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Abstract

This paper argues that openness of upstream research does not sim-
ply encourage higher levels of downstream exploitation, it also raises the
incentives for additional upstream research by encouraging the establish-
ment of entirely new research directions. We test this hypothesis by ex-
amining a “natural experiment” in openness within the academic com-
munity: NIH agreements signed during the late 1990s that limited the
IP restrictions imposed on academics regarding certain genetically engi-
neered mice. Using a sample of engineered mice that are linked to specific
scientific papers (some affected by the NIH agreements and some not),
we implement a differences-in-differences estimator to evaluate how the
level and type of follow-on research using these mice changes after the
NIH-induced increase in openness. We find a significant increase in the
level of follow-on research. Moreover, this reflects increased exploration
of more diverse research paths. Overall, our findings highlight a neglected
cost of IP: reductions in the diversity of experimentation that follows from
a single idea.

1 Introduction

While a whole recent literature examines the causal role of alternative insti-
tutional forms and policies, in particular Intellectual Property (IP) protection
systems, on downstream R&D and innovation1, there is far less research on
the causal impact of the institutional and policy environment on the rate and
direction of upstream research. However, the past three decades have seen
a significant increase in the scope of formal intellectual property (IP) rights,
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such as patents, over knowledge traditionally maintained in the public do-
main.2Consequently, American universities currently receive over 3,000 U.S.
patents each year and maintain a portfolio of over 40,000 patents.3 This dra-
matic expansion in IP rights over the earliest stages of research has caused
widespread debate about the effectiveness of incentives for innovation.4 This
debate is grounded in the notion that innovation is a step-by-step process in
which discoveries generated in one stage serve as essential inputs into the next.
The implications of expanding IP rights in the earliest stages of the innovation
process are mixed. On the one hand, early-stage IP may be important to en-
courage the establishment of new research lines, since upstream researchers can
thereby avoid expropriation by downstream researchers, as stressed in particular
by Scotchmer (1996). On the other hand, by requiring downstream innovators
to contend with a large number of fragmented upstream IP rights, their projects
may suffer from ”gridlock” as a result of transaction costs and complexity.5

By highlighting a single step-by-step research line, the current debate ab-
stracts away from two fundamental features of knowledge. First, a single up-
stream idea can, in principle, be applied across multiple later-stage domains
and applications.6In other words, ideas are non-rivalrous. Second, it may be
extremely difficult in advance to precisely articulate the diversity and range of
applications arising from a given upstream idea. Different individuals may have
different perceptions regarding the main application of an idea or the follow-on
research projects they would prefer to pursue. In other words, rather than fo-
cusing exclusively on the value generated along a single line, we argue that it is
important to recognize that multiple researchers may seek to pursue a diverse
range of exploratory ”horizontal ” follow-on experiments each of which may
initiate new (potentially unanticipated) research lines.

What then is the role played by upstream IP rights when follow-on research
includes both horizontal exploration as well as vertical exploitation? Inter-
estingly, while prior research highlights the potential for gridlock arising from
an upstream patent ”thicket,” little attention has been paid to the interaction
between the openness of scientific knowledge and the diversity of scientific exper-
imentation across multiple research lines. In this paper we examine the impact
of changes in openness on the level and nature of research in a setting in which
exploration is particularly salient – academic research. Our analysis builds on a
literature exploring the distinctive incentives and control rights provided by the
institutional regime for research in academia as compared to industry (David
and Dasgupta; 1994; David, 2003; Stern, 2004).

To guide our empirical analysis we use the multi-stage research framework
developed by Aghion, Dewatripont and Stein (2007) who emphasize the role
of freedom for researchers – defined as the granting of control rights allowing
researchers to select their research direction. We then analyze the role of open-

2See Mowery, et al (2001) and Heller (2008).
3See Owen-Smith & Powell (2003).
4See Scotchmer (1991, 1996).
5See Heller and Eisenberg (1998) and Heller (2008).
6See Bresnahan and Trajtenberg (1995), and Rosenberg and Trajtenberg (2001).
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ness in this framework. In this setting, openness not only impacts innovation
incentives within a given research line but also encourages exploration and in-
vestment in new and speculative research directions. We identify three main
channels whereby openness can influence the level and nature of scientific re-
search. First, by reducing the costs of accessing key research inputs, openness
encourages new researchers to enter, thus increasing the diversity of academic
research participants.7Second, openness makes researchers with high levels of
freedom (academics) more likely to engage in experiments that broaden the
horizontal diversity of research lines, in part because subsequent openness im-
plies that their research can itself have subsequent impact across a wide range
of research lines. Finally, there is the expropriation effect whereby an increase
in the level of openness of upstream research reduces the costs associated with
its exploitation along a given vertical research line. Overall, our theoretical
discussion suggests that, particularly in research settings characterized by high
levels of freedom, openness not only increases the overall flow of research output,
it should also be closely associated with the establishment and exploration of
entirely new research lines. Moreover, while openness should affect both basic
and applied research, the impact on basic research will, we predict, dominate
when researchers in the pre-openness period face high fixed costs of initiating a
new line of research. In contrast, the increase in applied research will dominate
when significant basic research has already been conducted.

We evaluate these empirical implications by taking advantage of a ”natural
experiment” in openness that occurred in the late 1990s in the field of mouse ge-
netics. The experiment resulted from two Memoranda of Understanding (MoU)
between DuPont and the National Institutes of Health (NIH) regarding the abil-
ity of academic researchers to gain access to hundreds of genetically engineered
mice developed using two types of technology (Cre-Lox and Onco, respectively)
both covered by patents owned or licensed by DuPont. Prior to the NIH-
MoUs, DuPont adopted stringent restrictions on use of the mice for academic
research. However, the MoUs lifted these restrictions by implementing a simple
contract, providing a royalty-free and costless license that removed any claims
to reach-through rights on downstream research, and ensuring that the mice
covered under the patents would be made available through the Jackson Labo-
ratory (the world’s single largest non-profit repository for research mice). The
NIH-MoUs constitute an openness shock for the mouse genetics research com-
munity: Prior to the MoUs research tools covered by the patents - hundreds of
varieties of Cre-lox or Onco mice developed in the early 1990s - were subject
to stringent restrictions in openness. After the MoUs they suddenly became
widely accessible to the entire academic research community.

Our empirical approach takes advantage of key aspects of this natural ex-
periment to develop and implement a differences-in-differences estimate of the
impact of the NIH-MoU openness experiment on both the level and nature of

7Note that in our analysis we do not deal with the complementary issue of how to finance
and/or reward the discovery of the initial research input. This could happen either through
publicly subsidized research or through public buy-outs of (private) patents as in Kremer
(1998).
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follow-on research. First, each genetically engineered mouse is associated with
a journal article that describes its initial development; as such, we are able to
construct a sample based on ”mouse-articles” affected by the NIH agreements
and a control sample of mouse-articles unaffected by the agreements (based
on Knock-out or Spontaneous technologies). Second, both the timing and the
scope of the NIH-MoU were unanticipated by the mouse genetics community.
As a result, there was an unexpected and dramatic shift in the level of openness
in a short period of time. Finally, we are able to take advantage of detailed
bibliometric data for articles citing the mouse-articles in either the treatment
or control groups to characterize how the openness shock changed the nature
of subsequent research (relative to the evolution of citations within the control
group).

To implement this empirical approach, we analyze the citations to a sample
of more than 2000 mouse-articles, approximately 10% of which described Cre-
lox and Onco mice that experienced a shift in the level of openness as the result
of the NIH agreements. By comparing citations to the mouse-articles before and
after the agreement (and comparing them to the evolution of citations in the
control sample), we are able to isolate the causal impact of a shift in scientific
openness on the level and nature of follow-on research. In particular, rather than
simply examine whether there is a net increase or decrease in the level of cita-
tions, the bulk of our analysis examines how the composition of citations differs
after the openness shock. Specifically, we construct measures capturing whether
the research community using a particular mouse is composed of authors new
to the research line (i.e. the number of new authors citing the mouse-article),
whether research is associated with the establishment of new research lines that
had not previously used a particular mouse (i.e. whether the citations include
keywords that had never been linked to particular mouse-mouse), and whether
the research is basic and ”upstream” or applied and ”downstream” in nature
(captured by the type of journals in which the citations are published). Thus
we develop three distinctive empirical tests that map to the three core claims
of our theoretical framework.

Our results can be summarized as follows: First, the NIH agreements result
in a significant increase in the level of follow-on research. More importantly,
the bulk of the new citations arise from articles published by “new” researchers
or institutions. In other words, the boost in citations to a given mouse-article
in the post-NIH agreement period comes from researchers that had not cited
that mouse-article prior to the NIH agreement. Next, our results offer direct
evidence that increased scientific openness is associated with the establishment
of entirely new research lines. Specifically, the openness agreements lead to
a significant increase in the diversity of the journals in which mouse-articles
in the treatment group are cited, and, perhaps even more strikingly, a very
significant increase in the number of previously unused “keywords” describing
the research contributions of the citing articles. These findings survive a whole
set of robustness checks. Finally, Cre-Lox and Onco mice differed in whether
researchers had any access prior to the NIH agreements (but faced some threat
of IP enforcement) thus leading to differences in the likely impact of the NIH
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MoUs. While the mice covered by the Onco agreement were available prior to
the MoU, researchers were responsible for separately signing licenses as they
moved to downstream applications. Mice based on the Cre-Lox technology were
much more limited in their distribution. Reflecting these differences (and our
theoretical predictions), mouse-articles associated with the Cre-Lox agreement
experience a significant increase in citations by basic research journals, while
mouse-articles associated with the Onco agreement realize a citation increase
in applied research journals. Overall, these results are consistent with the view
that the NIH agreements facilitate access to research inputs. As a result, in
academic settings where control rights over research direction lie in the hands
of researchers, increased openness has at least as large an effect on enhancing
the scope and diversity of horizontal exploration as it does on inducing vertical
exploitation along well-defined research lines.

The paper is organized as follows. Section 2 presents our theoretical frame-
work and develops it main predictions concerning the effects of increased open-
ness on the horizontal and vertical flow of research. Section 3 describes the
experiment. Section 4 outlines our identification strategy. Section 5 presents
the data and summary statistics. Section 6 presents the empirical results and
Section 7 concludes.

