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Abstract 
 

We formulate an empirical model of congestion for a network where queues may form and spill 
back from one link to another. Its purpose is to disentangle the dynamic effect that a marginal 
vehicle, on a given link and at a given time, has on the distribution of travel times experienced 
there and on connected links. We estimate a dynamic model, based on an unusually complete 
and accurate dataset from Danish motorways. Each data point contains information on the 
vehicle flow on a link during a five-minute interval, along with the average speed experienced by 
those vehicles as measured by timed license-plate matches. We use the results to estimate the 
marginal external cost of adding a vehicle to a link’s entry flow, as it is influenced by conditions 
on that link and on its downstream neighbor. 
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1. Introduction 

 

 Congested road networks are receiving much attention as analysts and policy makers 

examine more sophisticated measures to manage traffic on existing facilities. These measures 

include ramp metering, express lanes, carpooling incentives, and pricing. The implications of 

such policies, especially express lanes and pricing, are mostly understood either from models of 

a single road link or from simulated networks in which road links are described by relatively 

simple speed-flow relationships connected, if at all, by simple queuing. 

 Yet the relationships spilling across links are crucial to understanding the development of 

highly congested systems, where queues can quickly spread and perhaps can also form 

spontaneously when flow approaches a saturation level. There is considerable uncertainty about 

the nature of flow under such conditions. It is known that on a single link, a given flow may 

occur at two different speeds, one relatively high and the other much lower and less stable. We 

shall use the terminology, common in economics, of “congestion” for the former case and 

“hypercongestion” for the latter.1 But the exact process of transition from one to the other is 

much debated and seems to depend critically on how one link interacts with another.2 

 One common way to model severe congestion is through deterministic queuing at a 

bottleneck, perhaps including the spillback of queues from one link to another. Such analysis 

almost invariable makes the simplification that the bottleneck capacity is constant. Yet Cassidy 

and Bertini (1999) find empirical evidence that discharge rates from bottlenecks fall after queue 

formation and then partially recover. They find the higher pre-collapse flow to be unstable and 

they “view the [lower] long-run queue discharge flow as the bottleneck capacity” (p. 40). Thus in 

their view, flow can exceed capacity for short periods of uncertain duration, resulting in 

                                          
1 In much of the engineering literature, the corresponding terms are “free-flow” and “congested flow”. 
2 Small and Verhoef (2007, sect 3.4.1) provide a review of these arguments. See for example the difference in 
opinion about the spontaneous onset of hypercongestion as a type of phase transition, reflected in Kerner and 
Rehborn (1997) and Daganzo, Cassidy, and Bertini (1999). Verhoef (2001) and Small and Chu (2003) argue that 
hypercongestion does not exist in a stable steady-state equilibrium, but rather is generated dynamically when queues 
form behind bottlenecks. 
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considerable stochastic variability in the travel times experienced and the marginal effects of an 

additional vehicle. 

 Another approach, used for city street networks, is to model average flows and speeds 

throughout an area. Both simulation and aerial photography have suggested that such average 

flows and speeds can be related by an aggregate speed-flow function that has both congested and 

hypercongested regimes (May, Shepherd, and Bates 2000, Ardekani and Herman 1987). Small 

and Chu (2003) develop a dynamic aggregate model based on such a relationship that can be 

used to measure the marginal cost of a vehicle entering the area, but it cannot describe 

heterogeneity of conditions within the area. At the opposite extreme, one can model the behavior 

of traffic at individual signalized intersections within street networks; but this analysis becomes 

extremely complex when queues at one link obstruct flow on another, a situation typically 

requiring dynamic computer simulations with individual vehicles. 

 Another difficulty in modeling dynamic congestion arises in the process of empirical 

estimation. Such estimation requires data on the traffic flow and speed (or either of these 

quantities along with density) at each of many locations and times. The most common source of 

such data is magnetic loop detectors placed in roadways. However, the resulting data contain 

serious errors due to periodically non-functioning equipment and uncertain assumptions about 

vehicle sizes and flow homogeneity needed to convert the observed timing and spacing of axle 

passages into vehicle flows and speeds (Steimetz and Brownstone, 2005).  

