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Equilibrium, affine asset pricing models with
L. Epstein and S. Zin (1989)’s preferences typ-
ically generate time-variation in risk premiums
through time variation in the quantity of risks,
with the market prices of risks (MPR) held con-
stant. This is true of models with built in long-
run consumption risks (LRR) (e.g., R. Bansal
and A. Yaron (2004), R. Bansal, D. Kiku and A.
Yaron (2009)), as well as of the broader formu-
lations in B. Eraker and I. Shaliastovich (2008).
For pricing bonds1 such formulations may be
overly constrained as reduced-form models sug-
gest that it is time variation in the MPR’s, more
than stochastic yield volatilities, that resolves
the expectations puzzles in bond markets.2

Constant MPRs are not an inherent feature of
equilibrium pricing models with recursive pref-
erences, but rather they arise as a consequence
of the linearizations underlying the affine ap-
proximations to these models that have been ex-
plored empirically. The essential ingredients of
these econometric formulations are (P1) recur-
sive (Epstein-Zin) preferences, (P2) risk-neutral
(Q), affine pricing, and (P3) the assumption
that the state of the economy is described by
an affine process under the historical (P) distri-
bution. Key to achieving property (P2), given
P1 and P3, is the assumption that the valua-
tion ratio (the log “price/consumption” ratio)
associated with the claim that pays aggregate
consumption is an affine function of the state.
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1Examples of term structure models with LRR’s
that presume constant MPR’s include R. Bansal and
I. Shaliastovich (2009) and T. Doh (2008).

2E.g., G. Duffee (2002) and Q. Dai and K. Sin-
gleton (2002).

We develop a dynamic term structure model
with recursive preferences that preserves prop-
erties P1 and P2, but that relaxes the assump-
tion that the price/consumption ratio be linear
in the state. Preserving P2 ensures our model
inherits the tractable pricing of models in which
the state process is affine under Q. Equally im-
portantly, allowing the price/consumption ratio
to depend nonlinearly on the state– a quadratic
function in our case– leads to an equilibrium
model with time-varying MPRs in addition to
state-dependent volatilities (quantities of risk).
While we necessarily give up P3– the state fol-
lows a nonlinear (non-affine) process under P–
we show that the model-implied likelihood func-
tion is known in closed form.

Key to obtaining these properties is a new
modeling scheme, closely related to that of A.
Le, K. Singleton and Q. Dai (2009). The state
is assumed to follow an affine process under
Q, which is central to delivering analytical ex-
pressions for bond prices (P2). We then de-
rive the data-generating process for consump-
tion, inflation, and bond yields from this Q
process using the change-of-measure associated
with Epstein and Zin (1989) preferences. In de-
riving the discrete-time Radon-Nykodym deriva-
tive, we adopt a linearization scheme that gives
rise to state-dependent MPRs whose time vari-
ation is endogenously determined by investors’
preferences. The nonlinear MPRs, when com-
bined with aQ-affine state process, result in non-
linear physical dynamics. Nevertheless, the con-
ditional P-density of the state is known in closed
form and, hence, so is the likelihood function of
the data. We also provide sufficient conditions
under which the state is geometrically P-ergodic.

Preserving properties P1 and P2 of the ex-
tant literature while relaxing P3 gives us con-
siderably more latitude in modeling the histor-
ical joint distribution of consumption, inflation,
and bond yields. Within our equilibrium model
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with recursive preferences, a non-affine struc-
ture to the P distribution of the state arises
directly as a consequence of state-dependent
MPRs. An interesting question for future re-
search is whether the data calls for time-varying
MPRs and, thereby, for richer models of the
data-generating process for consumption, infla-
tion, and yields than has heretofore been ex-
plored in the literature on LRRs.

