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Abstract

This paper analyzes a two-candidate election in which voters share a common ob-

jective but possess information of varying quality. The swing voter�s curse (Feddersen

and Pesendorfer, 1996) dissuades the least-informed citizens from voting, even though

voting is costless, but a substantial fraction of the electorate continue to vote, in an

e¤ort to aggregate information, even as the number of "experts" grows arbitrarily

large. Thus, in addition to explaining roll-o¤ and the empirical correlation between

information and voting, this model explains the moderate levels of turnout observed

in real-world elections. It also facilitates a deeper analysis of comparative statics than

simpler models, yielding novel empirical predictions. Turnout is also socially optimal,

implying that society bene�ts both by allowing abstention and by allowing non-expert

citizens to vote.
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1 Introduction

In many situations, individuals within a group seek some common objective, but disagree

over how that objective can best be accomplished. Though every member of society values

national security and economic stability, for example, opinions vary widely regarding how

likely a speci�c policy is to achieve those outcomes. Similarly, citizens may agree on the need

to reduce crime, corruption, or poverty, but disagree over what policies will e¤ectively do so.

On a much smaller scale, individual members on a medical panel or business committee may

disagree over which medical procedure or business strategy to adopt, despite agreeing on the

desirability of health outcomes or pro�ts. In situations such as these, majority voting can

be a useful mechanism for pooling private information. The centuries-old Condorcet (1785)

jury theorem points out that, by doing so, collective decisions can actually be extremely

well-informed.

The Condorcet model assumes that individuals are equally well-informed and that every-

one votes. In reality, expertise on any given issue varies widely, and in most cases voting is

voluntary. In an in�uential paper, Feddersen and Pesendorfer (1996) consider a voluntary

common-value election with informed and uninformed citizens. In equilibrium, uninformed

citizens strategically abstain from voting, deferring to those with better judgment; by voting,

an uninformed citizen might inadvertantly overturn an informed decision, thereby su¤ering

a "swing voter�s curse". As the authors point out, an informational incentive for abstention

might explain abstention in costless voting environments, such as roll-o¤ (i.e. voting and

abstaining in various races on the same ballot, after voting costs are sunk),1 as well as em-

pirical evidence (reviewed below in Section 2) that information and voter participation are

correlated.

Presumably, the number of experts on any issue is small relative to the number of non-

experts. If so, the logic of the swing voter�s curse implies that only a small, elete fraction

of the electorate should vote. This sharply contrasts the logic of the Condorcet jury theo-

rem that everyone should vote, since even poorly informed citizens, by voting in su¢ ciently

large numbers, can together identify the better alternative with arbitrarily high probability.

Indeed, the Feddersen-Pesendorfer (hereafter FP) model assumes that citizens are either

perfectly informed or perfectly ignorant; perturbing this even slightly can yield an equilib-

rium with 100% participation.2 That such similar informational assumptions could yield
1As a typical example of abstention and roll-o¤, Feddersen and Pesendorfer (1996) report that about

three out of six million elligible citizens voted in the 1994 Illinois gubernatorial election, but only two million

voted on a proposed amendment to the state constitution, listed on the same ballot.

Abstention is also common in small committees, even though voting is costless, usually requiring only the

raise of a hand.
2If experts comprise only 2% of an electorate, for example, then assuming that informed and uninformed
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such opposite behavioral predictions is surprising. It also begs the question of the true

relationships between information, voter participation, and election outcomes: for example,

low and declining voter turnout, along with general voter ignorance, are commonly viewed as

major societal ills, perhaps even undermining the democratic process. Furthermore, voter

participation rates in real-world elections are neither as extremely high nor as extremely

low as these and other prevailing models predict, suggesting that existing theories of voter

motivations are incomplete.

This paper provides a uni�ed framework through which to analyze the competing in-

formational incentives for voter participation. As in the FP and Condorcet models, an

unknown state of the world determines which of two alternatives will better achieve some

common objective. Individual opinions are represented by informative signals, each corre-

lated with the true state of the world, but otherwise independent of each other. The quality

of an individual�s signal depends on her level of expertise. The key assumption of this model

is that expertise is drawn from a continuous distribution, so that no one is perfectly informed

or perfectly ignorant, and no two citizens have precisely the same expertise.3 In other words,

each citizen possesses valuable private information but, with positive probability, also has

better-informed peers. The central result is that, in equilibrium, a positive fraction of the

electorate votes, and a positive fraction of the electorate abstains. In fact, illustrative ex-

amples suggest that both of these fractions are large (i.e. close to half the electorate) for a

wide variety of information distributions, even in large electorates. Equilibrium has a sim-

ple analytic characterization, and is unique if the distribution of information is su¢ ciently

smooth, facilitating welfare and comparative static analyses that are not feasible in simpler

models.

Given that voting is costless, it may seem surprising that citizens abstain, even after

receiving informative signals. The logic for this is the swing voter�s curse: if everyone voted

informatively, the better of two candidates would be more likely to win the election by a

single vote than to lose by a single vote, so one additional vote for the inferior candidate

would be more likely to change the election outcome than one additional vote for the superior

candidate. To avoid making things worse, therefore, a su¢ ciently uninformed citizen would

prefer to abstain. It may seem desirable in this case to make voting mandatory, since

voluntary elections fail to utilize nonvoters�private information. In fact, however, mandatory

voting can actually make things worse: an optimal voting mechanism would place the greatest

weight on signals of the highest quality; voluntary abstention is a crude way of accomplishing

this.

citizens can correctly identify the better of two alternatives with probabilities 0:99 and 0:51 yields a unique

equilibrium with 100% participation.
3Throughout this paper, feminine pronouns refer to voters, and masculine pronouns refer to candidates.
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As an electorate grows, so does the expected number of better-informed peers for a citizen

of any expertise. Accordingly, a citizen who was formerly indi¤erent between voting and

abstaining now prefers to abstain, and voter turnout declines. By this logic, it may seem

that citizens of every expertise level should eventually abstain; if so, only a vanishing and

increasingly elite fraction of the electorate should continue to vote. To the contrary, however,

turnout remains bounded above zero, and in fact, may be quite high. For a wide variety

of information distributions, even some citizens of below-average expertise continue to vote

in a large electorate; for these individuals, the fear of lowering average information quality

is o¤set by a desire to increase information quantity. The logic of common-value elections

implies that, while voter ignorance is commonly viewed as a threat to democracy, citizens

with relatively little expertise on a given issue actually can, by voting, improve election

outcomes. As in both the Condorcet and FP models, a large electorate will almost surely

select the candidate or alternative that is in fact superior.

Like the FP model, this model predicts a positive relationship between information and

voting, consistent with empirical evidence. On the other hand, such a relationship could

also arise in a non-strategic model. The richer information distribution in this model,

however, provides an additional implication of strategic abstention, which is that the im-

portance of information is relative, rather than absolute.4 That is, being informed, per

se, is not what leads an individual to vote; rather, what matters is being better-informed

than other members of the electorate. Consistent with this prediction, McMurray (2009)

�nds strong evidence in American National Election Studies survey data that measures of

relative information explain voter turnout better than conventional absolute measures do.

For example, whether a citizen votes or not depends less on her education level than on the

fraction of her peers whose education levels are lower than her own. The importance of

relative information might explain why voter turnout has remained constant or decreased

over time, even as education levels have risen. This model also rea¢ rms the FP prediction

that citizens abstain even when voting is costless.

The remainder of this paper is organized as follows. Section 2 begins by reviewing rel-

evant literature, and then Section 3.1 formally introduces the model that has been brie�y

described above. Sections 3.2 and 3.3 characterize equilibrium behavior in small and large

electorates, respectively, and Section 3.4 presents numerical examples. Section 3.5 analyzes

the welfare implications of voter turnout, and Section 3.6 analyzes how voter turnout re-

sponds to changes in the underlying distribution of information. Section 4 concludes, and

proofs of most analytical results are presented in the Appendix.

4The FP model includes only two information types, so that absolute and relative information quality

are the same.
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2 Literature

The ability of majority voting to aggregate private information was observed over two

centuries ago by the French mathematician Condorcet (1785), as mentioned in Section 1,

and is one of the oldest formal results in political economy. Condorcet�s original analysis

implicitly assumes that individuals vote informatively. Only recently did Austen-Smith

and Banks (1996) point out that this assumption is not innocuous: a citizen�s vote will

only in�uence her own utility in the unlikely event that her vote is pivotal, changing the

election outcome; if voting is informative, then the event in which her vote is pivotal may

carry additional information, which she should utilize in choosing her behavior. Feddersen

and Pesendorfer�s (1996) swing voter�s curse is one of the earliest applications of Austen-

Smith and Banks�insight. In a later paper, Feddersen and Pesendorfer (1998) use a similar

information structure to compare simple majority rule with unanimity rule, with application

to jury voting. Duggan and Martinelli (2001) and Meirowitz (2002) show these results

not to be robust, however, to a more generalized information structure. Mechanically,

therefore, this paper is similar to those, though the emphasis here is on abstention rather than

unanimity rule. In all of these papers, information is distributed exogenously. Martinelli

(2006, 2007) analyzes information acquisition before an election; his (2007) model may be

viewed as an earlier stage of the voting game considered here.

