
Research Cycles

Yann Bramoullé Gilles Saint-Paul1

October 2007

Abstract : This paper studies the dynamics of fundamental research. We
develop a simple model where researchers allocate their effort between im-
proving existing fields and inventing new ones. A key assumption is that
scientists derive utility from recognition from other scientists. We show that
the economy can be either in a regime where new fields are constantly in-
vented, and then converges to a steady state, or in a cyclical regime where
periods of innovation alternate with periods of exploitation. We characterize
the cyclical dynamics of the economy, show that indeterminacy may appear,
and establish some comparative statics and welfare implications.

JEL Codes: O39, C61.

Keywords: Research dynamics, innovation cycles, indeterminacy.

1Bramoullé: Department of Economics, GREEN and CIRPÉE, Université Laval,
Québec. Saint-Paul: IDEI, GREMAQ, LEERNA, Université des Sciences Sociales,
Toulouse; CEPR and IZA. We are grateful to Philippe Aghion, Rebecca Henderson, Josh
Lerner, and seminar participants at the American Economic Association meeting, Boston,
January 2006, London Business School, HEC Paris, Southampton, and Pompeu Fabra for
helpful comments and suggestions.

1



“my love of natural science (...) has been much aided by the am-
bition to be esteemed by my fellow naturalists.” Darwin (1958).

1 Introduction

This paper studies the dynamics of fundamental research. We observe that

periods of intense innovations are followed by periods of exploitation of ex-

isting fields. We want to understand these dynamics and be able to study

whether they are efficient from the point of view of social welfare.

A key aspect we are interested in is the credential one. Scientists derive

utility from recognition from other scientists, which often takes the form of

citations. In our model, the value derived by a scientist from a paper he has

written is the sum of an “intrinsic” value of the paper, which depends on

the field in which it is written and its order of appearance in that field, and

a “citation premium” which depends on the number of subsequent papers

written in that field.

We show that our model yields a rich set of results, both with respect to

the cyclical dynamics of the allocation of the research effort and in terms of

the comparative statics around the steady state, when it exists.

More specifically, we show that the economy can be either in a regime

where new fields are constantly invented, and then converges to a steady

state, or in a cyclical regime where periods of innovation alternate with peri-

ods where one only exploits existing fields. Furthermore, these cycles are very

irregular and the duration of a cycle is “unpredictable” from the duration of

the previous cycle — i.e. related to it by a very nonlinear function.

Furthermore, we are able to precisely understand when cycles emerge and

show that a (i) higher citation premium makes cycles less likely, (ii) a mean-

preserving spread in the distribution of the value of new fields makes cycles
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more likely if the citation premium is not too large and (iii) a larger citation

premium alleviates (and potentially reverses) that effect.

We introduce the distinction between extensive and intensive research to

the study of scientific progress. Studies of technological changes have long

stressed the difference between improvements of known processes and inno-

vations leading to new products (e.g. Rosenberg (1972)). Similarly, it seems

that some scientific contributions are pioneering and open up new avenues

for future research, while others mainly refine or extend previous work. This

distinction lies at the core of Kuhn (1970)’s influential theory of scientific

evolution. In his view, science alternates between periods of normal sci-

ence and scientific revolutions. Under normal science, progress is gradual

and builds up on past achievements. In contrast, scientific revolutions cor-

respond to paradigm shifts during which scientists qualitatively change their

focus and assumptions. Without necessarily adhering to Kuhn’s view, other

observers have noted the importance of fads and fashions in science. Bron-

fenbrenner (1966) gives an early account of fads in economics. Stephan and

Levin (1991) discuss how scientific fashions might affect a scientist’s career.

Sunstein (2001) relates academic fads to informational cascades.

This literature remains relatively undeveloped.2 We develop the first

formal model of the evolution of science that gives rise to innovation cycles

and scientific fashions. We also explicitly account for the unique reward

structure of science, by assuming that scientists care for recognition by their

peers through citations of their work.3

In the literature on growth,4 several papers look at innovation cycles.

2Exceptions include Levin and Stephan (1991), Brock and Durlauf (1999), Goyal et al.
(2006), see also Stephan (1996) and the references therein.

3Scientists could also care for citations because of the financial gains they generate, see
e.g. Diamond (1986).

4Our paper is also related to the literature on directed innovation in growth models,
which studies the incentive to innovate in one sector vs. another (See Acemoglu, 1998).
The determinants of innovation in existing vs. new fields which we discuss here, however,
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Jovanovic and Rob (1990) and Jovanovic and Nyarko (1996) build learning

models. In Jovanovic and Rob (1990), an agent can explore a known or an

unknown dimension of the technological space. Innovation cycles emerge for

an intermediate range of the parameters. In Jovanovic and Nyarko (1996),

the agent chooses between a known and a better, but unknown, technology.

Permanent upgrading and growth can coexist with technological lock-in and

stagnation. Matsuyama (1999) shows how innovation cycles can emerge in

an endogenous growth model. Phases where investment is concentrated on

old technologies alternate with phases with innovation. Innovation cycles

emerge because of the temporary monopoly power enjoyed by innovators.

In contrast, the mechanism that drives our cycles is due to a multiplier

effect, namely the fact that one unit of effort devoted to creating a new field

today induces more than one unit of effort to exploit this field tomorrow.

A main novelty of our specification, relative to these papers, is the cita-

tion premium.5 Through citations, payoffs from a scientist’s current choice

depend on the future evolution of science. This introduces a dynamic linkage

between current and future actions. This linkage dramatically complicates

the proof of existence of an equilibrium. Especially, it prevents the use of

standard fixed point techniques. We develop appropriate reformulations of

our equilibrium conditions to overcome this difficulty. Our methodology is

original, and may have applicability in other dynamic settings where classical

results do not hold.

Note that our results could also potentially be applied to the analysis

of commercial R & D, with our citation premium being reinterpreted as

are substantially different from the ones studied in that literature. The two approaches
could be brought together, however, by assuming that exploiting existing fields uses dif-
ferent factors of production than invention.

5Another difference is that the agent can make one search per period in Jovanovic
and Rob (1990) and Jovanovic and Nyarko (1996), while in our model research effort is
continuous and allocated among different alternatives in every period.
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the income derived by an innovator from the royalties paid by subsequent

innovators building on his or her invention. The level of the citation premium

can then be interpreted as the level of intellectual property.6

The rest of the paper is organized as follows. We introduce the model in

section 2. We present our main result in section 3 and interpret it in section

4. We derive comparative statics in section 5 and comparative dynamics

in section 6. In section 7, we analyze the local transitional dynamics to

the steady state in regime II, when it is stable. A key result is that for

large enough citation premia, sunspots may arise; that captures the idea of

fads and fashions in academic research. Section 8 introduces some welfare

analysis, by assuming that the only market failure is that researchers do

not internalize the fact that their papers will benefit future generations. We

then show that absent a citation premium the value of a new field in the

equilibrium steady state is lower than at the optimum steady state, and that

an optimal “pigovian” citation premium can be introduced so as to induce the

socially optimal level of fundamental. We provide a formula for computing

this citation premium. Section 9 contains concluding comments.