I. A Pricing Kernel with
Time-Varying MPRs

Following Bansal and Yaron (2004) and oth-
ers, we assume that agents rank consump-
tion profiles according to the Epstein and Zin
(1989)’s recursive utility:

Ut =
[
(1− δ∆t)(Ct∆t)

1−γ
θ + δ∆t(EtU

1−γ
t+1 )

1
θ

] θ
1−γ

where ∆t is the (small) time interval,3 Ct de-
notes time-t real consumption rate, δ denotes
the (annualized) time discount factor; ψ de-
notes the inter-temporal elasticity of substitu-
tion (IES) while θ = 1−γ

1− 1
ψ

. As shown by Epstein

and Zin (1989), this recursive utility leads to the
following nominal pricing kernel, in log form:

mt+1 = θ log δ ∆t− θ

ψ
∆ct+1(1)

+(θ − 1)(rc,t+1 − πt+1)− πt+1

where ct+1, rc,t+1 and πt+1 denote log consump-
tion rate, nominal return on the consumption
series and realized inflation, respectively.

We assume that the log price-consumption ra-
tio, zt = log(Pt/Ct), is quadratic in the vector
of state variables, xt:

(2) zt = λ0 + λ′xxt + x′tΩxt.

The presence of the quadratic term is a key dif-
ferentiating feature of our formulation.4

3By making the time interval explicit, we will be
able to assess the magnitude of subsequent approxi-
mation errors as the time interval approaches zero.

4L. Hansen, J. Heaton and N. Li (2008) obtain a
quadratic pricing kernel by linearizing their economy
around the case ψ = 1.

The nominal return on the consumption series
can be written as:

rc,t+1 = ∆ct+1 + log(∆t + ezt+1)− zt + πt+1.

Applying a standard log-linear approximation,
we can write:

rc,t+1 = ∆ct+1+πt+1+(κ0+κ1zt)∆t+κ2∆zt+1,

where κ0, κ1, and κ2 are dependent on the
steady state value of zt, z̄, and ∆t, with non-
trivial continuous-time limits.5

To make rc,t+1 conditionally affine in xt+1,
which will prove convenient in subsequent
derivations, we linearize its quadratic part
around the lagged value of the states, xt:

6

(3) x′t+1Ωxt+1 = x′tΩxt + x′t(Ω + Ω′)∆xt+1.

Substituting for x′t+1Ωxt+1, the return on the
consumption series and the stochastic discount
factor become conditionally affine in xt+1:

rc,t+1 = ∆ct+1 + πt+1

+r0(xt)∆t + rx(xt)
′∆xt+1

−mt+1 = γ∆ct+1 + πt+1

+m0(xt)∆t + mx(xt)
′∆xt+1,

where

r0(xt) = κ0 + κ1zt,

rx(xt) = κ2(λx + (Ω + Ω′)xt),

m0(xt) = −θ log(δ)− (θ − 1)(κ0 + κ1zt),

mx(xt) = −(θ − 1)κ2(λx + (Ω + Ω′)xt).

The weight mx(xt) on xt+1 in the pricing ker-
nel mt+1 varies linearly in the current states xt

as long as Ω is non-zero. Consequently, under
this setup, the MPR is time-varying– excess re-
turns are predictable– even if the quantity of

5κ2 = ez̄

∆t+ez̄ , κ0 =
log(∆t+ez̄)−κ2z̄

∆t
, κ1 =

− 1
∆t+ez̄

6We choose this approach for parsimony but
note that the approximation can be improved by
including a second-order term in the spirit of the
Ito’s lemma, thereby reducing the error to order
O(∆t3/2). However, this second-order term will not
change the resulting MPR which is our current focus.
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risks (conditional variance of ∆xt+1) is constant.
By way of contrast, expected excess returns are
constant in most models with LRR when the
quantity of risk is constant.

II. Risk Neutral Dynamics

We assume that xt follows an affine process
under the risk-neutral measure, so its condi-
tional Laplace transform is exponentially affine:

(4) EQ
t [eu′∆xt+1 ] = e(a(u)+b(u)′xt)∆t,

with known one-step ahead density fQ(xt+1|xt).

In addition, we assume that the nominal short
rate is affine in xt:

(5) rt =
(
δ0 + δ′xxt

)
∆t.

It follows that nominal bond prices are ex-
ponentially affine: Pn,t = e−An−B′nxt , with n
being the number of periods until maturity and
An and Bn being determined through standard
recursions (D. Duffie and R. Kan (1996)).

