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Creativity is a fundamental value of a free society.

Creativity flourishes when individuals are enabled to

pursue individual independent paths of inquiry, ex-

ploration, and creative development (Jonathan S. Fe-

instein 2006; Philippe Aghion, Mathias Dewatripont

and Jeremy C. Stein 2005). In such an environ-

ment personal intuition and knowledge is developed

in unique and creative ways that leads to cultural and

economic development – the progress of civilization

(Friedrich A. Hayek 1960; John Stuart Mill 1859).

Much scholarship in economics has focused on in-

novation as the basis for economic growth. An im-

portant tradition characterizes innovation and tech-

nological change as arising from a process in which

draws are made from an underlying distribution of

productivity improvements or potential new technolo-

gies (for example see Robert Evenson and Yoam

Kislev 1976 and Samuel Kortum 1997). But there has

been little work directed towards formal modeling of

the actual creative process through which innovations

arise (one example is Martin Weitzman 1998). In this

paper I present a model that opens a way for proceed-

ing on this topic.

Individuals come to be creative through a process

of creative development, exploring creative interests

and gathering elements – data, ideas, models, possi-

bilities, techniques - then finding ways to combine and

reconfigure these elements into new creative forms. I

present a simple model of this process: Individuals

choose what to learn in a field from the viewpoint

of making the highest value contribution they can

through novel combinations of elements. The model

joins rational decision theory with formal knowledge

representation. This combination has great potential

for describing the rich patterns of individual explo-

ration and learning that are the basis for creativity.
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Simulation results highlight the importance of en-

abling individuals to define their own learning agenda

based on personal intuition and information and not

enforcing a standardized curriculum – there is great

diversity of learning sets.

I. The Field

A. Knowledge Structure and Elements

The field, a domain of human inquiry, knowledge,

creativity and innovation, is structured as a partially

ordered set. This structure captures both the natural

hierarchy of concepts as well as the way new elements

are formed through combining two higher level con-

cepts. In the model in this paper the field has 3 lev-

els.1

The top level of the field consists of N topics. A

topic is relatively broad and can be, for example, a

subject domain, methodology, theme, or theoretical

framework. Each pair of topics can be combined

defining a more focused area for inquiry and explo-

ration. Topic intersections are denoted e; the inter-

section of topics i and j is denoted ei j . There are(N
2

)
e’s. Intersections of topics play an important role

in the model as building blocks for creative contribu-

tions.

The fundamental definition of creativity is connect-

ing two elements that have not previously been con-

nected. Following this definition, creative contribu-

tions are made by linking two e elements, creating an

ee element; the two e elements must not have been

1The field has in the main the structure of a lattice but is

not formally a lattice. It does not have a top element from

which all topics extend, though this could readily be added,

in which case it would be a semi-lattice. More critically,

it does not have a bottom element at which all third-level

elements meet; such an element does not seem natural for a

growing field of the kind described here.

1
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linked already so the ee is new (we treat order as ir-

relevant, ei e j = e j ei ). Two rules govern the cre-

ation of ee elements. One follows from the principle

that creative connections link elements that are con-

nected via a remote association or conceptual overlap

(Gilles Fauconnier and Mark Turner 1998): Two e’s

can be linked only if they share a topic in common.

The second rule is based on the principle that creativ-

ity is about combining preexisting elements: The two

e’s out of which an ee is created must have been em-

ployed in previous ee elements. Lying behind this

assumption is a process through which an initial set

of e’s are used to create an initial set of ee’s, which I

do not model though it could be added as a precursor

creative process.

Now assume two e’s are combined. They must

share a topic, so the new ee is ei e j = ta tbtc, where

we can assume that ei = ta tb and e j = tbtc. It

follows that the new ee generates a third e = ta tc - the

new ee links these topics. It is this third e that is the

novel element of the new ee. The valuations below

reflect this: a creative contribution is more valuable if

its new third element has never before been part of an

ee. Once an e has been used as a third element, it

becomes available as a building block. At the time of

development of the field I consider some e’s have not

yet been used in ee elements and only a fraction of the

potential ee’s have been created.

