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I Introduction

Our goal is to evaluate variations in rice yields for likely climate changes for Southeast Asia. To do

so we integrate economic modeling with soil science crop growth simulation model, weather simu-

lation model and global climate change models. We estimate impacts of climate change under two

different climate scenarios, one assuming high future global anthropogenic pollution emissions,

and the other assuming low future emissions.

While other studies have used crop growth models to assess future climate change impacts,

this study is somewhat unique in that we draw data and run the crop model initially across more

than 1000 crop-plots in Thailand, obtaining predictions that are signi�cantly correlated with actual

yields, and then generate climate impact predictions for 100 crop-plots. The running of crop-

growth models across such a large number of plots simultaneously is quite rare1, and allows for

assessment of larger trends and impacts across the plots.

The economic, crop, weather and climate change models used here are all individually highly

complex models, all requiring multiple inputs. Thus the process of obtaining the necessary input

data and linking their operations and interactions is inherently challenging. However, the interdis-

ciplinary integration of these models provides promising potential for evaluation of future climate

change effects.

Our �ndings are interesting in several ways. Comparison of the effects of two different fu-

ture climate scenarios reveals existence of large variation in the effects of climate change on rice

yields and correspondingly the types of adjustments farmers choose in response to different cli-

mate changes. Analysis of results from different stages of our integrated interdisciplinary model
1New codes were written to augment the DSSAT crop model for large-scale batch processing.
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illustrates the advantages of such integration, as well as the importance of adjustment choices made

by farmers in the evaluation of climate effects on rice yields.

This paper is organized into seven sections. Section 2 outlines the economic model. Section 3

describes the data. Section 4 discusses the modeling of climate change for Southeast Asia. Section

5 describes how we integrate economic, crop growth, weather and climate models. Section 6

presents our results. Section 7 concludes the paper.

II Modeling Rice Cultivation

Economic analysis of production traditionally assumes that production process occurs in one stage.

All input choices are made at the start of production. Within the single production stage, all inputs

are utilized simultaneously and timing of input usage does not affect realized output. Inputs are

de�ned solely on the basis of their physical characteristics.

The single stage approach is ill-suited for analysis of agricultural crop production. Crop pro-

duction is de�ned by the process of a crop's biological growth. This biological growth consists of

distinct, chronologically sequential phases. A crop's need for and responsiveness to a given phys-

ical input varies across different growth phases. Depending on the progress of crop growth, the

farmer may want to adjust the amounts and types of physical inputs used in response to realized

production shocks and observed crop state. As a result, input decisions are sequential in nature,

and are not all made at the start of production. This is a source of endogeneity, as input decisions

at later stages are based on realizations of production shocks in previous stages, some of which

the econometrician does not see. Realized production shocks also alter farmer's expectation of

production shocks in future stages by updating his information set.
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With crop cultivation, each sequential stage can be thought of as a separate production sub-

process with its own production function. We map the growth phases of biological development of

the rice plant into economic production stages by matching the timing of production operations to

the timing of plant development. First is the juvenile growth phase, during which germination takes

place. It corresponds in the production process to planting of seeds and growing and transplanting

of seedlings. The second is the intermediate phase, during which panicle initiation and heading

occur. It corresponds to crop maintenance stage, which includes such operations as weeding and

fertilizing. Third is the �nal phase, during which grains �ll and mature. It corresponds to harvest

collection and storage.

Using this mapping, we construct a three-stage rice production function. Within each stage,

several operations can be performed simultaneously. Output from the previous stage is an initial

condition for next stage production subprocess. Input decisions are made at the start of each stage,

after output from the previous stage is observed, before production shocks for the starting stage

are realized, and with updated expectations based on history at that point in time. Let i index

the three production stages and L i and Ki denote, correspondingly, labor and capital inputs in

stage i .2 Let yi be output of stage i , with y0 describing initial conditions of production such as

plot characteristics. Let ei be production shock realized during stage i . Then output in stage i

is yi D fi .yi�1; L i ; Ki / exp .ei /, for i D 1; 2; 3, where fi is stage i - speci�c Cobb-Douglas

production function.3 This three-stage production process is illustrated in �gure 1. Substituting in

recursively for intermediate outputs, we obtain a composite production function which describes

�nal harvest as a function of initial plot conditions, inputs and realized production shocks: y3 D
2To account for several operations performed simultaneously during stage i , L i and Ki can be thought of as vectors

of length Ji , where Ji is the number of operations performed in stage i .
3Values of inputs, outputs and production shocks are plot-speci�c. Plot indexing is omitted for simplicity of

presentation.
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�
y0; fL i ; Ki ; exp .ei /g3iD1

�
.

This approach incorporates the two separate manifestations of sequential nature of crop pro-

duction. One is a forward effect, where production shocks and input decisions from earlier stages

affect initial conditions and therefore input decisions at later stages. The other is a backward ef-

fect, where input decisions at earlier stages are in�uenced by their expected effect on inputs in

subsequent stages.

At each stage, farmer chooses inputs to maximize expected pro�ts. Let p denote the price of

�nal output, wi denote wage rate for labor used in stage i , and ri denote price of non-labor input

used in stage i . Assume the farmer knows all current and future input prices for a given growing

season, as well as �nal output price. At the beginning of stage i , farmer solves:

Max
L i ;Ki

E3 [� ] D pEi [y3]�
3X
jDi

�
w j L j C r jK j

�
:

Note that at this point in production process farmer does not yet know all information that deter-

mines actual amounts of inputs used in future stages - namely, he does not yet know the size of

production shocks that will be realized during stage i . Therefore, farmer chooses optimal levels

of stage i inputs based on expected values of input levels in future stages, where expectation is

computed over the information set available to the farmer at the beginning of stage i .

