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Abstract 
We present a study of the effects of macroeconomic shocks on housing prices in the Western 
United States using quarterly state level data from 1988:1 – 2007:4. The study contributes to the 
existing literature by explicitly incorporating locational spillovers through a spatial econometric 
adaptation of vector autoregression (SpVAR). The results suggest these spillovers may Granger 
cause housing price movements in a large number of cases. SpVAR provides additional insights 
through impulse response functions that demonstrate the effects of macroeconomic events in 
different neighboring locations. In addition, we demonstrate that including spatial information 
leads to significantly lower mean square forecast errors. 
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1 Introduction

The state of the current economy and recent events in the housing sector have lead to increased attention

on the role of the housing sector in the economy as a whole. Policy makers, homeowners, and credit agencies

are currently engaged in discussions to address what many are calling a “housing crisis.” There is, therefore,

a growing demand for economic research in this arena. Economists have studied the relationship between the

housing sector and the macroeconomy since the 1970s, and one of the most active veins of literature address

the long run and short run effects of unanticipated macroeconomic shocks in such measures as interest rates,

mortgage rates, and housing supply. Previous studies have examined the housing sector at the national

level (MCGIBANY and NOURZAD, 2004) and at subnational levels such as census region (BAFFOE-

BONNIE, 1998; VARGAS-SILVA, 2007; GALLIN, 2006) and metropolitan statistical areas (MSA) (MILLER

and PENG, 2006). Other studies have offered insights from other nations, such as Greece (APERGIS and

REZITIS, 2003), Turkey (SARI et al., 2007), Canada (HOSSAIN, 2007), and the Netherlands (KAKES and

END, 2004).

The most popular method to examine these relationships is vector autoregression analysis (VAR) (see

SIMS, 1980). VAR is a generalized form of an autoregressive model in which the evolution of each variable

is based on its previous values and previous observations of all other variables in the system. Therefore, the

system is able to address the complete set of possible interactions in the data. This flexible method does

not rely on a prior theoretical structure but, instead, allows the irregularities in the data to tell the story

(LU, 2001). Alternatively, structural forms of VAR may contain additional constraints developed to model

a prior theoretical structure.

The present study builds on the existing literature by modeling the housing sector at the state level

through a spatial adaptation of the VAR. The spatial adaptation is motivated by VAR’s inability to explicitly

consider the potential impacts of economic events in neighboring states. In traditional VAR, an economic

shock that occurs in a given location only affects the economic conditions in that location. All of the impacts

remain within its borders, and there is no mechanism to model locational spillovers. In reality, a shock in

a given location is likely to affect the economic conditions in neighboring locations as well. That is, the

economic conditions in the spatially related regions are likely to exhibit co-movement over time (PAN and

LESAGE, 1995).

We focus our attention on the housing sector in the Western United States for which we model the

relationship between housing prices and the macroeconomy, using state level unemployment and per capita

personal income. Our structural form of the spatial VAR (SpVAR) is shown to provide more accurate short-
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term forecasts when compared to aspatial alternatives. In addition, we are able to provide insights on the

locational relationships not found in traditional VAR techniques. These include spatial complements to VAR

impulse response functions and Granger causality.

A more thorough introduction to the traditional VAR model is presented in Section 2, followed by

the spatial VAR model (SpVAR) in Section 3. In addition, we describe our data in Section 4 and model

construction in Section 5. We then present a number of key insights obtained from the model in Section 6.

Section 7 closes with a discussion of our findings and suggestions for future research.

2 Vector Autoregression

VAR is a set of symmetric equations in which each variable is described by a set of its own lags and the

lags of all other variables in the system. A VAR with two random variables and p temporal lags can be

expressed in the following form:

yt = c1 + a11yt−1 + · · · + a1pyt−p + b11zt−1 + · · · + b1pzt−p + ε1t (1a)

zt = c2 + a21yt−1 + · · · + a2pyt−p + b21zt−1 + · · · + b2pzt−p + ε2t (1b)

where yt and zt are series random variables observed over time t = 1, ..., T . Each i equation contains a

constant term ci, a set of unknown parameters aij for lag length j = 1, .., p, and an error term εit. In a VAR,

the sequence of error terms are also called “innovations” because they contain information that determines

yt or zt but is not contained in previous observations (yt−j and zt−j). These innovations are assumed to

follow a number of standard conditions:

1. All error terms have an expected value of zero, E(εt) = 0.

2. All error terms are expected to have a constant variance, E(εtε
′
t) = Ω.

3. For any nonzero k, there is no serial correlation in the error terms, E(εtε
′
t−k) = 0.

In addition, the error terms are assumed to be contemporaneously correlated due to common omitted

variables which affect each equation in a similar fashion. As a result the system of equations is estimated

using seemingly unrelated regressions (SUR). However, when the equations contain the same right hand

side variables, as in the case presented in Equations (1a – 1b), there is no advantage over estimating each

equation separately using ordinary least squares (OLS) (see GREENE, 1998, p. 343).
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VAR analysis can be used to examine whether a variable is determined in part by the other variables in

the system (GRANGER, 1969). A variable yt is said to Granger cause zt if the information contained in

previous values of yt are useful for forecasting zt. If all variables in the VAR are free of a unit root, then

Granger causality can be directly tested by a standard F -test of the restriction:

a21 = a22 = · · · = a2p = 0 (2)

from Equation (1b). However, it should be noted that Granger causality is not causality per se, but Granger

causality measures whether or not previous values of yt help forecast future values of zt.

In addition to the coefficient estimates, VAR analysis is able to gather additional insights from the

information contained in the residual estimates. One of the most popular ways to interpret VAR results is

the estimation of impulse response functions (IRF) (see ENDERS, 2004). An IRF is calculated by introducing

a shock to a right hand side variable in the initial period, followed by an equal but opposite shock in the

second period. Then, the difference between the initial residual estimates and the residual estimates from

the series with the shocks can be plotted over time. This series then represents the cyclical behavior of the

dependent variable following an exogenous shock. If the system of equations is stable, the effects should

converge to zero as the system returns to the initial equilibrium. However, a shock to an unstable system

could produce explosive or lasting effects.

3 Spatial VAR (SpVAR)

Advances in spatial econometric techniques have lead to an increase in the desire to incorporate loca-

tional information in a number of traditional econometric methods. VAR analysis has witnessed a limited

number of studies that attempt to “spatialize” the technique. For example, PAN and LESAGE (1995)

use spatial contiguity as an alternative prior in a Bayesian VAR model. Their analysis demonstrates that

incorporating a spatial contiguity structure dramatically lowers forecast error. DI GIACINTO (2003) uses

spatial relationships to derive parameter constraints in a structural VAR model. Structural VAR models are

similar to the model presented in Equations (1a – 1b), but a number of coefficients are restricted (typically

to zero) to follow prior theoretical beliefs. BEENSTOCK and FELSENSTEIN (2007) present a more thor-

ough development of a flexible SpVAR model that builds on the spatial autoregressive model with a spatial

error process. These techniques, however, have received limited attention in applied studies such as the one

currently presented.
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The model employed in our study most closely resembles a structural form of BEENSTOCK and

FELSENSTEIN’s SpVAR model. The model follows (1a)–(1b) but adds a set of s spatial crossregressive

lags. Thus, the structural SpVAR(p,s) with N regions takes the following form:

yt1 =c11 + a111yt−1 + · · · + a1p1yt−p + b111zt−1 + · · · + b1p1zt−p+

γ111Wyt−1 + · · · + γ1s1Wyt−s + δ111Wzt−1 + · · · + δ1s1Wzt−s + ε1t1

(3)

zt1 =c21 + a211yt−1 + · · · + a2p1yt−p + b211zt−1 + · · · + b2p1zt−p+

γ211Wyt−1 + · · · + γ2s1Wyt−s + δ211Wzt−1 + · · · + δ2s1Wzt−s + ε2t1

(4)

ytN =c1N + a11Nyt−1 + · · · + a1pNyt−p + b11Nzt−1 + · · · + b1pNzt−p+

γ11NWyt−1 + · · · + γ1sNWyt−s + δ11NWzt−1 + · · · + δ1sNWzt−s + ε3tN

(5)

ztN =c2N + a21Nyt−1 + · · · + a2pNyt−p + b21Nzt−1 + · · · + b2pNzt−p+

γ21NWyt−1 + · · · + γ2sNWyt−s + δ21NWzt−1 + · · · + δ2sNWzt−s + ε4tN

(6)