2 The model

We consider an infinite horizon model with discrete time. At each date t

there is a continuum of existing fields of research, which we index by i. Each

field is characterized by a stock of contributions (or ‘papers’) nt(i) at the

end of period t. We also think of this stock as a continuum. nt(i) is the

advancement level of field i at date t. Creating a new field puts it at a fixed,

initial advancement level n̄.

Papers are produced by researchers. Researchers live for two periods,

6Or, more generally, as the degree of appropriability of the returns to innovation
through their embodiment in physical goods, as in Boldrin and Levine (2005).

5



hence we have an overlapping generation structure. In the first period of their

life, researchers produce contributions. In the second period of their life, they

enjoy the returns from their scientific “reputation”, which defines their utility

function. A researcher’s scientific reputation is the sum of the contribution

of each individual paper he or she has written. An (infinitesimal) individual

paper written at date t in existing field i yields the following contribution to

its author’s reputation:

vt(i) = ω(i)− β(lnnt(i)− ln n̄) + θ(lnnt+1(i)− lnnt(i)).

This reputation is the sum of two terms. The first term, ω(i)−β(ln nt(i)−
ln n̄), defines the intrinsic value of the paper. ω(i) is a field-specific constant

which represents the field’s value (or initial research potential) as a whole.

The term β(ln nt(i)− ln n̄), where β and n̄ are positive parameters, captures
the fact that there are decreasing returns to research: the larger the stock of

knowledge in field i, the smaller the intrinsic value of additional contributions.

The second term, θ(lnnt+1(i)− lnnt(i)), is the citation premium. It tells us
that the reputation obtained from papers written at t is greater, the greater

the flow of further advances in the relevant field at t + 1. Underlying this

formulation is the idea that papers come in a given order, and that new

papers cite previous papers, thus enhancing their author’s reputation. Note

that contemporaneous papers do not cite each other, so that what matters

for citations is the log difference between the stock of papers written at the

end of t+ 1 and that at the end of t.

The total mass of researchers per generation is normalized to 1. Each

researcher is endowed with υ units of time. He allocates his time optimally

between writing papers in different fields. In addition to that, one may create

new fields.7

7Note that this distinction between fundamental and secondary innovation is different
from the one used by Aghion and Howitt (1996, 2000 ch. 6), who assume that secondary
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When one writes the first paper in a new field, its potential ω(i) is drawn

from some distribution, with pdf f(.), such that all moments exist. The

realization of ω(i) is unknown when one decides to write the paper. At the

end of the period when the new field is created, its advancement level is set

at the initial value n̄. Therefore, one must wait one period before making

further contributions to a new field.

We assume that one unit of time produces either 1 paper in an existing

field or γ papers in a new field.

We make two technical assumptions that we need to be able to solve the

model:

Assumption A1 — If at date t, there is a strictly positive measure of new

fields invented, then all fields invented before date t can no longer be re-

searched from date t+ 1 on.

This assumption is a useful simplification that avoids having to keep track

of all the fields ever invented at any date t.8 Only the fields invented in the

last wave of innovation can be exploited at a given date.9

Assumption A2 — γ < 1.

This assumption states that inventing a new field requires more labor than

writing a paper in an existingf field. It is a plausible, but merely technical

innovation results from learning by doing only.

8This assumption is consistent with Kuhn’s theory: “When it repudiates a paradigm,
a scientific community simultaneously renounces most of the books and articles in which
that paradigm had been embodied”, Kuhn (1970). See also theorem 2 in Jovanonvic and
Rob (1990) and the “no-recall” assumption of Jovanovic and Nyarko (1996).

9It is not necessary to make this assumption in the special case where θ = 0. In such
a case the value of inventing a new field is VN = γω̄ = γE(ω), which is also the lower
bound of the value of working on an existing field, since one could always produce new
fields instead. Consequently, when new fields are invented, all previous fields reach their
maximum advancement level, such that the value of the marginal paper is equal to VN ;
they will not be exploited thereafter.
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assumption, required to prove the existence of an equilibrium for θ > 0.10

3 Equilibrium

In this section, we show the existence of an equilibrium, and the conditions

under which it is cyclical as opposed to converging to a steady state. We

provide a result for uniqueness in the case where θ = 0. We first discuss the

equilibrium conditions of the model in the two regimes of interest. We then

state the paper’s main result, whose proof is relegated to the Appendix. In

the next section, we discuss its economic interpretation using a graphical il-

lustration, confining ourselves to the θ = 0 case. We then work out numerical

examples. Finally, we give a sketch of the proof when the citation premium

is positive.

3.1 Equilibrium conditions

At any point in time, the economy may be in one of two regimes:

In Regime I, all the research input is allocated to improving existing fields.

There exists a shadow value of time λt; a field is exploited if and only if the

first paper written in the current period has a value greater than λt, that

is:11

ω − β(lnnt−1 − ln n̄) + θ(lnnt+1 − lnnt−1) > λt. (1)

The number of papers written in such a field, at t, must satisfy

ω − β(lnnt − ln n̄) + θ(lnnt+1 − lnnt) = λt. (2)

The equilibrium value of λt must adjust so that the total mass of papers

being written is equal to υ. Call s the last period where invention took place,

and µs the mass of new fields invented at s.

10It is again not needed for θ = 0.
11We drop the index i as two fields with the same ω will behave identically.
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Using (1) and (2), the full employment condition can be written as

µs

Z
ω>(β+θ) lnnt−1(ω)−β ln n̄−θ lnnt+1(ω)+λt

(nt(ω)− nt−1(ω))f(ω)dω = υ. (3)

Finally, the value of writing a paper in a new field, denoted by Vt, must

be lower than that of working on an existing field:

Vt < λt.

In Regime II, people exploit existing fields, and work on new fields as

well. They must be indifferent between the two activities, so that one must

have λt = Vt. Conditions (1) and (2) remain valid with λt replaced with Vt.

Because of Assumption (A1), the existing fields will disappear at t+1 and

be replaced by the mass µt of new fields, which will start with advancement

level n̄ at t + 1.Therefore, nt+1(ω) = nt(ω), since existing fields at t are no

longer exploited at t + 1. Substituting into (2), the final advancement level

is:

nt(ω) = n̄e
ω−Vt
β , (4)

while (1) can be rewritten in this regime as

ω > Vt + β(lnnt−1(ω)− ln n̄).

Note that this condition collapses to

ω > Vt (5)

if the economy was also in regime II at date t− 1, since the field must then
have been invented at that date.

In regime II, the resource constraint states that total time devoted to

existing fields cannot exceed υ :
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µs

Z
ω>β(lnnt−1(ω)−ln n̄)+Vt

(nt(ω)− nt−1(ω))f(ω)dω ≤ υ.

The remaining time endowment must be devoted to new fields; this de-

termines the mass of new fields invented at t :

µt = γ

∙
υ − µs

Z
ω>β(lnnt−1(ω)−ln n̄)+Vt

(nt(ω)− nt−1(ω))f(ω)dω

¸
. (6)

Finally, in both regimes, the value of working in a new field Vt is deter-

mined as follows. Consider a researcher writing a paper in a new field with

value ω. Then, nt(ω) = n̄. If (1) holds at t+ 1, which is equivalent to

ω > θ ln n̄− θ lnnt+2(ω) + λt+1,

then the field will be active, and the inventor will benefit from citations. The

value to the inventor is then given by

vt(ω) = ω + θ(lnnt+1(ω)− n̄)

where nt+1(ω) = n̄
β

β+θnt+2(ω)
θ

β+θ e
ω−λt+1
β+θ .