 This paper provides an empirical description of congestion formation throughout a 

freeway network covering a part of Denmark. We are able to solve many of the problems just 

described by taking advantage of an unusually detailed data set containing reliable speed 

measurements on each link at five-minute intervals over the entire day. Because the data are 

extensive, we can model congestion on these links using flexible dynamic functions. 

Specifically, we allow a dynamic relationship explaining travel time on a link in terms of present 

and past conditions on the link itself and also in terms of conditions downstream. The functional 

specification allows for both spontaneous hypercongestion and for hypercongestion caused by 

spillbacks from downstream congestion, thus allowing the data to determine the relative 

importance of these two causes of severe congestion. We use the resulting model to simulate the 

pattern of marginal external costs association with adding a vehicle to the traffic flow at various 

demand levels. 
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 The results show that dynamic effects are quite important, causing perturbations in flow 

to persist for several of our five-minute time intervals. They also show that marginal external 

costs arise both from the link itself, through the usual speed-flow relationship, and from the 

downstream link when it is congested. However, our results are quite sensitive to details of 

model specification, leading us to suspect that our approximate solution to a full reduced-form 

model of travel flow by link does not capture all the interactions that occur under heavy 

congestion. 

 The layout of the paper is as follows. The model is specified in Section 2, while Section 3 

provides description of the data. The empirical model specification and estimation results are 

contained in section 4. Section 5 applies these results to calculate the marginal external cost 

associated with adding additional vehicles to traffic flow. Section 6 concludes. 

 

2. Model Specification 

 

The links on our network, indexed by n, are defined as sections of roadway between two 

intersections. The time periods, indexed by t, are 5 minutes in duration. 

 

2.1 Structural model of flows, queues, and congestion delay 

 

 Let n
tT  be the link travel time (in minutes per kilometer) observed for vehicles exiting 

link n, with physical length Ln km, during time interval t. Vehicles exit the link at rate n
tF . These 

are the quantities on which we have direct measurements. 

 We assume exit flow n
tF  is the smaller of the potential flow reaching the end of the 

section and the capacity of the section, the latter being reduced by blockages from the 

downstream link. This potential exit flow rate is equal to the entering rate n
tE  to the link plus the 

discharge over time interval ∆t of any accumulated internal queue, n
tq . Downstream blockage 

depends in some unknown way on downstream density 1+n
tD  (measured in vehicles per lane-

kilometer).Thus: 
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where g1(⋅) is a strongly nonlinearly decreasing function. The size of the internal queue is an 

accumulation of past excesses of entry flows over exit flows: 
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where nt0  is the most recent time period t′ for which 0=′
n
tq . 

 Travel time follows a speed-density relationship: 

  )(1
n
t

n
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where by the usual traffic-flow equality, density D is given by flow F divided by speed S=1/T: 
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 Finally, we approximate entry flow during interval t based on what we know of the exit 

flows from the upstream link at previous times. (This will be inexact because we lack data on 

entry and exit ramps.) Due to the lengths of our sections and the five-minute duration of our time 

interval, we need the upstream flow for the current and up to two previous time periods. The 

result is 
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with weights summing to one and determined from the link length as described in the Appendix. 

 Equations (1)–(5) form a simultaneous system in various flows and travel times. We 

would like to solve them for the flows and travel times as functions of other variables. These 

endogenous variables affect each other in several highly nonlinear and interconnected ways. 

First, T appears on both sides of (3), since it is part of definition (4) of density. Second, current 

values are highly nonlinear functions of lagged values through queue formation as described in 

(2). Third, values for section n are functions of values for downstream sections through the term 

h(⋅) in (1) (blockage from downstream congestion); and they depend on upstream sections 

through the last term on the right-hand side of (5) (entry to section n depends on exit from 

section n-1). Of course, the same equations apply to these upstream and downstream sections, so 

that congestion effects on a given section can propagate in both directions. 