Taking the �rst order conditions, we get:

wrt L i : p
@Ei [y3]
@L i

D wi C
3X

jDiC1

0BBB@w j
Backward sequential effectz }| {

@Ei [L j ]
@yi

@yi
@L i

C r j
@Ei [K j ]
@yi

@yi
@L i

1CCCA ;
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wrt Ki : p
@Ei [y3]
@Ki

D ri C
3X
jD1

�
w j
@Ei [L j ]
@yi

@yi
@Ki

C ri
@Ei [K j ]
@yi

@yi
@Ki

�
:

Note that the marginal cost of each input in stage i has two components. One is increase in

current expenses on the input, measured by its price. Another is change in future expenses on

inputs in future stages j > i that will be caused by adjustment of optimal levels of stage j inputs

with respect to change in levels of stage i inputs actually used. Thus the marginal product of all

intermediate inputs re�ects sequential nature of multistage production process and captures both

immediate direct and future indirect (through levels of future inputs) contributions of intermediate

inputs to �nal output.

John Felkner, Kamilya Tazhibayeva and Robert M. Townsend (2008) provide a detailed de-

scription of this three-stage production function, solve the farmer's optimization problem, and

estimate rice production function assuming the Cobb-Douglas speci�cation. To account for en-

dogeneity of input decisions, they estimate the composite production function and input decision

rules as a system of simultaneous equations, making use of stage- and operation-speci�c input

prices as well as farmer-speci�c rainfall expectations. At each stage, inputs are determined si-

multaneously and also depend on intermediate output, or crop state, of previous stage, farmer's

expectation of production shocks, and input prices. A number of time and observation indicators

are used, to account for province and village time trends as well as for village and household �xed

effects4. Month indicators keep track of differences in stage timing across farmers and years.5 The

simultaneous system approach delivers estimates of both composite production function and deci-

sion rules for all production inputs. This paper uses the same approach as Felkner et al. (2008) and
4As described in the next section, we use panel data to estimate the economic model.
5To clarify, while we perform very detailed analysis to incorporate heterogeneous timing of stages, and thus inputs

application, across farmers and different years, we do not endogenize timing decisions but treat them as predetermined.
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builds up on their results. We next describe the data and our handling of unobservable production

shocks and intermediate output levels.

III Data

Our data come from the Townsend Thai Project6. We focus on rice farmers in four villages in

Sisaket province, located in predominantly rural and poor north-eastern part of the country. It is an

unbalanced �ve-year panel with monthly interviews. Data are on household-plot level, with many

households cultivating several plots in a given year. A total of 137 households were surveyed,

resulting in 1,030 overall observation points.

The data both cover a wide range of variables and provide rich detail within each variable

group. We have monthly measures of both physical amounts and cost of labor, equipment and

other non-labor inputs such as seeds and fertilizer used in separate production operations. We also

have sets of measures of plot soil quality, household socio-economic characteristics, including

non-agricultural wages of household members, and environmental data such as daily rainfall and

the chemical composition of water sources7.

The fact that data were gathered monthly for each plot enables us to avoid imposing uniform

bounds on stage timing and duration. Rather, we allow for plot-speci�c timing and duration of

stages. The fact that timing and duration of stages and of the overall production cycle vary across

households and plots has several important implications. Stage timing re�ects variation in a num-

ber of plot-speci�c phenomena that determine it, such as plot characteristics, current state of the
6Detailed description of the project can be found at Thailand Database Research Archive (2008) web site,

http://cier.uchicago.edu/intro.htm.
7Rainfall data were collected from �ve stations in each survey village. Each plot was linked to the closest station.

For details, see John Felkner, Kamilya Tazhibayeva and Robert M. Townsend (2008).
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crop, realized or expected production shocks and the farmer's approach to rice cultivation. By

incorporating variation in stage timing we take advantage of these additional information con-

tained in the data. Moreover, aggregate production shocks such as rainfall have different effect

on different plots because they may hit these plots during different production stages. Thus using

plot-speci�c stage timing enables us to estimate the effects of changes in rainfall on rice cultivation

with increased accuracy. We do not endogenize the planting decision however.

Rainfall shocks are of high signi�cance for rice cultivation. Rice is a very water-demanding

plant. Most rice cultivation in Thailand is rainfed and makes little use of irrigation. Farmers have

to take the possibility of adverse rainfall shocks into account when making input decisions. We

use historic daily rainfall to construct a measure of expected future rainfall at the beginning of each

production stage. Although rainfall is an aggregate shock, expected rainfall varies across plots due

to variation in stage timing. Soil type and slope also impact soil moisture, the key latent variable.

We need a consistent estimate for levels of intermediate outputs. One such measure is provided

by DSSAT. DSSAT is a powerful computer crop growth prediction model, the Decisions Support

System for Agrotechnology Transfer (DSSAT)8. The DSSAT system (Jones et al., 2003) takes in

measures of non-labor and non-equipment production factors including quantities of seeds planted

and fertilizer used, as well as inherent soil and climatic conditions. These include multiple mea-

sures of soil quality, actual historical data on daily variation in weather (precipitation, maximum

and minimum temperature, solar radiation), individual crop cultivar genetic growth coef�cients

and the physical modeling and simulation of soil-plant-atmosphere interactions. It then simulates,

day by-day, the biological growth of the plant growing on a uniform area of land under prescribed
8DSSAT has been in use for more than 15 years, and has been used by researchers in more than 100 countries.

The software is a coordinated system of multiple physical and biophysical models integrated by scientists to simulate
the growth of crops, and has been maintained and supported by the International Consortium for Agricultural Systems
Applications (ICASA). See: http://www.icasa.net/index.html
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or simulated management regimes, as well as with changes in soil water, carbon and nitrogen that

take place under the cropping system over time. DSSAT tracks plant's growth with a large variety

of dynamic indicators such as number of leaves per stem, root density and weight, stem and canopy

weight, etc. For this study, highly detailed data on soil quality was gathered in each crop-plot, as

well as data on farmer management inputs (including planting date, amount and type of fertilizer

and herbicide, and quantity of seed planted) collected through the Townsend Thai Project. Thai rice

genetic pro�les and soil-depth pro�les speci�c to the study were used as inputs to DSSAT, along

with daily weather data from the study area on precipitation, maximum and minimum temperature,

and hours of solar radiation.