2 Openness in scientific knowledge production

We broadly define openness as any event or device that increases a researcher’s
ability to access the ideas or materials of other researchers. Alternatively, it
allows researchers to provide access to her own ideas and share them as she sees
fit. We shall argue that increased openness has three main effects on basic re-
search. First, as noted in the introduction, openness tends to favor more applied
research, possibly at the expense of more basic research, as it reduces the ex-
tent to which upstream researchers can appropriate the returns from their own
research. Second, openness makes more likely that stage-i + 1 researchers will
know about, and therefore build upon, the ideas of stage-i researchers, which
in turn will increase the ex ante incentive to undertake stage i. Third, open-
ness fosters more basic research and the creation of new lines, in particular by
reducing researchers’ cost of accessing other researchers’ ideas, thereby making
it more likely that the alternative strategies pursued by researchers with high
levels of freedom will actually lead to new lines. We now discuss these various
effects of openness, first abstracting from control rights considerations and fo-
cusing on the effects of openness on basic and applied research on a given line,
then emphasizing the complementarity between openness and freedom and the
resulting effect of openness on the diversity of lines.

2.1 Openness down a particular research line

Consider a two-stage research line. Each stage requires one researcher. Success
at each stage, occurs with probability p, and moves research up to the next stage.
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Then, as long as we focus on a single research line, a first effect of openness is
that increases the extent to which stage 2 can extract rents from stage 1. Thus,
if V denotes the ex post value of the line (e.g the price at which the research
can be commercialized), then the value Π2 of the line as of stage 2, is equal to

Π2 = pV + ψ − w,

where ψ is the additional rent openness gives stage 2 at the expense of stage 1,
and w is the wage paid to a researcher (we take it as given for simplicity). The
stage-1 value of the line can then be expressed as:

Π1 = p(pV − ψ − w)− w = p2V − pψ − (1 + p)w.

Thus, trivially, increasing ψ fosters stage-2 research at the expense of stage
1 research since it raises Π2 and reduces Π1.

Assume now that openness has an additional effect, by also increasing the
possibility for the stage-1 researcher to transmit her research to stage 2 re-
searcher(s). Indeed, once success has been obtained in stage 1, it may not be
immediate to identify a researcher who will be able to carry the project forward
into stage 2. This may require a ’successful match’, whose probability will nat-
urally rise with openness. Specifically, we call the probability of such a match
A and we assume it depends positively on ψ. This means the stage-1 value of
the line becomes:

Π1 = pA(ψ)(pV − ψ − w)− w = A(ψ)(p2V − pψ)− (1 + p)w.

In turn, this implies:

dΠ1

dψ
= A′(ψ)(p2V − pψ)− pA(ψ),

which can be positive in particular if the effect of openness on the quality of
matching is high (i.e. if A′(ψ) is high).8

To sum up, openness should be expected to foster downstream research
thanks to higher appropriability. As for upstream research, the adverse effect
of downstream appropriablility can at times be outweighed by a probability of
finding a good match interested in pursuing the research agenda.

2.2 Openness and diversification

In this subsection we enrich the above framework by introducing the notion of
academic freedom, drawing on Aghion, Dewatripont and Stein (2008), hence-
forth ADS. We then analyze the interplay between freedom and openness, and
in particular we argue that to the extent that early research stages are optimally
managed under academic freedom, openness in early stages of research should
foster the creation of new research lines.

8If we assume that research is socially optimal (i.e. if p(pV −w)−w > 0), then a sufficient

condition for openness to be efficiency-enhancing is that dΠ1
dψ

> 0.
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2.2.1 Introducing academic freedom: ADS

We keep assuming that research proceeds along multi-stage lines, with each
line starting with an initial idea I0, and eventually generating a marketable
product with value V after k ≥ 2 successful stages. As before, we assume
that it is sufficient to hire one researcher per stage, and that this researcher
obtains a probability of success equal to p < 1 at any stage if he follows the
success-maximizing (“practical”) research strategy at that stage. But now we
also assume that, instead of the practical strategy, a researcher is free to follow
an “alternative” strategy. If we assume that the scientist has a zero individual
probability of success following this approach, then this alternative strategy
amounts to the scientist working on an activity that he enjoys more but that
does not pay off in monetary terms. However, as we describe at the end of
this section, we can interpret this alternative strategy as the case in which the
scientist works on an activity that may help initiate new lines but does not
generate progress on that particular line.

There is an infinite supply of researchers at each stage, each of whom has an
outside option w. After being hired at stage j, the scientist is exposed to idea
Ij−1, and then learns whether he would prefer following the practical strategy
or the alternative strategy. If he is able to undertake his favored strategy, he
suffers no disutility from working. If, however, the scientist has to undertake
the strategy that he likes less, he suffers disutility of z. The ex ante probability
that a scientist prefers to follow the practical strategy is given by α. Assume
further that the choice of the practical vs. alternative strategy is ex ante non-
contractible.9

Academic research (or freedom) differs from private-sector research in that
it leaves control rights over the research strategy in the hands of the researcher.
Thus if a research line is pursued in academia, the researcher is paid wage w and
always works on his preferred strategy. This implies that with probability α, the
scientist works on the practical strategy, and with probability (1−α), he works
on the alternative strategy. Thus the ex ante probability of advancing to the
next stage is given by αp. Now consider a researcher employed by the private
sector. Whether the researcher prefers the practical or the alternative strategy,
becomes evident once the researcher has been hired by the firm and has been
given access to the idea by the firm owner. Yet ex post, the firm owner has the
authority to force the scientist to work on the practical strategy. Anticipating
this, the researcher will demand a wage of wp = w + (1− α)z in order to work
in the private sector. The (1− α)z markup over the academic wage represents
compensation for loss of creative freedom–the fact that scientists now always
have to adopt the practical strategy, whether this turns out to coincide with
their preferences or not.

9In other words, one cannot write a contract that promises a scientist a bonus for following
the practical strategy, because the nature of what kind of work that strategy entails cannot
be adequately described ahead of time.
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2.2.2 When is freedom optimal?

A main finding in ADS is that academic freedom tends to dominate private
sector focus at earlier stages on a research line. To see this, take a research line
involving 2 stages, and suppose that the first stage has been successful, so that
we are now at stage 2, with one more stage to be completed in order to generate
a payoff of V . If this last stage of research is done in the private sector, the
expected payoff is equal to E(πp

2) = pV −wp. If instead the last stage is done in
academia, the expected payoff is equal to E(πa

2) = αpV − w. This means that
private sector research will yield a higher payoff than free (academic) research
and only if (1− α)pV > (wp − w), or equivalently pV > z.

Now, let Π2 denote the maximum of E(πp
2) and E(πa

2). Moving back to
stage 1, we now compare between E(πp

1) = pΠ2 − wp and E(πa
1) = αpΠ2 − w.

Private sector research will yield a higher payoff than free (academic) research
at stage 1 if and only if pΠ2 > z.

Since Π2 < V , it follows that private sector research is value-maximizing
at stage 1, it is also value-maximizing at stage 2. In particular it cannot be
value maximizing to have academic freedom operate at later stages than private
sector research. The key result is therefore that academic freedom will be the
optimal governance structure at earlier stages and private sector research will
be optimal at later stages. The intuition is that while academia’s wage cost
advantage stays constant over research stages, its lower probability of success
becomes more problematic as one approaches the final value V .

This result can be generalized to lines of any length k : if Πi denotes the
NPVs of the line of length k as of stage i, we have:

Πi = max{E(πp
i ) = pΠi+1 − wp, E(πa

i ) = αpΠi+1 − w} < Πi+1.

This monotonicity property, together with the fact that research should be pur-
sued under academic freedom if and only if pΠi+1 > z, yields the desired result.

2.2.3 The value of experimentation

Note that the model so far provides a rationale for free (academic) research
even in the extreme case where the alternative strategy has no value beyond
saving the researcher the disutility of pursuing the practical strategy. In reality
however there is value in experimenting with ideas that may lead to an entirely
new research lines, consistently with the idea that scientific discoveries do not
follow a purely “linear” model. This does not alter the relative optimality of
academia (vs. private research) in earlier (vs. later) stages of research. It
does, however, raise the desirability of freedom in general (and academia as
the institutional regime that supports such freedom), if we make the realistic
assumption that pursuing the alternative strategy confers a higher probability
of generating entirely new research lines than pursuing the practical strategy
(note that, realistically, the probability of such an event, possibly the result of
an “accidental” discovery, is nonzero for both strategies)10.

10See ADS for details.
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2.2.4 Complementarity between openness and freedom: diversifica-
tion effects

That more openness should foster the creation of new lines, follows from the
fact that openness favors the cross-fertilization of ideas within stages. More
formally, consider two parallel research lines, 1 and 2, each of which operates
as described above. Namely, with ex ante probability α the researcher initially
allocated to the current stage of either of these two lines, prefers to pursue the
practical strategy for that line whereas with probability (1 − α) he prefers not
to pursue this practical strategy. Now openness implies that the scientist on
line 1 can learn about project 2 and vice-versa, and that consequently with
positive probability ϕ, thanks to academic freedom and the resulting horizontal
interaction, she may choose to work on the practical strategy for project 2 if
nobody else does. A greater degree of openness implies a higher value of ϕ.

Openness also increases the net present value of a research line operated
under academic freedom in a given stage i, from:

αpΠi − w

to:
[α+ (1− α)ϕ]pΠi − w.

Thus openness increased the social value of operating any stage (particularly
earlier stages) under academic freedom.

The idea that openness favors cross-fertilization also implies that it should
widen the pool of researchers and research institutions working on a partic-
ular research idea, since one key feature of academia is the fact that diverse
researchers experiment with scientific ideas to investigate their full potential.
What openness does is to reduce the fixed cost of ’entering’ a particular re-
search area to conduct these investigations.

Remark 1: An additional reason (see ADS), for why increased openness
should foster free research and therefore the creation of new lines, is that one
particular feature of academic institutions which help them enforce the commit-
ment not to monitor individual scientists’ research agenda, is that they typically
are non-profit institutions. This in turn makes them less willing or less able to
incur the cost of monitoring researchers. But that same feature also implies
that a reduction in the cost of accessing research inputs, should make a bigger
difference for academic research than for private sector research.

