function,
i.e. then-copula.
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2. If the network to which player A allocates a strictly postlevel of force is a
weakest-link network, then at most one target in that wedkdsnetwork receives
a strictly positive level of force.

3. In each best-shot network player D allocates a strictlgifpee level of force to at
most one target in the network.

The formal proof of Proposition 1 is given in the appendide(kemma 5). The intuition
for Proposition 1 follows from the fact that the likelihoddat player D successfully
defends all of the networks (and therefore player D’s exgobpayoff) is weakly de-
creasing in the number of networks that player A choosesnltaneously attack.
However, player D has the ability to vary the correlatiorusture of his force alloca-
tions while leaving invariant: (i) his network specific mu#triate marginal distributions
of force, (ii) his univariate marginal distributions of t@, and (iii) his expected ex-
penditure. Furthermore, there exist correlation str@stdor which the likelihood that
player D successfully defends all of the networks depentisanplayer A's force allo-

cation to the one network which receives the highest levidrae from player A. Given

that player D is using such a correlation structure, playeapfimally attacks at most
one network at a time. A similar result extends directly tpt( case of weakest-link
networks and to (3) the case of best-shot networks.

Proposition 2 If a > 1, then in any equilibriun{ P, Pp }:

1. The probability that any weakest-link network | is atedKi.e., the probability that
the attacker allocates a strictly positive level of forcenteakest-link network j) is
(njva/Vvp), which is increasing in the number of targets in network j ahd at-
tacker’s valuation of success and decreasing in the defendaluation of success-
fully defending the entire supra-network.

2. The probability that any best-shot network j is attackedvi)/(njvp), which is
increasing in the attacker’s valuation of success and igehsing in both the de-
fender’s valuation and the number of targets in network j.

3. The attacker optimally attacks no network in the suprawoek with probabilityl —

(1/a).

For the attacker’s joint distribution, the appendix chégdgzes the attacker's mass point
at the origin (see Lemma 9) as well as his set of univariatgimalkdistributions. Propo-
sition 2 follows directly. The probability that a netwojks attacked is equal to one mi-
nus the attacker’s mass point at zero in tiyevariate marginal distribution for network
j» where then;-variate marginal distribution for networkis given byPX“'({xi}ieNj).
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The likelihood that the attacker optimally chooses to lduno attack is increasing in
the defender’s valuation of success and decreasing intdekat’s valuation of success.

In the case (1) parameter range, the attacker’s valuatitowinough relative to
the defender’s valuation that the optimal strategy incdudet launching an attack with
positive probability. As we move to the case (2) parametegeathe attacker optimally
launches an attack with certainty. In this case the proipakiat any given network of
targets is attacked depends only on the number of targeteingtwork and the type
of network. The proof of Proposition 3 also follows from thieacacterization of the
equilibrium joint distributions given in the appendix.

Proposition 3 If a < 1, then in any equilibriur{ Pa, Po }:

1. The probability that any weakest-link network | is atedtKi.e., the probability that
the attacker allocates a strictly positive level of forcenteakest-link network j) is
N/ ([Sjewny+3jcr nij,]), which is increasing in the number of targets in network
J-

2. The probability that any best-shot network j is attacleld (nj[y jcy Ny +3 jez n—lj,]),
which is decreasing in the number of targets in network j.

3. The defender optimally leaves the entire supra-netwndetended with probability
1-a.

In the case (1) parameter range, the defender optimallysgsyavith certainty, to
allocate a strictly positive level of defensive force. Hee®e in the case (2) parameter
range, the defender optimally chooses to leave the entpeagwetwork undefended
with positive probability. Furthermore, the likelihooditithe defender chooses to leave
the entire supra-network undefended is increasing in tiaelksdr's valuation of success
and decreasing in the defender’s valuation of successfigfgnding the entire supra-
network.

To summarize, the following conditions hold in all equildorin the case (1) parame-
ter range the attacker optimally chooses not to launch anlattith positive probability.
In both cases (1) and (2), the attacker optimally launchesti@ck on at most one net-
work. In the event that a weakest-link network is attackedy @ne target within the
network is attacked. The likelihood that any individualwetk is attacked depends on
the number of targets within the network. In each weakesttietwork the likelihood
of attack is increasing in the number of targets. In each-$lest network the likelihood
of attack is decreasing in the number of targets. In the @gsafameter range, the de-
fender optimally leaves the entire supra-network undeddnéastly, in both cases (1)
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and (2) when the defender chooses to defend the supra-ketwitinin each best-shot
network, the defender randomly chooses at most one targlefemd.