Empirical research has identi�ed numerous correlations between voter participation and

variables related to information. Controlling extensively for covariates, for example, Wol�n-

ger and Rosenstone (1980) �nd education to be the single best predictor of voter turnout, and

Dee (2004) and Milligan, Moretti, and Oreopoulos (2004) �nd this relationship to be causal.

In these studies, voting also increases with age. Palfrey and Poole (1987), Bartels (1996),

Degan and Merlo (2007), and Larcinese (2006) �nd turnout to be correlated with political

knowledge, and Lassen (2005) and Strate et al. (1989), respectively, show that controlling

for political knowledge reduces the explanatory power of education and age. Wattenberg,

McAllister, and Salvanto (2000) �nd political knowledge to be the most signi�cant factor

in explaining roll-o¤.5 Ashenfelter and Kelley (1975) show that voter turnout is also high

among individuals recently contacted by campaign workers and low among individuals who

have recently moved.

Attempts to understand voting behavior have been repeatedly frustrated by the inability

to explain moderate levels of turnout. For simplicity, most models simply assume full

participation. In the real world, however, many elligible voters choose to abstain. Similarly,

game theoretic models that allow abstention invariably predict extremely low voter turnout in

5Coupé and Noury (2004) �nd evidence that information also in�uences roll-o¤ by survey participants.
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equilibrium6 because, as Downs (1957) observes, the probability of casting a pivotal vote is so

miniscule in large elections that even small voting costs deter all but a tiny fraction of citizens

from voting. To rationalize voter participation, Riker and Ordeshook (1968) hypothesize that

voters enjoy ful�lling a sense of civic duty (or at least maintaining appearances), so that

voting costs are actually negative; or that perhaps voters overestimate the true probability

of casting a pivotal vote. Margolis (1982) and, more recently, Edlin, Gelman, and Kaplan

(2005), suggest instead that voters are altruistic, perceiving immense rewards for contributing

(albeit slightly) to the welfare of large numbers of people. In a similar vein, Harsanyi (1980)

and Feddersen and Sandroni (2006) posit that voters derive utility from conforming to ethical

rules, which are instituted with social welfare in mind.

With costly voting, Matsusaka (1995) explains the connection between information and

voting by pointing out that a citizen who is uncertain which of two candidates she prefers

expects a lower bene�t from voting than another who is more con�dent, and so may be

dissuaded from voting by a smaller voting cost. To avoid eliminating turnout altogether, he

adopts the Riker and Ordeshook (1968) assumption that, for some citizens, voting costs are

negative. The problem with this reasoning is that, in large electorates, Downs�(1957) logic

still implies that citizens with positive voting costs should abstain; citizens with negative

voting costs may vote, but this should not depend on information, because citizens with

negative voting costs have no reason to abstain. In particular, information should not matter

for roll-o¤; in fact, since voting costs are sunk, roll-o¤ should not occur at all. Admittedly,

by assuming that voting is costless, this paper and the FP model essentially side-step the

standard paradox of costly voting. Doing so, however, provides a uni�ed explanation for

voter abstention and roll-o¤, consistent with the empirical correlations summarized above.

It is also worth pointing out that social motivations such as duty, altruism, ethical concerns,

or desires to improve society implicitly endow voters with a common objective, by virtue of

their belonging to the same society. Thus, existing explanations for participation in costly

elections are most relavent in a common-value environment, such as this.

3 Analysis

3.1 The Model

A group of individual citizens must collectively choose between two candidates or al-

ternatives, A and B, by simple majority voting. One of the alternatives, Z 2 fA;Bg, is
designated by Nature as superior to the other; each citizen receives utility U = 1 if this alter-

6See, for example, Palfrey and Rosenthal (1983, 1985).
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native is selected and U = 0 otherwise. Letting X 2 fA;Bg denote the chosen alternative,
therefore, expected utility is given merely by the probability Pr (X = Z).

Though citizens cannot observe Z directly, it is commonly known that Z = A with

probability � = 1
2
. The precise number N of potential voters is also unknown, but is

commonly known to follow a Poisson distribution with mean �.7 For a particular realization

of N , each citizen is endowed with information quality Qi 2
�
1
2
; 1
�
, representing her level of

expertise on the issue at hand, drawn independently from a common distribution F , which

has a di¤erentiable density f that is strictly positive between 1
2
and 1. She then observes

a signal Si 2 fA;Bg that correctly identi�es Z with probability Qi � Pr (Si = AjZ = A) =

Pr (Si = BjZ = B). To the most expert agent (i.e. Qi = 1), for example, Si reveals Z

perfectly; to the least expert agent (i.e. Qi = 1
2
), Si reveals nothing. The distribution F

of quality levels is assumed to be common knowledge, while Qi and Si are observed only

privately. Signal values are independent of expertise, independent of the population size,

and (conditional on Z) independent of one another.

An individual may choose to vote (at no cost) for either candidate or to abstain. A

symmetric strategy pro�le � :
�
1
2
; 1
�
�fA;Bg ! �(fA;B; 0g) must therefore specify mixture

probabilities
�
�A; �B; �0

�
for each quality type q 2

�
1
2
; 1
�
and signal value s 2 fA;Bg, where

a vote for candidate 0 represents abstention. Let � denote the set of such strategies. Since

only pure strategies will be relevant in equilibrium, let � (q; s) = A be shorthand notation

for the mixed strategy � (q; s) = (1; 0; 0), with similar notation for pure strategies B and 0.

When � describes her opponents� behavior, an individual may respond according to

another symmetric strategy �i (de�ned, for convenience, for an individual who has not yet

observed her private information); in general, the probability of the desired election outcome

will depend on both of these strategies. �BR is thus said to be a best response to � if

�BR (q; s) maximizes

EU (�ijq; s;�) � Pr (X = Zjq; s;�; �i; )

for every (q; s) 2
�
1
2
; 1
�
�fA;Bg, and �� is a symmetric Bayesian equilibrium if it is its own

best response.

To facilitate the exposition of results, it is useful to introduce some additional notation,

which will later simplify symmetrically in equilibrium. First, given a strategy pro�le �, a

randomly chosen citizen votes for alternative x 2 fA;Bg in state z 2 fA;Bg with probability
7The technical advantages of this assumption are demonstrated by Myerson (1998, 2000) and Bade (2006).
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pxz (�), de�ned as follows:

pxA (�) =

Z 1

1=2

[q�x (q; A) + (1� q)�x (q; B)] dF (q) (1)

pxB (�) =

Z 1

1=2

[q�x (q; B) + (1� q)�x (q; A)] dF (q) . (2)

By the decomposition property of Poisson random variables (see Myerson, 1998), the

numbers NAz (�) and NBz (�) of votes for candidates A and B in state z are independent

Poisson random variables with means �pAz (�) and �pBz (�). Accordingly, the probability

of any voting outcome is merely the product of Poisson probabilities. For example, the

probability �wz (�) with which the superior candidate receives exactly w more votes than

his opponent is merely the in�nite sum of probabilities of n+w and n votes for and against

the superior candidate:8

�wA (�) =
1X

n=minf0;wg

e��pAA(�) [�pAA (�)]
n+w

(n+ w)!

e��pBA(�) [�pBA (�)]
n

n!
(3)

�wB (�) =
1X

n=minf0;wg

e��pAB(�) [�pAB (�)]
n

n!

e��pBB(�) [�pBB (�)]
n+w

(n+ w)!
. (4)

Of particular interest are the probabilities �0z (�), �1z (�), and ��1z (�) of a tie, a one-vote

win, and a one-vote loss: events in which a single additional vote would be pivotal in the

election. Speci�cally, an additional vote for the superior candidate would be pivotal when

that candidate either ties the election and loses the tie-breaking coin toss, or wins the coin

toss but loses the election by exactly one vote. The combined probability of these events is

given by Pz (�):

Pz (�) =
1

2
�0z (�) +

1

2
��1z (�) . (5)

Similarly, a vote for the inferior candidate would be pivotal with probability ~Pz (�):

~Pz (�) =
1

2
�0z (�) +

1

2
�1z (�) . (6)

3.2 Equilibrium

By the environmental equivalence property of Poisson games (see Myerson, 1998), an

individual from within the game reinterprets Nxz (�) as the number of x votes cast in state

8Note that this formulation of �wz accommodates w < 0, with the interpretation that Z loses the election

by jwj votes.
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z by her peers�by voting herself, she can add one to either candidate�s total. Accordingly,

�wz (�) re�ect the likelihood of voting outcomes if she herself abstains, and Pz (�) and ~Pz (�)

are the probabilities with which her own vote will change the election outcome, if she votes

for or against candidate Z, respectively.