Otherwise, the field will not be active at t+1, and the inventor just gets

the intrinsic value of the first paper:

vt(ω) = ω.

Thus, the value of working on a new field at t is given by:

Vt = γEvt(ω)

= γ

∙
ω̄ +

θ

β + θ

Z
ω>λt+1−θ(lnnt+2(ω)−ln n̄)

(ω − λt+1 + θ(lnnt+2(ω)− ln n̄)) f(ω)dω
¸
.
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3.2 Existence, uniqueness, and cycles

We now state the central results of the paper. To do so, we need to introduce

the following two functions:

Φ(y) = γ

∙
ω̄ +

θ

β

Z +∞

y

(ω − y) f(ω)dω

¸
, (7)

and

I∗(y) = n̄

Z +∞

y

(e
ω−y
β − 1)f(ω)dω.

The Φ function captures how the value of invention evolves during regime

II, as a function of the value of invention next period, denoted by y. It

consists of two terms: the average intrinsic value of the first paper in the

field, ω̄, and the contribution to the inventor’s welfare of future citations,
θ
β

R +∞
y

(ω − y) f(ω)dω. That contribution falls with y, since a greater value

of invention tomorrow reduces the number of papers written in my field and

thus my citations.

As for I∗, it is a measure of the mass of researchers who devote themselves

to existing virgin fields, as a function of the current opportunity cost of

writing a paper. The greater that value y, the smaller the equilibrium labor

input in existing fields. For example, if the economy is in regime II in periods

t and t+1, and if a unit mass of new fields is invented at t, exploiting those

with field value greater than or equal to y at t + 1 requires I∗(y) research

input.12

Both functions are continuous and decreasing. Since Φ(0) ≥ γω̄ and

Φ(+∞) = γω̄, Φ has a fixed point V̄ :

Φ(V̄ ) = V̄ . (8)

The paper’s main result can be stated as follows. (All proofs are given in

Appendix).
12As another example, if θ = 0 and fields are exploited for the first time, then the LHS

of (3) is equal to µsI
∗(λt).
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PROPOSITION 1 — Assume that the economy starts at t = 0 with an

initial mass of fields µ−1, whose intrinsic value is distributed with f(), and

whose initial advancement level is given by n̄. Then:

(i) There exists an equilibrium path.

(ii) If

γI∗(V̄ ) > 1, (9)

then any equilibrium is cyclical, i.e. periods in regime I alternate with periods

in regime II. During periods in regime II, the mass of invented fields follows

explosive oscillations, until the economy reverts to regime I. During periods

in regime I, the set of exploited fields grows. The duration of a period in

regime I cannot exceed γI∗(γω̄).

(iii) If

γI∗(V̄ ) < 1,

then there exists an equilibrium such that

-the economy is in regime II from t = 0 on.

-the value of working in a new field is equal to V̄ at all dates.

-the mass of invented fields converges to its steady state value, given by

µ̄ =
γυ

1 + γI∗(V̄ )
, (10)

by dampened oscillations.

(iv) If θ = 0, equilibrium is unique.13

We interpret the key condition (9). Consider a regime II episode where

the value of invention is constant and equal to V̄ . By definition of I∗, a unit

increase in the mass of new fields invented at t triggers an increase in the

research input exploiting these fields at t + 1 equal to I∗(V̄ ). Since total

13We conjecture that the equilibrium is unique for θ small enough, but cannot prove it.
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labor input is fixed, this represents a decrease in the research input devoted

to invention at t + 1. Recall, one unit of time produces γ papers in a new

field. Therefore, a unit increase in new fields at t leads to a decrease in new

fields at t + 1 equal to γI∗(V̄ ). If γI∗(V̄ ) > 1, the initial effect is amplified

and regime II dynamics are unstable. The economy eventually reverts to

regime I, and cycles emerge. In contrast, the initial effect is attenuated if

γI∗(V̄ ) < 1. In that case, stable regime II dynamics lead to a steady-state

equilibrium. The quantity I∗(V̄ ) represents the attractiveness of existing

fields in regime II. We describe this process more formally, and explain how

our proof is constructed, in the next section. In section 5, we study how the

main parameters of the model affect the emergence of cycles.

4 Interpretation

To analyze the reason behind cycles, let us focus on the simpler case where

θ = 0. In the absence of a citation premium, inventors of new fields just get

the intrinsic value of the field, ω, as a reward. Consequently, the value of a

new field is pinned down and equal to V = γω̄ in any period.

Figure 1 plots the value of working in an existing field at any date t, λt, as

a function of the total input in existing fields; that defines the LL schedule.

This curve is downward-sloping, because of decreasing returns, captured by

the −β(lnnt(i) − ln n̄) term in the utility function. For the same reason,

its position is lower, the higher the initial advancement level of those fields,

nt−1(i). Finally, given that level, its position is higher, the greater the mass

of available fields µs, since the same total research input is now associated

with a lower advancement level nt(i) in each field.

If, as is the case in Figure 1, that schedule intersects the horizontal line

VV at λ = V, then the economy is in regime II. The horizontal distance AB

determines the labor input into new fields, and hence the mass of fields being
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invented.

If that is not the case, then the economy must be in regime I, and equilib-

rium determination is illustrated in Figure 2. At date t, all researchers work

in existing fields. Advancement in these fields generate a downward shift in

LL, and the intercept of the LL schedule for the next period must be equal

to λt — which simply means that the value of the first marginal paper at t+1

in a given field is equal to the value of the last paper written in that field

at t. The process continues until the LL schedule cuts the VV schedule, in

which case one is back to regime II (at t + 2 in the case of Figure 2). This

must happen in finite time, otherwise decreasing returns would eventually

drive VV below the λ = 0 line. Note that the λts fall during the regime I

period. That is the reason why the set of fields being exploited grows during

that phase.14

What happens, next, in regime II? At each date, a given mass of fields

is invented. The greater that mass, the greater the value of exploiting these

fields next period (i.e. LL shifts up). On average, one field invented at date t,

with a quality distribution f(ω), triggers an amount I∗(V ) of research input

devoted to exploiting that field at date t + 1. That reduces the amount of

time devoted to innovation: the greater the mass of fields invented today, the

lower the mass of fields invented tomorrow. The evolution of µt, the mass

of fields invented at t, evolves according to

µt = γ(υ − µt−1I
∗(V )). (11)

If these dynamics are stable (γI∗(V ) < 1, Figure 3), then the economy

converges to a steady state. Otherwise, (γI∗(V ) > 1, Figure 4), the economy

14Because of assumption A1, a field exploited during that phase must have been invented
in the last period in regime II before the regime I phase. It enters regime I with an initial
advancement level equal to n̄. Using (1) with θ = 0, it will therefore be exploited as soon
as ω > λt. Because the λs are falling, it will continue to be exploited until the economy
reverts to regime II, when it becomes obsolete.
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cannot remain in regime II forever: it will revert to regime I. As regime I

itself cannot last forever, the two regimes must prevail alternatively.