Remark 2: If openness enhances basic research and the creation of new lines,
this implies that it should have a long-lasting effect on the flow of subsequent
publications. This is because new lines take a significant amount of time before
maturing, and their development could lead to even more research lines being
created. Indeed, starting a new line means a positive probability of a long
dynamic flow of new discoveries whose research lines continue long after the
original line has ended..
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2.3 Testable predictions

Beyond the prediction that increasing the openness of critical early-stage re-
search inputs should globally enhance the total flow of knowledge11, and the
prediction that the causal impact of a shift to greater openness should be to
generate more research over the long-run (not simply a short-run boost)12, the
most important predictions from our model relate to the types of research and
researchers most likely to be impacted by an “openness shock” in a world where
researchers have control rights on their research activities.13Three predictions
stand out. First, an openness shock should increase the diversity of researchers
engaged in follow-on innovation. With more open and independent access to
innovation inputs, new researchers can overcome fixed cost barriers to move
from other fields and build on these inputs. Second, an openness shock should
increase the diversity in the types of research that are being pursued, as it fos-
ters horizontal experimentation, therefore leading to the creation of new lines.
Third, openness should have a different impact on basic or applied research. In
particular when controls rights conditions are the first order consideration of
the openness shift, then we would anticipate that the vertical exploitation out-
come would dominate. However, when access costs are initially high or when
control rights considerations are not first order, then we would expect the boost
in openness to affect basic research with horizontal exploration dominating.

3 Empirical setting: experiments in the open-
ness of genetically engineered mice

3.1 Towards genetically engineered mice

In this section we describe two ”natural experiments” that significantly shifted
the level of openness associated with two broad categories of genetically engi-
neered mice - both crucial inputs into cumulative research in the modern life
sciences.14 To understand how we make use of these shifts in openness, it is
useful to consider the essential role played by specialized research mice in mod-
ern life sciences research. With their genetic likeness to humans (the mouse and
human genomes have a 99% similarity), mice play a central role in the study of
cancer and other human diseases. Throughout the twentieth century, scientists

11This prediction accords for example with a recent study estimating the significant and pos-
itive impact of Biological Resource Centers that make key research materials widely available
to researchers (Furman and Stern, 2008).

12In other words, because the shift to greater openness is an enduring condition of key
innovation inputs (under our model) and such inputs can be valuable to follow-on researchers
over a long period - generating not one but multiple research lines - we would expect to see a
long-run move to greater follow-on research, not simply a one time shock.

13In our particular empirical setting, the openness shock is focused directly and exclusively
on academic (public-sector) researchers. We therefore do not make specific predictions re-
garding the overall balance of innovation between the public and the private sector.

14We refer the reader to Murray (2009) for more details and references on the history of
intellectual property and openness in the mouse genetics community.
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in mouse genetics relied on “spontaneous mutations” for their disease studies:
researchers bred mice that naturally exhibited particular disease-linked symp-
toms or behaviors.15 To facilitate their efforts, the research community devel-
oped open access institutions, notably the Jackson Laboratory (a mouse reposi-
tory in Bar Harbor, Maine) to classify, breed, and distribute specialized research
mice to the academic community.16 In the early 1980s, advances in molecular
biology and the ability to manipulate embryonic stem cells allowed researchers
to develop a set of systematic and precise methodologies for engineering spe-
cialized mice as research tools, greatly expanding the application of research
mice in life sciences research.17Three breakthroughs were particularly impor-
tant. First, in a discovery awarded the 2007 Nobel Prize in Medicine, Mario
Capecchi of the University of Utah and his collaborators developed ”Knock-out”
technology, enabling researchers to delete specific genes in research mice. Sec-
ond, with partial funding from DuPont Corporation, Professor Phillip Leder at
Harvard University developed Oncomouse methods, which provided a means for
inserting (rather than deleting) genes into an embryo, thereby making mice sus-
ceptible to particular forms of cancer and other diseases. Finally, researchers in
the life sciences division of DuPont developed the Cre-Lox technology - a precise
”cutting and pasting” tool that turns off genes in specific tissue or organs.

By offering general-purpose tools to engineer discrete changes in the genetic
profile of research mice, each of these three methods contributed to a paradigm
shift in life sciences research. These tools gave scientists a means to investigate
a wide variety of new research problems, from very basic research on the impact
of genetic variation on disease incidence to the development and optimization
of new therapies.18In practical terms they allowed researchers to develop three
new types of research mice: Knock-out, Cre-lox and Onco mice to be used as
critical research inputs in their experiments in addition to the more traditional
spontaneous mice.

The revolution in mouse genetics occurred alongside several important shifts
in the role of formal IP in life sciences research. In 1980, the Supreme Court de-
cision in Diamond v Chakrabarty established the patentability of genetically en-

15Given the value of such mutations, researchers also developed techniques to significantly
increase the rate of mutation of research mice such as the exposing pregnant mice to high
levels of radiation (See Murray (2007,2009)).

16See Rader (2004).
17The use of these methods for mouse engineering are complex and costly. To create a mouse

with particular genes inserted within a mouse genome, scientists must first inject foreign DNA
into mouse eggs, transplant the eggs into female mice, and, if successful, monitor and breed
the incorporation of the genes into the offspring . During our sample period, the development
of a ”mouse line” from scratch likely involved at least 18 months of laboratory research and a
significant investment of time and attention by a principal investigator (Rader, 2004; Murray,
2009).

18The 2007 Nobel Prize announcement regarding knock-out mice states that ”Almost ev-
ery aspect of mammalian physiology can be studied by gene targeting. We have conse-
quently witnessed an explosion of research activities applying the technology. Gene tar-
geting has now been used by so many research groups and in so many contexts that
it is impossible to make a brief summary of the results.” (Nobel Prize Press Release
http://nobelprize.org/nobel prizes/medicine/laureates/2007/press.html).

11



gineered organisms and the Bayh-Dole Act affirmatively allowed universities to
seek patent protection and licensing revenues from Federally-funded research.19

While many observers took universities growing patent portfolio as an indicator
of evolving role of universities as engines of innovation and commercialization
(Henderson, Jaffe and Trajtenberg, 1998), some argued that strong IP rights
over scientific research discoveries were detrimental to research productivity
and cumulative discovery (Heller and Eisenberg, 1998). In particular, some uni-
versities placed significant restrictions on the distribution of patented research
materials to academic researchers (e.g., the University of Wisconsin restricted
the open distribution and use of patented stem cell lines while other universities
were accused of rent-seeking when they sought to enforce IP claims over inde-
pendent commercial discoveries (e.g. the University of Rochester’s enforcement
of its patents on the Cox-2 pathway20).

3.2 Research under limited openness

Debates over the role of patents on scientific research tools were particularly
salient for researchers exploiting the transformation in mouse genetics. All
three of the key mouse engineering tools and the mice generated with them –
Knock-out mice, Oncomice and Cre-Lox mice – were covered by relatively broad
patents.21In the case of Knock-out mice, the University of Utah received a patent
in 1987 but never sought to enforce the patent against follow-on researchers us-
ing the Knock-out methodology. Instead, Knock-out mice were made available
at (essentially) marginal cost through the Jackson Laboratory. The patents
over the Onco and Cre-Lox technologies proved to be much more controver-
sial. As a result of their partial funding of Harvard’s Oncomouse discoveries
and their internal development of Cre-Lox technology, DuPont gained exclusive
control over patents for these two technologies. In contrast to the University of
Utah, DuPont exercised strict control over the distribution and use of mice that
exploited the techniques covered by their patent portfolio. During the early
1990s, researchers (and their institutions) who wanted ”freedom to operate”
were obliged to obtain a license from DuPont when they sought to receive and
use an Onco or Cre-Lox mouse. The detailed licensing agreement required an-
nual disclosures to DuPont regarding experimental progress, limits on informal
mouse exchange among academic researchers, and ”reach through” rights al-
lowing DuPont to automatically receive licensing revenue from any commercial
applications developed using either Cre-Lox or Onco technology.

These limits to openness caused widespread discontent among the academic
community. Academic researchers objected to the exercise of patent rights by a
for-profit company as a significant limitation on the norms of openness among

19These legal and policy shifts reflected, in part, increasing appreciation that certain types
of academic research were increasingly dual in nature: fundamental scientific discoveries that
could simultaneously have a high degree of commercial utility (Murray and Stern, 2007)

20See Murray (2007).
21Knock-out mice were covered under U.S. Patent 4,687737, Oncomice under U.S. Patent

4,736,866 and Cre-lox mice under U.S. Patent 4959317.
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academics, and claimed that the lack of access to these mice significantly reduced
their freedom to pursue their own research agendas.22Individual researchers en-
gaged in various forms of protest – from attempt to initiate patent invalidation
proceedings (which went nowhere) to informal sharing of mice (against the ad-
vice of their universities). As well, there were more systematic attempts to
subvert or blunt the impact of the DuPont licensing regime: notably, in 1992
Dr. Ken Paigan, then director of JAX, announced he would make Onco-mice
openly available without a license, directly contravening DuPont’s IP rights.
While some researchers took advantage of informal sharing or access of Onco-
mice from the JAX (opening themselves to a potential infringement suit by
DuPont), most researchers (and their institutions) were wary of the legal reper-
cussions that could arise from using these mice, particularly for more applied
research. Notably, through 1998, there was no access to Cre-Lox mice through
JAX or any other open-access depository.

Thus, by the late 1990s, researchers seeking to use a particular specialized
research mouse faced one of several access regimes. First, the most appropri-
ate mouse for a particular research project might be a spontaneous mouse or
a Knock-out mouse, and would (in general) be available on an open-access ba-
sis (from JAX or another provider) at marginal cost.23Second, if the research
required an Oncomouse, the mouse might be available informally through the
peer-to-peer network or through JAX, but to use such a mouse (particularly for
an applied project) was in direct contravention of DuPont’s licensing require-
ments. Third, if a Cre-lox mouse was preferred, it might be available through
informal exchanges among colleagues. These informal exchanges were them-
selves beset by high transaction costs: Cre-lox developers invested considerable
time and resources in its development and often required coauthorship (or other
type of non-monetary payment) in exchange for access to their mice, and the
exchange of such mice took place in the shadow of potential infringement suits
(which meant contravening the official policy rules of most universities).24 It was
also possible, in principle, to access Cre-lox and Onco-mice by signing DuPont’s
licensing agreement, though very few institutions or researchers signed an actual
agreement prior to the NIH MoU. Finally, it was also feasible (at least in prin-
ciple) to develop a new mouse as part of the research process, a process which
could delay a project by at least 18 months and require significant resources and
the development of specialized skills, and which could still be infringing on the
DuPont patent portfolio.