In addition to anticipating the behavior of her peers, an individual must evaluate her

own beliefs about the state of the world. For a citizen of type (q; s), let � (q; s) �
Pr (Z = BjQi = q; Si = s) denote the posterior probability that B is the better candidate:

� (q; s) =

(
1� q if s = A

q if s = B
. (7)

As can be seen in (7), A and B signals lower and raise � (q; s), respectively, from the prior

of 1
2
. Agents with high Qi will have the most extreme posterior beliefs. Since f has full

support over
�
1
2
; 1
�
, � (q; s) will have full support over [0; 1]. Lemma 1 now states that the

best response to any strategy pro�le can be characterized by posterior voting thresholds,

de�ned as follows.

De�nition 1 The symmetric strategy pro�le �TA;TB is a posterior threshold strategy if there

exist thresholds TA and TB (with 1�TA � TB) such that �TA;TB (q; s) =

8><>:
A if 1� � (q; s) � TA

B if � (q; s) � TB

0 otherwise
for every (q; s) 2

�
1
2
; 1
�
� fA;Bg.

Lemma 1 �� is a best response to � only if it is a posterior threshold strategy.

Proof. See Appendix.
Given the symmetry of this model, it is natural to direct attention to the special case of

a posterior threshold strategy �T;T in which the posterior thresholds coincide. In that case,

equation (7) makes clear that voter participation depends only on q, since 1� � (q; A) � T

and � (q; B) � T are simultaneously true if and only if q � T . Thus T is merely a quality

threshold, and �T;T can be reconceived as a quality threshold �T , de�ned below. Voting

under a quality threshold strategy is sincere or informative, in the sense that a citizen votes

A or B only after receiving an A or B signal, respectively.

De�nition 2 �T is a quality threshold strategy if �T (q; s) =

(
s if q � T

0 otherwise
.
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Since a quality threshold strategy prescribes symmetric behavior in the two states of the

world, expected vote shares (1) and (2) do not depend on the state:

pAA (�T ) = pBB (�T ) =

Z 1

T

qdF (q) � p+ (�T ) (8)

pAB (�T ) = pBA (�T ) =

Z 1

T

(1� q) dF (q) � p� (�T ) . (9)

Consequently, the numbers NAA (�T ) = NBB (�T ) � N+ (�T ) and NAB (�T ) = NBA (�T ) �
N� (�T ) of votes for and against Z also have identical distributions in the two states (de-

noted by equality here), so that win and pivot probabilities (3) through (6) simplify as well:

�wA (�T ) = �wB (�T ) � �w (�T ), PA (�T ) = PB (�T ) � P (�T ), and ~PA (�T ) = ~PB (�T ) �
~P (�T ). This in turn leads to symmetric posterior thresholds TA (�T ) = TB (�T ) � TBR (�T ),

so that the best response to �T is another quality threshold strategy �TBR(�T ). By proving

the existence of a �xed point T � = TBR (�T ) of (10), Theorem 3 guarantees the existence of

a quality threshold strategy pro�le that is a symmetric Bayesian equilibrium.

Theorem 3 There exists a threshold T � strictly between 1
2
and 1 such that the quality thresh-

old strategy �T � is a symmetric Bayesian equilibrium.

Proof. See Appendix.
As the proof of Theorem 3 explains, the formula for TBR (�T ) is as follows:

TBR (�T ) �
~P (�T )

P (�T ) + ~P (�T )
. (10)

The right hand side of (10) can be interpreted as a conditional probability with which a vote

against Z is pivotal, given that a vote�either for or against Z�is pivotal at all. If a vote

against Z is much more likely to be pivotal than a vote for Z then the swing voter�s curse

is strong: only individuals with high quality information will cast votes. As Theorem 3

points out, the fact that individual opinions are more often right than wrong implies that Z

is more likely to lead by one vote than to trail by one vote, and so that an additional vote

for Z�s opponent is more likely to be pivotal than an additional vote for Z. In equilibrium,

therefore, a positive (expected) fraction of the electorate abstain.

Theorem 3 does not guarantee the uniqueness of equilibrium; in general, there may be

multiple equilibrium thresholds. Theorem 6 demonstrates uniqueness in the limit, however,

provided that the density f is log-concave. I conjecture that uniqueness for any popula-

tion size parameter would be guaranteed by a similar smoothness condition. In any case,

Theorem 4 next shows that no other equilibria exist. That is, every equilibrium can be char-

acterized by a quality threshold. If there is indeed a unique equilibrium quality threshold,

Theorem 4 implies that this is the unique symmetric Bayesian equilibrium for the game.
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Theorem 4 �� is a symmetric Bayesian equilibrium only if it is a quality threshold strategy.

Proof. See Appendix.

3.3 Large Elections

Theorems 3 and 4 in section 3.2 characterize equilibrium voting behavior for a �xed

(expected) population size �. The purpose of this section is to analyze voting behavior as

� grows large. Lemma 2 �rst shows that the swing voter�s curse intensi�es as an electorate

grows: the best response threshold increases with �. This implies that (if it is unique) the

equilibrium threshold T �� also increases with �, so that voter participation falls.
9

Lemma 2 For any T < 1, the best response threshold TBR (�T ;�) is increasing in �.

Proof. See Appendix.
The result that turnout declines as less-informed agents increasingly delegate to those

with better information is reminiscent of the original FP model, in which uninformed voters

abstain with increasing probability until, in the limit, only (perfectly) informed agents con-

tinue to vote. This begs the question of how exclusive in this model voter participation even-

tually becomes. One possible intuition is that T �� might approach one as �!1 because a

well-informed citizen votes as long as she reasonably expects to be among the best-informed

members of a small electorate, but eventually abstains as the number of better-informed

peers grows arbitrarily large. Since no one in this model possesses perfect information, this

would imply voter turnout approaching 0%.

As theorem 5 next demonstrates, however, this is not the case: T �� remains bounded below

one, so that voter turnout remains positive even in an arbitrarily large electorate. While a

citizen indeed expects a large number of extremely well-informed votes, ex ante, she bases

her behavior on the conditional expectation that a surprisingly large fraction of her peers

have simultaneously erred, thereby rendering her own vote pivotal.10 The probability of

a one-vote win continues to grow relative to the probability of a one-vote loss, but at an

ever slowing pace.11 The condition that limT!1
f 0(T )
f(T )

< 1 merely requires that f (T ) not

9When multiple thresholds support equilibria for a given �, Lemma 2 implies that the lowest and highest

of these thresholds both increase with �.
10When her vote is pivotal, a voter infers her peers to be fewer in number (i.e. low N), less well-informed

(i.e. low Q), and less accurate (i.e. high fraction Si 6= Z, given Q) than she had originally expected.
11The expected margin of victory E (N+ �N�) increases with �. By itself, this would cause a one-vote

win to become exponentially more likely than a one-vote loss. At the same time, however, the variance

V ar (N+ �N�) of possible election outcomes grows by the same factor, reducing the distinction between
the two events. Note that this would still be the case if, say, N were �xed and known, so that N+ and N�
had binomial distribution instead of Poisson.
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grow in�nite too rapidly as T ! 1, reinforcing the assumption that no one possesses perfect

information.12

Theorem 5 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence f�kg
1
k=1 of population parameters such that �k ! 1, and let T �1 be a limit point ofn

T ��k

o1
k=1
. If limT!1

f 0(T )
f(T )

<1 then T �1 < 1.

Proof. See Appendix.
The �nal theorem of this section states that the limiting quality threshold T �1 is unique,

provided only that the density f is log-concave (i.e. log (f) is concave or, equivalently, f
0

f

is decreasing), as is true for many of the most common distributions.13 As the proof of

Theorem 6 makes clear, log-concavity is actually a stronger condition than necessary: T �1
may easily be unique, for example, if F is bimodal, though f is not log-concave in that case.

What is important for uniqueness is that f not have sudden "spikes" of probability, which

log-concavity rules out. The uniqueness of T �1 does not by itself imply a unique T
�
� for even

large �, but it does imply that participation thresholds converge to T �1, so that turnout in

a large electorate is uniqueely determined.

Theorem 6 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence f�kg
1
k=1 of population parameters such that �k ! 1. If f is log-concave thenn

T ��k

o1
k=1

approaches a unique limit T �1 < 1.

Proof. See Appendix.