The instability condition γI∗(V ) > 1 simply means that a unit of labor

employed in inventing a new field today attracts more than one unit of labor

into exploiting that field tomorrow. That in turn reduces the amount of labor

inventing new fields tomorrow more than one for one, thus generating the

explosive oscillatory dynamics and the subsequent exit from regime II. The

greater the quantity I∗(V ), the more existing fields are attractive, and the

more likely it is that cycles arise.

From these considerations, it is in easy to show that an equilibrium exists

in the θ = 0 case by using the following iterative procedure.

We start from a given inherited measure of invented fields at date s, µs
(thus the economy was in regime II at date s). At date t = s+1, we allocate

all research to improving these fields, in an optimal way, i.e. so that the

resulting advancement level of each field satisfies (2) — the marginal value of

an extra contribution is common across all fields and equal to λt. Integrating

the number of papers written across all active fields and using the resource

constraints (3), this allows to solve for λt.

If the result is such that λt < V, it can be checked that we can construct

a new period in regime II by simply applying (11) between dates s and s+1;

and we can restart the procedure from date s+ 1.

If the result is such that λt > V, we have constructed one period in regime

I, and we can repeat the procedure for t = s+ 2. That leads to a decreasing

sequence of values of λt. The procedure is stopped when we get λt < V, in

which case we are back to regime II at t and the number of invented fields is

set according to (6). We then just apply (11) until the economy exits regime

II, in which case we restart the procedure.

The basic principle behind the proof of Proposition 1 is to extend that

strategy to the case where θ > 0, it involves two essential ingredients: First,
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the λt’s that intervene in the construction of regime I are substituted by a

pseudo-shadow cost λ̂t which reflects future citations. Second, the value of

working in a new field Vt is no longer constant and a sophisticated continuity

argument must be elaborated so as to prove that there exists an initial value

of Vt which matches the equilibrium condition for the transition from regime

I to regime II.

4.1 Numerical illustration

In this section we provide some simulations in order to get a better idea of

the irregular nature of the innovation cycles. We assume that the quality of a

field ω is drawn from a uniform distribution over [0, ωu], implying ω̄ = ωu/2.

We stick to the θ = 0 case.

Figures 5 to 10 report the simulation results for the following set of pa-

rameters: n̄ = 2; ωu = 1;β = 0.3; γ = 0.7; υ = 1. The initial measure of

existing fields was taken as µc = 1.

It is easy to show that (9) holds in this case, so that the equilibrium must

be cyclical. The simulation shows that the economy follows cycles that are

irregular, both in the duration spent in regime I and the duration spent in

regime II. The time spent in regime I oscillates between 1 and 2 periods (Fig.

5), while time spent in regime II oscillates between 1 and up to 6 periods

(Fig. 8)15. There are also chaotic oscillations in the stock of new fields

available for exploration at the beginning of each regime I phase (Figure 6).

Furthermore, and that can be proved analytically16, there is a tight positive

connection between that initial stock and the length of the time spent in

period 1 (Fig. 7); the regime I cycle lasts for 2 periods if the initial stock of

knowledge is >≈ 0.6, and for 1 period otherwise.
15These figures report the 70 first cycles after the initial one.
16See equation (25) in the Appendix.
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Figure 9 reports the average rate of innovation during the time spent in

regime II. We see that it exhibits irregular fluctuations. We also see (Figure

10), that cycles where a longer time is spent in regime II, have a lower rate of

innovation. Intuitively, if a large number of researchers produce new fields,

it is more likely that the economy reverts to regime I in the following period

in order to exploit the potential of these new fields17.

Relative to that benchmark simulation, we can perform some exercices.

Figures 11 and 12 report the structure of cycles when we reduce the decreas-

ing returns parameter from β = 0.3 to β = 0.2.18 We see that overall, the

economy spends more time in regime I and less time in regime II. In a cycle,

regime I last between 1 and 5 periods, although that is quite often just 1

period, and regime II typically does not exceed 2 periods, although there are

very rare occurences of cycles where the economy spends 3 periods in regime

II.

In fact, while there is a maximum duration for the regime I phase, if

the dynamics are truly chaotic one will have (very rare) regime II phases of

arbitrary length. The reason is that the initial values of µ will span all the

[0, γυ] interval, becoming sometimes arbitrarily close to the unstable steady

state value µ̄.

We are now in a position to analyze how the parameters of interest affect

the equilibrium.

17Another interesting property of that simulation, is that cycles where regime I lasts for
two periods, are such that the economy only spends 1 period in regime II. The explanation
could be as follows: at the end of such cycles, fields are quite exhausted, and the value of
working in new fields in regime II is quite high. Thus a large mass of innovation will take
place during a short period of time, after which people revert to exploiting the new fields.
However, this explanation is incomplete, since longer cycles are also those with a higher

total initial potential. And that regularity is not robust to parameter changes.
18Given the richer results, simulation are reported over 140 cycles rather than 70.
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5 Comparative statics and dynamics

In this section, we study how the equilibrium is affected by the main para-

meters of the model:

• The citation premium θ,

• The distribution of field quality f(ω); in particular: how does the riski-
ness of invention, measured by the variance of f(.), affects the likelihood

to obtain a cyclical equilibrium,

• The strength of decreasing returns β.

To do so, we study how these parameters affect the quantity I∗(V̄ ). As

discussed above, I∗(V̄ ) measures the relative attractiveness of exploiting ex-

isting fields during regime II episodes. Proposition 1 shows that cycles are

more likely to emerge when I∗(V̄ ) is higher. Therefore, an increase in I∗(V̄ )

means that cycles are more likely, and also that the steady state measure

of invented fields (µ̄ in (10)) in regime II becomes smaller. Our results thus

relate to both the likelihood of cycles and the equilibrium invention rate in

steady state, when it exists.

5.1 The effect of the citation premium

Equation (7) implies that V̄ is an increasing function of θ. Furthermore, one

can check that dI∗/dV̄ < 0. Consequently,

PROPOSITION 2 — Cycles are less likely to emerge, the higher θ. Fur-

thermore, µ̄ increases with θ.

This result is not totally obvious. In principle, the citation premium

increases incentives to work both in new fields and in existing fields. However,

in regime II, existing fields are only exploited during one period; thus one
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earns no citation premium on them. An increase in θ clearly decreases the

value of working on existing fields in regime II, hence the chance of ever

reaching regime I, as well as the steady state measure of invented fields.

5.2 The role of research uncertainty

Next, we look at the role of uncertainty in research; we want to know how

the variance of ω — or any mean-preserving spread parameter denoted by σ

— affects the arbitrage between working in new fields vs. existing fields in

regime II. As we shall see, option values intervene in two conflicting ways.

