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Abstract

If agents engage in resale, it changes bidding in the initial auction. Resale offers

extra incentives for bidders with lower valuations to win the auction. However, if resale

markets are not frictionless, then use values affect bidding incentives, and stronger

bidders still win the initial auction more often than weaker ones. I consider a first price

auction followed by a resale market with frictions, and confirm the above statements.

While intuitive, our results differ from the two bidder case of Hafalir and Krishna

(2008): the two bidders win with equal probabilities regardless of their use values. The

reason is that they face a common (resale) price at the relevant margin, a property

that fails with more than two bidders. Numerical simulations show that asymmetry in

winning probabilities increases in the number of bidders, and in large markets resale

loses its effect on allocations. We also show in an example that the revenue advantage of

first price auctions over second price auctions is positive, but decreasing in the number

of bidders.
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1 Introduction

In many markets agents may engage in resale activities after an auction is run. The presence

of resale opportunities allow efficiency enhancing trades to take place after the auction. It

also affects the way bidders behave in the initial auction and the probability with which

each bidder wins the auction. This second effect is the topic of our paper. Intuitively, resale

should favor bidders with lower valuations, since the possibility of resale offers them extra

incentives (beyond the use value of the object) to win the auction. On the other hand,

bidders with higher valuations may depress their bids counting on the possibility of buying

the object at the resale stage. These observations suggest that buyers with low value are

more likely to win the initial auction if resale is possible than when it is not.

The way resale markets operate is crucial, if we were to fully understand how strongly

the possibility of resale affects bidding (and allocation) in the initial auction. If the resale
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markets were frictionless (perfectly competitive), then agents took the (resale) market price

of the object as given. In this case, it is only the resale price that affects willingness to pay,

and thus each bidder should bid similarly and win the auction with the same probability re-

gardless of their valuations. However, very often resale markets are not frictionless, because

of the small number of buyers, institutional details, or frictions arising from asymmetric

information. In this case the resale stage takes the form of multilateral bargaining under

incomplete information, and strategic considerations between the different potential buyers

are present. Therefore, one cannot appeal to the price mechanism to obtain a competitive

resale price that is independent of the identity and strategies of the bidders in the auction

and at the resale stage. The final allocation then is not necessarily the efficient one, and

it may depend on who won the initial auction. The only way that a bidder with a high

valuation can guarantee to obtain the object for sure is to win the auction itself. Therefore,

use values affect bidding incentives, and one may expect that a stronger bidder have an

incentive to bid more and win the initial auction more often than weaker ones.

The above discussion implies that when resale markets operate with frictions we may

expect an allocation that is in between the allocations obtaining with perfect resale markets

and no resale markets at all. In this paper I study such a situation. A single object is

sold to privately informed buyers using a first price auction without revealing bids. After

the auction a resale market opens where the same buyers participate as in the auction.

Confirming the intuition from above, I formally show that resale indeed allows a weaker

bidder to win more often than without resale, but less often than a stronger bidder if there

are more than two bidders in the auction. Since asymmetric information introduces frictions

into the resale market, it is not surprising that use values play a role for the bidders and

thus stronger bidders are more likely to win than weaker ones. Despite being intuitive,

our result is in contrast with two papers that consider a similar setup to ours with two

buyers.1 Garratt and Troger (2006) consider a setup with a pure speculator (no use value)

and a genuine buyer, while Hafalir and Krishna (2008) consider the more general case of two

genuine bidders. They show that regardless of the exact distribution of valuations for the

two genuine buyers, both produce the same bid distribution and both win the auction with

a 50% probability. Although, the resale markets of those papers are clearly not frictionless

(because of the small number of buyers and the fact that bargaining is under incomplete

information), they achieve the result that each bidder wins with equal probability regardless

of their use values, as it would be expected with a frictionless resale market.

The logic behind this symmetrization result is that although the resale price is endoge-

nously determined together with the bidding strategies in the auction, but from the point

of view of the relevant "marginal types" it is exogenous and common to the two bidders.

Therefore, the relevant types are price takers at the margin, and they face a common price,

so the resale market behaves as if it were frictionless at the margin. To gain intuition,

suppose that one of the bidders is weaker in the sense that he is more likely to have a low

valuation. Such a weak bidder bids more aggressively than the strong bidder and thus may

win the object even if his valuation is lower than that of his rival. Therefore, he has a prof-

itable resale opportunity at the resale stage. If he wins the auction by a small margin, then

his take it or leave it resale offer  will be accepted by the strong bidder with probability 1,

and his utility is equal to .2 Therefore, his gain from winning at the margin, his effective

1The papers below also study other auction formats, like second price auctions, and other questions like

revenue consequences, that are not addressed here.
2The reason is that the weak bidder offers such a resale price in equilibrium that is accepted by at least

some types of the strong bidder. Therefore, the type of the strong bidder who lost by a small margin against
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valuation is equal to . A similar observation applies to the strong bidder: if he loses the

auction by a small margin, then he buys the object for sure at the resale price . Therefore,

the two bidders have the same marginal gains from winning (effective valuations) , which

leads to bid symmetrization.

Our paper shows that this logic fails when there are more than two bidders, and weaker

bidders win the auction with a lower probability than stronger bidders. The argument relies

on the fact that a common price for the marginal types does not exist anymore, and conse-

quently the effective valuations of the bidders are not equalized. More precisely, I assume

that there are  weak bidders and  strong bidders with their valuations distributed ac-

cording to distribution functions  and  respectively, with  first order stochastically

dominating .
3 I also assume that the bidder who won the initial auction makes the resale

offer which takes the form of a second price auction with a reserve price.4 The key intuition

for the failure of symmetrization is that the effective valuations of different bidders are not

equalized any more. More specifically, strong bidders have higher effective valuation for the

object. To build intuition, consider the case of several weak bidders and only one strong

bidder. A weak bidder will still sell the object in the resale stage if he beats the strong

bidder in the initial auction by a small margin and thus he still gains the resale price in this

case. However, when he beats another weak bidder by a small margin, then he may not sell

the object in the resale stage, because his resale offer may exceed the valuation of the strong

bidder. When he does not sell the object in the resale stage, his effective valuation is equal

to his use value for the object, which is less than the resale revenue he expects in case of a

resale. Therefore, his expected effective value for the object is between  and the use value,

and thus it is strictly lower than . The effective valuation of the strong buyer is equal to ,

since if he loses by a small margin then he still buys at the resale stage for sure. Combining

the two observations yields that the effective valuation of the strong bidder is higher than

that of a weak bidder, and thus intuition suggests that the strong bidder produces a more

aggressive bid distribution than the weak bidders. Section 4 confirms this intuition formally

for the case of several strong bidders as well.

I also show that when there are two weak and one strong bidder, under further assump-

tions on the distribution functions, resale acts toward symmetrization even if does not go

all the way. More precisely, I show that weak bidders are more likely to win the auction if

resale is allowed than in the benchmark case with no resale. The intuition is simple: while

effective valuations are not equalized when there are more than two bidders, but (as we saw

above) the effective valuation of a weak (strong) bidder is higher (lower) than his use value

and thus the weak bidder wins the initial auction with a higher probability than in the case

without resale.