3.4 Examples

The asymptotic uniqueness of the equilibrium quality threshold implies that voter par-

ticipation in large electorates is completely determined by the underlying distribution F of

information. Furthermore, equation (39) in the proof of Theorem 5 provides a simple for-

mula for determining T �1 for a given distribution function, either analytically or numerically.

This allows us to generate precise examples of equilibrium behavior, using simple distribution

functions. Figure 1 displays three such examples. After computing the limiting equilibrium

quality threshold T �1, voter participation is simply given by the survival function �F � 1�F ,
evaluated at T �.

12If limT!1
f 0(T )
f(T ) =1 then all higher-order derivatives are unbounded as T ! 1.

13Bagnoli and Bergstrom (2005) show the following distributions to have log-concave densities: uniform,

normal, logistic, extreme value, chi-squared, chi, exponential, Laplace, Weibull (for some parameter values),

power function, gamma, and beta. Also, any truncation, linear transformation, or mirror-image of a log-

concave density is log-concave.
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Figure 1: Participation thresholds and turnout rates for simple information distributions

If information quality is distributed uniformly between 1
2
and 1, as in the �rst frame of

Figure 1, then T �1 = 0:71, implying that the best-informed 59% of citizens vote. If the

distribution of information is skewed so that experts are outnumbered by non-experts, as

in the second frame of Figure 1, then the quality threshold falls to T �1 = 0:64 and turnout

falls to 59%. If, as in the third frame of Figure 1, even the most expert members of society

have only 51% accurate information, the best-informed 56% of the electorate will vote in

equilibrium.

Theorem 5 in the previous section states that the equilibrium quality threshold remains

bounded, so that turnout remains positive even in a large electorate. Strictly speaking,

however, this guarantees only that the turnout rate exceeds some positive fraction " > 0

of the electorate, leaving open the theoretical possibility that turnout is essentially zero in

large elections. The examples in Figure 1 demonstrate, however, that turnout may remain

remarkably high: for each of the example distributions, even citizens with below-average

information quality continue to vote, so that predicted turnout exceeds 50% of the electorate.

As discussed in the Introduction, this level of voter turnout is unusual in strategic voting

models, which often predict extremely high or low voter participation.

3.5 Welfare and Election Design

By the logic of the original Condorcet model, equilibrium (i.e. informative) voting by a

large electorate almost certainly elects the superior candidate (i.e. lim�!1 Pr (X = Zj�T � ;�) =
1). On the other hand, one central message of the original Condorcet jury theorem is that

election decisions are best made by utilizing the independent information of as many voters

13



as possible, even if that information is of low quality; by failing to utilize nonvoters�valu-

able information, equilibrium voting in this model is in one sense ine¢ cient. This begs the

question of whether voting should be made compulsory, as it is in a number of democracies

(e.g. Australia and several Latin American countries), and as has been recommended for

the United States (e.g. Lijphart, 1997). In answer, however, corollary 7 states that the

socially optimal threshold strategy is in an equilibrium, which, as the proofs of theorems 3

and 4 explain, necessarily involves some voter abstention.14 Thus, adding votes beyond the

equilibrium level may actually reduce welfare, rather than enhance it.

Corollary 7 Let �o � argmax�2� Pr (X = Zj�) denote the optimal voting strategy. Then
1. �o is a symmetric Bayesian equilibrium, and can be characterized by an equilibrium

threshold T � 2
�
1
2
; 1
�
.

2. Pr (X = Zj�o) > Pr
�
X = Zj� 1

2

�
.

Proof. First, it is important to demonstrate that �o is well-de�ned. This is guaranteed by
theWeierstrass extreme value theorem because welfare Pr (X = Zj�) is a continuous function
of � on the compact set � =

�
� :
�
1
2
; 1
�
� fA;Bg ! �(fA;B; 0g)

	
of symmetric strategies

(under the sup norm topology). In a common interest game such as this, social welfare

and private utility are identical; as McLennan (1998) shows, this implies that the social

optimum is also individually optimal, and thus constitutes an equilibrium. By Theorem

4, an equilibrium can be characterized by a quality threshold T �. This establishes part 1.

Part 2 follows simply because, as the proof of Theorem 3 shows, � 1
2
is not an equilibrium,

and so must be inferior to �o.

It may seem surprising that adding informative votes can reduce the quality of an election

outcome. One way to understand this is that voters actually possess two pieces of private

information: Si and Qi. An ideal election mechanism would obtain both, and would weight

individual votes by their underlying quality.15 A compulsory election collects a larger number

of signals than a voluntary election, but must weigh them equally; in a voluntary election,

the decision to vote conveys information about Qi, allowing greater weight on high-quality

than on low-quality signals (i.e. positive instead of zero weight).16

14The result from Theorem 6 that equilibrium turnout approaches a unique limit implies that, in large

electorates, the equilibrium level of turnout is arbitrarily close to the social optimum.
15Shapley and Grofman (1984) show that the optimal use of information would be a maximum likelihood

approach. A similar mechanism that is more common is scoring, as in art and athletic competitions. When

a judge is unable to distinguish between contestants, she can award similar scores, essentially delegating to

the other judges.
16In a model similar to this, Krishna and Morgan (2008) likewise conclude that mandatory voting can

lower welfare, but for a di¤erent reason. In their model, the accuracy of private information is asymmetric
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Corollary 7 formally demonstrates the social bene�t of voter abstention. Informally,

popular literature has long denounced uninformed voting, calling for poorly informed citizens

to stay home on election day, leaving elections to those who are better informed. Lijphart

(1997) notes that this was even codi�ed at the turn of the twentieth century in Belgium, where

educated citizens were allowed to cast multiple votes in public elections. The examples in

section 3.4, however, show that socially optimal (i.e. equilibrium) voter participation extends

strikingly far down the information distribution, including many who are by all standards

non-experts. Thus, e¤orts to in�uence voter turnout should seek neither of the extremes of

full and exclusive voter participation.

3.6 Comparative Statics

By Theorem 6, equilibrium behavior in a large electorate is uniquely determined by the

underlying information distribution F . This, in turn, is determined by factors that may vary

both regionally and over time, such as voters�education or experience levels, and access to

information technology. Accordingly, I denote in this section the limiting equilibrium quality

threshold and its associated level of voter turnout by T F1 and �F
�
T F1
�
for a given distribution

function F , and compare these with TG1 and �G
�
TG1
�
of an alternative distribution G.

Proposition 1 �rst analyzes a general improvement in information quality. G is said

to �rst-order stochastically dominate F (denoted G �1 F ) if, for any quality level q, the
fraction of citizens with information quality better than q is higher under G than under F

(i.e. �G (q) � �F (q) for all q). In general, moving from F to G has two opposite e¤ects:

turnout increases as nonvoters are lifted above the participation threshold, but decreases as

improved voter information strengthens the swing voter�s curse. Which of these two e¤ects

dominates depends primarily on whose information quality improves most, as Proposition

1 delineates: (1) below T �1, small information improvements have no e¤ect because citizens

do not vote; (2) above T �1, information improvements lower turnout by strengthening the

swing voter�s curse; (3) moderate improvements in nonvoters�information increase turnout,

both directly by pushing nonvoters above T �1 and by (lowering the average vote quality,

thereby) weakening the swing voter�s curse.17 These three e¤ects are illustrated in Figure

2, starting from a uniform distribution. Note that, regardless of its e¤ect on turnout,

with respect to the state (i.e. A signals are more reliable than B signals). When abstention is allowed,

voters compensate for this by abstaining in di¤erent proportions in response to the two signals. When

abstention is not allowed, they instead compensate by voting uninformatively (with some probability), with

the consequence that less information is revealed and welfare is reduced.
17Symmetrically, information reductions below T have no e¤ect, small reductions above T increase turnout,

and moderate reductions above T reduce turnout.
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Figure 2: When information improves for di¤erent segments of the electorate, turnout may

remain the same, decrease, or increase

improving information quality can only improve social welfare.18

Proposition 1 Let F and G be continuous, log-concave distributions with strictly positive

densities, and suppose G �1 F . Then the following must be true:
1. If G (q) = F (q) for all q � T F1 then TG1 = T F1 and �G

�
TG1
�
= �F

�
T F1
�
.

2. If G (q) = F (q) for all q � T F1 then TG1 � T F1 and �G
�
TG1
�
� �F

�
T F1
�
.

3. If G (q) = F (q) for all q � EF
�
QjQ � T F1

�
and �G

�
T F1
�
� �F

�
T F1
�
then TG1 � T F1

and �G
�
TG1
�
� �F

�
T F1
�
.

Proof. See Appendix.
Proposition 1 considers the case in which one electorate is better informed than another.