The spatial crossregressive lags are obtained by premultiplying each temporal lag term by W , a spatial

weight matrix. The spatial weight matrix essentially defines which locations are considered neighbors. In

our analysis we adopt a binary first-order “queen” contiguity matrix. Matching a queen’s movement on a

chess board, two elements are considered neighbors if they share a common border, regardless of direction. It

contains a row vector for each location, and the elements of this matrix take a value of 1 when two locations

share a common border. All other elements, including the diagonal, are zero. Each row of the weight matrix

is then standardized so that all elements sum to 1. Therefore the crossregressive lags represent the averages

values at the neighbors in a previous period. The matrix only considers first order (immediate) neighbors

but not higher order spatial relationships, such as neighbors of neighbors. Thus, shocks are not transmitted

globally. However, it is important to note that previous studies have shown that the selection of the spatial

weights matrix impacts coefficient estimates (BELL and BOCKSTAEL, 2000). These spatial crossregressive

lags require the estimation of additional unknown parameters γijn and δijn.

Again, the error terms ε are expected to follow the properties listed, and the system of equations is

estimated using SUR due to contemporaneous correlation. In the SpVAR model, each value of the spatially

lagged variables is unique for each region n. Because the spatial weights matrix only considers neighboring

observations and each observation has a unique set of neighbors, the crossregressive terms are not the same
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across all equations. As a result, the OLS estimates are no longer computationally equal to SUR results.

We therefore estimate (3 – 6) by SUR. We also assume that the errors are not spatially autocorrelated.

Granger causality in an SpVAR context can again be examined with series of tests similar to Equation (2).

This leads to additional Granger causality tests that are unique to SpVAR. It is possible to test locational

spillovers as a determinant of each variable:

γ21n = · · · = γ2sn = 0 (7)

Alternatively, the locational and temporal values may jointly Granger cause ztn:

a21n = · · · = a2pn = γ21n = · · · = γ2sn = 0 (8)

The SpVAR lends itself to IRF analysis as well, but yet again, the spatial crossregressive lags lead to

additional interpretations. In the traditional VAR construct, the effects of a given shock are assumed to only

appear in the location in which it occurred. When the system follows the SpVAR construct, the shock is

transmitted to neighboring regions via the spatial crossregressive terms. Thus the shock in one explanatory

variable is transmitted to the neighboring locations in the following period, weighted by W .

4 Data

We model state level housing price as measured by the Conventional Mortgage Home Price Index

(CMHPI) which is reported quarterly by Fannie Mae and Freddie Mac. The indices are constructed using

repeated-sales data of over 4.5 million transactions nationwide. CMPHI is widely used in previous studies,

and a more detailed description of the construction of the CMHPI index can be found in STEPHENS et al.

(1995). The analysis examines the period beginning in the first quarter of 1988 and ending in the fourth

quarter of 2007. The series were collected for each of the 11 states in the West Region defined by the United

States Census Bureau: Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah,

Washington and Wyoming. Figure 1 shows the quarterly house price series for California, Arizona, Oregon,

and Nevada.

FIGURE 1 ABOUT HERE
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The CMPHI time series for California, Arizona, Oregon, and Nevada are shown in Figure 2. It appears

that housing prices in each state follow a similar path with a gradual increase from 1988 – 2003 followed by

a rapid increase. However, in the later quarters of 2005, housing prices began to fall in a number of states,

most notably California. This rapid increase and decrease is commonly cited as evidence of a housing price

bubble or attributed to the current housing “crisis.”

FIGURE 2 ABOUT HERE

The other variables included in the analysis are state level unemployment obtained from the U.S. De-

partment of Labor’s Bureau of Labor Statistics, and per capita personal income obtained from the U.S.

Department of Commerce’s Bureau of Economic Analysis. Personal income and unemployment have both

been used in previous studies as measures of the health of the economy, yet it is important to note that

only a small number of time series data are published at the state level and, of these series, even fewer are

reported at intervals less than one year.

It is also important to note that selecting a region for analysis can lead to undesirable edge effects. The

selection imposes the assumption that spillovers only exist within the region, and events outside of the region

do not affect the conditions within the region. For example, an economic event in Texas which borders the

region will not affect the economic conditions within the region nor will events in Western states effect

Texas’ economic condition. However, we believe the selected scale is appropriate for state level analysis of

housing price movements. There is limited economic spillover between the West and neighboring regions,

the South and Midwest. However, migration patterns and economic stock flows are high within the region

(CROMWELL, 1992).