The great advantage of the DSSAT model is that it allows us to capture crop response due to

purely climatic and soil conditions. Note, however, that DSSAT does not take into account labor

inputs, farmer's decisions with regards to some production operations, or idiosyncratic shocks. In

other words, DSSAT simulates plant growth due to exogenous climatic and soil conditions, but

does not consider all factors and shocks under which rice cultivation occurs. DSSAT simulations

are thus not exact measures of actual crop state. Rather, they are approximations of crop state that

should occur under observed soil parameters, climatic conditions and crop inputs, as a result of

quanti�ed crop-speci�c growth responses measured precisely in laboratory conditions. However,

despite the high precision and accuracy of DSSAT crop-growth simulations, the software typically

is not able to model certain particular and idiosyncratic environmental stresses that reduce crop

growth from the optimal predicted amounts. Thus, DSSAT typically overpredicts actual crop states,

and must be rigorously calibrated to speci�c study areas (Jones et al., 2003).

The advantage of our economic model of rice production function over DSSAT is that our

economic model takes into account farmer's decisions on timing and labor inputs. The advantage
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of DSSAT over our economic model is that DSSAT has information on the way plant develops

biologically and therefore can trace the state of the crop throughout the whole production cycle.

This allows us to use DSSAT simulations as imperfect estimates of intermediate outputs. We

used measures of leaf weight and root weight as indicators of intermediate output from stage one,

and measures of leaf weight, root weight and stem weight as indicators of intermediate output

from stage two. Because DSSAT does not incorporate labor input, we use DSSAT indicators of

intermediate output together with measures of labor inputs in previous stages to provide a more

accurate proxy for intermediate output. The next section introduces our approach to modeling

climate change, and after that we describe how we integrate economic model with DSSAT and

climate change models.

IV Climate Change Impact Modeling

A Global Circulation Models

As an input into our process of climate change impact assessment, we make use of climate change

predictions for Southeast Asia produced by the United Nation's Intergovernmental Panel on Cli-

mate Change (IPCC)9 for their fourth Assessment Report, released in 200710. These climate

change predictions were produced from an �ensemble mean� simulation of multiple coupled Atmosphere-

Oceanic General Circulation Models (AOGCMs) run by international climate research institutes

under the oversight of the IPCC, to produce mean predictions for likely future climate changes

for multiple regions of the world11. These computationally intensive numerical models are driven
9See http://www.ipcc.ch/.
10See http://www.ipcc.ch/ipccreports/assessments-reports.htm.
11See, for example, http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php.
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by equations for atmospheric and oceanic processes, and integrate these forward in time, utilizing

equations that are stepped forward sequentially (e.g. temperature, moisture, surface pressure) as

well as equations that are evaluated from the simultaneous values of key variables. Representing

the current pinnacle of complexity in climate change prediction models, coupled atmospheric-

oceanic general circulation models (such as the HadCM3 (Collins, Tett, and Cooper 2001)) are

typically evaluated for performance accuracy and error by running them to predict climate using

historical data for historical time periods, and then obtaining error estimates through comparison of

the actual versus predicted climate (Min et al., 2004). While the models are acknowledged to have

�aws, and to be stronger in the prediction of certain variables than in others12, in recent years,

advances in measurement and modeling have resulted in improved global and regional climate

predictions, and are capable of reproducing the general features of the observed global climate

observed over the past century (McCarthy et al., 2001).

Climate projections must utilize both climate models that can assess and predict natural climate

variability, independent of anthropogenic impacts, but must also develop creditable scenarios that

account for changes in atmospheric chemistry and global land cover due to demographic devel-

opment, socio-economic development, and technological change (Nakicenovic et al., 2000). In

the scienti�c literature, atmospheric changes due to anthropogenic emissions are referred to as the

forced climate signal, as distinguished from the natural climate variability.
12The models are acknowledged to have speci�c �aws, including albedo error and prediction of tropospheric con-

ditions, as well as inadequate modeling of external factors that could change results, such as percent of cloud cover
(Soden & Held, 2006).
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B Climate Change Scenarios and IPCC SRES

For this study, we have chosen to use climate change predictions based on an �ensemble-mean�

output of more than 20 internationally reputable coupled global climate models, simulated under

the oversight of the IPCC using a range of carefully constructed anthropogenic emissions scenar-

ios, each based on different assumptions about future economic and technological development,

including projections for future GDP and levels of consumption. These future emissions scenarios

were developed for the IPCC by a coordinated team of scientists and economists (Nakicenovic et

al., 2000), and we use speci�c regional predictions made for Southeast Asia under the ensemble-

mean of global climate models for the 2007 IPCC fourth Assessment Reports. Of course, the SRES

scenarios, as with all economic scenarios of emissions and their reliability are a source of some

controversy13. We accept them as given here, for this micro study.

The SRES scenarios are grouped into six �families�, each making different projections re-

garding future greenhouse gas pollution and land use. The �highest emission trajectory�, A1F1,

assumes very rapid future global economic growth, the rapid introduction of new technologies,

increasing global convergence and reduction in regional differences in per capita income. The

�lowest emissions trajectory�, B1, assumes a global economy that emphasizes services and in-

formation sectors, with reductions in material intensity and the introduction of resource-ef�cient

technologies (Christensen et al., 2007).

To avoid potential bias or possible �aws inherent in any particular global climate model, the
13For example, the IPCC SRES economic emissions scenarios have been criticized, speci�cally for their use of

Market Exchange Rates (MER) for international comparison, in lieu of theoretically favored PPP exchanges rates,
which correct for differences in purchasing power. Castles and Henderson (2003) have argued that because of this, the
SRES scenarios overestimated future economic growth in developing countries, leading to an overestimate of future
emissions. In a PPP scenario, China and India have a much smaller share of global emissions. It would also affect
vulnerability to climate change: in a PPP scenario, poor countries grow slower and would face greater impacts.
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IPCC organized the controlled simultaneous running of multiple hand-picked coupled global cli-

mate models to produce �ensemble-mean� area-averaged predictions for the 2007 4th Assessment

Report. Known as the Multi-Model Dataset (MMD)14, and speci�cally used to simulate the SRES

scenarios by six international climate modeling research groups (Christensen et al., 2007), the

models outputs included predicted changes in monthly mean temperature and precipitation (with

respect to the 1960 to 1990 baseline period) for the seven sub-regions of Asia, including Southeast

Asia, for several future time periods15.