4 Conclusion

This paper examines a game-theoretic model of attack arehsefwith multiple net-
works of targets and intra-network strategic complemétigaramong targets. In equi-
librium we find that the correlation structure of the optiratthck and defense strategies
depends critically on the composition of the supra-netwamkaddition, network re-
dundancies, as in best-shot networks, strengthen thedksfsrstrategic position. Con-
versely, the absence of network redundancies, as in wekliklestetworks, weaken the
defender’s strategic position. In the context of network&agyets with asymmetric at-
tack and defense, our results highlight the importancelowaig for endogenous entry
and force expenditure decisions including general caroglsstructures for force ex-
penditures within and across the networks of targets.
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Appendix

This appendix characterizes the supports of the equihibjaint distributions, the unique
equilibrium payoffs, and the unique sets of equilibriumvamiate marginal distribu-
tions. Before proceeding, observe the following notati@mventions which will be
used throughout the appendix. For point&Ih will use the vector notation= (Xg, X2, . .. , Xn)-
Foray <byforallk=1,2,...,n, let[a, b] denote the-box B = [a;, b1] x [ap, by] X ... X
[an, bp], the Cartesian product of closed intervals. The vertices of arbox B are the
points(cy, Cy, . . ., Cn) Wherecy is equal toe or by.

Given that the defender is using the distribution of fdfgelet

Pr(max({1f},_,-{1"}, ) = 1/Poxa) (1)

denote the probability that with a force allocationxgf the attacker wins at least one
network. Thus, the attacker’s expected payoff from any gtnaegyxa is

VAPT (max({lf}jet%,{l}’v}je/%> = 1)PD,XA> — inA. (2)

It will also be useful to note that the attacker’s expectegbffdrom any distribution of
forcePy is

VAEpR, [Pr <max<{l}3}j€%,{l}’v}jew) = 1‘PD,XA>] - IZEFA [X4] (3)

whereEp, denotes the expectation with respect to the joint distidouof force P4 and
EFA denotes the expectation with respect to the univariateimalrgistribution for target
i, henceforttF,, of the joint distribution of forcéa.

Similarly, given that the attacker is using the distribataf forcePa, let

Pr (max<{'}3}je@7{’}/v}je“//) :O‘PA,XD> (4)

denote the probability that with a force allocation>gf the defender wins all of the
networks in the supra-network. Thus, the defender’s egoeptyoff from any pure
strategyxp is

VpPr <max<{ljB}j6%, , {I}N}jGW> = O)PA,XD> — inD. (5)
|
Lastly, the defender’s expected payoff from any distribatf forcePy is

VpEp, [Pr (max({lJB}je%, {l}’v}jGW) = O‘PA,XD>] —IzEFIiD [X5] (6)
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whereEp, and EF[i) denote the expectation with respect to the joint distriutf force
Pb and the expectation with respect to the univariate marglisatibution for target,
FL, respectively.

Lemma 1 For each i and j such thaté Nj|j € #/, §, = &, = §, and , = s, = 0. For
iand jsuchthatie Nj|j€ #,5, =& =8, and$ =g, =0.

Proof We begin with the proof thagﬁ'A = §'D = 0 for all i. By way of contradiction,
supposes, # s. Let$ = max{s,, s}, and letk be the identity of the player attaining
§ (thatis§ = § ands' > ¢ ).

If §_k > 0, when playerk aIIocatesS'_k to targeti player—k is losing target with
certainty and can strictly increase his payoff by setﬂgg: 0. It follows directly, that
player —k does not randomize over the open inter@l_é‘), and thus player-k must
have a mass point 0.

In the case thagti_k = 0 (where player-k does not randomize over the open interval
(O,_§) and has a mass point at 0), we know that (i) both players calmaveta mass point
at_q'( and (ii) playerk can strictly increase his payoff by Ioweril;sbto a neighborhood
above 0.

Thus, we conclude tha, = s, = 0 for alli.

Lastly, for the proof that for eachand j such that € Nj|j € #, §, = &, = §,,, note
that fori,k € Nj|j € # it follows that if §, = §, < S5 = & then player A would do
better by moving mass frors‘[\fo §;\. The proof that foii and j such thai € Nj|j € 4,
g, = & = &, follows for the same reasonsm

Lemma 2 In any equilibrium{Pa, P}, for each target j neither player’s univariate
marginal distributions place positive mass on any poinegt@ossibly at zero.

Proof If xij is such a point for playey, then player j would either benefit from moving
mass from arg-neighborhood belowij to zero or to a-neighborhood abovxir O

Lemma 3 In any equilibrium{Pa, Po}, each player’s expected payoff is constant over
the support of their joint distribution except possibly atings of discontinuity of the
payoff function.