4.1 Stationarity Tests

Stationarity in each series leads to straightforward interpretation of the results, especially in the case of

IRFs. As a result, SIMS (1980) and SIMS et al. (1990) argue against first-differencing to obtain stationarity.

We test for the presence of a unit root for all three variables in each of the 11 states and found stationarity

in all series. As a result our SpVAR model examines each series in levels. The tests were conducted using
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three forms of the Augmented Dickey-Fuller (ADF) Test (DICKEY and FULLER, 1979):

No intercept and no trend: �yt = γyt−1 + εt (9a)

Intercept and no trend: �yt = a0 + γyt−1 + εt (9b)

Intercept and trend: �yt = a0 + γyt−1 + a2t + εt (9c)

where �yt is the first-difference of the variable of interest yt, a0 a deterministic drift and t a deterministic

trend. The augmented ADF test determines whether to accept or reject the null hypothesis of γ = 0. The

results of the augmented ADF tests for all three variables in each of the 11 states are presented in Table 1.

For all series, we reject the presence of a unit root in levels and therefore conclude all series are stationary.

TABLE 1 ABOUT HERE

Further, we used the simple panel unit root test suggested by IM et al. (2003) for all series to examine the

potential for non-stationarity across series. The results are reported in Table 2. The Z statistic is computed

using the average value of the individual series for the tests reported in Equations (9a) – (9c):

t̄ =
1
n

n∑

i=1

ti (10)

Zt̄ =
√

n[t̄ − E(t̄)]√
var(t̄)

(11)

IM et al. (2003) provide Monte Carlo critical values for tests that include no intercept or trend, an

intercept without a trend, and both an intercept and trend. Again, we determined the panel is stationary

for all three variables in each of the 11 states.

TABLE 2 ABOUT HERE

4.2 Spatial Autocorrelation Tests

In addition to testing for stationarity across the series, we investigate whether each series follows a

systematic pattern in its spatial distribution. That is, we test for the presence of spatial autocorrelation in

each series to motivate the use of the spatial crossregressive lags. The test is conducted using the Moran’s I

statistic (MORAN, 1950):
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I =
N∑

i

∑

j

Wi,j

∑

i

∑

j

Wi,j(Xi − X̄)(Xj − X̄)

∑

i

(Xi − X̄)2
(12)

where X is a random variable, X̄ the mean value of X, N the number of observations, and W the spatial

weights matrix. Generally speaking, Moran’s I values range between −1 and 1.

The diagonal elements of Table 3 include the results of the Moran’s I test for each variable in the first

and last quarter observed. The test statistics were computed using a normalized first-order queen contiguity

weights matrix, and statistical significance was determined through bootstrapping. The results suggest the

presence of spatial autocorrelation in both housing prices and unemployment. However, personal income

does not appear to be spatially autocorrelated in either period.

TABLE 3 ABOUT HERE

The off-diagonal elements of Table 3 include values of the bivariate Moran’s I which measures the level of

spatial correlation across two variables in the same region. The test statistic is computed using the following

equation:

Ii =

N(Xi − X̄)
∑

j

Wij(Yj − Ȳ )

∑

i

(Xi − X̄)2
(13)

The bivariate estimates provide evidence of spatial correlation across housing price and unemployment,

as well as, unemployment and personal income. We therefore elect to include the spatial crossregressive lags

in the estimation which is shown in the Section 5.

5 Estimation

The SpVAR(p,s) shown in Equations (3) – (6) consists of N equations, each with a constant term,

p temporal lags, and s spatial lags for each variable. A system of k variables and N locations, would

lead to the estimation of (1 + pk + sk)N unknown parameters. To simplify estimation, we divide the

system into three separate blocs, one for housing, one for income, and one for unemployment. Therefore,

each variable is estimated in its own separate system. This simplification imposes an assumption that

information regarding personal income and unemployment are only able to influence housing prices in the

next period. For example, current observations of personal income and unemployment do not influence
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current housing prices (absolutely or through the error term), but predetermined observations of personal

income and unemployment do affect current observations of housing prices.