We first note that I∗(V ) can be written as n̄E(z(ω)), where z(ω) =

max(e
ω(i)−V

β − 1, 0) is a convex function of ω(i). By Jensen’s inequality, a
mean-preserving spread in the distribution of ω raises I∗(V ) for any given

V. If V̄ were to remain unchanged, or move by only a little, I∗(V̄ ) would

actually increase: more research uncertainty reduces the incentives to work

in new fields.

If θ = 0, it is actually true that V̄ does not change in response to a mean-

preserving change in the distribution of ω, for it is equal to γω̄. Similarly, by

continuity, eq. (7) implies that for θ arbitrarily small the change in V̄ can

be made arbitrarily small. Thus we also expect a mean-preserving spread in

ω to increase I∗(V ) as long as θ is not too large.

PROPOSITION 3 — Assume θ small enough, i.e.

θ ≤ β

γ
R +∞
0
(eω/β − 1)f(ω)dω

, (12)

then
∂I∗(V̄ )

∂σ
> 0.

Therefore, a mean preserving spread in the distribution of ω reduces the

equilibrium value of µ̄ and makes cycles more likely.
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Uncertainty increases the value of existing fields because one can select

those of them with the highest potential. A greater variance of ω means that

it is more valuable to work in the top field, while the value of working in the

bottom fields is unchanged, because these fields are abandoned anyway. In

contrast, the value of writing the first paper in an unknown field is increased

if the field turns out to be good, but reduced if it turns out to be bad — if

θ is small, then that value will roughly equal ω(i), regardless of the fate of

the field after its invention. Hence greater uncertainty increases the value to

work in known fields relative to unknown, new fields in regime II.

Against that logic, runs the fact that uncertainty increases the value of

new fields, because of the citation premium. That is apparent from (7): a

mean-preserving spread in ω increases its RHS. The option value of working

in an existing field only if it is good enough also affects the value of working

in new fields through the citation premium. When uncertainty goes up,

researchers gain from their good ideas being cited more, but do not lose from

their bad, uncited ideas, being cited less. In other words, the higher the

citation premium, the less risk-averse the researchers. If the condition in

Proposition 3 holds, then that effect is smaller than the direct effect of a

spread in ω. But if θ is larger, we can work out examples of mean-preserving

spreads that raise the incentives to produce new fields, thus making cycles

less likely and raising the equilibrium invention rate in steady state (see

Appendix).

5.3 The role of decreasing returns

A similar trade-off appears regarding the effect of β. It is easy to see that

I∗(V ) is a decreasing function of β. Given the value of writing a new paper

V, existing fields lose their value more quickly. Researchers thus devote more

time to invention, which makes the emergence of cycles less likely. As with

uncertainty, an opposite effect comes into play through the citation premium.
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Note that V̄ is decreasing in β when θ > 0. A higher β means that existing

fields will be less exploited. This decreases the value of writing a paper in a

new field (they will be cited less), which tends to counteract the first effect.

We can again show that if the same condition (12) holds, then the first effect

dominates:

PROPOSITION 4 — Assume (12) holds. Then

∂I∗(V̄ )

∂β
< 0.

Therefore, a rise in β raises the equilibrium value of µ̄ and makes cycles

less likely.

5.4 Comparative dynamics on cycles

Given the highly nonlinear nature of our cycles, it is difficult to establish com-

parative dynamics properties. We provide two results, here. First, Propo-

sition 5 gives some information on the impact of the citation premium on

the structure of cycles. Typically, the casual idea that a greater citation pre-

mium makes “fads” more important and therefore cycles more likely, is not

supported by the model. The reason is that the value of new fields goes up

with the citation premium, which reduces the attractivity of existing fields,

thus making it less likely that instability arises in (11). As the next sec-

tion shows, however, a larger citation premium makes fads more likely in an

indeterminacy sense.

PROPOSITION 5 — Conditional on the initial mass of invented fields,

the economy spends less time in the regime I phase for θ > 0 than for θ = 0.

Furthermore, if the amount of time spent in regime I is the same, then more

invention takes place at the beginning of the subsequent regime II phase, if

θ > 0.
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Second, we describe an example of a regular cycle. We saw in section 4

that cycles are usually irregular. Nonetheless, we can build regular cycles by

specifying appropriate initial conditions. We can notably show that cycles

of length 1 always exist if θ > 0. Let V1 be the solution to the following

equation:

V1 = Φ(I∗−1(
1

2
(
1

γ
+ I∗(V1))) (13)

Properties of I∗ and Φ imply that this equation has a unique solution.

PROPOSITION 6 — Suppose that θ > 0 and that γI∗(V̄ ) > 1. An

equilibrium where a single period in regime II alternates with a single period in

regime I always exists. In this equilibrium, the value of invention is constant

and equal to V1, the unique solution of (13). In addition, V1 < V̄ . The mass

of new fields invented in regime II is equal to

µ =
2γυ

1 + γI∗(V1)

In this short regular cycle, the value of invention is lower than at the

steady-state. Interestingly, however, both equilibria possess similar compar-

ative statics. An increase in θ leads to an increase in V1 and to an increase

in the mass of new fields invented. If θ is small enough, a mean-preserving

spread in the distribution of ω or a decrease in β reduce innovation effort.

Overall, these results confirm the idea that the citation premium θ has a

positive impact on innovation.

6 Indeterminacy and “sunspots”

The greater θ, the more expectations about future citations have a strong

effect on the decision to work on a given field. By analogy with the literature

on indeterminacy, we can speculate that there are multiple equilibria for θ

large enough. That is actually the case. The following result shows that there
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is local indeterminacy around the regime II steady state for large enough

values of θ.

PROPOSITION 7 — Assume
γθ

β
(1− F (V̄ )) > 1 (14)

and

γI∗(V̄ ) < 1.

Then there exists a continuum of equilibria indexed by any initial value

V0 = V̄ + vt, for vt sufficiently small.

Condition (14) implies that the conditions for saddle-path stability in the

dynamics of Vt in regime II are violated locally, so that the dynamical system

Vt = Φ(Vt+1) no longer has the steady state V̄ as its unique non-explosive

solution. As always, that is because the current valuation of invention is “too

sensitive” to expectations about the future. Condition (14) reveals that that

will be the case if research in new fields is productive (γ high), if the citation

premium θ is high, if decreasing returns are not strong (β small), and if the

fraction of new fields that are exploited next period is large (1−F (V̄ ) large).
If scientists think that opening new fields brings a higher payoff, they

devote more effort to invention. The mass of papers in new fields is higher.

This increases subsequent research in the best of these new fields. The cita-

tion premium originally associated to the new fields is thus effectively larger,

which confirms the original expectation. In short, expecting invention to

bring a high payoff can be a self-fulfilling prophecy.

7 Some welfare results

Due to the complexity of our model, it is not easy to make a thorough

comparison between the equilibrium and the social optimum. However, it is
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possible to compare the steady state in regime II to its equivalent for the

social planner. That is what we do in this section.

In order to perform a welfare analysis, a criterion is needed. There are

many options since our model only specifies the value of innovation to re-

searchers. An ample literature discusses the appropriability problems asso-

ciated with research. Here we want to use our model to focus on only one

market failure, which is that the stock of knowledge created by researchers

is durable and will benefit future generations beyond their lifetime. We then

show that absent a citation premium the value of a new field in the equilib-

rium steady state is lower than at the optimum steady state, and that an

optimal “pigovian” citation premium can be introduced so as to induce the

socially optimal level of fundamental. We provide a formula for computing

this citation premium.