Proof By Lemma 2, for each targethere are no mass points in the half-open interval
(0,S]. Thus for each point in the support of playis joint distribution, playerj must
make his equilibrium payoff except for possibly at pointgiafcontinuity of the payoff
function. O
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Lemma 4 In any equilibrium{Pa, P}, for each target i each player randomizes con-
tinuously over the interval0, 5.

Proof By way of contradiction, suppose that there exists an dauilin in which for
some target, playerj’s univariate marginal distribution for targ'etFji, Is constant over
the intervalja, ) C (0,S] and strictly increasing aboy& in its support. For this to be
an equilibrium, it must be the case tH%litj is also constant over the intervat, 3).
Otherwise, playerj could increase his payoff.

If F';(a) =F'(B), then for anye > 0 spending3 + ¢ in targeti cannot be optimal
for playerj. Indeed, by discretely reducing his expenditure fiBrr € to a + € player
j’s payoff would strictly increase. Consequentlyﬁ‘f is constant ovefa, ) it must
also be constant ovés, S, a contradiction to the definition af. O

Lemma 5 In any equilibrium{Pa, Pb }:

(@) If xa is an n-tuple contained in the support gf, Bhenx allocates a strictly positive
level of force to at most one network.

(b) If the network to which the n-tupley (contained in the support ofafPallocates a
strictly positive level of force is a weakest-link netwahen at most one target in
that weakest-link network receives a strictly positiveelef force.

(c) If xp is an n-tuple contained in the support ¢f Rhen within each best-shot network
Xp allocates a strictly positive level of force to at most ongéd in the network.

Proof Beginning with (a), by way of contradiction suppose thatéhexists an equilib-
rium in which player A simultaneously allocates a strictbsfiive level of force to two
or more networks. Without loss of generality, we will alss@se that there exists at
least one point in the support of an equilibrium strat@gyor which only networksj
andj’ simultaneously receive a strictly positive level of forcerh player A (henceforth
networksj andj’ are simultaneously “attacked”). Observe that this assiomgtlows
for any number and/or combination of networks to be sim@tarsly attacked as long
as at some point in the support®fonly networksj andj’ are simultaneously attacked.
Furthermore, while the focus on the case in which the mininmumber of networks
being simultaneously attacked is equal to two simplifiessttigessions that follow, the
case in which the minimum number of networks which are siamdbusly attacked is
greater than two follows directly.
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Since maX{lF}jegg,{l‘j’V}jeyy) is equal to either O or 1, the expected payoff for
player D may be written as

Vp — VpEp, [Pr <max(lj,1,-/) = 1)PD,xA s.t.onlyj andj’ attacketﬂ
—VpEp, [Pr (max({lf}jegg, {l}’V}jGW) = 1‘PD,xA s.t. notj andj’ attacke()]
=3 Fb (%)
|

The expectation in the first line of (7) is the probabilityttpiyer A successfully attacks
at least one of the networksor j’ given that player A attacks only networlsand j’.
The expectation in the second line of (7) is the probabiligttplayer A successfully
attacks at least one network conditional on the attack bemgny single network or
any combination of networks other than orjlandj’.

Let xjA denote the restriction of the vectof to the set of targets contained in network
j, i.e. {Xy}ien;. Note that

Pr <max(1j,1-/ = 1‘PD Xa S.t.j andj’ attacke() =Pr <lj = 1‘P,;j,XjA)
+Pr< = 1’PDJ ,xA) Pr (lj =1landij = 1’PD” " A,XJA> (8)

If network j is a best-shot network thelﬁr(l = 1|P ,xA) = PD (xA) If network |

is a weakest-link network then the probablllty that playewis at least one target,
Pr(l}’V = 1|ng,xjA), depends critically on botﬂgi and the number of targets in network

j which are attacked. In both cases, it is clear that playerpasaoff depends not only
on thenj-variate marginal dlstrlbutlon for network PD , and thenj-variate marginal
distribution for networkj’ PD , but also on the correlation between these two multi-
variate marginal distributions. There are 3 possible ctsesnsider: (i) both networks

j and |’ are best-shot networks, (ii) both networkand j’ are weakest-link networks,
and (iii) either networkj or j’ is a best-shot network and the other is a weakest-link
network.

