Selection, Growth and Learning

Costas Arkolakis Yale University & NBER Theodore Papageorgiou Penn State University

January 3, 2009

Big Picture

- Firm behavior crucially depends on age (e.g. Evans '87)
 - Young firms grow faster, more likely to exit (even conditional on size)
- Large part of young firm growth due to demand (vs productivity)
 - Haltiwanger et al '09: evidence from homogenous good industries
 - EEKT, Albornoz et al '09: large growth for new exporters into individual destinations

What about idiosyncratic productivity shocks?

- Stochastic productivity essential modeling component
 - Arkolakis '08 extending Luttmer '07, Hopenhayn '92
 - Explain US cohort turnover & growth
 - Explains dependence of growth and turnover on firm *size*
- Cannot explain dependence of firm growth & turnover on age
 - Reason: one state Markov structure

This Paper: Quantitative Framework of Firm Demand-Learning

- Revisit findings of Evans '87 using Colombian plant data
- Develop a benchmark framework of firm learning and productivity
 - Learning generates age dependent turnover & growth (Jovanovic '82)
 - Approach related to Ruhl & Willis '09. Also to EEKKT '09
 - Simpler framework, going further in characterizing model implications

Agenda: is learning the missing link?

- Learning has a number of advantages vs e.g. financial constraints
 - Tractability
 - Results largerly independent of productivity shock structure (Cooley & Quadrini '01)
 - Demand explanation: useful to model growth in individual markets
- Develop a benchmark framework of firm learning & productivity
 - SR: Estimate importance of firm learning vs productivity
 - MR: Perform counterfactual policy experiments
 - LR: Understand how learning affects trade

The data

Data

- Colombian data (DANE survey)
 - Dataset covers all plants with 10+ employees
- Look real production 83-91, treat each plant-year as an observation
 - Yearly turnover and growth

The model

Consumer Preferences

• Unit mass of consumers with preferences over a composite good, C_t :

$$E_t\left(\sum_{t=0}^{+\infty}eta C_t^{rac{\gamma-1}{\gamma}}dt
ight)^{rac{\gamma}{\gamma-1}}$$

where

$$(C_t)^{\rho} = \int_{\omega \in \Omega} \left[e^{a_t(\omega)} \right]^{1-\rho} q_t(\omega)^{\rho} d\omega$$

- $e^{\mathbf{a}_t(\omega)}$: good ω idiosyncratic demand component
- $q_t(\omega)$: quantity consumed from good ω

Consumer Demand

- Modeling of representative consumer is parsimonious
- Implies demand for good ω

$$q_{t}\left(\omega
ight)=e^{a_{t}\left(\omega
ight)}rac{p_{t}\left(\omega
ight)^{-\sigma}}{P_{t}^{1-\sigma}}$$

where w_t is worker wage , P_t is the CES price index, $\sigma = \frac{1}{1-\rho} > 1$ is the elasticity of substitution.

• Each firm is a monopolist of one good. Takes demand as given

Information Frictions

• The demand realization for the good of a firm ω is given by:

$$m{a}_{t}\left(\omega
ight)= heta\left(\omega
ight)+arepsilon_{t}\left(\omega
ight)$$
 , $arepsilon_{t}\left(\omega
ight)\sim N\left(0,\sigma^{2}
ight)$ i.i.d

- Permanent demand realization $heta\left(\omega
 ight)$ unobserved by the firm
 - Drawn from normal with known mean & variance.
 - Firm observes $a_t(\omega)$, updates beliefs for $\theta(\omega)$ in Bayesian fashion.

Firm Production and Equilibrium Conditions

- Firms use a CRS production function, productivity z
- We assume free entry condition to close the model.
 - Firms enter with a productivity drawn from $g_{e}(z)$
- Labor market clears

Timing of Firm Actions

• Timing

Period t begins. Firms die with prob. δ, new productivity is realized	Firm makes quantity decisions, Pays fixed cost	Demand uncertainty is realized, production takes place	Period t+1 begins. Firms die with prob. δ, new productivity is realized
		Updating of belief takes place. Firm decides whether to produce next period or endogenously exit.	