Proposition 2 considers a second possibility, which is that one population is more homoge-

neous than the other. G and F are said to satisfy the single-crossing property (denoted

G �sc F ) if there exists q̂ 2
�
1
2
; 1
�
such that F (q) � G (q) for all q � q̂ and F (q) � G (q)

for all q � q̂. When F and G share a common mean, the single-crossing property implies

that G has a smaller variance than F .19 In that case, (as long as G crosses F above T F1)

Proposition 2 states that turnout is higher under G than under F , as illustrated in Figure

3. Intuitively, this is because the swing voter�s curse is weak when the quality di¤erence

between informed and uninformed votes is small; the most extreme case is the Condorcet

model, in which voters are identical and turnout is 100%.

Proposition 2 Let F and G be continuous, log-concave distributions with strictly positive

densities and a common mean, such that G crosses F at q̂. If T F1 � q̂ then TG1 � T F1 and
�G
�
TG1
�
� �F

�
T F1
�
.

Proof. See Appendix.

18The direct e¤ect of improving information quality is to improve election accuracy; in this common value

environment, any strategic response to improved information only improves welfare further.
19For distributions with a common mean, the single-crossing property is stronger than (i.e. implies)

second-order stochastic dominance, but weaker than (i.e. is implied by) �rst-order stochastic dominance.
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Figure 3: A mean-preserving decrease in the variance of information quality raises turnout.

4 Conclusion

The in�uential models of Condorcet (1785) and Feddersen and Pesendorfer (1996) predict

opposite reactions to imperfect information: in the FP model, poorly informed citizens

abstain from voting, deferring to informed voters and thereby avoiding the swing voter�s

curse; in the Condorcet model, poorly informed citizens vote in as large numbers as possible.

By allowing a more general distribution of expertise, this papers blends the above models to

unify the analysis of information and voting. In equilibrium, competing incentives balance

so that citizens both vote and abstain, above and below an information threshold. Even in

large electorates, this threshold is bounded such that the fractions of citizens who continue

to vote and abstain remain substantial.

Like the FP model, this model�s equilibrium structure is consistent with extensive em-

pirical evidence that information is a central determinant of voter participation. If citizens

possess expertise only on certain issues, it may also explain the common phenomenon of

roll-o¤, by which citizens vote and abstain on the same ballot. Assuming that expertise

is correlated accross issues, it is also consistent with empirical evidence that information

reduces roll-o¤. Standard voting models fail to explain roll-o¤, since costless voting en-

vironments give citizens no reason to abstain. They invariably predict either extremely

high or extremely low voter participation, in contrast with the moderate turnout observed

in actual elections. In such models, information should matter only when voting is costly.

The general information structure in this model enables analysis of the impact on voter

turnout and welfare of changes to the underlying distribution of information. This is im-

possible in simpler models that allow only one or two information levels. The generalized

information structure also highlights an implication of strategic abstention that is not ap-

parent in simpler models. That is, in deciding whether to vote or abstain, a citizen must

consider not only her own expertise, but also the expertise of others in the electorate, who

will make the collective decision without her if she abstains. In other words, the importance

of information for voting is relative, rather than absolute. Consistent with this prediction,

McMurray (2009) �nds evidence in American National Election Studies data that citizens

with well-informed peers are less likely to vote, both in general elections and in presidential
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primaries. Among those who vote in the presidential election, those with well-informed

peers are also less likely to participate in senate or gubernatorial races on the same ballot.

Voter abstention and ignorance are commonly viewed as major threats to democracy.

The �rst of these concerns can be justi�ed by the Condorcet jury theorem, since election

decisions are best made by incorporating as much private information as possible, suggesting

a useful role for get-out-the-vote e¤orts, or even mandatory voting laws. The concern of

voter ignorance can be justi�ed by the swing voter�s curse, since uninformed citizens might

inadvertantly overturn an informed collective decision. As discussed in Section 3.5, however,

the logic of common values implies that the socially optimal level of voter participation is

achieved in equilibrium. Voluntary abstention, therefore, can actually improve election

outcomes, by placing greater weight on higher quality signals. At the same time, election

results can be improved even by votes from citizens with relatively little expertise. E¤orts

to reduce voting costs or improve voter information can improve welfare, but are unlikely to

eliminate voter abstention, and may even reduce voter turnout. Voter participation per se

is therefore less useful as an indication of the quality of election outcomes than is commonly

believed.

A Proofs

Whenever meaning is clear in the following notation, I supress the argument (�) from

pxz, �wz, Pz, ~Pz, TA, TB, �̂BA, �̂B0, and �̂A0.

Lemma 1 �� is a best response to � only if it is a posterior threshold strategy.

Proof. In state B, a vote for B (the superior candidate) is pivotal with probability PB (�),

and yields a utility bene�t of +1. In state A, a vote for B (the inferior candidate) is pivotal

with probability ~PA (�), and yields a utility penalty of �1. For an individual with private
information (q; s), therefore, the expected bene�t of voting for candidate B is given by the

following di¤erence:

EU (Bjq; s;�)� EU (0jq; s;�) = � (q; s)PB (�)� (1� � (q; s)) ~PA (�) ,

which is positive if and only if � (q; s) � ~PA(�)

PB(�)+ ~PA(�)
� �̂B0 (�). By similar calculations,

the expected bene�t EU (Ajq; s;�) � EU (0jq; s;�) of voting for A is positive if and only if
� (q; s) � PA(�)

PA(�)+ ~PB(�)
� �̂A0 (�), and the expected bene�t EU (Bjq; s;�)� EU (Ajq; s;�) of

voting B instead of A is positive if and only if � (q; s) � PA(�)+ ~PA(�)

PA(�)+ ~PA(�)+PB(�)+ ~PB(�)
� �̂BA (�).

Algebraically, it must be that either �̂B0 (�) � �̂BA (�) � �̂A0 (�), or else that �̂A0 (�) �
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�̂BA (�) � �̂B0 (�). In the �rst case, no agent prefers to abstain, so the best response to �

can be characterized by posterior thresholds TA (�) = 1� �̂BA (�) and TB (�) = �̂BA (�). In

the second case, abstention is preferable to voting for � (q; s) between �̂A0 (�) and �̂B0 (�),

so TA (�) = 1� �̂A0 (�) and TB (�) = �̂B0 (�) characterize the best response.

Theorem 8 There exists a threshold T � strictly between 1
2
and 1 such that the quality thresh-

old strategy �T � is a symmetric Bayesian equilibrium.

Proof. SinceQi � 1
2
by assumption, equations (8) and (9) make clear that p+ (�T ) > p� (�T )

for any T < 1, which implies that �1 (�T ) > ��1 (�T ), and therefore that P (�T ) < ~P (�T ).

The proof of Lemma 1 characterizes best response posterior thresholds using ratios which, for

a quality threshold strategy �T , simplify to the following: �̂A0 (�T ) =
P (�T )

P (�T )+ ~P (�T )
, �̂B0 (�T ) =

~P (�T )

P (�T )+ ~P (�T )
, and �̂BA (�T ) =

1
2
. P (�T ) < ~P (�T ) implies that �̂A0 (�T ) < �̂BA (�T ) <

�̂B0 (�T ), so that the best response is characterized by TBR (�T ) = �̂B0 (�T ), consistent with

(10). It also implies that TBR (�T ) � 1
2
for any T � 1, with strict inequality whenever

T < 1. In particular, TBR
�
1
2

�
> 1

2
and TBR (1) < 1. Since TBR (�T ) is also continuous in

T , the existence of a �xed point T � = TBR (�T ) strictly between 1
2
and 1 follows from the

intermediate value theorem.

Lemmas A1 through A3 are useful in preparation for the proof of Theorem 4.

Lemma A1 A posterior threshold strategy with no abstention (i.e. �TA;TB with 1�TA = TB)

is not a symmetric Bayesian equilibrium.

Proof. As the proof of Lemma 1 explains, a best response will include some abstention
if �̂A0 < �̂B0 or, equivalently, if ~PA ~PB > PAPB. As shown below, this inequality holds

for �TA;TB with 1 � TA = TB > 1
2
, implying that �TA;TB is not its own best response. If

TA = 1�TB > 1
2
then a symmetric argument applies, and TA = 1�TB = 1

2
only if �� = �1=2,

which is shown not to be an equilibrium in the proof of Theorem 3.

When 1�TA = TB, well-informed citizens vote informatively and poorly-informed citizens

merely vote A. In this case, expressions for pxz reduce from (1) and (2), as follows:

pAA = F (TB) +
R 1
TB
qdF (q) pBA =

R 1
TB
(1� q) dF (q)

pAB = F (TB) +
R 1
TB
(1� q) dF (q) pBB =

R 1
TB
qdF (q).