22As cited in Murray (2009), DuPont’s practices were seen as “an enormous obstacle to
free and open distribution of information and materials. . . .it was a whole new way of doing
science. . . it really affected the way the mouse research community works”.

23In addition to the unenforced Utah patent on knock-out technology, a small number of
additional patents were granted over specialized knock-out mice. However, the intellectual
property restrictions associated with these mice seems to have been negligible, and, in any
case, their openness was not directly influenced by the NIH agreements that we exploit in our
empirical work.

24See Murray (2009).
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3.3 The openness shocks on Cre-lox and Onco mice

The degree of openness associated with Cre-Lox and Onco mice shifted dra-
matically in 1998 and 1999 respectively. Responding to considerable pressure
from the academic community throughout the 1990s, the National Institutes of
Health (NIH), with the direct involvement of NIH Director and Nobel Laureate
Harold Varmus, successfully negotiated two Memorandum of Understanding
(MoU) among DuPont, the Jackson Laboratories (JAX), and the NIH. To-
gether, these two MoUs greatly increased the openness of genetically engineered
mice for academic researchers. The Cre-Lox MoU, announced in July 1998,
allowed JAX or universities to distribute and share Cre-lox mice with a simple
license (essentially a standardized one-page material transfer agreement and an
institution-wide license). In addition, JAX announced its commitment to ac-
quire, breed, and distribute Cre-Lox mice on an open-access basis. A similar
agreement for the Oncomouse was reached one year later (in July 1999), though
the impact of this agreement was somewhat less dramatic as JAX had already
been distributing Oncomice to researchers prior to the 1999 MoU.

Over a two-year period, life sciences researchers seeking to take advantage of
the mouse genetics revolution thus experienced a significant shift in their ability
to access and exploit Cre-lox and Onco mice, while experiencing no shift in the
degree of openness for Knock-out and Spontaneous mice. These differences
provide the key source of variation that we exploit in our empirical analysis.
Three features are particularly useful to emphasize. First, while the ”demand”
for genetically engineered mice was increasing over time, there is no evidence
that the potential demand for Onco or Cre-Lox mice was increasing at a faster
(or slower) rate than the demand for Knock-out mice. Each technology repre-
sented a general purpose research tool, with the key distinction being that the
Knock-out technology was made available on an open-access basis throughout
the period, while the Onco and Cre-Lox technologies faced significant access
restrictions until the time of the NIH agreements. Second, though the academic
community lobbied continuously for increased openness regarding these research
tools, there are good reasons to believe that the timing of the agreement as well
as its scope were largely unanticipated.25 Thus it is unlikely that researchers
delayed projects in anticipation of such a comprehensive agreement; instead, re-
searchers deterred by licensing restrictions undertook different projects. Third,
though the agreements cover two DuPont-controlled patents, they impacted a
large number of specialized research mice. In spite of the IP difficulties, by
1998, more than 50 different engineered mice had been developed and disclosed
in the scientific literature using the Cre-Lox technology, and more than 160 dif-
ferent Oncomice were similarly described. As we outline in detail below, one
can take advantage of the fact that these mice were developed and disclosed
at different times and that their follow-on use by other scientists can be cap-
tured by the citation of these articles in follow-on scientific articles, in order
to precisely identify the impact of the NIH openness agreements on the use of
genetically engineered mice in follow-on scientific research.

25We discuss this point in more detail in Section 6.2 below.
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4 Empirical strategy

Our theoretical framework suggests that the level and nature of follow-on re-
search depend not only upon the quality and type of research inputs available
but also upon the degree of ”openness” of these research inputs. To test this
idea, we examine the impact of shifts in the openness of some engineered re-
search mice (arising from the NIH agreements) on the level and type of follow-
on research. Building on Furman and Stern (2008), this approach addresses a
fundamental inference problem associated with traditional cross-sectional ap-
proaches to the evaluation of openness (and related institutional arrangements)
on scientific research: If more “open” inputs are used more extensively by
follow-on researchers, does this follow from the fact that they are open or from
the fact that openness tends to be associated with higher-quality inputs and
materials? In the absence of an empirical framework that disentangles selection
effects (i.e., the correlation between openness and overall research impact) from
the marginal impact of openness per se, we cannot construct the appropriate
counterfactual estimate of the rate of follow-on research in the event that the
same knowledge was available under a different level of openness.

Ideally, causal identification of the impact of openness would rely on a con-
trolled experiment in which different knowledge inputs (such as particular re-
search mice) were randomly allocated to distinct institutional environments with
varying degrees of openness. A practical route capturing the essence of such an
approach takes advantage of natural institutional variations that shift key re-
search inputs towards higher (or lower) levels of openness in a way that is exoge-
nous both to their initial production and to their incorporation into follow-on
research lines.

We implement this idea by taking advantage of the institutional changes
to openness negotiated by the NIH that affected some (but not all) research
mice.26Our strategy exploits several distinctive elements of the system by which
scientific research is disclosed and cited. First, new specialized research mice
are disclosed through publication in scientific articles that describe their pro-
duction and distinctive characteristics (we refer to these disclosures as mouse-
articles). Notably, we are able to identify mouse-articles both for mice affected
by the NIH MoU agreements (i.e., Cre-Lox and Onco mouse-articles) and for
mice unaffected by the NIH MoU agreements (i.e., Knock-Out and spontaneous
mouse-articles).27 Second, we can trace out the impact of each mouse-article
over time through the citations to that mouse-article by subsequent articles in
the scientific literature. While an imperfect and noisy indicator of overall sci-

26Our approach builds on recent work applying a differences-in-differences econometric
framework to analyze the institutional and microeconomic foundations of knowledge accumu-
lation (Murray and Stern, 2007; Furman and Stern, 2008; Huang and Murray, 2008; Rysman
and Simcoe, 2008).

27While these types of mice differ in the precise details of the specialized genetic manipula-
tion they allow, with the exception of Spontaneous mice, they are broadly similar in the scope
of application and relevance to human disease. Moreover, all three were patented and could
have been subject to strict enforcement. Spontaneous mice differ to the extent that they were
not subject to patents.
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entific impact, citations offer a systematic reflection of the process by which
researchers acknowledge how their efforts at any one research stage build on the
tools and knowledge developed by researchers in prior stages. More specifically,
our approach focuses on the citation patterns associated with mouse-articles.
Our qualitative research suggests that citations to a given mouse-article involve
the use of that article’s specialized research mouse in a follow-on experiment,
and that most researchers routinely include a citation to the original mouse-
article whenever a particular mouse is used in a follow-on project. Third, both
the NIH agreements occurred well after the publication dates of the Cre-Lox
and Onco mouse-articles; thus for each mouse-article we are able to observe
citations both before and after the NIH MoU (and compare this to the pattern
observed for our control groups which were unaffected by the NIH MoUs). Fi-
nally, as noted above, both the timing and extent of the openness shock were
largely exogenous. Specifically, the NIH agreement could have been reached,
in principle, anytime from the early 1990s through the present. Moreover, our
main control group – Knock-out mice – is likely to have been drawn from a pop-
ulation of similar scientific quality and importance, differing only insofar as the
patent over Knock-out technology was unenforced by the University of Utah.28

This empirical approach allows us to estimate pre- and post-MoU citation
rates to the treated mouse-articles (those associated with Cre-lox and Onco
mice). We also include untreated mouse-articles (Knock-out and Spontaneous
mice) so as to more precisely identify a counterfactual estimate of the citation
rate that would have occurred if the NIH agreement has not been signed. Over-
all, by measuring citations to Cre-lox and Onco mouse-articles before and after
the openness MoUs, and by measuring the citations to mouse-paper articles
unaffected by the MoUs, we can separately identify the causal impacts of the
Cre-lox and Onco openness agreements.

Our baseline regression takes the measure Annual Citationsjt as its depen-
dent variable, representing the number of citations to a given mouse-article j
in a given calendar year t. On the RHS of the regression equation, we take
Post NIH MoU to be the key treatment variable, equal to one for mouse-
articles impacted by an MoU for citation years after the MoU has had a chance to
impact publication behavior. Finally, we take the variable NIH MoU Window
to be equal to one in the period between the signing of the agreement and
the period when the MoU would have a chance to impact publication behav-
ior.29 Using a dataset composed of citations to mouse-articles impacted by the
MoU and mouse-articles that are unaffected by the MoU, consider the following
conditional fixed effects negative binomial estimator:

28We find support for this view in our analysis of pre-MoU trends in Section 6.2 and Table 7,
where we show that prior to their respective MoU dates, Cre-lox and Onco mice have citation
flows that are statistically indistinguishable from those of Knock-out mice.

29Consistent with our discussion in Section 3, the window period for the Cre-Lox period
covers 1998 and 1999, and the window period for Oncomice covers 1999 and 2000.
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Annual Citationsjt = f(εjt; γj + βt + δt−PubY ear (1)
+Ψ0NIH MoU Windowjt + Ψ1Post NIH MoUjt),

where γj is an article fixed effect (conditioned out in estimation), βt are citation-
year effects and δt−PubY ear are article-age fixed effects. These fixed effects ac-
count for the heterogeneity among scientific articles, the nonlinear evolution of
citations over time elapsed since initial publication, and the potential for dif-
ferences over time in citation practices. This specification also accounts for the
incidental parameters problem (Hausman, Hall and Griliches, 1984), testing for
the impact of the NIH agreements by estimating how the citation rate for a
mouse-article changes in response to the NIH MoU, accounting for fixed dif-
ferences in the citation rate across articles and relative to the non-parametric
trend in citation rates for the non-treated control groups.

We then turn to evaluating the impact of the openness shocks on different
types of citations. We divide the citations from each citation year into two
mutually exclusive types and estimate the impact of the NIH MoU on each
citation-year margin. For example, the model predicts that openness should
increase the number of distinct researchers utilizing a given specialized research
mouse. To test this hypothesis we estimate the difference of the impact of a
shift in openness on follow-on publications by authors who have previously cited
a particular mouse-article (Old Author Citationsjt) versus those who have not
previously cited a particular mouse-article (New Author Citationsjt).