- Firm updates beliefs (learns) even if there is very little production
 - Firm optimization wrt to quantities is in fact static
 - But beliefs do affect quantity and entry-exit decisions

Firm Optimization

• Firm chooses quantity, q_t to maximize expected profits:

$$\pi_{t}(z,\overline{a_{t}},n) = \max_{q_{t}} \int \left[p_{t}q_{t} - q_{t}\frac{w_{t}}{z} \right] g_{a}\left(da_{t} | \overline{a_{n}}, n \right) - w_{t}f$$

subject to:

$$q_t = e^{a_t} rac{p_t^{-\sigma}}{P_t^{1-\sigma}}$$

where $g_a(\cdot | \overline{a_n}, n)$ is the pdf of the firm beliefs at t regarding the realization a_t , conditional on having n signals with mean $\overline{a_n}$.

Characterization of learning

- $(\overline{a_n}, n)$ is a sufficient statistic for firm beliefs at t regarding a_t .
- Define firm expected demand,

$$b_t = E_t \left[e^{a_t}
ight] = \int \left(e^{a_t}
ight)^{rac{1}{\sigma}} g_a \left(da_t | \overline{a_n}, n
ight)$$

- Turns out that also (b_t, n) is a sufficient statistic for firm learning.
- Firm state is (z, b_t, n) .

Characterization of a Stationary Equilibrium

• Optimal choice of quantity for a firm(z, b)

$$q_{t}(z,b) = \frac{\left(\frac{\sigma}{\sigma-1}\frac{w}{z}\right)^{-\sigma}}{\left(P^{\sigma-1}Lw\right)^{-1}}\left(b\right)^{\sigma}$$

• Market clearing price:

$$p(z,b) = \frac{\sigma}{\sigma-1} \frac{w}{z} \frac{(e^a)^{\frac{1}{\sigma}}}{b}$$

Firm Growth

- **Proposition**: The growth rate of the sales is higher for Young firms $(n < +\infty)$ versus Old firms $(n \to \infty)$ (assuming there is no exit).
- Intuition of the result: Jensen's inequality
 - Young firms: Chance to be superstar, production expected to increase
 - Old firms: no uncertainty of true $\theta(\omega)$, production roughly constant
 - Result does not depend on normality of $\theta\left(\omega
 ight)$

Firm Growth

- **Proposition**: The growth rate of the sales is higher for Young firms $(n < +\infty)$ versus Old firms $(n \to \infty)$ (assuming there is no exit).
- Furthemore, proposition is true for any prior distribution of $\theta(\omega)$

Firm Entry-Exit

- Each period the firm can either stay in the market or exit.
 - Its value function is given by:

$$V\left(z, b, n
ight) = \pi\left(z, b
ight) + eta\left(1 - \delta
ight)\int \max\left[V\left(z, b', n
ight), 0
ight]g_{b}\left(db'|b, n
ight)$$

where g_b distr. of next period b.

• Proposition:

- Value function is unique.
- Value function is increasing in z and b.
 - Thus, given $n, z, \exists b^*(z, n)$ s.th. $\forall b \ge b^*(z, n)$ firms operate

Numerical Simulations

- A stationary equilibrium exists
 - Belief process is positive recurrent
- Some quantitative preliminary results with homogeneous z
 - Model can deliver both age and size dependent growth
 - Consumer Paremeters: $\sigma = 6$, $\beta = 0.99$
 - demand shock true mean: $\sigma_{ heta}=1.$ Noise st.dev: $\sigma_{arepsilon}=0.5$
 - Exogenous death: $\delta = .03$

Summary

- Model of learning and productivity heterogeneity
 - Tractable framework, easy to extend to productivity dynamics
- Tractable framework.
 - Continuous time version would allow more tractability
 - Some positive preliminary results.
- Working on finding better data and on estimation
 - Trade extension (similar to Ruhl & Willis '09)