(11)
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These expressions, together with (1) through (6), imply the following:

~PA ~PB � PAPB

=
1

2
(�0A + �1A)

1

2
(�0B + �1B)�

1

2
(�0A + ��1A)

1

2
(�0B + ��1B)

=
1

4

1X
j=0

1X
k=0

e���2j+2k

j!k!
pjAAp

j
BAp

k
ABp

k
BB

��
1 +

�pAA
j + 1

��
1 +

�pBB
k + 1

�
�
�
1 +

�pBA
j + 1

��
1 +

�pAB
k + 1

��

=
e��

4

1X
j=0

1X
k=0

�2j+2k

j!k!
pjAAp

j
BAp

k
ABp

k
BB

�
� (pAA � pBA)

j + 1
� � (pAB � pBB)

k + 1
+
�2 (pAApBB � pBApAB)

(j + 1) (k + 1)

�

>
e��

4

1X
j=0

1X
k=0

�2j+2k+1

j!k!
pjAAp

j
BAp

k
ABp

k
BB

�
F (TB)

j + 1
� F (TB)

k + 1

�

=
e��

4
F (TB)

" 1X
j=0

1X
k=j+1

�2j+2k+1pjAAp
j
BAp

k
ABp

k
BB

(j + 1)! (k + 1)!
(k � j) +

1X
k=0

1X
j=k+1

�2j+2k+1pjAAp
j
BAp

k
ABp

k
BB

(j + 1)! (k + 1)!
(k � j)

#

=
e��

4
F (TB)

1X
j=0

1X
k=j+1

�2j+2k+1

(j + 1)! (k + 1)!

�
pjAAp

j
BAp

k
ABp

k
BB � pkAAp

k
BAp

j
ABp

j
BB

�
(k � j)

=
e��

4
F (TB)

1X
j=0

1X
k=j+1

�2j+2k+1pjAAp
j
BAp

j
ABp

j
BB

(j + 1)! (k + 1)!

�
pk�jAB p

k�j
BB � pk�jAA p

k�j
BA

�
(k � j)

> 0.

Lemma A2 If TBR (�T ) � T then @
@T
TBR (�T ) � 0.

Proof. For notational brevity, let  k (�T ) denote the probability of precisely k votes for Z
and k votes for his opponent, given the quality threshold strategy �T ,

 k �
e��p+ (�p+)

k

k!

e��p� (�p�)
k

k!
=
�2k

k!k!
e��(p++p�) (p+p�)

k , (12)

so that win probabilities can be rewritten as, �0 =
P1

k=0  k, �1 =
P1

k=0  k
�p+
k+1
, and �w =P1

k=0  k
�p�
k+1
. Also, noting that �1 =

p+
p�
��1, de�ne the ratio  as follows, so that �1 = �0p+

and ��1 = �0p�:

 � 1

p+

�1
�0
=
1

p�

��1
�0
. (13)

Then the best response quality threshold function TBR (�T ) �
~P

P+ ~P
can be written in terms

of , and di¤erentiated, as follows:

TBR (�T ) =
1
2
(�0 + �0p+)

1
2
(�0 + �0p�) +

1
2
(�0 + �0p+)

=
1 + p+

2 + p� + p+
. (14)
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Now let primed variables denote derivatives with respect to the underlying quality thresh-

old T (e.g. T 0BR � @
@T
TBR (�T )). The derivative T 0BR depends on the derivatives of all the

variables de�ned earlier, which can be expressed as follows:

p0+ = �Tf (15)

p0� = � (1� T ) f (16)

 0k =  k (�f + kG) (17)

�00 =
X1

k=0
 k (�f + kG) (18)

�01 =
X1

k=0

�

k + 1

�
 0kp+ +  kp

0
+

�
(19)

�0�1 =
X1

k=0

�

k + 1

�
 0kp� +  kp

0
�
�

(20)

0 =
A1

(p+�0)
2 (21)

P 0 =
1

2

�
�00 + �0�1

�
(22)

~P 0 =
1

2
(�00 + �01) (23)

T 0BR =
A2

(2 + p� + p+)
2 (24)

where G =
p0+
p+
+

p0�
p�
in (17) and the numerators A1 and A2 in (21) and (24) are given by the

following:

A1 � �01 (p+�0)� �1
�
p0+�0 + p+�

0
0

�
= p+�0�

0
1 � p0+�0�1 � p+�

0
0�1

= p+

1X
j=0

 j

1X
k=0

�

k + 1

�
 0kp+ +  kp

0
+

�
� p0+

1X
j=0

 j

1X
k=0

 k
�p+
k + 1

� p+

1X
j=0

 0j

1X
k=0

 k
p+�

k + 1

=

1X
j=0

1X
k=0

 j k (�f + kG)
p2+�

k + 1
�

1X
j=0

1X
k=0

 j k (�f + jG)
p2+�

k + 1

= p2+�G

1X
j=0

1X
k=0

 j k (k � j)
1

k + 1
. (25)
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A2 =
�
0p+ + p0+

�
(2 + p� + p+)� (1 + p+)

�
0p+ + p0+ + 0p� + p0�

�
=

�
0p+ + p0+

�
(1 + p�)� (1 + p+)

�
0p� + p0�

�
= p0+ (1 + p�)� (1 + p+) p0� + 0 (p+ � p�)

= �Tf 2
�0
P +  (1� T ) f

2

�0
~P + 0 (p+ � p�)

= f
2

�0

�
P + ~P

� ~P

P + ~P
� T

!
+ 0 (p+ � p�) (26)

From (8) and (9) note that p0+ < p0� < 0 for any T < 1, implying that G < 0. Without

the fraction 1
k+1
, the double sum in (25) would equal zero: though  j k (k � j) is positive

whenever k > j, the term with reversed indexes is negative and of equal magnitude. Dividing

by k + 1 places greater weight on negative than positive terms, so the double sum must be

negative; since G is also negative, the sign of A1, and therefore of 0, must therefore be

positive. The second term of the sum in (26) is positive since 0 is positive; when ~P
P+ ~P

� T ,

the �rst term is positive as well, implying as desired that T 0BR > 0.

Lemma A3 Let �TA;TB be a posterior threshold strategy pro�le, with thresholds TA; TB 2�
1
2
; 1
�
. Then the following must be true:

1. If TA > TB then �̂B0 (�TA;TB) > TBR (�TA) and �̂A0 (�TA;TB) < TBR (�TB)

2. If TA < TB then �̂B0 (�TA;TB) < TBR (�TA) and �̂A0 (�TA;TB) > TBR (�TB)

where TBR (�T ) is the best response threshold to the quality threshold strategy �T .

Proof. Under �TA;TB , (1) and (2) simplify to the following:

pAA =

Z 1

TA

qdF (q) (27)

pAB =

Z 1

TA

(1� q) dF (q) (28)

pBA =

Z 1

TB

(1� q) dF (q) (29)

pBB =

Z 1

TB

qdF (q) (30)

For the closely-related quality threshold strategy �TA, the corresponding probabilities are

given by (27) and (28) alone: pAA (�TA) = pBB (�TA) = pAA and pAB (�TA) = pBA (�TA) =

pAB. Similarly, the probabilities for �TB are given by (30) and (29) alone: pAA (�TB) =

pBB (�TB) = pBB and pAB (�TB) = pBA (�TB) = pBA.
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An equivalent condition to �̂B0 (�TA;TB) > TBR (�TA) is that ~PA (�TA;TB)PB (�TA) >
~PA (�TA)PB (�TA;TB). When TA > TB, this inequality must hold, as can be seen below:

~PA (�TA;TB)PB (�TA)� ~PA (�TA)PB (�TA;TB) (31)

=
1

4

1X
j=0

�2je��(pAA+pBA)

j!j!
pjAAp

j
BA

�
1 +

�pAA
j + 1

� 1X
k=0

�2ke��(pAB+pAA)

k!k!
pkABp

k
AA

�
1 +

�pAB
k + 1

�

�1
4

1X
j=0

�2je��(pAA+pAB)

j!j!
pjAAp

j
AB

�
1 +

�pAA
j + 1

� 1X
k=0

�2ke��(pAB+pBB)

k!k!
pkABp

k
BB

�
1 +

�pAB
k + 1

�

>
e��(2pAA+pBA+pAB)

4

1X
j=0

1X
k=0

�2j+2kpjAAp
j
BAp

k
ABp

k
AA

j!j!k!k!

�
1 +

�pAA
k + 1

��
1 +

�pAB
j + 1

�"
1�

�
pAB
pBA

�j �
pBB
pAA

�k#
(32)

Whenever j � k, the �nal product in (32) is less than one, so that the bracketed di¤erence

is positive.20 For any negative term, therefore, it must be that j > k; in that case, the

corresponding (k; j) term has otherwise equal magnitude, but receives greater weight (i.e.