It is also interesting how the number of bidders affect the probability with which a weak

or a strong bidder wins the initial auction. We know from Hafalir and Krishna (2008)

that when there is one weak and one strong bidder, then they each have a 50% chance of

winning in the initial auction when resale is allowed and the strong bidder wins with more

than 50% probability when resale is not allowed. I construct a measure for symmetrization

for the case when there are   1 weak bidders and one strong bidder. Let ()

denote the probability that the strong bidder wins the initial auction when resale is allowed

the particular type of the weak bidder should definitely accept the resale offer, otherwise no type would.
3To facilitate analysis, I adopt the assumption of Maskin and Riley (2000) that states that  is

increasing. This assumption, reverse hazard rate dominance, is stronger than first order stochastic domi-

nance.
4As I discuss it later, conducting such a resale auction is optimal for the winner of the initial auction on

the equilibrium path.
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and  () when resale is not allowed. Let () =
()− 1

+1

 ()− 1
+1

measure the amount

of symmetrization that takes place compared to the case without resale. The Hafalir and

Krishna result can be rewritten as (1) = 0, i.e. there is complete symmetrization with two

bidders. I show that when () =  and () =
√
, then function  is increasing in 

and gets close to 1 when  is relatively large. This result implies that the more bidders

there are, the more similar the allocation of the initial auction to the auction with no resale

is. Indeed, our conjecture is that resale becomes ineffective in the limit and lim
→∞

 = 1

holds.5 This result indicates that resale is less important in larger markets, because the

outcome of the initial auction tends to be more efficient as the market size grows. A similar

result was established for large auctions without resale by Swinkels (2001) who argues that

asymptotically a first price auction becomes efficient, because the environment of each bidder

becomes and thus bidders with the same valuation behave similarly regardless of the ex-ante

type distributions.6

Hafalir and Krishna (2008) proves that if resale is allowed then a first price auction

yields a higher revenue than a second price auction when there are two bidders. The key

intuition is that resale symmetrizes the valuations of the two bidders: weak bidders may

resell and thus they have more incentive to bid than in an auction without resale, while

strong bidders may delay buying until the resale stage, which depresses their bids in the

original auction. This symmetrization of valuations makes competition more intense, and

increases revenues. The same effect is still present when there are more than two bidders,

but it is weaker, because (effective) valuations are not completely symmetric when resale

is allowed. Therefore, one may expect that resale increases revenues (as compared to the

no resale benchmark), but this increase is decreasing in the number of bidders. To confirm

this intuition, I introduce a measure for how much resale increases revenues. Numerical

calculations (I use the example described in the previous paragraph) show that the increase

in revenues caused by resale is positive, but decreasing in the number of bidders, as we

expect it based on the above discussion.

The literature on auctions with resale is still relatively small. Zheng (2002) asks under

what conditions the Myerson’s auction can be an equilibrium outcome with resale if the

initial seller can choose his mechanism as he wishes. Hafalir and Krishna (2009) analyzes

revenue and efficiency in a first price auction using their first paper. None of these papers

analyze a full blown asymmetric information model of a first price auction when there are

more than two bidders. Cheng and Tan (2009) show that a two bidder private values

auction with resale can be analyzed as a common value auction with no resale. They

also show that their argument could be extended to more than two bidders, but do not

consider the question of bid symmetrization. In a work independent from ours, Lebrun

(2009) considers the case of many bidders studying a more specific case than ours and

addressing only some of our questions.7 He assumes that there is only one strong and 

5The intuition is that when there are many bidders all bidders bid close to their valuation and thus the

initial auction is already efficient and thus resale loses its bite. As I discuss it later, this intuition carries

over also to the case where   1 or the number of objects grows with the number of bidders and thus the

bid functions do not converge to the valuations.
6 Intuitively, this insight carries over to the case with resale, since if the outcome becomes efficient in the

limit, then it is a self-fulfilling prophecy that resale does not matter in the limit. However, it is beyond the

scope of this paper to establish this result in the context of general asymmetric first price auctions with

resale.
7This is only true for our setup of first price auctions with no bid disclosure. He also considers other

common auctions and bid revelation protocols that our paper does not cover.
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weak bidders. He shows existence and uniqueness of equilibrium under similar distributional

assumptions to ours. He also shows that the strong bidder is more likely to win the auction

than any of the weak bidders, but does not consider comparative statics results in the

number of bidders or the question whether resale achieves some symmetrization as I do it

in our paper. Moreover, our paper also provides an intuition for the results by introducing

the concept of effective valuation. Cheng and Tan (2009) related auctions with resale to

common value auctions. Our concept of effective valuation has a very similar meaning

to their common value component introduced by the resale opportunity. There is also a

literature that considers the case where asymmetric information plays a smaller role. For

example, Gupta and Lebrun (1999) assume that after the auctions valuations are revealed.

Haile (2003) assumes that ex-ante bidders are symmetric, but after the auctions each receives

a further shock affecting his valuation, which is the source of resale in their model. Finally,

Jehiel (2010) considers a problem in mechanism design using his concept the analogy-based

expectation equilibrium where the bidders (perhaps erroneously) believe that they face the

same bid distribution from the other bidders. Under this assumptions he provides similar

results to Hafalir and Krishna (2008) including that first price auction revenue dominates a

second price auction in this situation.

The rest of the paper is organized as follows. In Section 2 I setup the model and define

equilibrium. Section 3 contains existence and uniqueness results and characterizes the equi-

librium. Section 4 provides results related to the question of symmetrization, while Section

5 discusses comparative statics results as the market size changes. The two Appendices

contain some proofs.

2 Setup and equilibrium

Hafalir and Krishna (2008) study auctions with resale when there are two bidders, I ex-

tend their work by considering the case of  bidders. Assume that there is an indivisible

object and there are  risk neutral bidders whose valuations are distributed independently

according to distribution functions 1 2   that admit strictly positive and continuous

density functions 1 2  . For simplicity I assume that there are  strong and  weak

bidders, with distribution functions  and  that have common support [0 1]. While the

non-symmetrization result would continue to hold if all  bidders have different ex-ante value

distributions, but the model remains intractable if one wishes to obtain further results. The

common support assumption is only for convenience, most of our results would go through

even if this assumption was dropped. To be able to benchmark our results with standard

asymmetric auctions without resale8, I assume that ()() is strictly increasing in .

I also assume that  satisfies the regularity condition of Myerson (1981), i.e. − 1−()
()

is

increasing in . This assumption ensures that the resale problem of the monopolist behaves

in a tractable manner.9

The timing of the game is simple: first there is a first price auction where the bids

(including the winning bid) are not revealed.10 Then the winner of this auction may resell

the object to one of the other − 1 bidders. I assume that at the resale stage the current
8See Maskin and Riley (2000).
9 Interestingly, we do not need to make the regularity condition that the virtual utility of the weak

bidder, − 1−()
()

is increasing in . The reason is that weak bidders do not buy on the resale market in

equilibrium, while the out-of-equilibrium case (see Case 4 in the Appendix) where a weak bidder may buy

in the resale stage can be handled without this assumption. For the details see Case 4 in the Appendix.
10Given our resale mechanism, the results would not change if the winning bid of the original auction was
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owner (the winner of the initial auction) conducts a second price auction with an optimally

chosen reserve price, and then the game ends without further resale possibilities. Let us

discuss our assumption about the resale process. First, the assumption that the winner of

the auction makes a resale offer to the other bidders is the most natural when there are

multiple losers who consider buying at the resale stage. In contrast, the monopsony case

of Hafalir and Krishna (2008) where the loser makes an offer is less natural, because the

owner of the object can always contact the other losers to obtain a better resale price. This

suggests that the winner of the initial auction should be able to offer a mechanism that

makes the losers compete for the right to buy the object at the resale stage. Second, under

our assumptions a second price mechanism with an appropriate reserve price is optimal for

the seller at the resale stage on the equilibrium path. Finally, having a second price auction

at the resale stage simplifies our analysis significantly. However, it is also important to note

that the main results of the paper would continue to hold qualitatively for a much broader

set of bargaining procedures. In particular, no reasonable bargaining protocol would yield

bid symmetrization when there are more than two bidders.11

If a bidder with type  owns the object at the end of the game (after the resale market

has closed) and his overall payment was , then his utility is  −. If a bidder does not

own the object, and his overall payment in the game was  (possibly negative), then his

utility is −.
Our equilibrium concept is Perfect Bayesian equilibrium. In such an equilibrium each

bidder places a bid  and offers a reserve price  (if he won the initial auction), such that

no other pair (e e) would yield a higher expected utility, given the strategies of the other
players. Note, that the definition of the equilibrium already assumes that if a buyer with

type  did not buy in the original auction and he faces a reserve price  ≤ , then he

participates in the resale mechanism and uses his dominant strategy, i.e. bids  in the

second price resale auction. I consider an equilibrium where each strong bidder uses strictly

increasing and continuous strategy  : [0 1] → R+0 and each weak bidder employs strictly
increasing and continuous strategy  : [0 1] → R+0 in the initial auction stage. Moreover,
I assume that the bidders have the same support for bidding, i.e. (0) = (0) =  and

(1) = (1) = . I call such an equilibrium a regular equilibrium. It is then easy to

prove that  = 0 must hold in a regular equilibrium, otherwise the bidders with the lowest

valuations would make negative payoffs. Since increasing functions are almost everywhere

differentiable, the bid functions are almost everywhere differentiable and we can characterize

the equilibrium as a solution to a system of ordinary differential equations. For simplicity

we consider an equilibrium bid function that is everywhere differentiable.