C Predicted Climate Changes and Agricultural Impacts for Southeast Asia

Climate trends in the last half of the 20th century in Asia were characterized by increasing surface

air temperatures, ranging between 1 and 3 degree C per century, with a 0.1 to 0.3 degree C increase

per decade in Southeast Asia (Savelieva et al., 2000; Izrael et al., 2002; Gruza and Rankova,

2004). However, the IPCC ensemble-mean results for all scenarios for the 21st century predicts

a signi�cant acceleration of warming over the last century (Ruosteenoja et al., 2003; Christensen

et al., 2007), with a net annual increase in temperature of between 1.96 �C (lowest emissions

scenario B1) and 3.77 �C (highest emissions scenario A1F1) for the 2070-2099 period, relative to

the baseline 1961-1990 period. For precipitation, the consensus of the IPCC ensemble-models for

the 21st century is for an increase in annual precipitation, varying between a net annual increase

of 8 % (highest emissions) and 3 % (lowest emissions) (Lal, 2003; Rupa Kumar et al., 2003; Japan

Meteorological Agency, 2005).
14The models are listed at http://www-pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.
15Theoretically, the ensemble-mean approach results in a superior delineation of the forced climate change signal

from the natural background variability of the system than does the running of one or two models (Giorgi and Mearns
2002).
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Predicting the impact of these temperature and precipitation increases on future agricultural

outputs and crop yields can be complex because, in general, increased precipitation tends to im-

prove crop growth, resulting in higher yields, while temperature increases tend to add stress to

plants and reduce plant growth. Of course, future crop yields under climate change will also be

affected by economic factors, including possibly changes in agricultural technology or improve-

ments in farmer inputs. Consequently, studies predicting the impact of these climate changes on

future crop yields have produced mixed results, and it is further acknowledged that regional dif-

ferences in the response of wheat, maize and rice yields could be signi�cant (Parry et al., 1999;

Rosenzweig et al., 2001). A number of studies predict that the net impact of these climate changes

will be crop yield reductions in Asia, due primarily to temperature increases, resulting in thermal

plant stress. In recent decades, production of rice, maize and wheat in Asia has been shown to

decline due in part to increasing temperatures (Wijeratne, 1996; Aggarwal et al., 2000; Fischer

et al., 2002), and rice production in Asia has been predicted to decline signi�cantly by the end

of the 21st century due in part to the thermal stress effect (Murdiyarso, 2000). For the warming

projections under the highest emission trajectory A1FI scenario, decreases in crop yields by 2.5

to 10 percent have been projected in parts of Asia (Parry et al., 2004). Other crop simulation

modeling studies based on future climate change scenarios indicate substantial losses in rain-fed

crops in South and South-East Asia (Fischer et al., 2002). On the other hand, results of crop yield

projection using the HadCM2 global climate model indicate that crop yields could likely increase

up to 20% in East and South-East Asia while it could decrease up to 30% in Central and South

Asia (Cruz et al., 2007).

Because future temperature increases due to climate change will tend to act as plant stressors

and inhibit plant growth, while increased precipitation will in general have a bene�cial impact, it
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is not clear that there will be a linear relationship between increased anthropogenic emissions, and

either reductions or increases in crop yields, since the relationship between an individual crop's

growth and temperature or precipitation changes is not linear.

V Climate Change ImpactModeling: Integration of Crop,Weather,

Climate and Economic Models

The integrated approach began by running DSSAT to simulate rice growth for 1,030 individual

crop-plots in northern Sisaket province using multiple soil and farmer inputs collected for each

plot during 1998-2002 (as described above). Although DSSAT overpredicted yields, as expected,

the DSSAT predictions were positively and signi�cantly correlated with yield variation across the

plots for those years: speci�cally, across the entire sample of more than 1000 plots for 5 years

of data, a correlation coef�cient of .09 was estimated that was signi�cant with a probability-value

of 0.005. This correlation provided con�rmation of the predictive accuracy of DSSAT given soil,

environmental and farmer crop inputs.

The next step was to estimate the economic model. It was done with the same data on 1,030

crop-plots. Actual rain data were used to construct farmer's rain expectations. DSSAT predictions

from the �rst step were used to construct measures of intermediate output from stages one and two.

To simulate potential rice yields under likely future climate change scenarios, we simulated

likely future �synthetic� weather from the widely-usedWGENweather simulation model (Richard-

son 1984), generating different future daily weather for each of the climate change scenarios, using

IPCC predicted changes to temperature and precipitation. First, WGEN was used to simulate syn-
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thetic stochastic realizations of future weather under forced SRES climate change scenarios, based

on the statistical characteristics of actual daily precipitation, maximum and minimum tempera-

tures, and solar radiation amounts for the study area from 1972-2003, collected from of�cial Thai

government weather station data.

The WGEN weather generation model (speci�c details can be found in Richardson (1981),

Richardson & Wright (1984), Semenov et al. (1998) and Mavromatis & Hansen (2001)) begins by

�rst calculating an extensive set of statistical parameters describing the observed, historical 1972-

2003 daily weather data, including mean monthly amounts for all key input variables, as well as

including probabilities of wet days, probabilities of dry days, and within-year precipitation varia-

tion. WGEN then generates daily values for precipitation, maximum and minimum air temperature

and solar radiation for a N-year period at a given location. The precipitation component of WGEN

is a Markov-chain�gamma-distribution model. The occurrence of wet or dry days is generated

with a �rst-order Markov-chain model in which the probability of rain on a given day is condi-

tioned on whether the previous day was wet or dry. When a wet day is generated, the 2-parameter

gamma distribution is used to generate the precipitation amount. Daily maximum temperature and

solar radiation are sampled from normal distributions parameterized separately for wet and dry

days, with sampling conditioned on precipitation occurrence. Distributions of solar radiation are

truncated at 16 and 85% of extraterrestrial irradiance. Minimum temperature is sampled from a

normal distribution independently of precipitation occurrence. Lag-1 auto- and cross-correlations

among maximum and minimum temperatures and solar radiation are maintained by sampling ran-

dom normal deviates from a trivariate autoregressive model (Richardson, 1984). The �nal values

of the primary output variables are determined by adding the seasonal means and standard devia-

tions to the generated residual elements. All parameters are estimated on a calendar-month basis.
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Daily values are computed internally, using linear interpolation.