(pBApAA)
j (pAApAB)

k instead of (pBApAA)
k (pAApAB)

j). Thus the sign of (31) is positive.

A symmetric derivation reveals that TA > TB also implies that ~PB (�TA;TB)PA (�TB) <
~PB (�TB)PA (�TA;TB) or, equivalently, that �̂A0 < TBR (�TB), establishing part 1. Part 2

follows from identical reasoning, for the case in which TA < TB.

Theorem 4 �� is a symmetric Bayesian equilibrium only if it is a quality threshold strategy.

Proof. If �� is a symmetric Bayesian equilibrium then Lemma 1 �� = �TB ;TB is a posterior

threshold strategy for appropriate choice of TA and TB. Lemma A1 shows that 1 � TA <

TB, implying that abstention is positive in equilibrium. The proof of Lemma 1 therefore

characterizes the best response to �� by the posterior thresholds TA (��) = �̂A0 (�
�) and

TB (�
�) = �̂B0 (�

�).

I next claim that TA; TB > 1
2
, implying that voting is sincere or informative in the sense

that citizens vote A and B only in response to A and B signals, respectively. This is because

TA <
1
2
(i.e. 1

2
< 1 � TA < TB) would imply that individuals who receive B signals vote B

only if they are su¢ ciently well-informed (i.e. q � TB), while those who are poorly informed

(i.e. q � 1 � TB), together with everyone who receive A signals, instead vote A. In that

20This can be easily seen by rewriting the �nal term of the di¤erence as�
pAB
pBA

�k �
pBB
pAA

�j
=

�
pAB
pBA

�k�j �
pABpBB
pBApAA

�j
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case, (1) and (2) simplify to

pAA = F (1� TA) +

Z 1

TA

qdF (q) pBA =

Z 1

TB

(1� q) dF (q)

pAB = F (1� TA) +

Z 1

TA

(1� q) dF (q) pBB =

Z 1

TB

qdF (q),
(33)

implying that �0B > �0A and �1B > ��1A, and therefore that ~PB > PA and TA (�TA;TB) >
1
2
.

By symmetric reasoning, TB < 1
2
would imply that TB (�TA;TB) >

1
2
.

The �nal step of this proof is to show that TA = TB; in other words, �� can be character-

ized by a single quality threshold. The logic of this step is to suppose by way of contradiction

that TA > TB, and then (using Lemmas A3 and A2) compare the best responses to �TA;TB
and to the closely-related quality threshold strategies �TA and �TB (symmetric reasoning

applies, of course, if instead TA < TB). There are three relevant cases to consider:

Case 1: TBR (�TB) � TB. In this case, by Lemma A3, �̂A0 < TBR (�TB) � TB < TA, so

�TA;TB is not an equilibrium.

If TBR (�TB) > TB then, since TBR (�1) = 1
2
, there exists (by the Intermediate Value

Theorem) an equilibrium with a participation threshold strictly greater than TB. Let T �

denote this threshold�or, if there are more than one such equilibria, let T � denote the lowest

equilibrium threshold (i.e. the threshold closest to TB). This threshold distinguishes the

remaining two cases.

Case 2: TBR (�TB) > TB and TA � T �. By Lemma A2, TBR (�T ) is increasing between

TB and T �, which implies that TBR (�TB) < TBR (�T ) = T �. By Lemma A3, this implies

that �̂A0 < TBR (�TB) < T � � TA, so �TA;TB is not an equilibrium.

Case 3: TBR (�TB) > TB and TA < T �. Since TA 2 [TB; T
�], an interval in which

(by Lemma A2) TBR is increasing, TBR (�TA) > TBR (�TB). Lemma A3 then implies that

�̂B0 > TBR (�TA) > TBR (�TB) > TB, again implying that �TA;TB is not an equilibrium.

Proposition 2 For any T < 1, the best response threshold TBR (�T ;�) is increasing in �.

Proof. Vote probabilities p+ and p� do not depend on �. For a �xed threshold T , the

probability  k from (12) that each candidate receives k votes depends only on �. The same

is true, therefore, of win and pivot probabilities �w, P , and ~P . Di¤erentiate  k and �w with
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respect to �, as follows:

@ k
@�

=
(p+p�)

k

k!k!

�
2k�2k�1e��(p++p�) � (p+ + p�)�

2ke��(p++p�)
�

=  k

�
2k

�
� (p+ + p�)

�
(34)

@�0
@�

=
1X
k=0

 k

�
2k

�
� (p+ + p�)

�
(35)

@�1
@�

=

1X
k=0

�
@ k
@�

�p+
k + 1

+  k
p+
k + 1

�
=

1X
k=0

 k

��
2k

�
� (p+ + p�)

�
�p+
k + 1

+
p+
k + 1

�
(36)

@��1
@�

=
1X
k=0

�
@ k
@�

�p�
k + 1

+  k
p�
k + 1

�
=

1X
k=0

 k

��
2k

�
� (p+ + p�)

�
�p�
k + 1

+
p�
k + 1

�
(37)

From these, di¤erentiate the ratio ~P
P
of pivot probabilities by the quotient rule:

@

@�

~P

P
=
1

P 2

 
P
@ ~P

@�
� ~P

@P

@�

!
(38)

where P @ ~P
@�
is given by

P
@ ~P

@�
=

1

4
(�0 + ��1)

�
@�0
@�

+
@�1
@�

�
=

1

4

1X
j=0

 j

�
1 +

�p�
j + 1

� 1X
k=0

 k

��
2k

�
� (p+ + p�)

��
1 +

�p+
k + 1

�
+

p+
k + 1

�

=
1

4

1X
j=0

1X
k=0

 j k ���
2k

�
� (p+ + p�)

��
1 +

�p�
j + 1

��
1 +

�p+
k + 1

�
+

p+
k + 1

+ �
p�
j + 1

p+
k + 1

�
and similarly ~P @P

@�
is given by

~P
@P

@�
=

1

4

1X
j=0

1X
k=0

 j k ���
2k

�
� (p� + p+)

��
1 +

�p+
j + 1

��
1 +

�p_

k + 1

�
+

p_

k + 1
+ �

p+
j + 1

p_

k + 1

�
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The parenthesis term P @ ~P
@�
� ~P @P

@�
from (38) then simpli�es to

P
@ ~P

@�
� ~P

@P

@�
=

1X
j=0

1X
k=0

 j k
(p+ � p�)

k + 1

=
1X
j=0

 j

" 1X
k=0

 k
p+
k + 1

�
1X
k=0

 k
p�
k + 1

#

= �0
1

�
(�1 � ��1)

which is positive since �1 > ��1 and �0 > 0. Thus @
@�

~P
P
> 0, and therefore @

@�

�
~P

P+ ~P

�
> 0,

which is equivalent to the desired result.

Theorem 5 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence �k of population parameters such that �k ! 1 as k ! 1, and let T �1 be a limit

point of
n
T ��k

o1
k=1
. Then T �1 < 1.

Proof. For any T < 1, Myerson (2000) derives the limiting ratio of pivot probabilities

lim�!1
~P
P
=

p
p+p
p�
as merely the ratio of square roots of the expected vote shares of the two

candidates. This implies that the best response threshold TBR (�T ;�) approaches L (T ),

de�ned as follows:

L (T ) =

p
E (QjQ � T )p

E (QjQ � T ) +
p
1� E (QjQ � T )

, (39)

where E (QjQ � T ) is the average information quality of agents above the voting threshold

T . Since T ��k is a �xed point of TBR (�T ;�k) for every �k, a limit point of
n
T ��k

o1
k=1

must

be a �xed point of L (T ). Equivalently, it must be that E (QjQ � T ) = T 2

T 2+(1�T )2 � � (T ).
As Figure 4 illustrates, both E (QjQ � T ) and � (T ) increase to E (QjQ � 1) = � (1) = 1.

As T ! 1, however, the slope of � (T ) approaches zero while the slope of E (QjQ � T )

approaches 1
2
(or greater, as demonstrated below). Thus, for T su¢ ciently close to one,

E (QjQ � T ) < � (T ) or, equivalently, L (T ) < T . If it were the case that T ��k ! 1, there

would be a k su¢ ciently high that T ��k > L
�
T ��k

�
or, equivalently, that TBR

�
�T ��k ;�k

�
>

L
�
T ��k

�
, which cannot be since (by Lemma 2) L is an upper bound on TBR (�T � ;�).