More specifically, we jointly estimate the two equations:

New Author Citationsjt = f(εjt; γj + αt+ βt + δNEW
t−PubY ear (2)

+ΨNEW
0 NIH MoU Windowjt

+ΨNEW
1 Post NIH MoUjt)

and

Old Author Citationsjt = f(εjt; γj + βt + δOLD
t−PubY ear (3)

+ΨOLD
0 NIH MoU Windowjt

+ΨOLD
1 Post NIH MoUjt),

where γj is a mouse-article fixed effect, α parametrizes a linear calendar-time-
trend difference between the two equations, βt is a calendar-time fixed effect,
and δNEW

t−PubY ear and δOLD
t−PubY ear are article-age fixed effects. To evaluate whether

the change in citations occurring after the openness shock is concentrated in
citations by authors who had not previously cited a particular mouse-article,
we test whether ΨNEW

1 > ΨOLD
1 . This specification includes several parametric

restrictions, including setting the mouse-article fixed effects γj and calendar-
time fixed effects βt to be equal across the two equations (2) and (3), and
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imposing a linear functional form (parametrized by α) on the difference in the
effect of calendar time across the two equations. We do allow for the publication-
age fixed effects to vary freely across (2) and (3), as the evolution of citations
in the time elapsed since publication will differ significantly for the two citation
margins (in particular, most citations in the first few years after publication will
be associated with ”new” authors).

We then undertake a similar exercise to evaluate whether a boost in citations
is associated with (a) new versus old institutions, (b) new versus old key words,
and (c) new versus old journals. Finally, we explore the research response to the
openness shocks along a given research line by comparing citations in applied
versus basic journals.

This empirical framework also allows us to test whether citations to mouse-
articles in both the treatment and control groups evolve in a similar way over
time, except for shifts in the institutional environment. We can test this as-
sumption directly by allowing for a time trend specific to the treatment group
for each citation margin. Because different mouse-articles are published in dif-
ferent years we are able to disentangle the treatment effect of the NIH MoUs
from secular differences in the citation trends of articles in the treatment group.
At the same time, our theoretical discussion suggests that the treatment ef-
fect should grow over time i.e. with the time elapsed from the openness shock
(MoU). We thus include a specification which separately estimates the short-
term and long-term impacts of the MoU. Thus when testing for a treatment
group specific trend we will separately allow for the treatment effect itself to
change in the time following the treatment. Lastly, it is also possible to test
whether there is an unanticipated increase in citations in the periods immedi-
ately preceding the MoU, thereby suggesting that the timing of the MoU was
endogenous. We explore this possibility by testing for a pre-MoU period in the
years just prior to the signing of the MoU.

5 Data

5.1 Data and sampling

The data for this study are drawn from the entire population of research mice
catalogued by the Mouse Genome Informatics (MGI) database. MGI consists
of over 13,000 unique mice, each of which can be linked to a publication in
the scientific literature describing its initial disclosure, thereby establishing a
population of mouse-articles. Of this large population, we focus only on mouse-
articles published between 1987 and 1998 (the date of the first NIH agreement).
As outlined above we sample all mouse-articles for the four types of mouse
engineering technologies defined by MGI: Cre-lox (28), Onco (102), Knock-out
(1895) and Spontaneous (146). Our sample thus includes 2171 novel mice, each
linked to a unique mouse-article.

We use PubMed and Thomson ISI Web of Science to collect detailed bib-
liometric information on all follow-on forward citations in academic journals
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through 2006. Each of these 432,083 citations includes information on last au-
thor, reprint author, institutional addresses, key words, and journal character-
istics (including journal name, journal impact factor and a score for basicness).
Citations are then aggregated into 22,265 citation-year observations by combin-
ing all the citations received by a given mouse-article in any particular year as
the basis for our analysis.

To capture the composition of follow-on research, we code citations into a
set of mutually exclusive categorical variables. We focus on margins intended
to capture the degree of horizontal experimentation across new lines, as well as
vertical exploitation. To illustrate the construction of these variables, take the
case of new key words. For each forward citation, ISI Web of Science provides
a series of keywords (referred to as Key Words Plus). We define the key word
from a given citation to be new if the key word has never been used in citations
to a particular mouse-article in any prior year. For all key words that have
appeared in citations to the particular mouse-article in prior years, we code this
as old. This construction allows us to capture changes in the research landscape
over time. We generate four new/old categorical variables:

i. New/Old Last Author: defined as new if the last author has never ap-
peared as a last author before in a citation to the mouse-article in prior
years, old otherwise.

ii. New/Old Institution: defined as new if any address in the institution list
has never appeared in an address list of citations to the mouse-article in
prior years, old otherwise.

iii. New/Old Key Words: defined as new if a key word has never before ap-
peared in the key word list of citations to the mouse-article, old otherwise.

iv. New/Old Journal: defined as new if the journal of the citation has never
appeared before in the citations to the mouse-article, old otherwise.

We also categorize citations according to whether they are published in basic
or applied journals.30This allows us to capture the predictions of our model re-
garding the impact of openness on the vertical direction of follow-on innovation,
i.e. whether these shifts lead to research further along particular research lines
(towards commercialization). It is worth noting that in this analysis, multidis-
ciplinary journals are classified as “basic”.

These measures reflect various ways in which openness impacts on follow-on
research along both horizontal and vertical dimensions. Using the two-equation
framework described in Section 4, they allow us to test the hypothesis that
changes in openness create more diverse lines of research, pursued by a more
diverse range of scientists. We also investigate whether openness is associated
with more basic or applied research.31

30Our Basic/Applied Journal definition is based on work by Lim (2004) who used the
measure building on a classification scheme developed by CHI Research, Inc. According to
Lim, “CHI awards each journal a score from zero to four. For the biomedical sciences, they
correspond to clinical observation, clinical mix, clinical investigation and basic science.

31It is worth noting that we do not examine the impact of openness on the academic/industry
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5.2 Variables and summary statistics

Table 1 provides variable names and definitions and Table 2 reports sum-
mary statistics. The dependent variable in the initial set of regressions is
Annual Citationsjt which measures the total number of citations received by
mouse-article j in year t. The average of Annual Citationsjt is 19.41 (with
a minimum of 0 and maximum of 336), highlighting the overall importance
of mouse genetics research in this period. Because we observe citation-years
from 1993 through 2006 , the average Citation Y earjt is 2001. We also create
an alternative dependent variable High Quality Ctationsjt, which captures the
production of research which appears in a ”top 50” journal (with mean equal
to 4.3). We then construct a series of dependent variables based on the key
categorical margins of interest:32

i. New Last Author Citationsjt and Old Last Author Ctationsjt, with
mean values equal to 11.7 and 3.9 respectively.

ii. New Institution Citationsjt andOld Institution Citationsjt, with mean
values equal to 17.5 and 10.2 respectively.

iii. New Keyword Citationsjt andOld Keyword Citationsjt, with mean val-
ues equal to 74.9 and 55.4 respectively.

iv. New Journal Citationsjt and Old Journal Citationsjt, with mean val-
ues equal to 7.9 and 6.2 respectively.

v. Basic Citationsjt and Applied Citationsjt, with mean values equal to 9.2
and 7.4 respectively.

TABLE 1 HERE
TABLE 2 HERE

We then define two measures that will be used to estimate the impact of
the NIH MoUs. We divide the period after the NIH MoU signing into two
subperiods because the NIH agreements likely take time to influence follow-
on research. Specifically, we define a window period and a treatment period
to allow for a reasonable lag (2 years) for the NIH MoU to impact observed
publication patterns. NIH MoU Window (mean equal to 0.011) is a dummy

citation margin. The NIH MoUs were directed specifically to public-sector researchers and
97.5% of all forward citations have at least one of their authors in public institutions.

32Note that the sum of the annual means of each margin need not add up to the mean
annual citation count. First, due to data-matching issues we cannot always identify 100% of
citations as belonging to one or the other margin; this leads to a sum lower than the mean
annual citation count. Second, new/old margins focus on the count of unique instances of the
characteristic in question; for example, if there are multiple citations from a particular journal
to a mouse-article in a given year, we only count the first such citation. This also leads to
a sum lower than the mean annual citation count. Finally, for the counts of institutions and
keywords, each citation contains multiple entries for these fields, leading to counts higher than
the mean annual citation count. For example, in the case of keywords, the sum of the margin
means is just over 120, indicating that the average paper has between 6 and 7 keywords.
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variable equal to one for articles impacted by that MoU during the year where
the NIH MoU was signed and the following year (1998/1999 for Cre-lox mouse-
articles, 1999/2000 for Onco mouse-articles). Post NIH MoU jt, (mean equal
to 0.036), our key treatment variable, is a dummy variable equal to one for all
articles impacted by the MoUs in citation-years after the window period ended.
We also define specific treatment variables for each of the MoU agreements:
Cre-Lox MoU Windowjt, Post Cre-Lox MoU jt, Onco MoU Windowjt and
Post Onco MoU jt.

To examine the short-term versus long-term impact of the NIH MoU, we
also define a treatment variable, Post NIH MoU, Short-Term equal to one
for the first three years after the window period, and a separate measure,
Post NIH MoU,Long-Term, for mouse-articles impacted by the NIH MoUs
for the period four years or more after the window.

We highlight our summary statistics disaggregated by the type of mouse
technology in Table 3. The most salient point to note is that compared to the
overall sample mean of 18, the Annual Citationsjt for Cre-lox and Onco mice
are 15 and 12 respectively. However, the Spontaneous mice in our control group
have a lower mean (4), the Knock-out mice have mean Annual Citationsjt

of over 21, thus providing further substantiation of the comparability of the
treatment and control groups. Moreover, the mean publication year and mean
number of authors across the four mouse technologies are similar.

TABLE 3 HERE

6 Results

Now we proceed to estimate the causal impact of the MoU openness shocks on
the overall flow of citations (Table 4), and then turn to the core of our analysis
which examines the impact of the NIH MoUs on the composition of citations.
Specifically, we examine the impact of openness on the type -new versus old-
of researchers (Table 5) and the nature -new versus old- of research directions
(Table 6). Moreover, we undertake several robustness checks including an anal-
ysis that specifically allows for differences in the time trend of citations for
our treatment and control groups (Table 7). Lastly, we analyze the impact of
openness on the vertical exploitation of particular research lines by examining
the composition of follow-on research in basic versus applied journals (Table 8).
By adopting a differences-in-differences approach in all our analyses to evaluate
the impact of openness on different citation margins, we are able to infer the
relationship between openness and academic freedom.