 For these reasons, we find it intractable to estimate equations (1)–(5) structurally or to 

solve them explicitly for the endogenous variables. Instead, we suggest the following heuristic 

approximation of a solution for travel time n
tT . It is motivated by our assessment of the most 
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important sources of simultaneity. First, the solution will imply a strong dependence of current 

travel time on entry flow, which we represent as a flexible function )( n
tEf . Second, the impact 

of recent flow imbalances via current queue length, n
tq , will be closely related to recent past 

values of travel times; we therefore approximate it by including in our reduced-form equation 

two lagged values of travel time, n
tT 1−  and n

tT 2− . It is important for our later simulations to 

recognize that these lagged travel times represent congestion dynamics and therefore play a 

significant role in the response of the system to any perturbation of entry flow. Third, the impact 

of the queue will depend strongly on recent past flow differences, which we proxy in some 

specifications by including the variable: 

 { }0,11
n

t
n
t

n
t FEMaxQ −− −= .  (6) 

 Fourth, upstream blockage will affect travel time through the term g1(⋅) in (1); we approximate 

this effect by including a flexible function )( 1+n
tDg  in the reduced-form equation for n

tT . 

Finally, we include link-specific constants and two control variables, W and H, as explained in 

Section 4.1.   

 In order to ensure that error terms can take infinite values without introducing 

contradictions, we represent most variables by logarithms, except for Q which is often zero. The 

result is the following empirical equation: 
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The implied steady-state speed-density relationship is seen by substituting TTTT ≡== −− 21  and 

ε=0 into (7), and solving with other variables held steady at values 1+nD , nQ , and nW . The 

result is: 
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provided -1<β1+β2<1, a condition that is necessary for dynamic stability and which we find true 

empirically in every case. Thus the effect of a change in steady-state entry flow is:  
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2.2 Functional Forms 

 

 The function f(⋅) is expected to rise slowly at low entry flows, then steeply at some value 

approximating the capacity of an expressway lane. After some experimentation, we find a simple 

piecewise linear function with one breakpoint works well. The same is true for g(⋅). We also 

experimented with cubic functions for f and g, but they do not fit as well and are less satisfactory 

theoretically because they contain regions with wrong-sign derivatives. 

 It is worth noting that by distinguishing between entry flow and exit flow, our 

formulation solves one of the dilemmas of empirical specification of speed-flow functions. 

Engineering realism suggests a functional form with a maximum possible flow, such as a 

backward-bending speed-flow curve. But such a function cannot tell us what happens when 

quantity demanded exceeds capacity; furthermore, it leads to unstable and nonsensical apparent 

equilibria when interacted with certain demand curves. This is because flow is typically treated 

as a single variable, depicting both the flow that determines congestion (a supply relationship) 

and the quantity of travel chosen at a given level of congestion (a demand relationship). But then 

the backward-bending part of the speed-flow relationship makes the supply curve downward-

sloping, as though one could improve conditions by adding more cars to the link. In our 

formulation, we can think of entry flow as quantity demanded; it can exceed exit capacity 

without contradiction because there are entrances and exits along the link and queue lengths can 

change so as to absorb imbalances between entry flow and exit capacity. We hope that the net 

effect of these factors is captured by the dynamics in (7) and of the terms involving queuing 

variable Q. 

 

3. Data 

 

The data are collected through the period January 16 – May 8, 2007 on the freeway network in 

South-East Denmark.3 The 91.1 km network forms a triangle with corners linking the cities of 

Odense in the east to Vejle in the north and Kolding in the west, as shown in Figure 1. It includes 

the Lillebælt Bridge, over which flows all road traffic between Copenhagen (east of Odense) and 

                                          
3 We are grateful to the Danish Road Directorate for providing these data. 
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continental Denmark and Germany. Cameras are placed near each intersection, dividing the 

network into 15 pieces, with data recorded separately for the two directions giving observations 

for each of 30 one-way links. The links range from 1.7 to 11.9 kilometers in length and two to 

three lanes in width. Data are recorded for five-minute intervals.  