Using different random �seeds� to generate the initial vector of values used for the sampling,

WGEN was used to generate 100 stochastic weather year realizations based directly on the sta-

tistics computed for the historical, 1972-2003, observed weather data for northern Sisaket. The

resulting realizations provide 100 alternate stochastic future years of daily weather without any

forced adjustment for an anthropogenic climate change signal. We refer to these weather real-

izations as describing a �neutral� scenario, assuming that future climate will be a direct, linear

extension of the late 20th century within-year weather variability and multi-decadal daily amounts

and monthly means for the key climate variables. These neutral scenario predictions were com-

pared with predictions from the climate change scenarios.

To generate future likely weather with a forces SRES climate change scenario, the IPCC SRES

predicted future changes to monthly precipitation and temperature for the Southeast Asia region

were used to adjust the WGEN-calculated set of summary statistics for the 1972-2003 observed

daily weather data. Then, WGENwas used to generate 100 multiple stochastic future weather years

for each SRES scenario using the adjusted summary statistics to make the predictions. The result

is likely future daily weather, conditioned directly on the means, variances and cross-probabilities

of the observed 1972-2003 daily weather, but adjusted according to individual SRES scenario

predictions for Southeast Asia.

Because of the uncertainty in future anthropogenic global changes (which may differ dra-

matically due to potential policy or technology changes) and their corresponding impacts on at-

mospheric emissions and pollution amounts, as well as to assess the range of likely possible im-

pacts, we generated stochastic weather realizations for both the highest (A1F1) and lowest (B1)

IPCC SRES emissions scenarios, using predictions for the Southeast Asia region, using predictions
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for the 2040-2069 time period.

The neutral and climate scenario realizations were then used as inputs to DSSAT, and rice

yields were simulated for a strati�ed sample of 100 plots from our study area. These 100 plots

were drawn at random from our larger sample of 1,030 plots, with equal share drawn from each

of �ve years of actual data. This produced a distribution of 100 yields for each plot with variation

in yields due to variation in the stochastic weather realizations. To assess the impact of climate

change on yields, we used the climate change scenario-adjusted weather realizations, for the high

and low emission scenarios, as inputs to DSSAT to again generate a distribution of 100 yields for

each plot, for each scenario. This produced 300 yield realizations for each of 100 plots, with 100

realizations for each of neutral, high emissions and low emissions climate scenarios. Throughout

these simulations, all non-weather inputs were kept the same for each plots, at values of the actual

data from 1998-2003. In other words, no adjustment was made to inputs and timing from one

weather realization to another. Thus, for a given plot, variation in assumed climate and weather

realizations was the only source of difference in yields in the 300 DSSAT yield simulations for that

plot.

The �nal step was to use the three generated weather scenarios together with corresponding

DSSAT crop simulations as inputs into estimated economic model and use it to predict yields.

For each plot, individual rain expectations were constructed for each of 300 weather realizations.

Similarly, measures of intermediate stage one and stage two outputs were constructed for each of

300 DSSAT simulations for a given plot. Estimation then proceeded in four steps. In the �rst step,

input levels for stage one were estimated. These estimates incorporated rain expectations for stage

one and thus re�ected variation in input usage due to difference in weather realizations. In the

second step, estimates of levels of �rst stage inputs were used together with DSSAT indicators of
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stage one intermediate output and stage two rain expectations to estimate levels of stage two inputs.

These estimates re�ected variation in input usage due to both differences in weather realizations

and adjustments made by the farmer in the �rst stage. In the same manner we estimated levels of

stage three inputs. We then used estimates of all inputs together with rain realizations as inputs into

composite production function and estimated �nal yields. These �nal yields estimates integrated

models of climate change, weather variations within each climate scenario, plant's biological de-

velopment as modeled by DSSAT, and estimation of farmer's production choices as modeled by

economic model.

VI Results

We �rst provide a summary of the two alternative climate changes that we consider. These are

high and low emission climates corresponding to middle range period as de�ned by the IPCC

SRES. Table 1 uses the 100 weather realizations generated by WGEN for each climate scenario to

compare high and low emission climate scenarios to the neutral scenario.

Panel A of table 1 compares amounts of daily precipitation and panel B compares average

temperature during daylight hours. In each panel, second column contains mean daily values for

each month under neutral climate. The next three columns address shift from neutral to high-

emissions climate. Column three shows the corresponding change in mean daily values, column

four expresses this change in percent, and column �ve shows the probability value of the test on

the equality of daily precipitation under neutral and high-emissions climates. In the same manner,

columns six through eight address shift from neutral to low emissions climate, and columns nine

through 11 address shift from low emissions climate to high emissions climate.
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Climate change is more extreme under high emissions scenario. While daily temperatures

increase under both climate scenarios, the magnitude of increase under high emissions climate is

about 40% higher. Daily precipitation increases throughout the year under low emissions climate.

However under high emissions climate there is less rain in the second half of the year, starting in

June, which is exactly the period of rice cultivation. Thus low emissions climate change brings

moderate increase in temperature and more rain, while high emissions climate bodes both higher

increase in temperature and less rain for rice cultivation.

DSSAT predictions are summarized in panel A of table 2 and in table 3. We �rst look at table

2, which provides aggregate yield comparisons across the three climate scenarios. Row one shows

mean yield change, measured in kilograms per acre, and row two expresses this change as percent

of aggregate mean yield under initial climate scenario. Row three shows p-value for the test of

equality of means under initial and �nal climate scenarios. Compared to neutral climate, aggregate

yields decrease under both high and low emissions scenarios, and these yield decreases are highly

statistically signi�cant. Yields are also lower under low emissions than high emissions scenario,

despite the fact that low emissions climate is less extreme of the two. This may be due to the

damaging effect on the crop of higher rainfall during the �nal production stage, when grain is

mature and harvesting takes place.