In all our Tables we report coefficients estimates and the incidence-rate ra-
tios (IRR). We discuss our results in terms of IRRs because they are easily
interpreted as percentage changes relative to a baseline (i.e. the null hypothesis
of no effect yields a coefficient of 1.0). As well, all of the models report block
bootstrapped standard errors clustered by mouse-article (MacKinnon, 2002).
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6.1 Impact of openness on the level of follow-on research

Our regression results begin in Table 4 with a conditional fixed effect nega-
tive binomial specification using Annual Citationsjt as the dependent vari-
able. All specifications also include the full set of article, age and calendar
year fixed effects. In (4-1) we include both the NIH MoU Window and the
Post NIH MoU regressors. The results are striking: After accounting for
the window period, mouse articles impacted by an MoU experience a 30%
increase in their annual citation rate. As illustrated in (4-2), the impact of
the NIH MoUs are increasing over time: While the increase in citations in
the three years after the window period is equal to 22%, the coefficient on
Post NIH MoU,Long-Term suggests that the permanent effect is nearly dou-
bled (at 43%). Not simply a reflection of publication lags, the results in (4-2)
suggest the presence of a positive and permanent increase in the use of geneti-
cally engineered mice which have been shifted to a higher level of openness. In
(4-3) we estimate separate coefficients for the Cre-lox and Onco MoUs: Both are
statistically significant although the magnitude of the boost to citations associ-
ated with the Cre-Lox MoU is larger (47% for citations to Cre-lox mouse-articles
compared to 27% for citations to Onco-mouse articles). Finally, in (4-4), we un-
dertake a robustness check by focusing on citations in ”high impact” journals.
We find strong evidence for a 41% boost in high quality citations suggesting
that the impact of the shift in openness is concentrated in research appearing
in the most prestigious journals.

The results in Table 4 provide strong support for a central hypothesis – that
positive shocks to openness foster follow-on research. These findings reinforce
previous studies of the impact of openness and accessibility such as Furman
and Stern (2009) and Murray and Stern (2007). Furthermore, our results are
consistent with a multi-staged view of innovation: an increase in openness does
not simply lead to a temporary increase in follow-on research but instead has
an increasing impact over time. Finally, though we hold off on this discussion
until Table 7, we can show that the estimated impact of the NIH MoUs are
not simply due to a different time trend for the treatment and control groups.
Taken together, these results highlight the sensitivity of follow-on researchers
to the degree of openness of critical research inputs.

TABLE 4 HERE

6.2 Impact of openness on the type of follow-on research:
horizontal exploration

Tables 5 and 6 present our main evidence regarding our theoretical claim that
greater openness results in greater horizontal experimentation, spawning a more
diverse array of research lines and encouraging the participation of new re-
searchers. In Table 5, our key comparison is between researchers listed as the
last author (senior scientist) on citations who have (or have not) been previ-
ously listed on a citation to the mouse-article of interest, as captured in our
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measures New Author Citations and Old Author Citations. In (5-1a) and (5-
1b) we estimate whether the marginal impact of Post NIH MoU is different
for new versus old last-authors. The results are consistent with our hypothesis:
while there is only an insignificant 13% increase in citations by old authors,
the increase by new authors is estimated to be significant and more than 38%.
Moreover, these two coefficients are significantly different from each other. We
then estimate a separate coefficient for the short-term versus long-term impact
of the NIH MoUs on new versus old authors (5-2a and 5-2b). The increase in ci-
tations by new authors is greater than the increase in citations for old authors in
both the short- and long-term (with the difference between the two coefficients
being significant at the 1% level). Strikingly, the estimate of the long-term
increase in new author citations is greater than 50%. Moreover, when we sep-
arately estimate the impact of the Cre-lox and Onco MoUs on new versus old
authors, (5-3a and 5-3b) we find that the estimated boost for new authors is
statistically significant for each agreement compared to a much smaller and sta-
tistically insignificant increase in citations by old authors. Moreover, we find
that the difference between the new versus old coefficients is significant for each
agreement at the 5% level.

Finally, in (5-4a) and (5-4b) we turn to an alternative measure of the di-
versity of follow-on researchers as captured by their institutional affiliation. If
researchers within a given institution (e.g. Northwestern University) share mice
with each other, an increase in openness would be associated with an increas-
ing number of institutions making investments in particular specialized research
mice. Conversely, any university-level agreement made prior to the MoU would
allow for follow-on research by all scientists within that specific institution. Sim-
ilar to the results for new versus old authors, the boost in citations associated
with the NIH MoUs is concentrated in citations from institutions that had not
previously cited that mouse article (27% vs. 13% boost).

Overall, the results in Table 5 provide direct evidence that the shift in open-
ness associated with the NIH MoUs expanded the diversity of researchers draw-
ing on a particular line of research. In other words, these findings are consistent
with the idea that an increase in openness reducing the fixed cost of critical
upstream inputs expands the range of researchers willing to undertake such
investments in exploratory research areas.

TABLE 5 HERE

We then turn in Table 6 to the related prediction that openness enhances
the diversity of research lines (particularly in an academic research environment
where scientists are free to choose their own research direction). We capture the
degree of horizontal diversity by using the key words that categorize each cita-
tion (recall that key words are chosen by the archiving service rather than the
researchers). In (6-1a) and (6-1b) we compare the impact of the NIH MoUs on
New Key Word Citations and Old Key Word Citations respectively. While
there is a small and statistically insignificant decline in the number of old key
words there is a significant 26% increase in the number of citations with new key
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words. Moreover, these coefficients are statistically significantly different from
each other. This is not just a short-term effect: the analysis of time dynamics
in (6-2a) and (6-2b) indicates that there is an even larger 41% increase in the
number of new key works in the long-term, relative to an insignificant decrease
to old key words in the long-term; moreover, the difference between this 41%
increase and the 18% increase to new key words in the short-term is statistically
significant at the 1% level. When we decompose the openness changes into the
Crelox and Onco MoUs (see 6-3a and 6-3b), we continue to find a quantitatively
and statistically significant difference between the new and old key words coeffi-
cients. Both the Cre-Lox and Onco MoU are associated with a significant boost
in new key words (40% and 21% respectively) and a small and insignificant
decline in old key words. Finally, as in our analysis of the diversity of citing
researchers, we use an alternative measure to test the robustness of our findings
on research diversity. In (6-4a) and (6-4b) we compare the citation margins
between New Journal Citations and Old Journal Citations, where a ”new”
journal is one which has never before published an article citing the original
mouse-paper article in question. We find that being in the Post NIH MoU
period leads to a 38% increase (significant at the 1% level) in citations from
new journals, and only a 20% increase in citations from old journals (significant
at the 5% level).

TABLE 6 HERE

In our analysis so far we have assumed that the citation-age profile is sim-
ilar for the treatment and control groups. Because different mouse articles are
published at different times (relative to the MoUs) we can test this assump-
tion directly. In Table 7 we re-estimate each of the key equations for overall
citations, new versus old authors, and new versus old key words, allowing for a
time trend specific to the treatment group for each citation margin. Of course,
since the treatment effect itself is predicted to increase in the time elapsed since
the treatment we separately allow for a post-MoU trend. The results reinforce
our overall findings. First and most importantly, across all of the specifications
there is no statistically significant or quantitatively important trend specific
to the treatment articles. Second, the estimated coefficients for the impact of
the MoU are consistent with our earlier findings, although the coefficients are
smaller (since they are implicitly estimating the impact of the MoU only for
the first year after the window period). More importantly, there is a significant
impact of the treatment over time for overall citations, new authors and new
key words. While there is also an increase over time for old authors and old key
words, the coefficient is smaller and noisier.

We have also experimented extensively with specifications that estimate co-
efficients on a year-by-year basis relative to the time of the MoU, in order to
test for the presence of a pre-shock trend in either of the treatment groups (rel-
ative to controls) and to examine the evolution of each citation margin after the
shock. While the pre-deposit trend is not statistically significant for any of the
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citation margins we consider, it is also true that these year-by-year coefficients
are imprecisely estimated, in part because of the relatively small number of an-
nual citation-year observations in the treatment groups. In other words, there
is no evidence for a significant increase in citations prior to the MoU that might
raise concerns about the endogeneity of the timing of the agreement.

TABLE 7 HERE

6.3 Impact of openness on the type of follow-on research:
vertical exploitation

Finally in Table 8 we turn to the effects of openness shocks on the vertical distri-
bution of research. We do so by examining the marginal impact of the openness
shocks on the production of research in basic versus applied research journals. In
(8-1a) and (8-1b), we find that the Basic Citations dependent variable increases
by 26% during the post-MoU period; at the same time, Applied Citations ex-
perience a 30% increase during that period (both significant at the 1% level).
This suggests that the overall impact of the MoUs involves both basic and ap-
plied citations. We then disentangle the separate impacts of the Cre-lox and
Onco MoUs. Recall that in the pre-MoU period, not only was there stringent
reach-through rights associated with Cre-lox mice, but also very limited access
to the mice due to ex ante enforcement by DuPont. In contrast, Onco mice
were made available in the pre-MoU period through the Jackson Labs. As a
result, relative to the Cre-lox MoU the Onco MoU reduced reach-through rights
but had a more limited impact on access. In (8-2a) and (8-2b) we evaluate the
differential impact of these MoUs on basic versus applied citations. We find
that the impact of the Cre-lox MoU is concentrated in basic citations, while
the Onco shock has a significant effect only on applied citations. Specifically,
the Cre-lox MoU leads to a 120% increase in basic citations (significant at the
1% level) but no change in applied citations, the Onco MoU leads to a 57%
increase in applied citations and has no significant impact on basic citations.
This is consistent with the view that when upstream access is already secured
(as was the case for Onco mice), then an agreement that shifts the balance of
appropriability toward follow-on innovators induces more applied research.

TABLE 8 HERE

7 Conclusion

In this paper we argued that openness of upstream research does not simply
encourage higher levels of downstream exploitation: it also raises the incentives
for additional upstream research by encouraging the establishment of entirely
new research directions. We tested this hypothesis by examining a “natural ex-
periment” in openness within the academic community: NIH agreements during
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the late 1990s that circumscribed IP restrictions for academics and increased
the openness of key types of genetically engineered mice and the research tools
associated with their production.