The social welfare function we use is as follows. At each date t there is

a stock of knowledge Kt, which grows because of the introduction of new

fields and because of improvements in existing fields. We assume that the

increase in the stock of knowledge is equal to the intrinsic value of all papers

written at date t. Thus, the intrinsic value perceived by each researcher

captures well their contribution to the knowledge stock. Researchers only fail

to internalize the fact that their contribution increases the stock of knowledge

forever. They get rewards from the flow of ideas they produce while society

gets rewards from the stock of ideas.

We capture that with an intertemporal social welfare function given by

SW =
+∞X
t=0

Kt

(1 + φ)t
,

where Kt is the stock of knowledge at t and φ the social discount rate, which

can conveniently be interpreted as an inverse measure of the weight put on

future generations. The evolution of the knowledge stock is then given by, in
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regime II,

Kt = Kt−1+µt

Z
ωf(ω)dω+µt−1

Z
ω

ÃZ nt(ω)

n̄

(ω − β(ln z − ln n̄))dz
!
f(ω)dω.

The first integral is the initial value of the fields invented at date t. The

second integral is the contribution of the improvements made during t to the

fields invented at t−1. Note that we integrate the marginal contribution of all
papers ranked between n̄ and nt. This guarantees that researchers internalize

the congestion externality they exert upon others by moving, through their

contribution, the state of the field down the marginal value curve. In other

words, the intrinsic value of writing a paper in a field with potential ω is

equal to its marginal effect on K, (ω − β(lnnt − ln n̄)).
This equation may be rewritten

Kt = Kt−1 + µtω̄ + µt−1

Z
ω

((ω + β) (nt(ω)− n̄)− βnt (lnnt − ln n̄))f(ω)dω.
(15)

It can easily be shown that, as in the equilibrium, given the fraction of

researchers who work in new fields, it is optimal to allocate the others so as

to equate their intrinsic marginal value across active fields. Otherwise, one

could reallocate the research effort across existing fields to get a higher value

of the last term in (15). Consequently, at each date there exists a critical field

ω∗t such that nt(ω) = n̄ for ω < ω∗t and nt(ω) = n̄e
ω−ω∗t
β for ω ≥ ω∗t . In steady

state, ω∗t will be constant through time. Using this property, the evolution

equation for knowledge can be rewritten as

Kt = Kt−1 + µtω̄ + µt−1Γ(ω
∗
t ),

with

Γ(ω∗) = n̄

Z +∞

ω∗

h
(β + ω∗) e

ω−ω∗
β − (β + ω)

i
f(ω)dω.
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The social planner’s problem can be rewritten recursively by introducing

the value function

V (µt−1,Kt−1) = max(Kt +
1

1 + φ
V (µt, Kt)).

Maximization takes place with respect to xt, the fraction of research al-

located to new fields. We thus have

µt = γυxt, (16)

while the resource constraint allows to compute ω∗t as a function of x. Ag-

gregating the number of papers written in existing fields, we get

υ(1− x) = µt−1I
∗(ω∗t ). (17)

PROPOSITION 8 — The steady-state, welfare maximizing value of ω∗t is

determined by the following equation:

ω∗ = Ψ(ω∗),

where Ψ(.) is a decreasing function defined by

Ψ(ω∗) = γω̄ +
n̄γ

1 + φ

Z +∞

ω∗
∆(ω − ω∗)f(ω)dω, (18)

and where ∆(.) is a positive, increasing, convex function defined by ∆(x) =

β(ex/β − 1)− x.

The critical level ω∗ is the social opportunity cost of working in an existing

field rather than a new field. Its equivalent in the analysis of the equilibrium is

Vt, which is equal to V̄ , the fixed point of Φ in the equilibrium. Furthermore,

(4) and (5) show that a market economy will allocate employment across

existing fields in exactly the same way as the social optimum if V̄ = ω∗.

Since the resource constraints (16) and (17) are the same in the equilibrium
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case and the optimum case, all that is needed to compare the equilibrium

with the optimum is to compare the fixed point of Φ with that of Ψ. If they

coincide, then the equilibrium steady state is identical to the social optimum

steady state. Confronting (7) with (18) we then get that the two fixed points

coincide provided the citation premium is equal to

θ∗ =
n̄β

1 + φ

R +∞
ω∗ ∆(ω − ω∗)f(ω)dωR +∞
ω∗ (ω − ω∗)f(ω)dω

.

This citation premium goes down with φ, which means that it must be

higher when the social planner cares more about future generations.19 That

is because the social planner puts more weight on subsequent improvements

of a new field, the lower φ. The value of these subsequent improvements—

which raises the value of a new field beyond its contemporaneous effect ω̄—

is internalized by the inventor only through the citation premium. Thus it

must go up when φ goes down.

8 Conclusion

This paper has developed a simple model of the allocation of effort between

fundamental research, which invents new fields, and applied research, which

improves existing fields. Despite the model’s simplicity, our results are quite

rich.

We were able to characterize the cyclical dynamics of the economy and

derive a necessary and sufficient condition for cycles to arise. We have shown

that indeterminacy may also appear, and that the citation premium makes

the equilibrium less cyclical, but at the same time makes indeterminacy more

likely.

19To see this, simply rewrite (8) as V̄ = Φ(V̄ ; θ), Φ01 < 0, Φ02 > 0, and (18) as ω∗ =
Ψ(ω∗, φ), Ψ01 < 0,Ψ

0
2 < 0. The welfare maximizing value of θ, θ

∗, is the unique solution to
ω∗ = Φ(ω∗; θ). Hence, ∂θ∗/∂ω∗ > 0. Since ω∗ falls with φ, so does θ∗.
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We have also established some comparative statics for a steady-state in

regime II, and to compare this steady state to the welfare optimum. We were

able to highlight the role of the option value in determining the optimal and

equilibrium allocation of research between the two activities.

28



9 Appendix:

9.1 Proof of proposition 1: roadmap

We define λt as the shadow cost of a paper at t. The optimality conditions

imply that at date t, a field i is exploited if and only if

ω(i)− β(lnnt−1(i)− ln n̄) + θ(lnnt+1(i)− lnnt−1(i)) < λt,

in which case nt is determined by

ω(i)− β(lnnt(i)− ln n̄) + θ(lnnt+1(i)− lnnt(i)) = λt.

The proof then follows the following steps. The details are precisely de-

scribed in a separate Appendix available from the authors upon request. Here

we focus on the essence of the reasoning.

A. First, one proves that one cannot remain forever in regime I. That is

based on the following idea: to only exploit new fields forever, despite that

each field has decreasing returns, one must be compensated by a “citation

bubble”: that is, despite that the intrinsic value of a contribution falls with-

out bounds, one is compensated by future citations, because more papers will

be written in the future. But then, the speed at which new papers are writ-

ten in any field must accelerate, since the intrinsic value keeps falling. In the

end, the economy resource constraint is violated, which is a contradiction.