 
 We use data for all links that are joined upstream to just one other link, and for which we 

have observations on the link itself and on the first and second links upstream and downstream of 

it. This yields 246,230 observations from nine one-way links. For every five-minute observation 

period, the data record the exit flows and average travel times for both light and heavy vehicles, 

the distinction between vehicle types being approximate as it is based on the license plate. An 

observation is omitted when the exit flow is less than 10 vehicles per five minutes. We compute 

traffic flow in passenger car equivalents (pce) using a conversion factor of 2.25 pce per truck. 

Travel times have been divided by distance and are expressed in minutes per kilometer, while 

flows are divided by number of lanes and expressed in pce per lane per minute.  

 Figure 2 plots the observations of travel time against flow, with the latter averaged over a 

one-hour period. This and later plots of the same type show, in the upper panel, a scatter plot of 

the data and, in the lower panel, a kernel smooth including the mean and 95 percent pointwise 

confidence band. Using a normal density kernel, the bandwidth for the smooth here and later has 

been set to 5 percent of the range of the independent variable, which in Figure 2 is flow. The 

smoothed mean indicates that average travel time increases slowly with flow up to a flow of 

about 35 pce/lane/min, which is roughly the design capacity of a freeway lane; then it is almost 
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flat up to 45 pce/lane/min, after which it rises more steeply. The overall average travel time in 

the sample is 0.57 min/km, corresponding to a speed of 105 km/h. Although most observations 

are in the lower-flow region, we also have many observations of larger flows, which of course 

are important for measuring congestion effects. 

 The scatter plot reveals that there is a very large dispersion of travel times: most 

observations are near the average but a considerable number are much larger. We believe these 

observations with high travel times are real and therefore we include them in the analysis; most 

of them occur at low entry flows, probably indicating conditions where entry flow is blocked by 

queues forming at bottlenecks within or downstream of the link in question. In order to reveal 

more detail in the region with most data, Figure 2 and later similar figures includes a middle 

panel showing data within a restricted vertical range.   

 
 Figure 3 plots the entry flow against time of day. There are morning and afternoon peaks 

even though the data include both weekdays and weekends. Data are mostly missing during the 

hours 1:00-5:00 a.m. when there is too little traffic for reliable measurement. 
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4. Empirical results 

 

4.1  Model specification 

 

We need to specify the model in (7), describing the current travel time on a link as a function of 

lagged travel times on the same link, entry flow via )( n
tEf , queue via )( n

tQh , upstream blockage 

via )( 1+n
tDg , and controls W and H. 

 We begin by discussing the controls. First, travel time on a link is affected by weather 

and other conditions not related to flow. We utilize the log travel time experienced concurrently 

on the same roadway in the opposite direction to control for these effects and label this variable  

W. This variable is averaged over three periods around the current time interval. Second, the 

speed for trucks is restricted; hence we include a variable H equal to the share of heavy vehicles 

measured in pce in the current exit flow. We allow for link-specific coefficients on W and a 

single coefficient on H. 
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According to the discussion in Section 2, we must regard entry flow, queue, and upstream 

blockage as endogenous since these variables are all affected by congestion. We therefore need 

to specify instrumental variables that are correlated with the endogenous variables but 

uncorrelated with the current residual in (7). In addition to the controls and two lags of travel 

time, already included as variables in (7), we use the following two variables as instruments: the 

flow two links upstream of the current link, and the density two links downstream. The rationale 

for these variables is that they influence entry flow, queue size, and upstream density directly, 

but they are unlikely to be correlated with the residual in (7) because blockages seldom extend 

across more than two links. We include also lags and some powers of these two instruments in 

order to gain as much power as possible in explaining the endogenous variables. 

We estimate link-specific fixed effects as well as link-specific parameters for W. All 

other parameters are common across links. 

 Table 1 presents some descriptive statistics for the variables in the estimated equations. 