3 Equilibrium analysis

To characterize the equilibrium I start the analysis with the resale stage taking the bid

functions ( ) as given. First, I study the case when each buyer used the equilibrium bid

in the initial auction. As we will see, this case will pin down the equilibrium reserve price

uniquely under the assumption of monotone virtual utilities. The first Lemma shows that

at any given bid level only one side can be a seller at the resale stage and he will sell to the

revealed. If some of the losing bids would be revealed, then bidders may have an incentive to signal their

type to mislead the seller at the resale mechanism, and a pure strategy monotone equilibrium may not exist

anymore.
11 In fact the author has not been able to identify any protocol that would yield such result.
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other group of bidders:

Lemma 1 Suppose that () =   ()() for some  . Then it is optimal for a strong

(weak) buyer with type  not to offer the good for resale, but a weak (strong) buyer with type

 makes a resale offer that is accepted with positive probability by a strong (weak) buyer.

When () = () neither the strong, nor the weak bidder with type  has a profitable

resale opportunity, so it is optimal for such a bidder not to make a resale offer at all.

Proof. If ()  (), then under our our assumptions there exists    and    such

that () = () and () = (). Therefore, upon winning a weak buyer with type 

knows that the type of the  strong buyers are less than . Since    holds, the winner

of the auction has a profitable resale opportunity by offering an auction with any reserve

price  ∈ ( ). Upon winning the initial auction, a strong buyer with type  knows that
the weak buyers’ type are less than    and the other strong buyers’ type are less than

, so resale cannot be conducted profitably. The case when () = () can be handled

similarly.

It is a well known result in the literature (see Maskin and Riley (2000)) that when

 =  = 1 and there is no resale, then for all  ∈ (0 1)

()  ()

Hafalir and Krishna showed that in the same setup when resale is allowed a similar result is

still true. This leads to the conjecture that for an arbitrary number of bidders with resale

it holds that ()  (). I first explore this possibility in my analysis. Then Lemma 1

implies that in equilibrium the strong buyers do not make resale offers and the weak buyers

do, and they resell the object with positive probability to the strong buyers. Using the

notation of the proof of Lemma 1 a weak buyer with type  faces  strong buyers with

valuations on [0 ]. Let () be the optimally chosen reserve price at the resale stage by a

weak buyer with type .

Lemma 2 Suppose that for all  it holds that () ≥ (). Under the monotone virtual

utility assumption the equilibrium reserve price is unique. Moreover, running a second price

auction with an optimal reserve price is optimal for a weak bidder with type  who bid ()

in the initial auction. The optimal reserve price () is characterized by

()− ()− ()

()
= 

where  = −1 (()) ≥ 

Proof. First, note that the winner of the initial auction faces  strong buyers with val-

uations on [0 ] i.e. he solves for an optimal auction for the case of symmetric bidders

with independent private values. As Myerson (1981) has shown the optimal auction is a

second price auction with an optimally chosen reserve price, which yields the second result.

Moreover, the optimal reserve price does not depend on the number of bidders () and

thus it is the same as in the  = 1 case. However, this is the monopoly case of Hafalir and

Krishna (2008) who show that a unique optimal reserve price exists when  = 1, which

concludes the first result of the Lemma. They show that () solves

max

(()− ()) + ()
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with first order condition

 − ()− ()

()
=  (1)

The (unique) equilibrium reserve price is described by equation (1). Since  = −1 (())

is determined by functions  , therefore there is a unique optimal reserve price given the

bid functions  . The rest of the analysis uses the calculated () function to derive

a necessary first order condition for a regular equilibrium in the original auction. Let

() and () denote the equilibrium inverse bid functions. Under the assumption that

()  () for all  ∈ (0 1) it holds for all  ∈ (0 ) that ()  (). Moreover,

() = () and (0) = (0).

Suppose that a strong bidder with type () considers a small deviation from his equi-

librium bid in the initial auction. First, assume that he bids b  , i.e. he deviates downward

with his bid. I consider a small enough deviation, such that ((b))  () and thus our

deviating strong bidder still buys with positive probability from weak bidders in the resale

stage. Since, for now, I concentrate on the case where the strong bidders never make resale

offers, thus the deviating strong bidder cannot buy at the resale stage from other strong

bidders. Moreover, with bid b the deviating bidder wins exactly against other strong bidders
with types lower (b) and thus his type () is higher than the possible types of any losing
(strong) bidders. This implies that he is not reselling the object to other strong bidders

either. To summarize this discussion: if b   and  − b is small enough, then the deviat-
ing strong bidder may buy from a weak bidder at the resale stage, but does not transact

with other strong bidders. The deviating bidder wins the initial auction with probability

−1
 ((b))

 ((b)) and in this case his utility is () − b since he is not going to
resell the object. If he loses the initial auction, but he is the highest type among the strong

bidders and a weak bidder wins whose type is less than −1(()), then he buys the object
in the resale stage. In the case he is able to buy his payment is equal to max{() 2},
where  is the type of the winning weak bidder and 2 ≤ () is the second highest type

among all the strong bidders, i.e. the highest type among the other strong bidders. Also,

let e(() ) denote the expected utility of a strong bidder with type () if the auction
was won by a weak bidder with type  and the strong bidder with type () buys the

object in the resale stage. Formally,e(() ) = ()−[max{() 2} | 2 ≤ ()] (2)

where  stands for the expected value operator.

The utility of the deviating strong buyer can thus be written as


 (()b) = −1

 ((b))
 ((b))[()−b]+

+−1
 (())

Z −1(())

() 
−1
 ()()e(() )

The bidder then solves max≤ 
 (()b). The first order condition for optimum at b = 

becomes then


−1
 (())(())

0
()

−1
 (())[()− − e(() ())]+

+( − 1)−2
 (())(())

0
()


 (())[()− ] ≥ −1

 (())

 (())
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Note, that the first order condition takes the form of an inequality, because the set of

admissible choices here is all bids less than . Using (2) and defining

e() = [max{(()) 2} | 2 ≤ ()]

yields that


−1
 (())(())

0
()

−1
 (())[e()− ]+

+( − 1)−2
 (())(())

0
()


 (())[()− ] ≥ −1

 (())

 (())

(3)

The interpretation of e is simple: this is the expected amount that a strong bidder with
type () needs to pay in the resale stage if he loses against a weak bidder by a very small

margin. Note, that in case of such a loss he surely buys the object in the resale stage and

thus e becomes his effective valuation. As one can see the effective valuation of the strong
bidder is equal to e if he lost against a weak bidder by a small margin, because then he
buys the object at the resale stage for sure and pays an expected amount e. On the other
hand, his effective valuation is his use value () if he lost against a strong bidder, because

then he cannot by the object, so by not buying it in the initial auction he foregoes a (gross)

profit of 
Let us now study a small upward deviation, i.e. the case where b  . For the same

reason as in the case of a small downward deviation the deviating bidders still buys from

weak bidders at the resale stage, but he starts selling to other strong bidders, which is a

new component of the utility function. Let (()b) denote the optimal resale offer made
by the deviating bidder. As I remarked above, for a small deviation the deviating strong

bidder is not able to resell to weak bidders, so when making his resale offer he ignores

weak bidders, and only maximizes the utility that arises from a possible resale to other

strong bidders. Setting a price above (b) yields no resale, while setting a reserve price
below () would yield a selling price below the actual valuation (). Therefore, the

optimal resale reserve price satisfies (()b) ∈ (() (b)). We are not interested in
the exact value of this reserve price, just note that if b→ , then (()b)→ (). The

deviating bidder resells the object if he beats all the weak bidders in the auction, and the

strong bidder with the highest valuation is below (b) (so that the deviating bidder wins
the auction), but below (()b) (so that resale occurs). The probability of this event is