B. Next, we are able to characterize the dynamics when the economy is

in regime I. We can construct a sequence λ̂t of pseudo-shadow costs, which

reflect both the shadow cost λt and the value of future citations. The op-

timality condition can then be expressed by comparing the pseudo-shadow

cost with the intrinsic value of the paper, as summarized by property P1:

PROPERTY P1 — A field is active iff ω(i) − β(lnnt−1 − ln n̄) > λ̂t, in

which case ω(i)− β(lnnt − ln n̄)) = λ̂t.
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Denoting by T the date at which regime I ends, T0 the date at which it

starts, we show that the λ̂t’s can be constructed recursively:

λ̂T = VT ;

λ̂t = min(
θλ̂t+1 + βλt

θ + β
, λt).

Property P1 allows to compute, as a function of λ̂t, the set of fields that

are researched at t, as well as nt for each of those fields. The lower λ̂t, the

larger that set and the larger nt, so that total research in existing field is

a decreasing function of λ̂t. Since one is in regime I, all researchers work

in existing fields. There is a unique value of λ̂t which satisfies that full-

employment condition. This determines the evolution of λ̂t during regime I.

Denoting by µT0−1 the measure of exploitable fields, we get:

µT0−1I
∗(λ̂T0) = υ. (19)

µT0−1(I
∗(λ̂t+1)− I∗(λ̂t)) = υ. (20)

Finally, one is in regime II as long as the value of working on a new field is

lower than the shadow cost of a paper. We can show that that is equivalent

to

Φ(λ̂t+1) < λt. (21)

λ̂t+1 appears in that condition because the lower it is, the more likely the

seminal paper written today will be cited tomorrow.20

20As the new field is infinitesimal, it does not make existing fields obsolete, and the
researcher who considers working on a new field assumes that his invention has no impact
on the regime prevailing at t+ 1 and on λ̂t+1.
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C. In regime II, people produce both new fields and papers in existing

fields. Vt is both the shadow cost of an additional paper in an existing field

and the expected value of starting a new field. The value of working in a new

field depends on its expected intrinsic value, plus the contribution of next

period’s citations. The latter is larger, the larger the number of papers that

will be written in existing fields at t + 1, which is a decreasing function of

Vt+1. This allows to derive the following recursive relationship:

Vt = Φ(Vt+1).

Using similar computations as in regime I, we can get the fraction of

researchers in existing fields:

υAt+1 = I∗(Vt+1)µt.

We then subtract it to get the labor input into new fields, which gives us

the measure of new fields next period:

µt+1 = γ(υ − I∗(Vt+1)µt). (22)

One can show that if V̄ is the fixed point of Φ, and if

I∗(V̄ )γ > 1, (23)

then the dynamics of µt in regime II cannot be stable, so that one must

eventually leave regime II.

D.E.F. We can now work out the transitions between the two regimes.

If we know the terminal value VT and the initial measure µT0−1, we can

construct a decreasing sequence λ̂t by applying (19) and (20). It is easy to

see that the transition takes place at T such that λ̂T−1 > VT > λ̂T . That in

turn allows to compute the allocation of researchers between existing fields

and new fields at T, and thus the measure of new fields invented at T :
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µT = γ(υ − µT0−1(I
∗(VT )− I∗(λ̂T−1))). (24)

As a corollary, the duration of the phase in regime I is given by21

T − T0 = INT (
µT0−1
υ

I∗(VT )). (25)

As for the transition from II to I, we get an extra condition by noting that

the value of a new field at T0 − 1 is equal to Φ(λ̂T0), while (20) must hold.

This gives us

VT0−1 = Φ(I∗−1
µ

υ

µT0−1

¶
). (26)

G. We can finally construct an equilibrium which matches the conditions

we have derived above. The first step consists in constructing the m(., .)

function, which allows to compute µt in regime II as a function of µs, the

inherited measure of fields from the last period in regime II, and Vt, the

current value of a job. If t = s+1, then m(., .) is defined as the RHS of (22).

Otherwise, there is a period in regime I between s and t, and we can use the

steps in D.E.F. to get22

µt = γυ(1−DEC
³µs
υ
I∗(Vt)

´
) = m(µs, Vt), (27)

of which (22) is a special case.

The next step is to determine the equilibrium value of Vt. It must be such

that the terminal condition (26) at the end of the regime II (i.e. with T

instead of T0 − 1 in the formula) holds. We do that using a continuity-type
argument, which must be worked out carefully as the final measure µT is not

a continuous function of Vt. If (23) holds, we can construct the last date in

the current regime T, which satisfies (26).

21INT (x) is the largest integer number y such that y ≤ x.
22DEC() is the decimal part of a number DEC(x) = x− INT (x).
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Therefore, given an inherited measure µs, we can construct a full cycle in

regime II, which may or may not be preceded by a period in regime I. The

procedure can be repeated at the end of that cycle, using the new measure of

fields µT . The only equilibrium condition that remains to be checked is (21)

in Regime I, which we do.

H. Finally, if (23) does not hold, we can construct an infinitely lived

path in regime II by picking V = V̄ throughout and let the economy evolve

according to (22).

I. In the case where θ = 0, in regime II one must always have Vt = V̄ = γω,

which allows to prove uniqueness.

9.2 Proof of Proposition 3

Consider a change in the distribution f() denoted by∆f(). The implied shifts

in V̄ and I∗(V̄ ) satisfy

∆I∗ = − n̄∆V̄

β

Z +∞

V̄

e
ω−V̄
β f(ω)dω + n̄

Z +∞

V̄

³
e
ω−V̄
β − 1

´
∆f(ω)dω, (28)

and

∆V̄ = −γθ
β
∆V̄ (1− F (V̄ )) +

γθ

β

Z +∞

V̄

¡
ω − V̄

¢
∆f(ω)dω. (29)

By Jensen’s inequality, it must be that if ∆f(ω) is a mean-preserving

spread, thenZ +∞

V̄

³
e
ω−V̄
β − 1

´
∆f(ω)dω >

Z +∞

V̄

ω − V̄

β
∆f(ω)dω > 0,

since the functions g1(ω) = max(ω−V̄
β

, 0) and exp(g1(ω) − 1) − g1(ω) both

are convex. Furthermore, eliminating ∆V̄ between (28) and (29) we see that

∆I∗ > 0 if and only if

γθ
R +∞
V̄

e
ω−V̄
β f(ω)dω

β + γθ(1− F (V̄ ))
<

β
R +∞
V̄

³
e
ω−V̄
β − 1

´
∆f(ω)dωR +∞

V̄

¡
ω − V̄

¢
∆f(ω)dω

. (30)
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Since the RHS is greater than 1, that inequality will be satisfied if the

LHS is lower than 1, which is equivalent toZ +∞

V̄

³
e
ω−V̄
β − 1

´
f(ω)dω <

β

γθ
.

Since the LHS decreases with V̄ , it reaches its maximum at V̄ = 0, and

that inequality will therefore always hold if (12) holds. Q.E.D.

9.2.1 Counter-example

We now construct a counter-example where ∆I∗ < 0. We assume ω is uni-

formly distributed over [0,2], γ = 1, and θ = 8β. That implies ω̄ = 1 and it

can be checked that V̄ = 3/2. The LHS of (30) is then equal to 4
3
(e1/(2β)−1).