 

Table 1 Descriptive statistics 
  lnT  lnE Q lnDn+1 H W 

Mean -0.5774  2.902  6.160  2.082  0.5200  0.5813

Median -0.5913  2.961  0.000  2.081  0.5431  0.5508

Maximum 2.842  4.226  81.41  4.588  0.9183  19.40 

Minimum -0.8519  0.8310  0.000  0.08948  0.1106  0.4208

Std. Dev. 0.1374  0.4997  10.08  0.5477  0.1428  0.3071

Skewness 5.836 -0.4590  1.991  0.01343  -0.3641  22.45 

Kurtosis 78.01  2.871  7.275  2.972  2.409  723.4 

 

 

4.2 Estimation results 

 

 A range of models has been estimated. We present estimates from three models based on 

piecewise linear specifications of functions f, g and h. The breakpoints for these functions were 

found by visual inspection of the curves resulting from estimating third order polynomials. (We 

prefer not to rely on the models using polynomials since our data are heavily concentrated at low 
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to intermediate flows, whereas we are most interested in the properties of the function at high 

flows; the fit of the polynomial where data are dense will determine the shape where data are 

sparse and hence results may be misleading.) 

 The function f relating to entry flow has a breakpoint at 40 pce/lane/min, which 

corresponds to the point in Figure 2 where travel time seems to begin to rise and just slightly 

exceeds the Danish design standard for lane capacity.4 The function g for the downstream 

density is zero until a density of 50 pce/lane/km and linear from there. To interpret this 

breakpoint value, note that it corresponds to a point where downstream flow divided by 

downstream speed equals 50: for example, to a flow at capacity of 50 pce/lane/min and a speed 

of 1 km/min (60 km/h) which is roughly half free-flow speed. 

 The specification of the function h(⋅) varies across models. In model M1, h is a piecewise 

linear function (with two pieces) in Q, defined as the positive part of the sum of two lagged 

differences between entry and exit flow — a natural extension of (6). Model M2 replaces Q by 

its first constituents, namely the first lagged values of entry and exit flows, entered as logarithms, 

estimating a separate coefficient for each. Finally, model M3 omits the Q variable altogether. 

 Results are shown in Table 2. All models are estimated in EViews by two stage least 

squares (TSLS). They yield an adjusted R-square of about 0.5 and a Durbin-Watson statistic 

close to 2, indicate little autocorrelation of the residuals.  

 All three models portray stable and statistically significant dynamics. The coefficients for 

first and second lags of travel time are positive, very significant, and sum to less than one (about 

0.7). These values imply that the remaining coefficients should be multiplied by about 1/(1-

0.7)≈3.3 to get the values that apply when the model is solved in steady state, as shown in 

equation (8). 

                                          
4 The Danish design standard states an ideal capacity of 2300 pce/lane/h, or 38.3 pce/lane/min (www.vejregler.dk).  
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Table 2 Estimation results 
Dependent variable: natural logarithm of travel time per km (min/km) 

Model: M1 M2 M3 
Variable Coeff. t-Stat. Coeff. t-Stat. Coeff. t-Stat. 
       
Const. -0.246 -34.5 -0.234 -32.7 -0.257 -35.0 
T-1 0.384 83.8 0.382 83.6 0.381 83.3 
T-2 0.317 70.2 0.318 69.6 0.312 69.3 
lnE 0.006 3.2 0.061 5.9 0.007 3.6 
(lnE-ln(40))*1{E>40} 0.267 4.8 0.226 4.5 0.194 3.8 
(Q-20)*(Q>20) -0.001 -4.1     
(Q-40)*(Q>40) -0.001 -2.0     
lnE-1   -0.058 -6.1   
lnF-1   -0.001 -1.0   
(lnDn+1-ln(50))*1{Dn+1>50} 2.124 3.7 2.667 4.6 3.446 5.9 
H 0.041 12.9 0.038 11.9 0.043 13.7 
       
link-specific constants yes yes yes  
link-specific const’s * W yes yes yes  
       
Number of observations 66603  67047  67470  
Adjusted R-squared 0.514  0.514  0.512  
    Sum squared resid 629.927  637.689  647.261  
    Durbin-Watson stat 2.124  2.112  2.094  
    Second-stage SSR 625.933  629.245  631.836  
Note: { }1 denotes the indicator function for the event in the curly brackets.  
 