Our empirical results suggest that the NIH MoUs had a profound and long-
lasting impact on follow-on research. Not only did they boost the overall flow of
follow-on research using specific engineered research mice, they also expanded
the diversity of researchers working on particular research lines, and expanded
the diversity of the research taking place. While both basic and applied research
was significantly increased after the MoUs, given the tight access restrictions in
addition to the appropriability concerns associated with Cre-lox mice, the Cre-
lox MoU had a particularly striking impact on basic research. Of course, our
interpretation depends upon the extent to which these MoUs were truly exoge-
nous. While they certainly reflected the endogenous choice of DuPont, JAX,
and the NIH, there is strong evidence to suggest that the timing of these MoUs
was unanticipated. Indeed the fact that the long-term effect is significantly
higher than the short-term effect and that there is no pre-deposit trend pro-
vides empirical evidence in this regard. Our results therefore highlight a key
limitation in the current literature on intellectual property and innovation - the
potential restrictions intellectual property right may place on the diversity of
research and researchers who would otherwise take a single powerful idea and
experiment across multiple research lines.

The theory and empirical analysis developed in this paper could be extended
in several interesting directions. One avenue would be to reassess the Bayh-Dole
Act based on our findings. Indeed our results highlight one of the possible dan-
gers of excessive IP enforcement: namely, if IP is used to restrict openness
particularly at very early stages of the research line, then may stifle exploratory
projects that are key to diverse follow-on innovation. Second, our framework sug-
gests that more attention be paid by economists to recent corporate attempts to
generate new sources of profit building on the openness of knowledge production
by others. Tapscott and Williams (2006) explain how IBM has recovered from
competition with Microsoft by engaging in the openness promoted by the Linux
community. However, the less effective experience of DuPont and other com-
panies that kept on enforcing patents while also attempting to engage with the
open scientific community33 suggests that the systematic analysis of the forces
and trade-offs at work in an economic environment with both proprietary and
open firms competing with each other and cooperating with open communities,
merits future research.

33See Huang and Murray (2008).
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TABLE 1: VARIABLES & DEFINITIONS 

 
VARIABLE  DEFINITION  SOURCE  

 

PUBLICATION CHARACTERISTICS  

Publication Year Year in which Article j is published  PM  

# Authors Count of the number of authors of Article j  PM  

Total Citations # of FORWARD CITATIONS from publication date through 2006  SCI  

 

CITATION-YEAR CHARACTERISTICS  

Annual Citations  Count of all Forward Citations to Article j in Year t  SCI 

High Quality Annual 

Citations 

Count of Forward Citations to Article j in Year t where the journal of the 

citation is a top 50 journal based on impact factor rankings. 

ISI 

Citation Year Year in which FORWARD CITATIONS are received  SCI  

 

CITATION-YEAR MARGIN CHARACTERISTICS  

Basic Citations Count of Forward Citations to Article j in Year t where the  journal of the 

citation is a basic-research journal 

CHIBasic  

Applied Citations Count of Forward Citations to Article j in Year t where the  journal of the 

citation is an applied-research journal 

CHIBasic 

New X Citations Count of Forward Citations to Article j in Year t where characteristic X of the 

citations is “new” and has not appeared in the citations to Article j in prior 

years. 

 

Old X Citations Count of Forward Citations to Article j in Year t where characteristic X of the 

citations is NOT “new” and has appeared in the citations to Article j in prior 

years. 

 

X = Last Author  Last Author listed on the Citation  PM  

X = Institution Institutional Addresses listed on the Citation PM  

X = Key Word Key Words listed on the Citation PM  

X = Journal Journal listed on the Citation PM  

 

OPENNESS SHOCK CHARACTERISTICS  

Post NIH MoU Dummy variable equal to 1 if Article j is associated with an openness MOU 

agreement (Cre-Lox, Onco) which is in effect in year t. 

MGI 

NIH MoU Window Dummy variable equal to 1 if Article j is associated with an openness MoU 

agreement (Cre-Lox, Onco) which is in its initial period in year t. 

MGI  



 

TABLE 2: SUMMARY STATISTICS 

 

VARIABLE N MEAN STD. DEV. MIN MAX 

 

PUBLICATION CHARACTERISTICS (N = 2,171 original publication) 

Publication Year 2171 1995.58 2.34 1987 1998 

# of Authors 2171 7.110 3.407 1 34 

Total Forward Citations 2171 210.8 230.4 1 2543 

 

CITATION-YEAR CHARACTERISTICS (N = 22,265 citation-year observations) 

Citation Year 22265 2001.19 3.26 1993 2006 

Annual Citations 22265 19.41 21.67 0 336 

High Quality Annual 

Citations 
22265 4.313 5.868 0 71 

 

CITATION-YEAR MARGIN CHARACTERISTICS (N = 22,265 citation-year observations) 

Basic Citations 22265 9.176 11.239 0 151 

Applied Citations 22265 7.446 10.778 0 157 

New Last-Author Citations 22265 11.708 13.479 0 243 

Old Last-Author Citations 22265 3.941 5.349 0 58 

New Institution Citations 22265 17.541 17.829 0 287 

Old Institution Citations 22265 10.212 13.657 0 135 

New Key Word Citations 22265 74.878 67.277 0 794 

Old Key Word Citations 22265 55.371 61.115 0 620 

New Journal Citations 22265 7.911 7.842 0 94 

Old Journals Citations 22265 6.168 7.608 0 81 

 

OPENNESS AGREEMENT CHARACTERISTICS (N = 22,265 citation-year observations) 

Post NIH MoU 
22265 0.036 0.187 0 1 

NIH MoU Window 
22265 0.011 0.105 0 1 

Post Cre-lox MoU 
22265 0.009 0.093 0 1 

Cre-lox MoU Window 
22265 0.002 0.045 0 1 

Post Onco MoU 
22265 0.027 0.164 0 1 

Onco MoU Window 
22265 0.009 0.095 0 1 

 

 



 

TABLE 3: SUMMARY STATISTICS BY MOUSE TECHNOLOGY 

 

 MOUSE TECHNOLOGY 

VARIABLE CRE-LOX ONCO KNOCK-OUT SPONTANEOUS 

 

PUBLICATION CHARACTERISTICS (N = 2,171 original publication) 

# of Original Publications 28 102 1895 146 

Publication Year 1996.7 1993.4 1995.8 1993.5 

# Authors 5.250 6.020 7.353 5.075 

Total Citations 144.43 167.78 226.25 52.73 

 

CITATION-YEAR CHARACTERISTICS (N = 22,265 citation-year observations) 

Annual Citations  14.719 12.297 21.285 3.955 

 



 

TABLE 4: IMPACT OF OPENNESS ON FOLLOW-ON RESEARCH 

 
  NEGATIVE BINOMIAL  

Dep Var = ANNUAL CITATIONS  
[Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

(4-1)  
Baseline Model 

(4-2)  
Baseline Model with 

Treatment Effect 

Dynamics  

(4-3)  
Treatment Effects 

by Cre & Onco 

MoU 

(4-4)  
Baseline Model,  

DV = Citations from 

High Quality 

Journals only
#
 

Post NIH MoU  [ 1.302 ]*** 

0.264  

(0.062) 

  

[ 1.409 ]*** 

0.343  

(0.080) 

Post NIH MoU, 

Short-term
++

  

[ 1.220 ]*** 

0.199 

(0.064) 

  

Post NIH MoU, 

Long-term
+++

  

[ 1.429 ]*** 

0.357 

(0.074) 

  

Post Cre-lox MoU 

  

[ 1.467 ]*** 

0.383 

(0.115) 

 

Post Onco MoU 

  

[ 1.267 ]*** 

0.236 

(0.060) 

 

CONTROL VARIABLES 

- NIH MoU Window+ 

 

 

- Cre MoU Window 

 

 

- Onco MoU Window 

[ 1.146 ]** 

0.136  

(0.065) 

 

- 

 

- 

[ 1.149 ]** 

0.139 

(0.058) 

 

- 

 

- 

 

- 

 

[ 1.069 ] 

0.067 

(0.089) 

[ 1.188 ]*** 

0.172 

(0.043) 

[ 0.954 ] 

-0.047 

(0.092) 

 

- 

 

- 

Age FEs 

Year FEs 

Article FEs 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Log-likelihood  -55919.8 -55906.1 -55912.4 -34112.8 

# of Observations  22265 22265 22265 21574 

Significance levels: * 10% ** 5% *** 1% 

 
+ Window is defined as the year of the MoU and the following year (for Cre-lox mice: 1998/1999; for Onco mice: 

1999/2000) 

++ Short-term is defined as the three years following the window after the MoU (for Cre-lox mice: 2000-2002; for Onco 

mice: 2001-2003). 

+++ Long-term is defined as the years following the window and the short-term period after the MoU (for Cre-lox mice: 

2003 onward; for Onco mice: 2004 onward). 
#
  For this regression we use a modified dependent variable that captures only those annual citations that appear in a sub-set of 

high quality journals ranked by ISI impact factor. 

 
Tests of Differences Between Coefficients: 

(Post-NIH MoU ) – (NIH MoU Window) :   
  Estimate = 0.129;  SE = 0.033;  Prob >|z| < 0.001 

(Post-NIH MoU Long-term) – (Post-NIH MoU Short-term) :   
  Estimate = 0.158;  SE = 0.040;  Prob >|z| < 0.001 



 

TABLE 5:   IMPACT OF OPENNESS ON CITATIONS BY NEW VS OLD ‘LAST 

AUTHORS’ AND NEW VS. OLD INSTITUTIONS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

(5-1a)  
DV= 

New 

Author 

Citations 

(5-1b)  
DV= 

Old 

Author 

Citations 

(5-2a)  
DV=  

New 

Author 

Citations 

(5-2b)  
DV=  

Old 

Author 

Citations  

(5-3a)  
DV= 

New 

Author 

Citations 

(5-3b)  
DV= 

Old 

Author 

Citations 

(5-3a)  
DV= 

New 

Institution 

Citations 

(5-3b)  
DV= 

Old 

Institution 

Citations 

Post NIH 

MoU  

[1.379]*** 

0.321 

(0.065) 

[1.135] 

0.127 

(0.088) 

    

[1.269]*** 

0.238 

(0.052) 

[1.127]* 

0.120 

(0.066) 

Post NIH 

MoU, Short-

term 

  

[1.276]*** 

0.244 

(0.062) 

[1.064] 

0.062 

(0.078) 

    

Post NIH 

MoU, Long-

term 

  

[1.537]*** 

0.430 

(0.071) 

[1.224]*** 

0.202 

(0.073) 

    

Post Cre-lox 

MoU     

[1.649]** 

0.500 

(0.203) 

[1.189] 

0.173 

(0.211) 
  

Post Onco 

MoU     

[1.305]*** 

0.266 

(0.076) 

[1.160] 

0.148 

(0.108) 
  

CONTROL VARIABLES 

Window FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Age FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Year FEs Yes+ Yes+ Yes+ Yes+ 

Article FEs Yes Yes Yes Yes 

Log-likelihood  -86889.3 -86874.1 -86877.2 -114094.0 

# of 

Observations  
42802 42802 42802 42830 

 Significance levels: * 10% ** 5% *** 1% 

 
+ Calendar year fixed effects include a set of indicator variables common to both margins in a given regression, and a 

linear difference variable which allows for a constant difference in growth rates between the two margins. 