 ((b))[−1

 ((b))− −1
 ((()b))]. The expected revenue when resale occurs

is and the reserve price is set at  can be written as

() = [2 | 2 ∈ ( (b))]
The utility of the deviating bidder can then be written as


 (()

b) = −1
 ((()b))

 ((b))[()−b]+
+−1

 (())

Z −1(())

() 
−1
 ()()e(() )+

+
 ((b))[−1

 ((b))− −1
 ((()b))](((()b))−b)

Since the reserve price (()b) is chosen optimally given b, therefore at  = (()b)
it holds that




[−1

 (() + {−1
 ((b))− −1

 ()}()] = 0

8



This implies that




b = 
−1
 ((b))((b))0(b)−1

 ((()b))(()−b)−
−−1

 ((b))((b))0(b)−1
 (()))[()− e(b)]+

+
−1
 ((b))((b))0(b)[−1

 ((b))−−1
 ((()b))](((()b))−b)+

+
 ((b))( − 1)−2

 ((b))((b))0(b)(((()b))−b)−
−−1

 ((b))
 ((b))

Before I describe the first order condition, note the following chain of causations

b→ ⇒ (b)→ ()⇒ (()b)→ ()⇒ ((()b))→ () (4)

The first order condition of maximization implies that




 |=≤ 0 holds. Using (4),
this condition becomes


−1
 (())(())

0
()

−1
 (())(e()− )+

+
 (())( − 1)−2

 (())(())
0
()(()− ) ≥ −1

 (())

 (())

Note, that this is identical to condition (3), just the inequality reversed. This implies that

the first order condition for optimization for the strong bidder is


−1
 (())(())

0
()

−1
 (())(e()− )+

+
 (())( − 1)−2

 (())(())
0
()(()− ) = −1

 (())

 (())

(5)

A discussion of the above derivations are useful at this point. First, the above implies

that at b =  it holds that




 =




 = 0, in other words there is no kink in the

objective function at b = . The intuition for this is that although in the second case

considered the deviating buyer would resell to other strong bidders, but the gain from this

is second order when b is close to .12 Second, (5) can be interpreted by using the concept
of effective valuations as introduced in the introduction. When a strong bidder loses against

a weak bidder by a small margin, then he knows that he will buy the object at the resale

stage for a price of e(), so this becomes his effective valuation in this event. When he loses
against another strong bidder by a small margin, then he cannot buy in the resale stage, so

he loses a value exactly equal to his use value (), his effective valuation in this case.

Now, I turn to the analysis of the weak bidders’ problem. Denote his type by () and

his bid b again restricting attention to the case where b−  is small in absolute value. First,
I establish that reselling to another weak bidder is not profitable if b−  is small in absolute

value. It is clear that if b   then if the deviator won the auction, then all weak bidders

have type (b)  () and thus no profitable sale can occur between the winning bidder

with type () and another bidder with type at most (b). If b   then the net revenue

12When  −  is small (and positive), then resale takes place with a vanishing probability, moreover the

expected gain conditional on reselling is also close to zero.
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that can be gained from other weak bidders is max

(−1

 ((b)−−1
 ())(−()).

For this to be positive it must be that  ∈ (() (b)) and thus the revenue is less than
(−1

 ((b)− −1
 (()))((b)− ()). But

b→ ⇒ (−1
 ((b)− −1

 (()))((b)− ())  (b)− ()→ 0

by continuity of  and thus for a small enough deviation it is not profitable to try to sell

to other weak bidders at the resale stage.

To characterize the first order conditions we need to consider different cases again. I use

the insights from the analysis for the strong bidder to simplify the details of the analysis.

Specifically, I use the concept of effective valuation to derive the first order condition for

the weak bidder.13 There are three cases to consider here as opposed to the two cases for

the strong bidder’s problem. First, if a weak bidder loses against a strong bidder by a

small margin, then he is able to sell the object to him and the expected revenue is e().
Second, if he wins against another weak bidder, then he may or may not resell the object

in equilibrium, depending on the highest type among the strong bidders as resale does not

take place to another weak bidder. If he does not sell, then his effective valuation is his use

value (). If he sells then his revenue is (), where () is the expected price (revenue)

if a weak bidder wins, beating another weak bidder with the same type (), but resale

takes place to a lower bidder, the strong bidder with the highest type. As before, let 1
and 2 denote the highest and second highest types among the strong bidders. First, resale

takes place if and only if 1 ∈ [(()) ()] Second, if 1 =  ∈ [(()) ()], then
the expected resale price is equal to (() ) = [max{2  (())} | 1 = ] i.e. the

expected value of the maximum of the reserve price and the second highest type among the

strong bidders, if the highest type among the strong bidders is . Then one can write the

revenue () formally as

() = [max{2  (())} | 1 ∈ [(()) ()]] =

=

R ()
(()


−1
 ()()(() )


 (())− 

 ((()))


Using the above considerations one can write the first order condition for the weak

bidders optimization problem as


−1
 (())(())

0
()

−1
 (())[e()− ]+

+( − 1)−2
 (())(())

0
()


 ((()))(()− )+

+( − 1)−2
 (())(())

0
()[


 (())− 

 ((()))](()− ) = (6)

= 
 (())

−1
 (())

The first term in (6) corresponds to the case when the weak bidder overtakes a strong bidder

on the margin, while the second and the third terms correspond to the case where a weak

13 In effect, the analysis below substitutes from the first order condition of the weak bidder when he is

choosing his optimal resale reserve price. Once such a substituiton is made, the first order condition for the

bidding problem in the original auction is simplified to the one with effective valuations as it appears in (6).

The details are very similar to the considerations that lead to (5), and are thus omitted.
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bidder is overtaken on the margin. In the second case the strong bidder with the highest type

has a type less than the reserve price set by the weak bidder (()), and thus resale does

not take place. In the third case resale takes place and the expected revenue (conditional

on tieing) is ().

The system of equations (5), (6) defines a system of ordinary differential equations, since

functions e and  are uniquely determined by   As standard, the initial condition

(0) = (0) = 0 cannot be used to solve our system, since the system does not satisfy the

Lipschitz condition at  = 0. Therefore, following the rest of the literature14 I impose an

end condition () = () = 1 with an unknown value for . Then I obtain the following

result:

Lemma 3 Suppose that for some  it holds that () = () = 1 and the system of

differential equations has a strictly increasing solution on [0 ) such that (0) = (0) = 0

holds and for all  ∈ (0 ) it holds that ()  () Then the solution of this differential

equation ( ) forms a pair of equilibrium inverse bid functions.

Proof. If the above conditions hold, then one only needs to show that the bidders cannot

use a large deviation in the initial auction to increase their overall utilities. This is shown

in the Appendix.

The proof in the Appendix requires checking several additional cases, since if a bidder

uses a large deviation in the initial auction, then he needs to recalculate his optimal reserve

price at the resale stage. Moreover, weak bidders may become buyers and strong bidders

may become sellers at the resale stage. Checking those conditions is somewhat tedious, but

using that under our conditions reserve prices behave monotonically in types and initial bids

provides a sufficient amount of monotonicity to preserve the second order conditions.