If both networksj andj’ are best shot networks, then (8) beco@[ré$xi\) + PSV (xi\/) —
PO (xk L) However, ifP)™™ (x4, xk ) £ min{PJ! (x), PYY (xL )} then player D could
increase the first line of (7) without affecting the univégianarginals and thus the third
line of (7). Furthermore, iPb(x) = min; {ng (x})} then eactn;-variate marginal distri-
bution 5! (x})) is preserved, each univariate marginal distributigi(€)) is preserved,
and for any set of networkg € _# the joint marginal distribution for the sey is
ng(x/) = minje/{PSj (x1)}. Clearly, if networksj and j’ are the only two networks
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which player A simultaneously attacks, then the deviatsiich a correlation strategy
strictly increases player D’s payoff. A contradiction t@thssumption thaiPa, Po} is
an equilibrium. Furthermore, BY™ (x) 1) = min{PJi (x1), RY (x})} then player A
could increase his payoff by attacking netwgrkr networkj’ but not both simultane-
ously; also a contradiction.

If networksj andj’ arenotthe only networks which player A simultaneously attacks
but all of the networks in the supra-network are best-shvtowks, then the second line
of (7) can be broken into components for each of the sets afarks which player
A simultaneously attacks and each of the networks which @aelaed in isolation. In
this case, the proof follows along the lines of the procegdase. That is if the supra-
network is comprised of only best-shot networks, playertAcks at most one network.

For cases (ii) and (iii) as well as the remaining case (i) nektveonfigurations, note
that the result on a supra-network consisting of only bbst-setworks can be modi-
fied to show that within each weakest-link network player tacits at most one target.
That is, without loss of generality, assume that there s»xastleast one point in the
support of an equilibrium strategys for which within weakest-link networl§ only
targetsi andi’ simultaneously receive a strictly positive level of forcerfi player A.
In such a casePr(i}¥ = 1P, xp) = Fb () + R (xh) — P5 (X, X, {8y Yirenyjinsi )
where (X, Xy, {§y }iren;ji74i,v) denotes the vector formed by replacing each zena,in
(all targets exceptandi’) with §,. SettingPl! (x}) = minic;{Fi(¥)}, the result fol-
lows directly, as does the result for the case in which thebamof targets which are
simultaneously attacked is greater than two or involvesabjtrary combinations of
weakest-link targets. Thus, player A attacks at most orgetan each weakest-link net-
work, andPr(1; = 1|P5, xk) = Fi(X,). Inserting this back into (8), the proof for cases
(ii) and (iii) as well as the remaining case (i) network couofations follows directly.

The proof for part (c) follows from a symmetric argumentl

LemmaGVj,j’EV/,iﬁ\,:s_\},\/,stN.
Proof Following from Lemmas 2 and 5, in the support of any optimedtsigy, when
player A aIIocates\jN_to a single target in network the force allocated to each of the
remaining targets is 0, player A wins netwarkvith certainty, and player A's expected
payoff isva — s]f,\,

From Lemma 3, player A's expected payoff is constant acribpsiats in the support
of Pa. ThusY j,j' € #/, 8, =8, =av. O

Lemma7V j 6%,§N:nj§}B.
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Proof From Lemma 5 part (a) in the support of any optimal strategyea A attacks at
most one network. In the case that player A attacks bestrgtatork j, from Lemma 3
there exists &, > 0 such that

v
P xn) < 24 2 ©)
which holds with equality for eackp in the support o, such that player A attacks
best-shot network.

From Lemma 5 part (c) in the support of any optimal strategyet D allocates a
strictly positive level of force to at most one target in netl|j, and thus the support of
player D’snj-variate marginal distribution for network Plgj is contained on the each
of the n; axes inR". From Lemmas 2 and 4, it follows that equation (1) holds with
equality not only for eaclp in the support oPa such that player A attacks best-shot
network j, but — given that networl is the only network attacked — for afjj-tuples
X e 0, §g]”i . That is given that the support of player igvariate marginal distribution
for networkj is: (i) contained on the each of ting axes inR", (ii) has no mass points
except possible at the origin IR"i, and (jii) is continuous on each axis, it follows that
for xJ, € [0,85M, PY (x4) = Pr(1B=1|PJ ,xa) = %“f— z\',—f*

Thus, if player A chooses thg-tuple withs}; for each element then from Lemma 2
player A's expected payoff from such agp-tuple isva — njéé.

From Lemmas 3 and & = va — Sy. From Lemma 3, player A's expected payoff is
constant across all points in the supporPRf Thus,V j € %4, sy = nj§’é. O

PI‘(lJB:l

Lemma 8 sy = min{Va,Vp/[Y jew Nj + ¥ jes(1/nj)]}.