Table 3 provides plot-level analysis of DSSAT predictions. First three rows of table 3 compare

predicted yields, measured in kilograms per acre, when shifting from neutral to high emissions

climate. For each plot in our sample of 100 plots, we test the equality of mean yields under neutral

and high emissions climates. We then compute the percent of plots that have statistically signi�cant

change in yields. These numbers are reported in the �rst row of table 2, separately for increases

and decreases in yields, for 1, 5 and 10% signi�cance levels. Second row of table 3 reports the
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actual size of mean yields change over plots where the change was statistically signi�cant. To

give the idea of the scope of yield changes, third row expresses mean yields change of row two in

percent. In the same manner, rows four to six compare predicted yields when shifting from neutral

to low emissions climate, and rows seven to nine compare yields when shifting from low to high

emissions climate.

DSSAT predicts lower yields for about a third of the plots under both low and high emission

scenarios. For these plots, decrease in yields is severe, ranging from 30 to 50%. Decrease in yields

is stronger when shifting to low emissions scenario, under which both more plots are affected

and the scale of yield decrease is higher. Note also that, comparing plots with decreased yields

under low and high emissions climates, plots affected under low emissions scenario were more

productive under neutral climate than plots affected under high emissions scenario.

DSSAT predictions thus suggest that yields decrease more under the milder low emissions

scenario. Despite the fact that high emissions climate has less rain during the second half of the

year while low emissions climate has moderately more rain throughout the year, farmers fare worse

in low emissions climate.

Model predictions are summarized in panel B of table 2 and in table 4. Panel B of table 2

provides aggregate results for model predictions. As is the case with DSSAT predictions, model

predicts lower aggregate yields under both high and low emissions scenarios when compared to

neutral scenario. These yield decreases are again highly statistically signi�cant. Similarly, yields

are lower under low emissions then under high emissions scenario, although model predicts much

smaller gap between the two.

Table 4 provides plot-level analysis of model predictions and is constructed in the same man-

ner as table 3. Rows one to three compare predicted yields, measured in kilograms per acre, when
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shifting from neutral to high emissions climate, rows four to six compare predicted yields when

shifting from neutral to low emissions climate, and rows seven to nine compare yields when shift-

ing from low to high emissions climate.

Model predictions are in stark difference with DSSAT predictions. First thing to note is that

the fraction of sample experiencing statistically signi�cant yield decrease under high emissions

climate more than doubles compared to DSSAT. Yields go down for 68% of the plots, with the

average decrease of about 13%. However, under low emissions climate yields actually increase

for over 80% of the plots, albeit only by half a percent. For a small number of plots the crop

has failed altogether under low emissions climate. Further, we also see that there is no difference

in productivity for plots affected under low emissions scenario versus those affected under high

emissions scenario.

Thus, according to model predictions, farmers manage to take advantage of the moderate in-

crease in rainfall under low emissions climate. The majority of farmers do not experience large

scale changes in yields. At the same time, there is a chance of complete crop failure. We next look

if this risk is associated with soil quality or farmer's �nances.

We look at the connection between yield changes and per capita income in farmer's household.

We compute the probability of household's per capita income being below the median16 given that

the household experienced statistically signi�cant increase (decrease) in yields. We also consider

differences in soil quality between plots with and without statistically signi�cant yield changes.

We use two measures of soil quality. One is pH, which indicates the relative acidity or alkalinity

of soil. Another is cation exchange capacity (CEC), which indicates soil's capacity to hold cation
16Household's per capita income is compared to the province median per capita income of all households in our

larger sample of 137 households in each of �ve years in the sample. Our results hold when we do comparisons using
village-speci�c median per capita income, and also when we use per capita consumption in place of per capita income.
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nutrients. CEC is determined by amounts of clay and humus in the soil and is not easily adjusted.

For both measures, we compute the difference in soil quality between plots with and without yield

increase (decrease), expressed in percent. We also test for equality of mean pH and CEC values

between plots with and without yield increase (decrease) and report the resulting probabilities.

These results are presented in table 5. Panel A contains results for yield changes signi�cant at

1% level, panel B contains results for yield changes signi�cant at 5% level, and panel C contains

results for yield changes signi�cant at 10% level.

Soil quality is not associated with yield changes no matter which climate change is considered.

This is true for both DSSAT and model predictions. Household's income also does not correlate

with yield changes, with one notable exception. We see that the few plots that experience crop

failure under low emissions climate according to model predictions have a 70% chance of having

per capita income below median. This result suggests that poorer households are incapable of

coping with the moderate climate change that other farmers are able to adjust to.

We now compare model and DSSAT predictions for middle-range climate changes. To repeat,

there are several differences between the model and DSSAT that are key to this analysis. DSSAT

takes into account only amounts of non-labor non-equipment inputs such as fertilizer and seedlings

that are applied to soil. When we simulated DSSAT under alternative climate scenarios, these input

values were not adjusted from their actual levels reported under current climate. Thus changes in

yields predicted by DSSAT are driven solely by changes in climate in which the crop is grown,

with no adjustment to any inputs.

Changes in rainfall across different climate scenarios are taken into account in model predic-

tion through adjustment of farmers' rainfall expectations. The model also incorporates results of

DSSAT simulations though changes in measures of crop's intermediate states. Thus all inputs in
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model prediction incorporate adjustment to climate change through these two channels. In addi-

tion, we are able to utilize the multi-stage structure of our production function and adjust input

levels in later stages according to adjustments made to inputs in earlier stages.

To summarize, DSSAT predictions of yield changes do not take into account any adjustments

by farmers. Model predictions, on the other hand, make adjustments to all production inputs

according to the estimates of farmer's input decision rules.

For the shift from neutral to low emissions climate, comparison of DSSAT and model pre-

dictions shows that taking into account farmer's response to climate change makes a substantial

difference. Without input adjustments, we see statistically signi�cant yield decrease of large mag-

nitude in a third of our sample plots. Once farmer's responses to climate change are incorporated,

the majority of plots do not experience yield decrease and even enjoy a slight increase in yields.

Farmers are thus able to adjust to climate change from neutral to low emissions scenario.

The role of farmers' adjustment to climate change is also evident in the shift from neutral to

high emissions climate. Without input adjustments, we see statistically signi�cant yield decrease

of around 30% in a quarter of our sample plots. Once farmer's responses to climate change are

incorporated, the fraction of sample experiencing yield decrease more than doubles but the magni-

tude of average yield decrease more than halves. Farmers thus respond to this more severe climate

change with adjustments that prevent large crop failures, at the cost of reducing their yields by

about 13%. In other words, farmers are unable to fully neutralize the effects of the more severe

climate change. However, by adjusting their crop cultivation routine they are able to mitigate the

adverse effects of this more extreme climate change scenario.