Real consumption growth is assumed to follow
the process

(6) ∆ct+1 = g0(xt)∆t + gx(xt)ε
Q
c,t+1

√
∆t,

where εQ
c,t+1 is an i.i.d. standard normal ran-

dom variable under Q. We capture possible
conditional correlation between ∆ct+1 and xt+1

through a vector σx,g that satisfies:

(7) σx,g =
∂xt+1

∂ct+1
.

Introducing a component x∗t+1 that is condition-
ally independent of εQ

c,t+1, we assume that:

(8) xt+1 = x∗t+1 + σx,ggx(xt)ε
Q
c,t+1

√
∆t.

Observed inflation follows the process

πt+1 = π0(xt)∆t+π′x∆xt+1+σπ,cgx(xt)ε
Q
c,t+1

√
∆t.

Conditional correlation between ∆ct+1 and πt+1

may arise through nonzero Corr(∆xt+1, ε
Q
c,t+1)

and σπ,c. The choices of g0(.), gx(.), and π0(.)
are discussed below.

III. The Implied Physical Dynamics

Le, Singleton and Dai (2009) shows that, in a
discrete-time setting, the physical density of the
states together with observable ∆ct+1 and πt+1

can be computed as:

fP (xt+1, ∆ct+1, πt+1|xt) =(9)

e−mt+1

EQ
t [e−mt+1 ]

fQ(xt+1, ∆ct+1, πt+1|xt).

Since fQ is, by assumption, known analytically,
(9) gives fP in closed form. Up to regularity
conditions that guarantee stationarity of xt, the
combination of a known physical density and
affine bond pricing renders ML estimation com-
putationally tractable.

An approximate expression for the first mo-
ment of yt+1 = {∆xt+1, ∆ct+1, πt+1} under P 7

is obtained by assuming that yt+1 is condition-
ally Gaussian and utilizing Stein’s lemma:

(10) EP
t [yt+1] = EQ

t [yt+1]−varQ
t [yt+1]

∂mt+1

∂yt+1
,

where EQ
t [yt+1], varQ

t [yt+1], and
∂mt+1
∂yt+1

are

known from the relevant Laplace transforms.
Applying (10), it can be shown that:

EP
t [∆xt+1]

∆t
=

∂a

∂u
(0) +

∂b

∂u
(0)′xt(11)

+

(
∂2a

∂u∂u′
(0) +

∑ ∂2bi

∂u∂u′
(0)′xi,t

)
Dxt,

where Dxt = (γ +σπ,c)./σx,g +πx +mx(xt) and
./ denotes element by element division. From
(11), and the fact that Dxt is linear in xt, it
follows that geometric ergodicity of the state can
be imposed by constraining the magnitudes of
the relevant elements of the matrix Ω so that xt

is sufficiently mean-reverting.8

We define the steady state value of xt as the
vector x̄ that sets the right-hand side of (11) to
zero: EP

t [∆xt+1|xt = x̄] = 0. Internal model
consistency requires that x̄ and z̄ be related ac-

7This approximation becomes more accurate as
∆t gets smaller. Note that we do not need this as-
sumption in evaluating the physical density.

8See Le, Singleton and Dai (2009) for a more in
depth discussion of ergodicity.
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cording to (2) as follows:

(12) z̄ = λ0 + λ′xx̄ + x̄′Ωx̄.

The corresponding first moments of consump-
tion growth and realized inflation are:

(13)
EP [∆ct+1]

∆t
= g0(xt) + gx(xt)

2Dct,

where Dct = γ + σπ,c + (πx + mx(xt))
′σx,g, and

EP [πt+1]

∆t
= π0(xt)− σπ,cg0(xt) +(14)

π′x
EP

t [∆xt+1]

∆t
+ σπ,c

EP
t [∆ct+1]

∆t
.

IV. Equilibrium Restrictions

So far we have left unspecified the dimension
of xt and the functional forms of g0(.), gx(.),
and π0(.). The choice of the conditional volatil-
ity of consumption growth, gx(.), is simple: a
constant, σg, in case of constant volatility, or
σtσg in case of stochastic volatility (where σ2

t is
a non-negative element of xt).