 
Tests of Differences Between Coefficients:

(Post-NIH MoU effect on New Author Citations) – (Post-NIH MoU effect on Old Author Citations):   
  Estimate = 0.194;  SE = 0.042;  Prob >|z| < 0.001 

(Post-NIH MoU Short-term effect on New Author Citations) – (Post-NIH MoU Short-term effect on Old Author Citations):   
  Estimate = 0.181;  SE = 0.047;  Prob >|z| < 0.001 

(Post-NIH MoU Long-term effect on New Author Citations) – (Post-NIH MoU Long-term effect on Old Author Citations):   
  Estimate = 0.227;  SE = 0.042;  Prob >|z| < 0.001 

(Post-Cre-lox MoU effect on New Author Citations) – (Post-Cre-lox MoU effect on Old Author Citations):   
  Estimate = 0.327;  SE = 0.064;  Prob >|z| < 0.001 

(Post-Onco MoU effect on New Author Citations) – (Post-Onco MoU effect on Old Author Citations):   
  Estimate = 0.118;  SE = 0.054;  Prob >|z| = 0.029 

(Post-NIH MoU effect on New Institution Citations) – (Post-NIH MoU effect on Old Institution Citations):   
  Estimate = 0.118;  SE = 0.035;  Prob >|z| = 0.001 
 
 
 
 



 

TABLE 6:   IMPACT OF OPENNESS SHOCKS ON CITATIONS 

WITH NEW VS. OLD KEY WORDS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 
(6-1a)  

DV=New 

Key Word 

Citations 

(6-1b)  
DV=Old  

Key Word 

Citations 

(6-2a)  
DV= New  

Key Word 

Citations 

(6-2b)  
DV= Old  

Key Word 

Citations  

(6-3a)  
DV=New 

Key Word 

Citations 

(6-3b)  
DV=Old  

Key Word 

Citations 

(6-4a)  
DV= New 

Journal 

Citations 

(6-4b)  
DV= Old 

Journal 

Citations 

Post NIH MoU  [1.260]*** 

0.231 

(0.070) 

[0.925] 

-0.078 

(0.075) 

 

   [1.381]*** 

0.323 

(0.076) 

[1.201]** 

0.183 

(0.084) 

Post NIH 

MoU, Short-

term 

  

[1.178]*** 

0.164 

(0.061) 

[0.882]* 

-0.126 

(0.066) 

    

Post NIH 

MoU, Long-

term 

  

[1.405]*** 

0.340 

(0.070) 

[0.989] 

-0.011 

(0.071) 

    

Post Cre-lox 

MoU   

  [1.399]* 

0.336 

(0.202) 

[0.879] 

-0.129  

(0.194) 

  

Post Onco 

MoU   

  [1.208]*** 

0.189 

(0.062) 

[0.955] 

-0.046 

(0.076) 

  

CONTROL VARIABLES 

Window FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Age FEs Yes Yes Yes Yes Yes Yes Yes Yes 

Year FEs Yes+ Yes+ Yes+ Yes+ 

Article FEs Yes Yes Yes Yes 

Log-likelihood  -179179.1 -179162.5 -179146.0 -88007.3 

# of 

Observations  
44488 44488 44488 42830 

 Significance levels: * 10% ** 5% *** 1% 

 
+ Calendar year fixed effects include a set of indicator variables common to both margins in a given regression, and a 

linear difference variable which allows for a constant difference in growth rates between the two margins. 

 
Tests of Differences Between Coefficients:

(Post-NIH MoU effect on New Key Word Citations) – (Post-NIH MoU effect on Old Key Word Citations):   
  Estimate = 0.310;  SE = 0.038;  Prob >|z| < 0.001 

(Post-NIH MoU Short-term effect on New Key Word Citations)  
– (Post-NIH MoU Short-term effect on Old Key Word Citations):   

  Estimate = 0.290;  SE = 0.038;  Prob >|z| < 0.001 
(Post-NIH MoU Long-term effect on New Key Word Citations)  

– (Post-NIH MoU Long-term effect on Old Key Word Citations):   
  Estimate = 0.351;  SE = 0.035;  Prob >|z| < 0.001 

(Post-Cre-lox MoU effect on New Key Word Citations) – (Post-Cre-lox MoU effect on Old Key Word Citations):   
  Estimate = 0.466;  SE = 0.059;  Prob >|z| < 0.001 

(Post-Onco MoU effect on New Key Word Citations) – (Post-Onco MoU effect on Old Key Word Citations):   
  Estimate = 0.235;  SE = 0.039;  Prob >|z| < 0.001 

(Post-NIH MoU effect on New Journal Citations) – (Post-NIH MoU effect on Old Journal Citations):   
  Estimate = 0.140;  SE = 0.043;  Prob >|z| = 0.001 



 

TABLE 7:   ROBUSTNESS TESTS FOR A PRE-SHOCK TREATMENT TREND FOR 

RESULTS ON OVERALL CITATIONS, NEW VS OLD AUTHORS AND NEW VS OLD 

KEYWORDS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

(7-1)  
DV= 

Annual Citations 

With Treatment 

Trends 

(7-2a)  
DV=  

New Author 

Citations 

With Treatment 

Trends 

(7-2b)  
DV=  

Old Author 

Citations  

With Treatment 

Trends 

(7-3a)  
DV=  

New Keyword 

Citations 

With Treatment 

Trends 

(7-3b)  
DV=  

Old Keyword 

Citations  

With Treatment 

Trends 

Post NIH MoU  [ 1.145 ]* 

0.135 

(0.078) 

[ 1.117 ] 

0.111 

(0.091) 

[ 1.034 ] 

0.033  

(0.078) 

[ 1.127 ] 

0.120 

(0.102) 

[ 0.984 ] 

-0.016 

(0.118) 

Treatment Group 

Age Trend per 

Year 

[ 1.003 ] 

0.003  

(0.015) 

[ 1.014 ] 

0.014  

(0.018) 

[ 1.000 ] 

-0.000 

(0.020) 

[ 1.001 ] 

0.001 

(0.025) 

[ 0.997 ] 

-0.003 

(0.029) 

Post NIH MoU 

Change in Trend 

per Year 

[ 1.050 ]*** 

0.049 

(0.017) 

[ 1.052 ]** 

0.051  

(0.025) 

[ 1.046 ]* 

0.045  

(0.025) 

[ 1.053 ]** 

0.052 

(0.025) 

[ 1.045 ] 

0.044 

(0.028) 

CONTROL VARIABLES 

NIH MoU 

Window 

[ 1.114 ]** 

0.108 

(0.047) 

[ 1.079 ] 

0.076 

(0.062) 

[ 1.091 ] 

0.087 

(0.071) 

[ 1.081 ] 

0.078 

(0.068) 

[ 0.860 ]** 

-0.151 

(0.063) 

Age FEs Yes Yes Yes Yes Yes 

Year FEs Yes Yes+ Yes+ 

Article FEs Yes Yes Yes 

Log-likelihood  -55899.5 -86859.4 -179152.1 

# of Observations  22265 42802 44488 

 Significance levels: * 10% ** 5% *** 1% 

 
+ Calendar year fixed effects include a set of indicator variables common to both margins in a given regression, and a 

linear difference variable which allows for a constant difference in growth rates between the two margins. 

 
Tests of Differences Between Coefficients:

(Post-NIH MoU effect on New Author Citations) – (Post-NIH MoU effect on Old Author Citations):   
  Estimate = 0.078;  SE = 0.077;  Prob >|z| = 0.312 

(Post-NIH MoU effect on New Key Word Citations) – (Post-NIH MoU effect on Old Key Word Citations):   
  Estimate = 0.277;  SE = 0.056;  Prob >|z| < 0.001 

 

 



 

TABLE 8: IMPACT OF OPENNESS ON CITATIONS 

IN BASIC VS. APPLIED JOURNALS 
 

 STACKED NEGATIVE BINOMIAL  
 [Incident rate ratios reported in square brackets]  

Estimated coefficients in 2
nd

 line. 

(Block bootstrapped SEs reported in parentheses) 

(8-1a)  
DV=  

Basic Journal 

Citations 

(8-1b)  
DV=  

Applied Journal 

Citations 

(8-2a)  
DV= 

Basic Journal 

Citations 

(8-2b)  
DV=  

Applied Journal 

Citations  

Post NIH MoU  [ 1.262 ]*** 

0.233 

(0.066) 

[ 1.301 ]*** 

0.263 

(0.061) 

  

Post Cre-lox MoU 

  

[ 2.212 ]*** 

0.794 

(0.126) 

[ 1.073 ] 

0.070 

(0.105) 

Post Onco MoU 

  

[ 1.076 ] 

0.073 

(0.062) 

[ 1.565 ]*** 

0.448 

(0.075) 

CONTROL VARIABLES 

MoU Window FEs Yes Yes Yes Yes 

Age FEs Yes Yes Yes Yes 

Year FEs Yes+ Yes+ 

Article FEs Yes Yes 

Log-likelihood  -105989.0 -105894.7 

# of Observations  44530 44530 

 Significance levels: * 10% ** 5% *** 1% 

 
+ Calendar year fixed effects include a set of indicator variables common to both margins in a given regression, and a 

linear difference variable which allows for a constant difference in growth rates between the two margins. 

 

 
Tests of Differences Between Coefficients:

(Post-NIH MoU effect on Basic Journal Citations) – (Post-NIH MoU effect on Applied Journal Citations):   
  Estimate = -0.030;  SE = 0.072;  Prob >|z| = 0.676 

(Post-Cre-lox MoU effect on Basic Journal Citations) – (Post-Cre-lox MoU effect on Applied Journal Citations):   
  Estimate = 0.724;  SE = 0.122;  Prob >|z| < 0.001 

(Post-Onco MoU effect on Basic Journal Citations) – (Post-Onco MoU effect on Applied Journal Citations):   
  Estimate = -0.375;  SE = 0.086;  Prob >|z| < 0.001 
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