I focus on creating new ee elements. As the field

continues to develop, ee elements may themselves be

combined, but I do not model this process.2

B. Valuation

Every element in the field has a value. Further,

the value of an element is the same for all individuals.

This assumption is made for simplicity. The results of

this paper about diversity of learning patterns are even

stronger when individual values differ. The values

of e and ee elements that have not yet been used or

created are not known. For these elements individuals

may differ in their valuation assessments as described

below.

All topics have value one, an assumption made for

simplicity. Each e element has a value that is drawn

2In a more general framwork more than two elements

could be combined to create a new contribution, possibly

with grammatical rules for how elements combine. Explor-

ing these issues is beyond the scope of this paper, but is im-

portant in developing the model further.

from a distribution and the random variables defining

these values are independent across elements. For the

simulation in this paper the distribution is log-normal

with a mean of zero and a standard deviation of one.

The value of an ee element depends on the values of

the two building block e elements out of which it is

constructed, the value of the new third e element that

is created and a stochastic term. Specifically, the

value of eei j constructed out of ei and e j is:

(1) vi j = w
α
i ∗ w

α
j ∗ w

β
k
∗ εi j

where wi and w j are the values of ei and e j , wk is

the value of the new e element denoted ek , α and β
are parameters, and εi j is the stochastic term. For

the simulation εi j is drawn from a log-normal distrib-

ution with a mean of zero and a standard deviation of

one, and the ε’s are assumed to be independent of one

another and all other random variables. Since much

of the creative value of the ee element comes from the

new third e it should be the case that β is larger than

α; for the simulation α = .2 and β = .6. If the third e

has been used n times before, the value is reduced by

1+ n.

It is assumed that individuals in the field know the

values of all ee elements that have already been cre-

ated. These are creative contributions that have been

discussed and evaluated in the field. In contrast, the

values of e elements are not directly known and indi-

viduals must form probability assessments concerning

their values. For e elements that have been employed

in the construction of at least one ee element indi-

viduals assess their value using Bayesian inference,

working backwards from the observed values of ee el-

ements. Since three e elements enter into each ee el-

ement, and different e’s combine in the generation of

different ee’s this procedure must in general be done

jointly over all such e elements.

Individuals may possess private information or in-

tuition about the value of particular e elements. Pri-

vate information or intuition about an element, assum-

ing it indicates a relatively high value, may lead an

individual to focus on learning ee’s that enable con-

struction of new ee’s that contain the element, hence

lead to an individually tailored learning strategy. We

can thus think of such private information as generat-

ing a personal creative interest (Feinstein 2006, Chap-

ter 2). There are two kinds of such creative interests:

(i) an interest in an e that has already been used in the

construction of at least one ee element, so that there

is some public information about its value (but an in-
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dividual has more information); and (ii) an interest in

an e that has not previously been used. In this paper I

focus on the second kind.3

II. Learning and Creativity

An individual works for two periods in the field. In

the first period he chooses a set of elements to learn.

In this paper I restrict individuals to learning only ee

elements and to learning a fixed number K of such el-

ements. When an individual chooses an ee he learns

the ee element itself and, more importantly for the

model presented here, its three component e’s.4 In

the second period the individual explores all possible

pairwise recombinations of e elements he has learned

and makes as his contribution the greatest value ee

element he can produce that has not been created pre-

viously. In doing so he must take into account the

possibility that someone else will produce the same

element – I assume that in this case the overall value

v is divided equally among the number R of individu-

als who create the element. Rolling back, it follows

that in the first period the individual chooses the set

of elements that yields the greatest expected creative

potential in period 2. Formally, this is:

(2) Max{ee1,ee2...eeK }E Max

[
vi j

Ri j

]
The first maximum is taken over all subsets of ee ele-

ments of size K . The second maximum is taken over

all feasible ei , e j pairs in the given subset of ee ele-

ments; for a pair to be a feasible combination its two e

elements must share a topic in common, as discussed

above, and the ee element created must be new.5 The

3 In this paper creative interests are defined at the second

level of the field. As the field grows, and ee elements are

combined to form more complex elements, one can imag-

ine creative interests being formed at the third level as well.