It should also be noted that under milder climate change from neutral to low emissions scenario,

farmers do not �nd it necessary to adjust their cultivation methods suf�ciently to reduce the chance
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of crop failure. Our results thus suggest that various climate changes pose different challenges to

the farmers. One is overall reduction in yields, when crops do not fail but are less productive.

Another is crop failure on a large scale. It appears that there is a trade-off in adjustment techniques

for these two challenges. Under less severe climate change large crop failure may be a result of

bad weather draw, so farmers choose adjustment that maintains their yields but does not guard

against crop failure. Under more severe climate change any weather realization can lead to large

crop failure, and so farmers switch the adjustment technique to preventing large crop failure at the

cost of lower yields.

VII Conclusion

In this paper we integrated models from several different disciplines to assess the effect of cli-

mate change on rice production in Thailand. We considered two alternatives for climate change,

one more extreme with higher temperatures and lower rainfall, another more mild with smaller

temperature increase as well as moderate rainfall increase.

Our results illustrate the complexity of climate change effects on rice yields. Milder climate

change does not necessarily mean smaller adverse effect on yields. In addition, it appears that

different climate changes call for different adjustment strategies by farmers, and these adjustment

strategies are not necessarily complimentary. Our results also illustrate the scope of farmers' ability

to counter climate change, and thus the importance of accurate modeling of farmers' decisions.

Overall farmers are unable to neutralize the adverse effects of the more extreme climate change.

However, they are able to cope with milder climate change and even bene�t slightly from small

increases in rainfall. We �nd that farmers' ability to adjust to climate change is not correlated with
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soil quality of their land or their incomes. One notable exception to this is that while most farmers

manage to adjust to milder climate change, poor farmers are less able to do so.

It should be noted that in our analysis we consider only farmers' adjustment through input

decision rules, namely, their choices of levels of production inputs. We do not model or incorporate

possible changes in timing of input usage. We also do not consider broader adjustments such as

changes in the type of crop grown or migration. As a result, our �ndings may overstate both yield

changes and implied welfare effects due to climate change.
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Figure 1 – Three-Stage Production Process 
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Table 1 – Comparison of Neutral to Alternative High and Low Emissions Climates 

Panel A: Daily Amount of Precipitation, in mm 

 Neutral Neutral to high emissions shift Neutral to low emissions shift Low to high emissions shift 

Month Mean 
Mean 

change Percent P-value 
Mean 

change Percent P-value 
Mean 

change Percent P-value 
January 0.123 0.003 2.285 0.01 0.005 4.413 0.01 -0.003 -2.038 0.01 

February 0.226 0.003 1.342 0.00 0.007 3.252 0.00 -0.004 -1.850 0.00 
March 1.119 0.035 3.157 0.00 0.034 3.062 0.00 0.001 0.092 0.00 
April 3.329 0.102 3.053 0.00 0.102 3.053 0.00 0.000 0.000 0.00 
May 4.882 0.152 3.111 0.00 0.150 3.066 0.00 0.002 0.044 0.00 
June 6.402 -0.059 -0.914 0.00 0.024 0.375 0.00 -0.083 -1.285 0.00 
July 5.068 -0.001 -0.021 0.01 0.050 0.984 0.00 -0.051 -0.995 0.00 

August 5.691 0.030 0.522 0.00 0.055 0.967 0.00 -0.025 -0.441 0.00 
September 8.127 -0.082 -1.013 0.00 0.080 0.990 0.00 -0.163 -1.983 0.00 

October 4.391 -0.042 -0.967 0.00 0.042 0.967 0.00 -0.085 -1.915 0.00 
November 1.160 -0.014 -1.210 0.00 0.007 0.629 0.00 -0.021 -1.827 0.00 
December 0.023 -0.001 -3.467 0.00 0.001 5.270 0.00 -0.002 -8.300 0.00 

 
Panel B: Average Daily Temperature during Daylight Hours, in degrees Centigrade 

 Neutral Neutral to high emissions shift Neutral to low emissions shift Low to high emissions shift 

Month Mean 
Mean 

change Percent P-value 
Mean 

change Percent P-value 
Mean 

change Percent P-value 
January 26.697 2.300 8.615 0.00 1.300 4.869 0.00 1.000 3.572 0.00 

February 29.083 2.300 7.909 0.00 1.300 4.470 0.00 1.000 3.291 0.00 
March 31.391 2.300 7.327 0.00 1.300 4.141 0.00 1.000 3.059 0.00 
April 32.357 2.300 7.108 0.00 1.300 4.018 0.00 1.000 2.971 0.00 
May 31.339 2.327 7.426 0.00 1.300 4.148 0.00 1.027 3.147 0.00 
June 30.464 2.078 6.821 0.00 1.300 4.267 0.00 0.778 2.449 0.00 
July 29.894 2.100 7.024 0.00 1.300 4.349 0.00 0.800 2.563 0.00 

August 29.414 2.199 7.478 0.00 1.300 4.420 0.00 0.899 2.928 0.00 
September 30.350 1.205 3.971 0.00 1.300 4.283 0.00 -0.095 -0.300 0.00 

October 28.434 1.298 4.567 0.00 1.300 4.572 0.00 -0.002 -0.005 0.00 
November 27.191 1.172 4.311 0.00 1.300 4.781 0.00 -0.128 -0.449 0.00 
December 25.733 2.420 9.405 0.00 1.300 5.052 0.00 1.120 4.144 0.00 
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Table 2 – Aggregate Yield Changes across Climate Scenarios 

Panel A: DSSAT Predictions 

 Neutral to Neutral to Low emissions to 
  high emissions low emissions high emissions 

Yield change -53.521 -209.154 155.633 
Percent change -3.53 -13.79 11.91 

P-valuea 2.683E-02 1.030E-12 2.390E-09 
 

a Corresponds to one-sided test in the direction indicated by sign of yield change in the first row: Ha is decrease in yields for columns one and two and Ha is 
increase in yields for column three. 
 