The model includes 11 locations observed in total of 80 time periods. In order to preserve the necessary

degrees of freedom, we incorporate a single temporal lag and a single spatial crossregressive lag of each

variable – SpVAR(1,1). Thus, the housing price bloc contains a total of 11 equations that each take the

following form:

ht,n = cn + a1,nht−1,n + γ1,nWht−1,n + a2,nit−1,n + γ2,nWit−1,n + a3,nut−1,n + γ3,nWut−1,n + εt,n (14)

where ht,n is CMHPI at time t at location n, it,n per capita personal income, and ut,n state level unemploy-

ment where T = 80 and N = 11. This yields a total of 77 coefficient estimates.

6 Results

To conserve space, we limit our discussion to the results of the housing price bloc. There is evidence

that the inclusion of the spatial crossregressive lags leads to more desirable short-term forecasts. The model

was estimated twice, once with the spatial crossregressive lags and again without. The SpVAR specification

produced a statistically significant lower mean square forecast error, presented in Table 4.

TABLE 4 ABOUT HERE

6.1 Granger Causality

We find additional evidence that the spatial crossregressive terms add valuable information on the deter-

mination of housing prices. In several instances, we find that the locational variables Granger cause housing

prices. The individual test results for each spatial crossregressive variable are reported in Table 5. The

table indicates a statistically significant relationship at the 0.05-level, with a “1,” and insignificant results

are reported as “0.” Housing prices in neighboring states provide useful forecasting information for in-state

housing price forecasts in 64% of the Western states. However, the causality falls to 45% with respect to

per capita personal income and 27% for unemployment. There is only a single state, California, in which all

three locational variables Granger cause housing prices. This provides evidence that California acts as the

region’s economic leader, as suggested by CROMWELL (1992).

TABLE 5 ABOUT HERE
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In addition, we examine the potential for Granger causality in a spatiotemporal sense for each variable

by a joint significance test on the coefficients for both the temporal lag and spatial crossregressive lags. For

example, to determine whether per capita personal income Granger causes housing prices in spatiotemporal

sense, we test a2,n = γ2,n = 0 in Equation (14) for each state. The results are reported in Table 6.

TABLE 6 ABOUT HERE

The spatiotemporal Granger causality tests indicate that previous housing prices in space and time impact

current housing prices in all of the 11 states examined. Again, the causality falls to 73% in the case of income

and 36% for unemployment. There were only two instances for which all three spatiotemporal tests were

significantly different from zero, California and Utah.

6.2 Impulse Response Functions

The Granger causality tests indicate that California is highly impacted by its neighbors, and as a result,

we focus our discussion on the cyclical behavior of housing prices in California as modeled by three sets of

IRFs. First, we discuss the response to a shock in per capita personal income in California and a separate

shock in unemployment in California. Second, we present the IRFs that result from a shock in California’s

unemployment in its neighboring states of Arizona, Nevada, and Oregon. Finally, we show California’s

response to a shock in unemployment in each of the three neighboring states. The first set of IRFs are found

in traditional VAR studies while the remaining sets are unique to SpVAR analysis.

The first set of IRFs are shown in Figure 3. Both lines represent the cyclical behavior in California

housing prices, yet the solid line indicates a shock in per capita personal income while the dashed line shows

the effects of a shock in state level unemployment. The response is plotted over the eight quarters following a

one standard deviation shock in each variable. It appears that housing prices follow a more dynamic response

after a shock in personal income. The cycle shows its most dramatic behavior in the first two periods, and

the effect seems to dissipate near the fifth quarter. Unemployment appears to have more of a lagged effect

that is also less pronounced. Again, the effect of the shock appears to die out in the fifth quarter. Further,

in both series, the system appears to approach the initial equilibrium conditions at the end of the two years

presented in Figure 3.

FIGURE 3 ABOUT HERE

In a similar fashion, Figure 4 maps the dynamic response in housing prices in Arizona, Nevada, and

Oregon to a one standard deviation shock in California’s unemployment. All three series follow the same
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general pattern, but the impact appears to be greater in Arizona (solid line) and Nevada (dashed line).

Again, the system appears to stabilize after five periods, but housing prices in Arizona and Nevada may

reach a lower equilibrium point than the initial condition.