Proof If player D allocates: (isy to each target in each weakest-link network, séﬁ) B
to exactly one target in each best-shot netwprknd (iii) O to each of the remaining
targets in the best-shot networks, then player D wins wittaggty and has an expected
payoff of vp — ¥ jcy NjSw + 3 jez(Sw/nj) > 0. Thus, in such a case it must be that
Sw <Vp/[Yjew Nj+ 3 jen(1/n;))]. Similarly, player A's expected payoff s, — sy > 0,
and thussy < Va.

Since player A attacks at most one network, and in the caseeékest-link network
only one target, we know that the origin is contained in thgpsuit of any equilibrium
distribution of force for player APa.

By way of contradiction suppose that there exists an eqiuilib { Pa, P>} in which
the origin is not contained in the supporti. Thus, there exists afni> 0 such that
for at least two targets, denoted as targets 1 and 2, thes@uigon of the projection
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of player D’s support onto they, xo-plane with the boX0, £]? is empty. There are five
configurations to consider: (i) targets 1 and 2 are in the saeakest-link network, (ii)
targets 1 and 2 are in separate weakest-link networkstgigets 1 and 2 are in the same
best-shot network, (iv) targets 1 and 2 are in separatedbedgtnetworks, (v) target 1 is
in a weakest-link network and target 2 is in a best-shot nétwerom Lemma 5, it is
clear that we can rule out case (iii). In cases (i) and (i), gy (x1,x2) € [0, £]? player
D’s bivariate marginal distribution for targets 1 and%‘;z, is equal to zero and player
A can strictly increase his payoff by allocating a level afde less tham to both targets
1 and 2 a contradiction to Lemma 5 if targets 1 and 2 are in theesaeakest-link
network or if targets 1 and 2 are in separate weakest-linkoréss. Following along
similar lines, cases (iv) and (v) lead to a similar contradicto Lemma 5. Thus, the
origin is contained in the support of any equilibrium distiiion Py for player D.

Since only one player can have a mass point at the origin, wethat ifva —sy >0
player A must outbid player D with a probability that is boeddaway from zero. Thus,
player D places positive mass at the origin, but if player B&aass point at the origin
then it must be the case thay — 3 jc NjSw + 3 jez(Sw/Nj) = 0. Similarly, if vp —

Y iew NiSw + ¥ jez(Sw/nj) > 0 then player D must outbid player A with a probability
that is bounded away from zero. Thwg,— Sy = 0 and player A places positive mass
at the origin. O

The next two lemmas follow directly from Lemma 8. Recall that vp / (VA[Y jey Nj +
Zjet%‘ n_lj])

Lemma 9 If a > 1, then (i) player A places mads— (1/a) at the origin, (ii) player
A’s expected payoff is 0, (iii) player D does not place pwusitnass at the origin, and
(iv) player D’s expected payoff isv- (vp/a).

Lemma 10 If a < 1, then (i) player D places mads— a at the origin, (ii) player D’s
expected payoff is 0, (iii) player A does not place positiessmat the origin, and (iv)
player A’'s expected payoff ia v vad.

Lemma 11 There exists a unique set of equilibrium univariate marguhiatributions
{{FA{}]-E%’Uyﬂv{FI%}jE%’UW}'

Proof This proof is for the uniqueness of player D’s set of uni&rimarginal distri-
butions. The proof for player A is analogous. For each bleet-setworkj € %, from
Lemma 7 ford € [0,85]", PL (xJ) = YA 4 21X wheresy = min{va,vp/[3 jey Nj +
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> icz(1/nj)]} andsg: ;ﬂj Thus, in each best-shot netwgrklayer D’s unique univari-
ate marginal distributions follow from player D’s uniqogvariate marginal distribution
for networkj.

From Lemma 5 parts (a) and (b), player A attacks at most ogettar one weakest-

link network. From Lemmas 2, 3, and 4 it follows that for eaalgeti in each weakest-
link network j € #,

VAFD (Xa) — X = Va— S
for X € [0,5y]. Thus, player D’s univariate marginal distributions arequeely deter-
mined in each weakest-link network
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8] D]
8] D]

Fig. 1 Example Supra-Network with Five Networks (A, B, C, D, and E)
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One weakest-link network with two targeis= 1, 2)

X2 X2
VA ¢ VA g
—x i X
\7A \7A
(i) Attacker (i) Defender

One best-shot network with two targets<(1,2) and one weakest-link network with one target(3)

X2 X2

i X1 A X1
Ua Va oo L
(iii) Attacker (iv) Defender
X3 X3

Fig. 2 Supports of the equilibrium joint distributions stated inebrem 1Yz = min{ava,Vva}).