Panel B: Model Predictions 

 Neutral to Neutral to Low emissions to 
  high emissions low emissions high emissions 

Yield change -71.152 -79.230 7.981 
Percent change -10.81 -12.04 1.40 

P-value 0.000E+00 0.000E+00 1.170E-13 
 

a Corresponds to one-sided test in the direction indicated by sign of yield change in the first row: Ha is decrease in yields for columns one and two and Ha is 
increase in yields for column three. 
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Table 3 – DSSAT Predictions of Yield Changes 

  1 percent significance 5 percent significance 10 percent significance 
Climate shift Variable Increase Decrease Increase Decrease Increase Decrease 

Neutral Percent of sample 4.21 20.00 10.53 26.32 13.68 36.84 
to Yield change 306.308 -272.687 325.976 -220.047 286.748 -260.302 

High emissions Percent change 102.50 -49.25 49.26 -33.98 38.51 -27.97 
Neutral Percent of sample 3.16 29.47 5.26 35.79 12.63 36.84 

to Yield change 119.723 -581.584 221.085 -605.151 206.053 -591.514 
Low emissions Percent change 123.43 -50.27 78.77 -43.57 36.42 -42.76 

Low Percent of sample 5.26 1.05 9.47 5.26 20.00 10.53 
to Yield change 2301.83 -61.71 1322.69 -75.67 690.29 -117.94 

High emissions Percent change 36.83 -100.00 21.45 -8.60 21.30 -7.68 
 

Table 4 – Economic Model Predictions of Yield Changes 

  1 percent significance 5 percent significance 10 percent significance 
Climate shift Variable Increase Decrease Increase Decrease Increase Decrease 

Neutral Percent of sample 15.85 62.20 15.85 68.29 17.07 69.51 
to Yield change 2.427 -114.872 2.427 -104.719 2.396 -102.973 

High emissions Percent change 0.42 -14.08 0.42 -12.84 0.43 -12.62 
Neutral Percent of sample 79.27 12.20 81.71 12.20 81.71 12.20 

to Yield change 3.840 -675.937 3.898 -675.937 3.898 -675.937 
Low emissions Percent change 0.55 -98.20 0.55 -98.20 0.55 -98.20 

Low Percent of sample 4.82 84.34 4.82 85.54 4.82 85.54 
to Yield change 313.04 -8.32 313.04 -8.29 313.04 -8.29 

High emissions Percent change 0.83 -0.99 0.83 -0.98 0.83 -0.98 
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Table 5 – Soil Quality and Household Income in Yield Changes 

Panel A: Yield Changes Significant at 1% Level 

  DSSAT predictions Model predictions 
  Neutral to Neutral to Low to Neutral to Neutral to Low to 

Yield 
change Variable 

high 
emissions low emissions 

high 
emissions 

high 
emissions low emissions 

high 
emissions 

Increase Below median per capita income 50.00 0.00 40.00 53.85 47.69 50.00 
 pH mean change, in percent -3.03 3.20 0.92 -4.94 2.98 -10.33 
 pH mean change, P-value 0.665 0.691 0.884 0.223 0.333 0.136 
 CEC mean change, in percent 73.56 -4.38 16.95 31.07 -7.71 41.63 
  CEC mean change, P-value 0.186 0.903 0.620 0.199 0.577 0.363 

Decrease Below median per capita income 68.42 60.71 0.00 49.02 70.00 47.14 
 pH mean change, in percent -4.38 -0.74 0.00 2.32 -6.25 4.40 
 pH mean change, P-value 0.207 0.810 0.000 0.416 0.168 0.181 
 CEC mean change, in percent 16.14 7.22 0.00 -9.12 23.20 -11.24 
 CEC mean change, P-value 0.385 0.634 0.000 0.470 0.370 0.438 

 

Panel B: Yield Changes Significant at 5% Level 

  DSSAT predictions Model predictions 
  Neutral to Neutral to Low to Neutral to Neutral to Low to 

Yield 
change Variable 

high 
emissions low emissions 

high 
emissions 

high 
emissions low emissions 

high 
emissions 

Increase Below median per capita income 50.00 40.00 33.33 53.85 46.27 50.00 
 pH mean change, in percent -3.53 -2.05 4.30 -4.94 3.68 -10.33 
 pH mean change, P-value 0.439 0.745 0.372 0.223 0.243 0.136 
 CEC mean change, in percent 23.60 23.78 -8.33 31.07 -6.09 41.63 
  CEC mean change, P-value 0.363 0.510 0.689 0.199 0.668 0.363 

Decrease Below median per capita income 60.00 55.88 60.00 50.00 70.00 46.48 
 pH mean change, in percent -3.93 -0.54 -2.42 3.46 -6.25 4.22 
 pH mean change, P-value 0.212 0.853 0.701 0.235 0.168 0.205 
 CEC mean change, in percent 8.62 8.74 23.91 -14.57 23.20 -9.07 
 CEC mean change, P-value 0.588 0.547 0.508 0.246 0.370 0.540 
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Panel C: Yield Changes Significant at 10% Level 

  DSSAT predictions Model predictions 
  Neutral to Neutral to Low to Neutral to Neutral to Low to 

Yield 
change Variable 

high 
emissions low emissions 

high 
emissions 

high 
emissions low emissions 

high 
emissions 

Increase Below median per capita income 46.15 50.00 52.63 50.00 46.27 50.00 
 pH mean change, in percent -4.94 -2.32 8.20 -5.07 3.68 -10.33 
 pH mean change, P-value 0.223 0.583 0.020 0.197 0.243 0.136 
 CEC mean change, in percent 20.65 17.03 -11.07 33.12 -6.09 41.63 
  CEC mean change, P-value 0.360 0.454 0.460 0.163 0.668 0.363 

Decrease Below median per capita income 60.00 54.29 70.00 49.12 70.00 46.48 
 pH mean change, in percent -2.03 -1.00 -3.34 3.65 -6.25 4.22 
 pH mean change, P-value 0.483 0.730 0.465 0.211 0.168 0.205 
 CEC mean change, in percent -5.25 9.85 15.80 -14.08 23.20 -9.07 
 CEC mean change, P-value 0.691 0.497 0.519 0.266 0.370 0.540 
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