Given gx(.), equilibrium pricing determines
the functional forms of g0(.) and π0(.). Specifi-
cally, rt determines the mean of the pricing ker-
nel, and mt+1 must price the return on the con-
sumption claim:

EQ
t [erc,t+1 ] = ert ,(15)

EQ
t [e−mt+1 ] = ert .(16)

It can be shown that (15) is equivalent to:

g0(xt) + π0(xt) = δ0 + δ′xxt

−r0(xt)− gx(xt)
2Drt − a(πx + rx(xt))

−b(πx + rx(xt))
′xt,

where

Drt =
1

2
(1+σπ,c)

2+(1+σπ,c)(πx+rx(xt))
′σx,g.

Similarly, (16) is equivalent to:

γg0(xt) + π0(xt) = δ0 + δ′xxt

−m0(xt)− gx(xt)
2Dmt − a(πx + mx(xt))

−b(πx + mx(xt))
′xt,

where

Dmt =
1

2
(γ+σπ,c)

2+(γ+σπ,c)(πx+mx(xt))
′σx,g.

Assuming γ is different from one, (15) and
(16) can be solved for the g0() and π0() that are
consistent with our economy.

V. Discussion

Typically, a three-dimensional state vector
captures most of the variation in bond yields
(R. Litterman and J. Scheinkman (1991), Q.
Dai and K. Singleton (2000)). In models with
stochastic, conditional consumption volatility,
the volatility-related state variables can be mod-
eled within our affine setting as autoregressive-
gamma processes (C. Gourieroux and J. Jasiak
(2006), Le, Singleton and Dai (2009)).

Importantly, by specifying the conditional
distribution of the state xt under the risk-
neutral measure as a primitive of our model, we
are free to adopt any identified, canonical form
for fQ(xt+1|xt). S. Joslin (2007) and S. Joslin,
K. Singleton and H. Zhu (2009) develop normal-
izations that, we anticipate, will offer significant
computational advantages in estimating equilib-
rium term structures models with our flexible
affine structure under Q.

The physical dynamics of (∆ct+1, πt+1) im-
plied by our model will be nonlinear (e.g., have
nonlinear conditional means), as long as Ω, a
free matrix of parameters in our setup, is non-
zero. This nonlinearity enters through the equi-
librium functional forms of g0() and π0(), and
it remains in the continuous time limit of our
discrete-time economy. On the other hand, if
Ω = 0, our model is affine under both P and Q
(satisfies both P2 and P3), and the MPRs are
time-invariant. In this sense, our setup nests
many prior studies that adopt an affine repre-
sentation of the price-consumption ratio.

Because we start from the Q distribution of
xt, and then derive the P distribution that is
consistent with Epstein-Zin preferences, the pa-
rameters that govern the price-consumption ra-
tio (λ0, λx, and Ω) and the short rate (δ0 and
δx) are not tied down by other fundamental pa-
rameters that describe the physical cash flows.
Instead, λ0, λx, Ω, δ0, and δx are the funda-
mental parameters of our model. What is de-
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rived in our setup are (not just parameters but
rather) functionals that regulate the dynamics
of the cash flows. By not requiring the physical
dynamics of cash flows to fit any pre-specified
form, we gain considerable flexibility in model-
ing the price consumption ratio - an important
component of the pricing kernel - as well as the
short rate. The flexibility in modeling these two
components translates into flexibility in model-
ing the entire term structure of interest rates.

The “cost” of our modeling strategy is that we
cannot assign specific economic roles to elements
of the state xt (other than that a subset might
govern the stochastic volatility of (∆ct+1, πt+1)).
In contrast, it is standard in the LRR literature
to assume that the physical mean of consump-
tion growth is driven by an element of xt. For
some special cases of our model it appears pos-
sible to enforce such an interpretation. Adding
this requirement means that λ0, λx, and Ω are
no longer (entirely) free parameters.

At this juncture, proceeding with the flexibil-
ity of a general affine representation of the state
(up to the choice of the numbers of factors and
drivers of stochastic volatility) seems advanta-
geous, in that it gives our equilibrium setting
maximal flexibility in fitting the term structure
with both time-varying market prices and quan-
tities of risks. Of interest will be whether, with
this flexibility, the model gives rise to a LRR-like
structure to the drift of consumption growth.
From (13) it is seen this will depend on the es-
timated functional forms of g0(xt) and mx(xt).
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