  

Other control variables are also stable across models. The coefficient for H, the share of 

heavy vehicles in the exit flow, indicates that the travel time of heavy vehicles is 13–15 percent 

larger than for light vehicles in the same traffic stream.5 With nine links included, there are nine 

link-specific effects of control variable W. The latter control variables almost all have 

statistically significant effects, typically in the range of 0.02–0.09, indicating that travel time on 

                                          
5 That is, for given values of other right-hand-side variables, the travel times for truck and car, TT and TC, are related 
by ln(TT/TC)=βH/(1-β1 -β2) or TT/TC = exp[βH/(1-β1 -β2)] ≈ 1.13–1.15. This may be somewhat too small, as the speed 
limit for trucks is 80 km/h compared to 110 or 130 km/h for cars. Actual speeds tend to be higher. We tried 
including interactions between the share of heavy vehicles and the functions for entry flow and downstream density, 
but these interactions were jointly insignificant. 
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the opposing link affects travel time on the link in question with an elasticity of roughly 0.02–

0.09.6 

Turning to the variables of main interest, consider first the role of our queuing proxy, Q, 

in explaining travel time. Model M1 represents the effect of Q as two linear pieces, one for Q 

between 20 and 40 and one for Q above 40. We expect a positive relationship because an internal 

queue should cause delay; however, the estimated coefficients are both negative. In model M2, 

we replace Q by the entry and exit flow of the last period; we see that the lagged exit flow 

becomes insignificant and that the lagged entry flow receives a large negative parameter, while 

the parameter for current entry flow (already positive in model M1) becomes much larger . We 

conclude that this variable does a poor job of capturing the effect of internal queuing, which is 

not altogether surprising given the discussion in section 2.1. In particular, the entry flow is not 

measured but is approximated from a weighted average of past exit flows from the upstream 

link; and we have no information on how many vehicles enter and exit the freeway along the 

way. There is also the possibility that the effect of internal queuing is just not very strong in our 

dataset. 

In model M3, we therefore discard the internal queuing variable. The results are 

reassuringly similar to model M1 except that the effect of downstream density is greater. We 

therefore consider this our most reliable model. Model M3 shows increasing entry flow having a 

significant positive effect on travel time. The coefficients imply an elasticity of travel time with 

respect to entry flow of about 0.008*3.3≈ 0.026. For entry flows larger than 40 pce/lane/min the 

coefficient is similarly significant, it is larger as expected, implying an elasticity of travel time 

with respect to entry flow of about 0.254*3.3≈0.83. The coefficient for the downstream density 

implies a long-run elasticity of travel time with respect to downstream density of 3.446*3.3≈11, 

which seems to be a substantial effect. Our results thus confirm that queue spillbacks can be an 

important contribution to congestion, as has long been assumed throughout the engineering 

literature.7 

                                          
6 In addition the estimation procedure effectively estimates a fixed effect model, but without explicitly estimating 
the fixed-effect coefficients, by subtracting from each independent variable its mean value (across time) for a given 
link. 
7 See, for example, the freeway simulation models described by May (1990). 
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There is, however, an empirical weakness in our results that may indicate the 

specification is not fully satisfactory. Despite our having about 67,000 observations, the three 

key coefficients for congestion determination — those on the two variables using entry flow and 

the one using downstream density — are only moderately “significant”, with asymptotic t-

statistics between three and six. Furthermore, we recognize that the specification with two lagged 

values of travel time is only one of many types of dynamics that could be present. If we re-

estimate the same model but allowing for first-order autocorrelation, we find it difficult to 

achieve convergence; but it appears that these key coefficients are not stable and the estimated 

autocorrelation, although small (~-0.1), is statistically significant. Thus, the results that matter 

most to our subsequent calculations of external costs are sensitive to the assumed time-series 

properties of the model. 

 

5. Calculation of marginal external costs 

 

This section presents the methodology and the results of the calculation of marginal external 

cost (mec). We begin by observing that with entry flow E and travel time T, the internal cost 

(ignoring monetary costs) is T and the total cost of all users is TE. Then we may find the mec 

by differentiating total cost with respect to entry flow and subtracting the internal cost. This 

yields 
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=  (4.1) 

 We now turn to our preferred empirical model. Ignoring constants and the error term, 

and solving for the steady-state travel time, we can write it as follows, where a variable 

lacking a time subscript is a steady-state value: 

 { } { }50

1

34021 11
50

log1
40

logloglog
>

+

> +







+








+= nn D

n

E

n
nn DEET γγγ  (4.2) 

where { }1 denotes the indicator function for the event in the curly brackets.  