To see that limT!1
@
@T
E (QjQ � T ) � 1

2
, di¤erentiate E (QjQ � T ) using the quotient

rule:
@

@T
E (QjQ � T ) =

�Tf (1� F ) + p+f

(1� F )2
= h [E (QjQ � T )� T ] , (40)
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Figure 4: M (T ) is convex and then concave, with slope approaching 1
2
as T ! 1, and so must

intersect � (T ) exactly once. This implies the existence of a unique �xed point T = L (T ) of

the limiting best response function, and therefore a unique equilibrium in a large electorate.

where h (T ) = f(T )
1�F (T ) is the hazard function of F , with derivative given by h

0 = f 0(1�F )+f2
(1�F )2 =

h
�
f 0

f
+ h
�
. If limT!1 f (T ) =1 then limT!1

h0

h2
= limT!1

1
h
f 0

f
+ 1 = 1, so L�Hospital�s rule

applied to equation (40) yields

lim
T!1

@

@T
E (QjQ � T ) = lim

T!1

@
@T
E (QjQ � T )� 1

�h0=h2

= 1� lim
T!1

@

@T
E (QjQ � T ) .

If limT!1 f (T ) <1 then L�Hospital�s rule instead implies:

lim
T!1

@

@T
E (QjQ � T ) = lim

T!1

f 0 [E (QjQ � T )� T ] + f
�
@
@T
E (QjQ � T )� 1

�
�f

= lim
T!1

�
1� @

@T
E (QjQ � T )� f 0

f
[E (QjQ � T )� T ]

�
� 1� lim

T!1

@

@T
E (QjQ � T ) .

In either case, limT!1
@
@T
E (QjQ � T ) � 1

2
(with equality if limT!1 f (T ) > 0).

Theorem 6 Let
n
T ��k

o1
k=1

be a sequence of equilibrium participation thresholds for a se-

quence f�kg
1
k=1 of population parameters such that �k ! 1. If f is log-concave thenn

T ��k

o1
k=1

approaches a unique limit T �1 < 1.
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Proof. The proof of Theorem 5 shows that any limit point of
n
T ��k

o1
k=1

solvesE (QjQ � T ) =

� (T ) � T 2

T 2+(1�T )2 . Such a point surely exists, since E
�
QjQ � 1

2

�
> 1

2
= �

�
1
2

�
and

E (QjQ � T ) < � (T ) for T su¢ ciently close to one (by the proof of Theorem 5, since
f 0

f
decreasing implies limT!1

f 0

f
<1).

Di¤erentiating (40) yields the second derivative of E (QjQ � T ),

@2E (QjQ � T )

@T 2
= h0 [E (QjQ � T )� T ] + h

�
@E (QjQ � T )

@T
� 1
�

=
f 0

f

@E (QjQ � T )

@T
+ 2h

�
@E (QjQ � T )

@T
� 1
2

�
, (41)

which is positive if and only if

@

@T
E (QjQ � T ) � 1

2 + 1
h
f 0

f

. (42)

A log-concave density f �rst increases and then decreases with T , below and above some

maximizer T �� 2
�
1
2
; 1
�
. Thus the right-hand side of (42) is greater than 1

2
when T < T ��

and less than 1
2
when T > T ��. Bagnoli and Bergstrom (2005) demonstrate that when f

is log-concave h is increasing in T , which implies that the right hand side of (42) is also

increasing in T on the interval
�
1
2
; T ��

�
. They also show that the mean residual lifetime

function E (Q� T jQ � T ) is decreasing in T , implying that @
@T
E (QjQ � T ) � 1.

As T ! 1, the proof of Theorem 5 shows that @
@T
E (QjQ � T ) ! 1

2
. This implies that

@
@T
E (QjQ � T ) � 1

2
on the entire interval [T ��; 1], since if @

@T
E (QjQ � T ) = 1

2
� " for some

T > T �� and " > 0 then (42) would fail and @
@T
E (QjQ � T ) would remain bounded above

by 1
2
� ". By similar reasoning, E (QjQ � T ) must be convex (i.e. (42) must hold) on

the entire interval
�
1
2
; T ��

�
; otherwise, once the inequality in (42) failed to hold, the left-

hand and right-hand sides of (42) would decrease and increase with T , respectively, so that
@
@T
E (QjQ � T ) would continue to decline and would remain bounded below 1

2
.

The importance of these results is illustrated in Figure 4: in the interval [T ��; 1], E (QjQ � T )

lies below the dotted line of slope 1
2
, and therefore cannot intersect � (T ) to the right of 1p

2

(i.e. the point at which � (T ) intersects the dotted line with slope 1
2
). The two functions

can have at most one intersection point below 1p
2
, since the slopes of � (T ) and E (QjQ � T )

are bounded above and below one, respectively. In the interval
�
1
2
; T ��

�
, E (QjQ � T ) is

convex, and so can intersect the concave function � (T ) only once. Thus, if E (QjQ � T )

and � (T ) intersect above T �� then there is a unique intersection point, and if they do not

intersect above T �� then there is a unique intersection point.

Proposition 1 Let F and G be continuous, log-concave distributions with strictly positive

densities, and suppose G �1 F . Then the following must be true:
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1. If G (q) = F (q) for all q � T F1 then TG1 = T F1 and �G
�
TG1
�
= �F

�
T F1
�
.

2. If G (q) = F (q) for all q � T F1 then TG1 � T F1 and �G
�
TG1
�
� �F

�
T F1
�
.

3. If G (q) = F (q) for all q � EF
�
QjQ � T F1

�
and if �G

�
T F1
�
� �F

�
T F1
�
then TG1 � T F1

and �G
�
TG1
�
� �F

�
T F1
�
.

Proof. Denote by LF and LG the limiting best response functions from (39) for the dis-

tributions F and G. The proof of Theorem 5 makes clear that LF (T ) is greater than,

equal to, and less than T , respectively, when T is less than, equal to, or greater than T F1,

and that corresponding relationships hold for LG (T ) and TG1. Therefore, T F1 � TG1 if and

only if LG (T ) � LF (T ) for every T between T F1 and TG1. Equivalently, EG (QjQ � T ) �
EF (QjQ � T ), or (integrating by parts),

�F (T )
�G (T )

�
R 1
T
�F (q) dqR 1

T
�G (q) dq

. (43)

1. If G (q) = F (q) for all q � T F1 then at T = T F1 the left and right hand sides of (43)

are both equal to one, implying that TG1 = T F1 and therefore �G
�
TG1
�
= �F

�
T F1
�
.

2. G
�
T F1
�
= F

�
T F1
�
implies that at T = T F1 the left hand side of (43) is equal to one.

The right hand side, however, is less than or equal to one for any T . Therefore, TG1 � T F1,

implying that G
�
TG1
�
� G

�
T F1
�
= F

�
T F1
�
or, equivalently, �G

�
TG1
�
� �F

�
T F1
�
.

3. Since G (q) = F (q) for all q � EF
�
QjQ � T F1

�
,Z 1

TF1

qdG (q) =

Z 1

TF1

qdF (q) +

Z EF (QjQ�TF1)

TF1

q [dG (q)� dF (q)]

<

Z 1

TF1

qdF (q) +

Z EF (QjQ�TF1)

TF1

EF
�
QjQ � T F1

�
[dG (q)� dF (q)]

= EF
�
QjQ � T F1

�(Z 1

TF1

dF (q) +

Z EF (QjQ�TF1)

TF1

[dG (q)� dF (q)]

)
,

and similarly Z 1

TF1

dG (q) =

Z 1

TF1

dF (q) +

Z EF (QjQ�TF1)

TF1

[dG (q)� dF (q)] .

Therefore, EG
�
QjQ � T F1

�
=

R 1
TF1

qdG(q)R 1
TF1

dG(q)
< EF

�
QjQ � T F1

�
, implying that TG1 < T F1. Since

G �1 F , �G
�
TG1
�
� �F

�
TG1
�
� �F

�
T F1
�
.

Proposition 2 Let F and G be continuous, log-concave distributions with strictly positive

densities and a common mean, such that G single-crosses F at q̂. If T F1 � q̂ then TG1 � T F1
and �G

�
TG1
�
� �F

�
T F1
�
.
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Proof. The common mean m of F and G can be written as m = 1
2
+
R 1
1=2
�F (q) dq = 1

2
+R 1

1=2
�G (q) dq,21 implying that

R T
1=2
�G (q) dq+

R 1
T
�G (q) dq =

R T
1=2
�F (q) dq+

R 1
T
�F (q) dq = m� 1

2
.

Since G single-crosses F at q̂, T F1 � q̂ implies that
R TF1
1=2

�G (q) dq �
R TF1
1=2

�F (q) dq, which

therefore implies that
R 1
TF1
�G (q) dq �

R 1
TF1
�F (q) dq. The right hand side of (43) is therefore

greater than one at T F1, while the left hand side of (43) is less than one. Thus (43) does not

hold, imploying that TG1 � T F1 and therefore �G
�
TG1
�
� �G

�
T F1
�
� �F

�
T F1
�
.
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