At this point it is also important to consider the case where ()  () for some  or

where for some  it holds that ()  (). One can show that such a case cannot occur

in equilibrium. To do that formally let us consider two different subcases. First, suppose

that there exists a value ∗ such that (∗) = (
∗). Then by construction it holds that

e(∗) = lim
&∗

(∗) = (
∗) = (

∗)

Then using (3) it holds that at  = ∗

(−1
 (())


 (()))

0

−1
 (())


 (())

=
(

 (())
−1
 (()))

0


 (())

−1
 (())

=
1

− ∗


This implies that at  = ∗ it holds that (
−1
 (())


 (())



 (())

−1
 (())

)0 = 0 or

(
(())

(())
)0 = 0.

Since by assumption ()() is strictly decreasing in , therefore the last equation

implies that

(
(())

(())
)0  0

14 See for example Lebrun (1997).
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holds at  = ∗. The last inequality then implies that

  0 () = ()→ 0()  0() (7)

Using that in equilibrium it holds that () = () = 1 implies that there exists

an  such that for all  ∈ ( −  ) it holds that ()  (). Therefore, either for all

 ∈ (0 ) it holds that ()  () as conjectured or there exists a 
∗ ∈ (0 ) such that

(
∗) = (

∗) and for all  ∈ (∗ ) it holds that ()  (). However, inequality (7)

implies that at such a point ∗ it holds that 0(
∗)  0(

∗), which means that for a small
enough  it holds that (

∗ + )  (
∗ + ), which contradicts with the definition of ∗.

Therefore, no such ∗  0 may exist. Therefore, the only other case possible is if for all

 ∈ (0 ) it holds that ()  (). However, following the considerations leading to (7),

it must hold for a small enough  that (−)  (−), which concludes the proof that
for all  ∈ (0 ) it holds that ()  () or for all  ∈ (0 1) it holds that ()  ().

The following conclusion can be drawn from this discussion:

Corollary 1 For every pair of regular equilibrium inverse bid functions ( ) for all

 ∈ (0 ) it holds that ()  ().

The above two results imply that finding a regular equilibrium is equivalent to finding

an appropriate . The proof of this result is in the Appendix:

Proposition 1 There exists a regular equilibrium of the auction game.

The proof uses techniques from ordinary differential equations to conclude existence.

However, the fundamental theorem for ordinary differential equations cannot be used with-

out some relevant restrictions. Fortunately, one can show that Lipschitz continuity holds

for the relevant cases and thus existence can be guaranteed.

4 Bid distributions

It is well known for static auctions without resale that in our setup the weak bidder bids

more aggressively than the strong bidder, but produces a weaker bid distribution. Formally,

let   be the (unique) equilibrium bid functions without resale. Then Maskin and Riley

(2000) show15 that for all  ∈ (0 1) it holds that ()  () and that (()) 

(()). For the case of resale with one strong and one weak bidder the Hafalir and

Krishna (2008) result implies that the bid functions are such that ()  () and that

(()) = (()). In other words, if there is resale opportunity, the weak bidder

becomes even more aggressive compared to the strong one and the weak bidder produces

the same bid distribution as the strong bidder winning the object 50% of the time. The

main intuition is that each bidder knows that if the weak bidder barely wins with a bid ,

then there is a sure resale at a price (()). Therefore, when bidding each bidder takes

this  as his effective valuation. The weak bidder knows that if he barely wins he will resell

the object for sure at price , so that is how much the object is worth for him. For the

same reason the strong bidder knows that if he loses by a small margin, then he will buy

the object at a resale price , which is then how much he values the object when bidding

15Maskin and Riley (2000) proves this result for the case where  =  = 1, but an extension of their

results to the case of multiple bidders is routine.
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for it. This logic fails when there are more than two bidders. Suppose that there are two

weak bidders and one strong bidder. The strong bidder can make the same reasoning as

before and thus his effective valuation is equal to the resale price at which he buys (()).

However, when a weak bidder wins by a small margin, then he may not be able to sell the

object if the second highest bid was made by the other weak bidder. In this case his value

from winning is equal to his type (), while in the case when he is able to sell the object

his eventual utility is the resale price (). The expected effective valuation is then strictly

between  and , which is less than the effective valuation of strong buyer, which is equal

to .

Using this insight, we establish that a strong bidder wins the auction more often than

a weak bidder when there are at least three bidders ( +  ≥ 3). Let us divide equa-
tions (3) and (6) by −1

 (())

 (()) and 

 (())
−1
 (()) respectively.

Substituting that e   implies then that if   1 then for all  ∈ (0 ) it holds that

(−1
 (())


 (()))

0

−1
 (())


 (())


1e()− 



Using that e    implies through (6) that if   1 then

(
 (())

−1
 (()))

0


 (())

−1
 (())


1e()− 



Therefore, if   1 or   1 (or both) holds, then for all  ∈ (0 ) it holds that

(
 (())

−1
 (()))

0


 (())

−1
 (())


(−1

 (())

 (()))

0

−1
 (())


 (())

or that

(

 (())

−1
 (())

−1
 (())


 (())

)0  0

But this last inequality implies that

(
(())

(())
)0  0

Noting that (()) = (()) implies that for all  ∈ (0 ) it holds that
(())

(())
 1

which means that the strong bidders produce a stronger bid distribution than the weak

ones and thus win more often in the initial auction if there are more than two bidders in

the auction. The following theorem states the result formally:16

16 In their Section 6.2, Hafalir and Krishna (2008) suggest that in the special case when there are two

weak and one strong bidders bid symmetrization should hold when the winner of the initial auction makes

a take it or leave it resale offer. However, our result shows that this is not the case. The intuition is that

effective valuations are not equalized, because the strong bidder always buys if he lost by a small margin,

while a weak bidder does not resell if he won by a small margin against the other weak bidder. In other

words the sure trade property of Hafalir and Krishna (2008) fails.
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Theorem 1 Let   ≥ 1 and  +  ≥ 3. Then in a regular equilibrium it holds for

any  ∈ (0 ) that
(())  (())

and thus a strong bidder produces a more aggressive bid distribution than a weak bidder and

wins the auction with a higher probability.

The logic of Theorem 1 suggests that (returning to the two group case) the asymmetry

in bid distributions is reduced by the possibility of resale. Without resale the effective

valuations are  and  for the strong and weak bidders respectively. With resale the

effective valuation of the strong bidder belongs to the interval [ ], while that of the weak

bidder to the interval [ ]. Therefore, the asymmetry in effective valuations is reduced

compared to the case without resale and thus one may expect that the bid distributions are

more equal than in the case without resale.

The following result shows that our conjecture is valid for a case that can be handled

formally:

Proposition 2 Let  = 1  = 2 and assume that  is decreasing in  and 
4
√
 is

increasing in . Define () as

(()) = ()

Let   denote the equilibrium bid functions of the auction without resale and let () be

defined as

(()) = ()

Then it holds that for all  ∈ (0 1) that

()  ()  

and thus the bid distribution is more symmetric in the auction with resale than in the auction

without resale.

The proof can be found in Appendix 2. This example shows that the bid function is

more skewed in the case where resale is allowed in the sense that the weak bidders bids

much more aggressively than the strong bidder if resale is allowed. But this means that

a weak bidder has a higher probability to win in the case with resale compared to the no

resale case, although less than the strong bidder as long as there are at least three bidders.

Although the formal analysis is not extended to the case where bidders are coming from

more than two groups (i.e. not only strong and weak, but also other type distributions),

using the concept of effective valuations it is possible gain intuition for that case as well.