 We note from (4.2) that the dependence of travel time on flow in (4.1) works through 

two paths: first through flow on the current section (terms involving γ1 and γ2), and second 

through the downstream density (term involving γ3). Thus mec in (4.1) is the sum of two 
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components, mecE and mecD. We calculate both components by differentiating the relevant 

terms of (4.2) with respect to nE . The first term is straightforward: 
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The second term requires the derivative  
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For simplicity we ignore the time lag and the compression or expansion of traffic due to 

changing travel times, and simply assume that conditions are steady over the length of time 

required for the surge in En to become a surge in En+1; hence 1/1 =∂∂ + nn EE . Therefore the 

portion of equation (4.1) coming from the term involving γ3 is: 
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Consistent with the assumption that conditions are changing only slowly, we assume 

1/ 1 =+nn DD . We then can compute the mec for each observation in the sample as simply  
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 We compute both components of (4.6) for every observation in our sample, thus 

depicting for each value of n and t what the mec would be if the flow, travel time, and 

downstream density for that observation were maintained for several periods. An advantage 

of using (4.6) in this way is that the formula uses realisations of T  including error terms. 

This matters for the result as the dependency of T on error terms in (7) is nonlinear and so 

the distribution of error terms is important. The present formula preserves this information in 

a way that is easy to handle. Note that (4.6) is discontinuous as a function of E, for given T; 

but since T is random and its expectation depends on E, the expectation of mec is a 

continuous function of E. 

  Figure 4 presents scatter plots and a smoothed mean of the mec against the entry flow, 

where the entry flow is expressed as an hourly average. Each data point on the scatter 

corresponds to a five minute interval on a section in the network. The scatter in the vertical 
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direction is therefore due to both variation in entry flow within this one-hour average, and (more 

importantly) to the random term in travel time, which appears in equation (4.6) for mec. The 

discontinuity of the derivative of the fitted model is visible as a vertical gap between a cloud of 

low mec’s and a cloud of larger mec’s. The smooth of the mec may be considered to be an 

estimate of the expected mec conditional on the hourly average entry flow.     

 The mec is initially small and rises slowly until an entry flow of about 30 pce/lane/min. 

At this point the mec of a vehicle is about 0.15 min/km, which corresponds to about 25 percent 

of the average travel time. From this point, the mec rises more steeply and at a flow of 40, mec 

has reached 0.3 min/km or about a little more than half the average travel time. At 50 

pce/lane/min, mec has risen to about 0.7 min/km which is more than the (increased) travel time. 

This result confirms the view, expressed in many economic models of congestion, that external 

cost rises slowly at first, then rapidly as the entry flow approaches and then exceeds the capacity 

of a highway. 

 
 Figures 5 and 6 present the two components of the mec. It seems the component 

reflecting downstream congestion, mecD, is extremely variable and its average even dominates at 

flows up to about 40 pce/lane/min, after which the component reflecting current congestion, 

mecE, is generally the larger. 
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 Finally, Figure 7 shows the mec against the time of day. Its average follows the peaks in 

traffic and seems to be highest at about 0.2 min/km at around 3 p.m. Evidently, on this network 

the lower-flow situations are most common even at the peaks, causing the average mec to be well 

below the values shown in the cloud of calculated points at high average flows. Of course, there 

are many individual data points where mec is much higher than this, a reminder that marginal 

external cost can vary a lot due to randomness in conditions.  

 
 We noted in Section 4 that our empirical results are sensitive to the specification of 

autocorrelation in the error terms. Furthermore, while the lagged dependent variables in (7) are 

intended to capture dynamic effects involving internal queues operating in a regime of 

hypercongestion, they could also be proxies for autocorrelation resulting from persistent 

influences not captured by our control variables W and H. In that case, the time-series 

correlations in the data would not be explained by congestion dynamics, and thus would not raise 

the external costs. The effect of these two factors is to greatly reduce the marginal external costs. 