FIGURE 4 ABOUT HERE

Conversely, SpVAR is able to show how housing prices in California may react differently when a shock

occurs in each of its neighboring states. Figure 5 demonstrates the impact of a shock in unemployment

in Arizona, Nevada, and Oregon on California’s housing price. Again, the IRFs show a similar pattern

which stabilizes after five quarters. However, in this example, Oregon appears to have a stronger effect on

California than the two other neighboring states. The housing price also appears to settle below the initial

equilibrium in each case.

FIGURE 5 ABOUT HERE

Overall, the IRF results suggest states are linked economically and geographically, and each state responds

to it neighbor’s economic conditions and events. Further, the state level responses follow a similar pattern

in most cases, yet the estimates vary by magnitude. It is interesting to see that economic shocks appear to

die out after 5 quarters. The cyclical patterns may provide useful information on the recent developments

in the Western US economic, such as high levels of unemployment and suppressed housing prices.

7 Conclusion

In our analysis, we were able to demonstrate the cyclical behavior in housing prices in the wake of a

macroeconomic shock in the Western United States using quarterly state level data. Our study contributes

to the existing literature by introducing a framework which explicitly ties in neighboring locations so that

economic events in one state are able to affect the economic conditions of its neighbors.

We motivate the study by exploring the degree of spatial autocorrelation in each series. The inclusion of

spatial crossregressive lags appears to be warranted as our estimates produce lower mean square forecast error

than the aspatial alternative. In addition, Granger causality tests show that these variables provide important

forecasting information. The additional information garnered from the spatial vector autoregression analysis

is highlighted by a discussion of California’s housing prices. The state’s recent housing price boom-and-bust

has recently received a lot of attention. As a result, our results shed light on an area of growing interest to

homeowners, industry professionals, and policy makers alike.
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The study also suggests several avenues for future research. For example, we indicate the need for

additional and more frequent macroeconomic measures reported at a state level. Access to longer and richer

time series would provide the degrees of freedom required to expand the number of states considered by

the model. In addition, it would allow researchers to study longer temporal lags, as well as higher order

neighborhood relationships. Also the proposed structural SpVAR model may also be estimated assuming

errors are both spatially and contemporaneously correlated.
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Table 2: Panel Stationarity Test Results

Test Housing price Personal income Unemployment
No intercept -2.36 10.36 -31.46
Intercpet 10.61 24.73 -21.70
Trend -2.36 10.36 -31.46

Critical values for α = 0.05: -3.90, -3.26, -2.94. Obtained from IM et al. (2003).

Table 3: Moran’s I Test

Housing price Personal income Unemployment
1988
Housing Price -0.18**
Personal income 0.10 -0.04
Unemployment 0.23* -0.22 0.21**
2007
Housing Price 0.36**
Personal income 0.15 -0.04
Unemployment 0.3** 0.34** 0.388**

Significance level: * 0.10, ** 0.05, *** 0.01

Table 4: Mean Square Forecast Error Results

VAR SpVAR
Mean 83.37 60.30
t-Statistic -2.11 **

Significance level: * 0.10, ** 0.05, *** 0.01
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Table 5: Granger Causality for Spatial Variables

State Housing price Personal income Unemployment
Arizona 1 1 0
California 1 1 1
Colorado 1 1 0
Idaho 1 0 1
Montana 1 0 0
New Mexico 0 0 0
Nevada 1 1 0
Oregon 0 0 0
Utah 0 0 1
Washington 0 0 0
Wyoming 1 1 0

1 = Granger cause, 0 = Does not Granger cause

Table 6: Granger Causality for Spatial and Temporal Variables

State Housing price Personal income Unemployment
Arizona 1 1 0
California 1 1 1
Colorado 1 1 0
Idaho 1 0 0
Montana 1 1 0
New Mexico 1 0 1
Nevada 1 1 0
Oregon 1 1 0
Utah 1 1 1
Washington 1 0 1
Wyoming 1 1 0

1 = Granger cause, 0 = Does not Granger cause
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Figure 1: West Region
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Figure 2: Housing Price Series
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Figure 3: Housing price response in California to a one standard deviation shock to personal income and to
unemployment in California
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Figure 4: Housing price response in Arizona, Nevada, and Oregon to a one standard deviation shock to
unemployment in California
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Figure 5: Housing price response in California to a one standard deviation shock to unemployment in Arizona,
Nevada, and Oregon
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