So, suppose that there are three bidders (strong, medium and weak) ordered in the sense

of stochastic dominance assumed in the two-group case above. Using a similar analysis as

above one can show that bid distributions are not symmetrized, since the effective valuations

of the three bidders are different. However, obtaining any analytical result beyond that is

rather difficult, and thus such an analysis is not pursued here.17

17The main difficulty is that now the effective valuation of a bidder is a weighted average of the effective

valuations weighted by the probabilities of tieing with any of the two other bidders. It may be that,

conditional on tieing, the medium bidder finds it much less likely to tie with the weak bidder than the

strong bidder. If tieing with a strong or medium bidder leads to a much higher (conditional) effective

valuation than tieing with a weak one, then this may imply that the medium bidder has higher effective

valuation than a strong bidder even if the conditional effective valuation of the strong bidder is higher. This

could then potentially yield a reversal of bid distributions between the strong and the medium bidders.
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5 Bidding and number of buyers

It is interesting to consider some numerical results to illustrate the extent of asymmetry

in bid distributions when there are more than three bidders in an auction with resale. For

simplicity I consider the case with one strong bidder and several weak bidders and,  = 1

 ≥ 1 and assume that () =  and () =
√
. One can then write up the first

order conditions and specify conditions (6), (3) for the case at hand. Using program package

Mathematica one can obtain numerical solutions for this specification.18

To characterize the asymmetry in bid distributions with a simple measure I use the

probability of winning the auction as our starting point. Let  

 denote the probability

under resale that a given weak bidder wins, and the probability that a strong bidder wins,

respectively. Let  

 denote the probability with no resale that a given weak bidder wins,

and the probability that a strong bidder wins, respectively. By construction



 +  = 


 +  = 1.

Our measure for asymmetry comparing the case with and without resale is

() =
 − 1

+1

 − 1
+1



It is necessary to construct an indirect measure like this, since as the number of bidders

becomes large, each bidder has a very small probability of winning, and thus the difference

in winning probabilities  −  becomes zero necessarily. To still obtain a measure of

asymmetry I construct a measure that does not asymptote to zero as the number of bidders

becomes large, and there is no mechanical reason for this measure to be monotone. So, if the

measure turns out to be monotonic (in the number of bidders), it can be interpreted to oc-

cur because the extent of symmetrization changes as the number of bidders grows. Measure

 satisfies these requirements, although other appropriate measures could be used as well.

Note, that this specification is a special case of Proposition 2 when  = 2 and thus it

must hold that

0  (2)  1

because with resale the weak bidder wins more often than without resale. Also, we know it

from Hafalir and Krishna (2008) that

(1) = 0

and thus our conjecture is that our measure of asymmetry yields  ∈ (0 1) for any   1.

This conjecture is valid for the case of several bidders as it is highlighted by the following

results:

(2) ≈ 041 (3) ≈ 057 (4) ≈ 065 (5) ≈ 07 (9) ≈ 082
As one can see, the asymmetry is increasing in the number of bidders and in large markets

the opportunity of resale does not change winning probabilities much compared to the case of

no resale where asymmetries in winning probabilities are large. The reason seems intuitive:

as the number of bidders  becomes large, it holds that the bid functions converge to ,

i.e. bid shading disappears in the limit regardless of whether there is resale or not. But then

18The calculations are available from the author upon request.
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resale cannot take place in the limit with positive probability and thus the two allocations

have to be similar in the limit.19

For the same example I also conduct a revenue comparison between the first and second

price auctions with resale. In the two bidder case Hafalir and Krishna (2008) show that

a first price auction provides a higher revenue than a second price auction when resale is

introduced. Since the allocation with resale becomes more and more similar to the no resale

case as the number of bidders increases, therefore one may expect that the revenue advantage

is still there, but is decreasing in the number of bidders. In the Introduction I provide an

alternative intuition, based on effective valuations, for this conjecture. To confirm our

conjecture I provide a measure for revenue differences, and calculate the revenue difference

between first and second price auction for the example above. Let      denote the

revenues for the first price auction with resale, the revenues for the second price auction

with (or without) resale, and the Myerson optimal auction respectively. Let

() =
()−()

 ()−()

represent our measure for revenue comparison. The measure  is similar to the measure

 in that as  becomes large there is no mechanical force that would determine how 

behaves. Therefore, if  is decreasing in  that could be validly interpreted as a decreasing

advantage of the first price auction (over the second price auction) as the number of bidder

increases. Using the same example as above, we can calculate the following values for  :

(1) = 01067 (2) = 00653 (3) = 00475 (4) = 00330 (5) = 00284 (9) = 00213

(8)

Beyond confirming our intuition that the revenue advantage is decreasing in the number of

bidders, the example also shows that the difference may be rather modest compared to how

much could be gained by running a revenue maximizing auction without resale. In other

words, in larger auctions the exact auction format under resale seems to matter much less,

than being able to choose an optimal auction with an optimal reserve and being able to

prevent resale between the bidders.

6 Conclusions

I have studied auctions with resale when there are many bidders and derived existence and

characterization results under the assumption that the winner of the initial auction makes

the resale offer, which takes the form of a second price auction with a reserve price. I have

shown that the symmetrization result of Hafalir and Krishna (2008) does not hold when

there are more than two bidders and a strong bidder is more likely to win than a weak

bidder in the initial auction. I also prove that while complete symmetrization does not

take place, but the bid distributions are more symmetric in the case with resale than in

the case without and thus resale works toward symmetrization, even if it does not go all

the way. Numerical simulations suggest that the more bidders there are the more similar

the allocation to the benchmark case without resale and thus the more asymmetric the bid

19This argument relies on the fact that when there are many bidders and only one object, then the bid

each person makes converges to his valuation. A similar insight can be gained from the case where also the

number of objects goes up. In this case, the price converges to the Walrasian equilibrium price, and the

allocation of the auction becomes efficient in the limit, so resale does not take place.
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distributions and winning probabilities are between strong and weak bidders. We also show

in an example that the revenue advantage of first price auctions over second price auctions

is positive, but decreasing in the number of bidders. Future research should shed light on

whether one can derive more general comparative statics results as the number of bidders

change. Another open question is to what extent changing the resale mechanism would

change our results.

7 Appendix

Proof of Lemma 3:

Proof. I prove that even a large deviation in the auction is not profitable for any bidder.

I start with the incentive problem of the strong bidder with type () when he considers

bidding b. Our goal is to show that 
()



 ≥ 0, which implies that the second order

conditions hold globally for the strong bidder.

Case 1: Let b   first. Then this strong bidder buys in the resale stage with positive

probability from weak buyers. This happens if a weak buyer wins and his type is less than

−1(()), but larger than (b). Moreover, if he loses against a type  ∈ ((b) ())
of a weak bidder, then for the strong bidder with type () to be able to buy at the resale

stage it must hold that the highest other strong type does not bid more than () or, in

other words, that the highest other strong type is less than (()). The utility of the

strong bidder is then

(()b) = −1
 ((b))

 ((b))[()−b]+
+

Z ()

() 
−1
 ()()

−1
 ((())){()−[max{() 2} | 2 ≤ (())]}+

+−1
 (())

Z −1(())

()


−1
 ()()e(() )

Therefore,



b = ( − 1)−2
 ((b))((b))0(b)

 ((b))[()−b]+
+

−1
 ((b))((b))0(b)−1

 ((b)){[max{((b)) 2} | 2 ≤ (b)]−b}
From the last formula it follows in a straightforward manner that



()



b  0,

which concludes the proof for the first case. The intuition for this result is fairly straight-

forward: if a strong bidder just overtakes a weak bidder (who is the high bidder) by bidding

less than his equilibrium bid, then he will surely buy the object in the resale stage and pays

an expected amount of [max{((b)) 2} | 2 ≤ (b)]. This quantity is independent
of the real type (), so all types have the same incentive to bid slightly higher. How-

ever, when overtaking another strong bidder, the effective gain is (), since upon losing

against a strong bidder there is never any buying opportunity in the resale stage. Obviously,
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this value is just equal to the valuation and thus buyers with higher valuation have more

incentives to increase their bids.