Our best assessment is that lagged travel times have a robust effect and therefore the dynamics 

are real, but that the magnitude of the direct effect of entry flow and downstream density are 

uncertain due to specification uncertainties.  
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6. Conclusions 

 

This paper has contributed to the measurement of the marginal cost of freeway congestion in 

several ways. Simultaneity of speed and traffic flow is likely to be important when there is 

congestion. An indication of this issue is found in Figure 2, which seems to show that average 

travel time may even decrease as flow increases. This would imply a negative marginal external 

cost of adding vehicles to flow which is blatantly nonsensical. 

 Using our structural model, we have argued for the use of observations from other links 

in the same network as instruments for flow in an equation describing travel time as a function of 

flow. Thus we believe we are able to go some way in tackling the simultaneity issue. Our results 

using these instruments indicate a positive and increasing marginal external cost in accordance 

with the a priori expectation. But we acknowledge the sensitivity of these results with respect to 

specification of the time-series properties of the residuals. 

 Another feature of our model is the effect of downstream congestion on the travel time on 

the current link. This effect is found to be empirically significant and important for the marginal 

external cost. 

 The resulting model seems plausible. So do the estimates of the marginal external cost at 

various levels of flow and during the day. From the structural model we derive an expression for 

the marginal external cost that is easy to compute for each observation in the sample. The results 

of this computation indicate large dispersion of the marginal external cost, induced by variation 

in the observed travel times. The positive skewness of the distribution of marginal external cost 

reflects the positive skew of the distribution of travel times.  

 The distribution of travel times and flows is very important. There are strong dynamics 

that are difficult to disentangle. We suspect that our instruments are inadequately accounting for 

the endogeneity of entry flow, causing our model to poorly explain the many data points 

observed in Figure 2 that have very high travel times yet only moderate flows. These 

observations probably result from internal queues which block entry, as suggested by our 

structural model, but we have not found a satisfactory way to measure them and include them in 

an empirical reduced-form specification. 

 What seems clear to us is that a satisfactory empirical model of congestion needs to 

consider both internal dynamics on a given link and feedbacks to and from adjacent links. Only 
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then can one really speak precisely of the marginal cost of adding cars to a network at a given 

place and time. 
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Notation 

 
F = exit flow (pce/min per lane)  
E = entry flow (pce/min per lane) 
T = travel time (minutes/km) 
D = density (pce/lane-km) 
q = size of internal queue on link (pce/lane) 
Q = proxy for size of internal queue on link (pce/lane) 
W = travel time on control section (proxy for weather, etc.) 
H = the share of heavy vehicles in the exit flow  
L = length of link (km) 
∆t = width of time interval, min (=5 in our data) 
t = time period (integer) 
n = section (larger numbers are downstream) 
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Appendix: Approximating entering flow from observed upstream flows 
 

The relevant upstream flows are those during the current and immediately previous time periods, 

in the case of short sections (those that take less than five minutes to traverse); and those during 

once and twice lagged time periods, in the case of longer sections. (No section takes longer than 

two time periods to traverse, so we need not consider three lags.) Thus we construct a flow 

variable equal to a weighted average of those three observed flow, with the weights equal to the 

proportions of vehicles that could be expected to have been observed during the current and 

previous time period, respectively: 
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In order not to introduce endogeneity into the flow variable, we compute these weights using the 

average speed on the entire network, S*, expressed in km/min. Consider the vehicles exiting link 

n during the five-minute time interval t, which we take to begin at time 0 and end at time 5. For a 

link with length L≤5S*, all the vehicles exiting before time L/(5S*) entered the section during 

interval t-1, while the rest entered during interval t; so wt-1=L/(5S*) and wt=1-wt-1. For a longer 

link, all the vehicles exiting before time -5+ L/(5S*) entered during interval t-2, the rest during 

interval t-1; so wt-2=L/(5S*)-1 and wt-1=1-wt-2. We can summarize for both cases as follows: 
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