Assuming that the creative potential of an element in terms

of its use as a building block may diverge from its value as

a creative contribution private information or intuition will

play a role in this case as well.
4An important extension is the case in which individu-

als do not observe all elements in a learning bundle prior to

making their selection decisions. In this case some elements

are revealed to them only once they select a bundle.
5Combinatoric formulas can be worked out for the distri-

bution of the number of feasible pairs for a set of e elements

given the underlying number of topics.

expectation is taken over the posterior probability dis-

tribution defined over all relevant e values, including

any private information the individual has, the rele-

vant ε’s, and his forecast of the elements other indi-

viduals may create which influences his assessment

of the R’s.

An equilibrium is a set of learning elements for

each individual working in the field such that each

individual’s choice maximizes her expected creative

potential given any private information she possesses

and the choices made by others. I assume that indi-

viduals know the learning sets chosen by other indi-

viduals, but do not know which exact combinations,

hence which new elements, others will end up creat-

ing. In the simulation below private information is

restricted to e elements that have not been used pre-

viously in the creation of any ee elements. It follow

from this that individuals share a common posterior

probability distribution over the values of all e ele-

ments that have been used, since this distribution is

based solely on the observed values of created ee ele-

ments and the probability generating process for e ele-

ments, both of which are public information. Finally,

I assume that when two or more individuals imag-

ine creating the same ee element, their ε values are

independent – idiosyncratic aspects of their creative

processes.

In making their learning choices individuals either

pursue a personal creative interest, based on private

information or intuition, or puruse an interest based

strictly on public information.

There are two reasons why individuals choose in

general to learn different sets of elements. One is

private information which leads individuals to differ

in their assessment of the creative potential of cer-

tain sets of elements. The simulations reported be-

low show how important this is, leading individuals to

learn different elements from what public information

would imply. The other reason is the need to differ-

entiate from others so as to avoid creating the same

element. This second reason is most relevant when

individuals pursue common public information inter-

ests, for in that case two individuals who learn similar

elements are more likely to generate the same com-

bination, whereas when two individuals pursue pri-

vate information interests they are more likely to cre-

ate different elements even when their learning sets

overlap.

III. Simulation Results
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I explore patterns of learning and creativity via

simulation. The number of topics is set at 20; there

are thus 190 e elements. I assume 100 e’s have been

used and 100 ee’s created.6 I draw 100 e elements

from random topic combinations, then generate 100

ee elements by randomly combining these, ensuring

that each e element is used at least once. Values for all

190 e elements and the 100 ee elements are generated

as described in the previous section. For convenience

ee elements are labeled by their value ranks in the ta-

ble below – element 1 is highest value. For the 100

e’s that have been used I generate the posterior distrib-

ution individuals use to guide their learning decisions

via simulation: I run a large number of trials, for each

trial draw values for the 100 e elements, then compute

the likelihood of the observed set of ee values con-

ditional on these values, which generates a posterior

probability distribution for the e values. Note that al-

though the original e values are drawn independently

the posterior distribution is joint. For the 90 other e

values I generate trial values directly.

I focus on 4 individuals working in the field. For

scenarios in which individuals possess private infor-

mation I use the top 4 e values among the set of e’s

that have not been used previously, assign one to each

individual, and assume each individual gets a signal

of the value of his e.7 I consider different degrees

of private information based on the correlation ρ be-

tween the signal and the true value: ρ = .99, .7, .5. I

also analyze the case in which individuals do not pos-

sess private information.

I analyze the case in which each individual chooses

4 ee elements to learn. Individuals choose the set

that maximizes their expected creative potential, given

by equation (2), computing this expectation using the

simulated e values averaging over the trials. When

an individual possesses private information about a

particular e element I generate a signal based on the

true value and then for each trial a value drawn from

the conditional distribution given the signal. In the

simulations individuals with private information of-

ten pursue private interests, learning elements that en-

able them to generate new combinations creating the

e about which they possess information. Sometimes

6The number of ee elements is relatively small. This is

done to keep the cominatorics, in terms of number of learn-

ing sets, tractable. In fact we would expect the number of

ee elements to be substantially larger than the number of e

elements.
7The signal and the log of the value are bivariate normal.