Case 2: Let b   but ((b))  (). In this case the high bidder is still buying

from a weak winner at the resale stage, but also starts selling to other strong bidders. Let

(()b) denote the reserve price set by a strong bidder if his type is () and he bid b
in the initial auction. Then the utility of the strong bidder can be written as

(()b) = −1
 ((()b))

 ((b))[()−b]+
+−1

 (())

Z −1(())

() 
−1
 ()()e(() )+

+
 ((b))Z ()

(())( − 1)
−2
 ()()([max{(()b) 3} | 2 = ]−b)

When taking a derivative with respect to b one can use the envelope theorem by invoking

that 


= 0 and thus the indirect effect that enters through the dependence of  on b can
be neglected. Therefore,



b =


−1
 ((b))((b))0(b)[−1

 ((()b))()−−1
 (())e(() (b))]+

+
−1
 ((b))((b))0(b)∗

∗
Z ()
(())( − 1)

−2
 ()()[max{(()b) 3} | 2 = ]+

+
 ((b))0(b)( − 1)−2

 ((b))((b))[max{(()b) 3} | 2 = (b)]−
− 

b(
 ((b))−1

 ((b)))
To proceed, note that







b(
 ((b))−1

 ((b))) = 0
Moreover, it holds at  = (()b) that




{−1

 ((()b))()+
+

Z ()
(())( − 1)

−2
 ()()[max{(()b) 3} | 2 = ]} = 0

because it is optimal to choose (()b) in the given situation by construction. Therefore,






b =


−1
 ((b))((b))0(b)[−1

 ((()b))0()− 


−1
 (())e(() (b))]
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Finally,

−1
 (())e(() (b)) = Z ()

0

(−1)−2
 ()(){()−[max{((b)) }]}

and thus



−1
 (())e(() (b)) = 0()

−1
 (()).

Putting everything together yields that







b = 
−1
 ((b))((b))0(b)0()[−1

 ((()b))− −1
 (())]  0

which concludes the proof for Case 2.

Case 3: Let b   and ((b))  (), but (b)  (). In this case the situation is

simplified, our strong bidder sells to other strong bidders at the resale stage and does not

have any trade with the weak bidders. Therefore, one can write down a simplified version

of the Case 2 utility function (line 2 from above is now missing) and then conduct a similar

analysis to above to conclude that the cross partial has the required sign. Specifically, the

utility function becomes:

(()b) = −1
 ((()b))

 ((b))[()−b]+
+

 ((b))Z ()
(())( − 1)

−2
 ()()([max{(()b) 3} | 2 = ]−b)

Since this is a simplified version of the case 2 utility function, one can thus perform the

exact same steps as above, which leads to the exact same conclusion of the single-crossing

property of  .

Case 4: Let b   and (b)  (). In this case our strong bidder sells with positive

probability to other strong bidders at the resale stage and if (b)− () is large enough,

then may sell to weak bidders as well. He will never be able to buy in the resale stage from

either the strong or the weak bidders, because (b) (b)  () and thus losing with

bid b means that a bidder with a higher valuation (than ()) won the original auction.

For the rest of discussions for Case 4 I concentrate on the case when he sells with positive

probability to both strong and weak bidders, otherwise (if he does not transact with the

weak bidders at all) we are back to case 3 with the exact same utility function, and thus

the analysis would be exactly the same.

In this case the deviating seller posts a resale reserve price (()b)  (b) (b).
This resale price follows from the optimization problem of a seller who faces weak bidders and

strong bidders as well, and chooses optimally. The only important thing to notice about the

(out of equilibrium) object  is that it is strictly increasing in the real type ().
20 Let 1

and 2 denote the highest and second highest types among all other (+−1) bidders, and
let 1 denote the highest bid among all other bidders. By bidding b, the probability of win-
ning is 

 ((b))−1
 ((b)) and thus the overall payment is b

 ((b))−1
 ((b)).

If all other bidders have types less than (()b) then the deviating strong type wins, and
20This follows, because a buyer with a higher valuation facing the same distribution (as determined by

the bid ) of potential buyers at the resale stage will always have an incentive to set a higher reserve as
straightforward calculations would show.
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he will not resell the object and thus his utility (from consumption) multiplied by the prob-

ability of this event is 
 ((()b))−1

 ((()b))(). The final component of
the utility function is the revenue from reselling the object. Such a resale occurs with prob-

ability 
 ((b))−1

 ((b))− 
 ((()b))−1

 ((()b)). It is convenient to
write this last chunk of the utility as an integral. If the highest bid of the other bidders 1 is

equal to a value e, then the expected resale price is equal to [max{(()b) 2} | 1 = e].
This holds, because the resale is organized as a second price auction with reserve . Let

1(e) denote the density of the highest other bid at e. (Since the exact value of this density
does not affect our calculations, I do not calculate it.)

Putting those three components of utility function together yields that

(()b) = −b
 ((b))−1

 ((b)) + 
 ((()b))−1

 ((()b))()+
+

Z 
min{((())))((())))} 

1(e)[max{(()b) 2} | 1 = e]e
It is in order to explain the two bounds of the integral. Recall that the integral measures

the expected value of the resale revenues. If the highest other bid 1 was larger than b then
our strong bidder would not be able to purchase the object in the first place, and thus he

would not be able to resell it either. Second, the smallest type who ever buys at the resale

stage from the deviating strong bidder is equal to  = (()b)), and thus the smallest
bid any such type makes in equilibrium is equal to min{() ()} = (). Therefore,

the utility can be rewritten as21

(()b) = −b
 ((b))−1

 ((b)) + 
 ((()b))−1

 ((()b))()+
+

Z 
()

1(e)[max{(()b) 2} | 1 = e]e
To obtain the key cross partial derivative 2

 , note that b affects  in two ways:
indirectly through  and directly. The optimality condition that determines the value of

(()b) has a first order condition that is equivalent to 


= 0, and thus the indirect

effect cancels22 . Using this observation and the observation above that
(())


 0, one

obtains that23

2

b = 1(b)[max{(()b) 2} | 1 = b]  0
which concludes the proof for Case 4, the last case for possible deviations of the strong

bidder.

Now, I turn to the analysis of the weak bidders’ problem. Denote his type by () and

his bid b again restricting attention to the case where b−  is small in absolute value. By

21Here I use the bid the others make as the dummy variable for integration, which is different from the

treatment in the rest of the analysis. This allows me to treat the two cases where a strong or a weak bidder

may buy at the resale stage in a unified notation, a need that did not arise in the three other cases.
22 I assume a common support for the two groups of bidders (interval [0 1]), so it is always the case that

the optimal resale (reserve) price is interior, since otherwise the resale profit would be zero (when r is set

to high) or negative (when r is set zero). Then the first order condition for an interior optimum (using our

other assumptions on differentiability) imply that 


= 0.
23The derivative with respect to  is not well defined when the reseller is just indifferent between serving

just the strong bidders or also the weak bidders. The main single crossing argument is however not affected,

since when integrating such a non-existence at one point does not cause any problem.
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the above argument such a bidder chooses a reserve price (()) regardless of b. Then he
will own the object eventually if and only if all the weak bidders have type less than (b)
and all the strong bidders have type less than (()). He will resell the object if the

highest type of the strong bidders is between (b) and (()) and all the weak bidders

have types lower than (b). Let (() ) denote the expected revenue from resale if a

reserve price (()) is set and the highest type among the strong buyers is  ≥ (())

and thus resale occurs. Formally,

(() ) = [max{(()) 2} | 1 = ]

Note, that

(() ()) = e() (9)

Again, if a weak bidder just barely wins against a strong bidder, then his effective valuation

is his expected resale price e(). Let us also define the expected resale price () if a weak
bidder wins, beating another weak bidder with the same type (), but resale takes place

to a lower bidder, the strong bidder with the highest type. Formally,

() = [max{2  (())} | 1 ∈ [(()) ()]] =

=

R ()
(()


−1
 ()()(() )


 (())− 

 ((()))


The utility function of the weak bidder can be written as

 = 
 ((()))

−1
 ((b))[()−b]+

+−1
 ((b))Z ()

(()


−1
 ()()((() )−b)

We have then the same four cases as above:

Case 1: Let b   and (b) ≤ (). In this case our weak bidder buys from other weak

bidders and does not trade with the strong bidders at the resale stage.