We consider a specific mean-preserving spread whose only action above V̄

is to add a finite (Dirac) mass at some ω̃ > V̄ . Condition (30) will then be

violated iff
4

3
(e

1
2β − 1) > β(e

ω̃−3/2
β − 1)

ω̃ − 3/2 . (31)

The RHS rises from 1 to 2β(e
1
2β − 1) as ω̃ increases from 3/2 to 2. As

long as β < (2 ln 7
4
)−1 ≈ 0.893, the LHS is greater than 1 and the condition

holds for ω̃ not too above 3/2. Furthermore, if β < 2/3, then (31) holds

for ω̃ = 2 and therefore for any ω̃ ∈ [3/2, 2].

9.3 Proof of Proposition 4

We take the same steps as in Prop. 3, but with respect to a change in β.We

now get

dI∗ = − n̄dV̄
β

Z +∞

V̄

e
ω−V̄
β f(ω)dω − n̄

β2

Z +∞

V̄

e
ω−V̄
β
¡
ω − V̄

¢
f(ω)dω.dβ,

and

dV̄ = −γθ
β
dV̄ (1− F (V̄ ))− γθ

β2

Z +∞

V̄

¡
ω − V̄

¢
f(ω)dω.dβ.
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We get that dI∗ < 0 iff

γθ
R +∞
V̄

e
ω−V̄
β f(ω)dω

β + γθ(1− F (V̄ ))
<

R +∞
V̄

e
ω−V̄
β
¡
ω − V̄

¢
f(ω)dωR +∞

V̄

¡
ω − V̄

¢
f(ω)dω

.

The LHS is the same as in (30), while the RHS is always greater than 1.

Therefore, that inequality again holds if (12) holds. Q.E.D.

9.4 Proof of Proposition 5

(i) Recall, V̄ is increasing in θ and I∗ is decreasing. Thus, if the condition

I∗(V̄ ) < 1
γ
is satisfied for θ, it is also satisfied for θ0 > θ.

(ii) By virtue of (25), the duration of the first regime I phase is INT (I∗(γω̄)
µ−1
υ
)

when θ = 0 and INT (I∗(VT )
µ−1
υ
) when θ > 0. Since VT ≥ γω̄, the first regime

I phase is necessarily longer when θ > 0. Examining the equation for µ gives

the second result. Q.E.D.

9.5 Proof of Proposition 6

Consider a profile where a single regime I period alternates with a single

regime II period, and where the mass of new fields invented is constant and

equal to µ while the value of invention is constant and equal to V . This is

an equilibrium if and only if the four following conditions are satisfied

1 <
µ

υ
I∗(V ) < 2

µ = γυ(1−DEC(
µ

υ
I∗(V )))

V < I∗−1(
υ

µ
)

V = φ(I∗−1(
υ

µ
))

Observe that the first condition implies the third. Since INT (µ
υ
I∗(V )) =

1, the second condition becomes µ = 2γυ/[1+γI∗(V )]. Substituting into the
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fourth condition yields

V = Φ(I∗−1(
1

2
(
1

γ
+ I∗(V )))

Recall, Φ takes value in
h
γω̄, γω̄(1 + θ

β
)
i
. Since Φ and I∗ are decreasing, this

equation has a unique solution. Rearranging, the first condition becomes

1 < 2 γI∗(V )
1+γI∗(V ) < 2, which is equivalent to I

∗(V ) > 1/γ.

Next, recall I∗(V̄ ) > 1/γ. This means that I∗(V̄ ) > 1
2
( 1
γ
+ I∗(V̄ )). Thus,

V̄ < I∗−1(1
2
( 1
γ
+ I∗(V̄ ))) and Φ(V̄ ) = V̄ > Φ(I∗−1(1

2
( 1
γ
+ I∗(V̄ )))). This

implies that V < V̄ and I∗(V ) > I∗(V̄ ) > 1/γ. Q.E.D.

9.6 Proof of Proposition 7

To prove Proposition 7, just differentiate the dynamics of Vt in regime II,

Vt = Φ(Vt+1), around the fixed point V̄ . Denoting by vt = Vt − V̄ , we get

vt = −
γθ

β
(1− F (V̄ ))vt+1.

If γθ
β
(1−F (V̄ )) > 1, then we can construct an equilibrium for any initial

value of vt. Q.E.D.

9.7 Proof of Proposition 8

The first order condition for maximization of the value function with respect

to x is

0 =

µ
ω̄
∂µt
∂x

+ µt−1Γ
0(ω∗)

∂ω∗

∂x

¶µ
1 +

1

1 + φ

∂V (µt, Kt)

∂K

¶
+

1

1 + φ

∂µt
∂x

∂V (µt, Kt)

∂µt
. (33)

The resource constraints allow us to compute the following derivatives:

• ∂µt
∂x
= γυ
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• ∂ω∗

∂x
= − υ

I∗0(ω∗)µt−1n̄

∂ω∗

∂µt−1
= − I∗(ω∗)

I∗0(ω∗)µt−1
.

Differentiating the value function while ignoring the changes in x because

of the envelope theorem allows to compute the following:

• ∂V
∂K
= 1+φ

φ
.

• ∂V (µt−1,Kt−1)
∂µt−1

=
³
Γ(ω∗) + µt−1Γ

0(ω∗) ∂ω∗

∂µt−1

´
1+φ
φ
.

Substituting these formulas into (33) while making use of the steady state

assumption, we get

0 =

µ
ω̄γυ − Γ0(ω∗)

υ

I∗0(ω∗)n̄

¶
+

1

1 + φ
γυ

µ
Γ(ω∗)− Γ0(ω∗)

I∗(ω∗)

I∗0(ω∗)

¶
. (34)

To get to (18), compute the derivatives of Γ and I∗ :

• Γ0(ω∗) = −n̄ω∗

β

R +∞
ω∗ e

ω−ω∗
β f(ω)dω;

• I∗0(ω∗) = − 1
β

R +∞
ω∗ e

ω−ω∗
β f(ω)dω.

Replace all the terms in Γ0(ω∗)/I∗0(ω∗) in (34) by ω∗, and replace the

term in Γ(ω∗) by the following expression (it can be checked that it is indeed

equal to Γ(ω∗)):

(β + ω∗)I∗(ω∗)− n̄

Z +∞

ω∗
(ω − ω∗) f(ω)dω.

These operations yield equation (18). Q.E.D.
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Figure 1 – Equilibrium determination in regime II
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Figure 2 – Equilibrium determination in regime I
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Figure 3 – Convergence to the regime II steady state
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Figure 4 – The economy eventually leaves regime II
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Fig. 5: time in I per cycle
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Fig 6: mass of new fields per cycle
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Fig. 7 cycle length and mass of new fields
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Fig. 8 time spent in regime II
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Fig. 9: Average production of new fields in regime II per cycle
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Fig. 10: Time in regime II and average innovation
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Fig. 11: cycle duration in reg. I, beta = 0.2
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Fig. 12, time spent in regime II per cycle, beta = 0.2
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