they pursue common public interests, learning ele-

ments out of which they cannot create the e about

which they possess information. The boundary is not

sharp as in some cases a “public” interest may enable

an individual to produce an ee creating the e about

which he has private information.8

Table 1 presents results from the simulations. The

table lists, for each case, for each individual whether

his interest is based on private information (P), com-

mon public information (C), or can be interpreted as

either (P/C, see footnote 8), the ee elements he learns,

his expected creative potential, as well as aggregate

expected social value.9

Strikingly, the degree of overlap of learning sets is

low in all cases. For the case of only public informa-

tion the lack of overlap is due to individuals differen-

tiating themselves. The implication is that even when

individuals do not possess private information or in-

tuition they should be offered curriculum choices and

can be expected to choose to learn different things.

Most strikingly, across all scenarios the overlap of

learning sets for individuals who pursue private inter-

ests is zero with the public interest learning sets. The

implication is that individuals who possess private in-

tuition or information will desire to learn different

things from what might be the standard curriculum.

Further, this is socially desirable as expected social

value is higher for cases of greater private informa-

tion and pursuit of private interests.

For ρ = .7 and .5 some individuals pursue either

common interests or hybrid private/common interests.

In choosing whether to pursue a private or common

interest individuals face a trade-off. The public in-

formation interests of highest value are sets of rel-

atively high value ee elements for which there are

many potential feasible new combinations. The pri-

8A “private” interest is one for which a filter is applied:

a set of elements is considered only if it enables ee elements

to be created using the private information e. For a “public”

interest no such filter is applied. As a result there will be

public interests that enable ee’s to be created using the in-

dividual’s private information e. In the table a P/C interest

is one of these – an interest that ranks high in the no private

information case but also is compatible with the individual’s

private information e. I view as strictly private interests

sets of elements that rank low in the public information case.
9For each of the no private information and ρ = .99 sce-

narios I identified one equilibrium. For each of the other two

scenarios there are a few equilibria. Results are very similar

across these and for reasons of space results are shown only

for the equilibrium of highest aggregate social value.
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Individual Type ee Elements Exp. Value

Case: ρ = 0.99

1 P 35 61 94 97 23.99

2 P 21 35 49 61 22.06

3 P 14 35 61 67 18.43

4 P 21 26 35 80 17.16

Expected Social Value: 81.64

Case: ρ = 0.7
1 P 35 61 94 97 18.99

2 P 14 21 35 49 13.11

3 P 14 35 61 68 13.59

4 P/C 1 4 45 89 13.00

Expected Social Value: 58.69

Case: ρ = 0.5
1 C 7 16 17 25 12.39

2 P 14 21 35 61 13.13

3 C 1 10 45 92 12.88

4 P/C 1 4 51 89 13.03

Expected Social Value: 51.43

Case: NoPrivateInformation

1 C 1 10 12 41 12.39

2 C 1 10 45 92 11.85

3 C 1 4 51 89 12.06

4 C 7 16 17 25 12.99

Expected Social Value: 49.29

TABLE 1—SIMULATION RESULTS: LEARNING PATTERNS

AND EXPECTED CREATIVE POTENTIAL

vate information interest learning sets contain lower

value ee elements and fewer feasible pathways cre-

ating new combinations. However, due to the private

information the expected value of these combinations,

specifically those creating the e about which the indi-

vidual has private information, is high. Thus combi-

natoric options trade-off against high value combina-

tions. Interestingly, none of the highest value inter-

ests are based simply on the highest ranked ee ele-

ments. The complexities of needing to put together

e’s that share a common topic and generate a new e

preclude this. The implication is that it is not a good

strategy simply to learn the highest value current con-

tributions. Optimal learning for creativity involves

learning sets of elements that can fit together produc-

tively.

In current work I am building richer models. In

this paper individuals search for "bridges" that enable

them to create specific new e elements. In richer mod-

els they also explore conceptual pods – exploring sets

of pods for which they imagine (have a signal) that

linking elements from different pods will create high

value contributions. Creative interests are thus de-

fined at higher conceptual levels. I am also construct-

ing models with richer knowledge structures.
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