Case 2: Let b  , but (b)  (). In this case our weak bidder buys from other

weak bidders and may sell to the strong bidders at the resale stage.

Case 3: Let b ≥ , but (()b)  (b). In this case our weak bidder does not trade
with other weak bidders and sells to the strong bidders at the resale stage.

Case 4: Let b ≥ , and (()b) ≤ (b). In this case our weak bidder sells to other
weak bidders and sells to the strong bidders at the resale stage.

The proof of the second order condition is the same for these four cases as above with

the obvious changes in notation, so it is omitted.

Proof of Proposition 1:

Proof. Let us start the proof by defining b() as

 (()) + (


 ()− 

 (())) = 
 ()b .

Then one can rewrite equation (6) as


−1
 (())(())

0
()

−1
 (())[e()− ]+

+( − 1)−2
 (())(())

0
()


 ()(b − ) = 

 (())
−1
 (())
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After simplifications this formula is equivalent to

()
0
()()[e()− ] + ( − 1)()0()()(b()− ) = ()()

(10)

A similar simplification applied to formula (3) implies that

()
0
()(())[e()− ] + ( − 1)()0()()[ − ] = ()()

(11)

Before analyzing the above system in more details, note that for all  in the solution

 ≥ e ≥  ≥ e ≥  (12)

with equality if and only if  = . To see this first note that at  =   1 it holds that

 =  = e =  = e = 1 by definition. Then equations (10) and (11) imply that
(1)(1)

0
() = (1)(1)

0
()

By assumption

(1)(1)  (1)(1)

and thus

0()  0()

implying that for some   0 it holds that for all  ∈ (−  )

()  ().

A similar argument implies that for any   

() = ()  ⇒ 0()  0()

and thus () ≥ () must hold for all  in the solution of system (10), (11) as long as

()   holds. From this (12) follows by the way functions e  e were constructed.
Next, note that as long as

[e()− ]  ( − 1)[ − ] (13)

and

[e()− ]  ( − 1)(b()− ) (14)

hold, the system satisfies the Lipschitz property and thus there is a unique solution on [ ].

It is easy to see that 0 
0
  0 must hold as long as (13) and (14) hold. Moreover, (14)

follows directly from (12).

Therefore, I only need to show that (13) holds for all   0 in the relevant range where

()  . Let  = ∗ be such that

[e()− ] = ( − 1)[ − ]

and for all   ∗ condition (13) holds. Note, that (10), (11) imply that at  = ∗ it holds
that 0(

∗) = 0. Then 0(
∗) = 0 and (10) imply that 0(

∗)  0 holds. Also, it must hold
that

e0(∗) ≥ ( − 1)0(∗) + 1 (15)
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since [e(∗) − ∗] = ( − 1)[(∗) − ∗] and for all   ∗ it holds that [e() − ] 

( − 1)[ − ].

Using the definition of e it holds that
e−1

 () = −1
 (())() +

Z 

()

( − 1)−2
 ()()

Using this formula and that [e(∗)− ∗] = ( − 1)[(∗)− ∗] implies that

e0(∗)((∗)) = 0(
∗)( − 1)((∗)− ∗)((∗))

Using the assumption that 0(
∗) = 0 implies through (11) that

0(
∗)( − 1)((∗)− ∗)((∗)) = ()

and thus

e0(∗) = 1
But this last formula contradicts with (15), because 0(

∗)  0 as we established it above.
We have thus proven that the Lipschitz conditions cannot be violated as long as ()  

holds and that for all such  it also holds that 0() 
0
()  0. Therefore, for all  two

things can happen. Either one can find a value e ≥ 0 such that (e) = e and for all   e
it holds that 0() 

0
()  0 and ()  . If that is not possible, then it must hold that

(0)  0. If one can show that there exists a  such that the first case occurs with e = 0,
then our proof is complete.

Let ( ) and ( ) denote the solution of our system for a given value of the end

condition. Let us define


∗
= inf



{(e ) = e for some e  0}
From our discussion above, it follows that 0 ≤ 

∗ ≤ 1.24 The rest of the proof shows that
(0 

∗
) = 0 and ( 

∗
)   for all  ∈ (0 ∗], which concludes the proof, since it shows

that  satisfies all the relevant boundary conditions. I prove this statement by ruling out

two possibilities. First, suppose that (0 
∗
)  0 and ( 

∗
)   for all  ∈ (0 ∗]

In this case the definition of 
∗
implies that for all   0 it must hold that there exists

 ∈ (∗ ∗ + ) such that there exists e  0 such that (e ) = e. I use this statement to
obtain a contradiction that rules out this first case. To do this let us construct a sequence

{} & 
∗
, and the corresponding sequence of crossing points {e}. By construction it holds

for all  that

(e ) = e (16)

I start with some useful observations. Since function ( 
∗
) −  is continuous in ,

therefore by Weierstrass’s theorem it takes its minimum, which I denote by   0. I have

shown above that when    for all  ≥ 0 (as it holds in this first case), then Lipschitz
continuity of  holds, and thus for all  it holds that ( 

∗
) is continuous in the second

24This follows follows, because (1 1) = 1, and thus the property that {( )   for all  ∈ [0 ]}
does not hold for  = 1. The property holds when  = 0, since then (0) = 1  0 and the function  is

not even defined for any   0.

23



variable. Moreover, it also follows that ( 
∗
) is uniformly continuous in the second

variable, i.e. for all   0 there exists a  such that

| − 
∗ |≤  ⇒ sup

∈[0max{∗}]
| ( ∗)− ( ) |≤ .

This uniform convergence property implies that there exists an , such that for all    it

holds that | (e ∗)− (e ) |≤ 2 and thus (using (16))

(e ∗) ≤ e + 2. (17)

On the other hand the definition of  implies that

(e ∗) ≥ e + 

which contradicts (17), and thus rules out this possibility.

To complete the proof, we need to rule out the second case where there exists some e  0
such that (e ∗) = e. To do this, I establish that if such a e exists, then there exists a
small enough (positive) , such that for all  ∈ (∗ −  

∗
) there exists a   0 such that

( ) = , and thus the definition of 
∗
would be contradicted. So, let us construct a

sequence {} % 
∗
and suppose that ( 


)   for all   0 for all . We will show that

the existence of such a sequence leads to a contradiction, which completes then the proof

for this second case.

Since  is Lipschitz continuous when   e and  = 
∗
 and (by construction) continuous

in the first variable for any , it follows that for any   0 there exists a (), such that for

all   () it holds that (e ) ∈ (ee + ).25 To continue, let us use the system (10),

(11) together with formula (12). Let us define the following variables:

 = ()()[e()− ]

 = ( − 1)()()(b()− ),

 = ()()

 = ( − 1)()()[ − ]

and

 = ()(())[e()− ]

Then solving the system (10), (11) yields that

0( ) =


+ −
−



25To see this note that, for all    function  is continuous in the first variable at ( ∗), since it solves a
differential equation (in ), and is thus continuous. Therefore, there exists   0 such that for all  ∈ (+)
it holds that ( 

∗
) ≤ ( ∗)+3 = +3. Since for all   , Lipshitz continuity holds for all  ≤ 

∗
,

therefore at such a  the function  is continuous in the second variable. Take any  ∈ (+ ). Then ∃ 
such that if  ≥  then ( ) ≤ ( )+ 3 ≤ +23, by the way  was constructed. Now, suppose
that an appropriate () does not exist. Then ∃ ≥  such that ( ) ≥  +   ( ). However,
 is increasing in  and   , yielding a contradiction.
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Using (12) implies that



≤  − 1




or 
− ≤  − 1. Therefore,

0( ) ≥


+ (−)( − 1) ≥



 (18)

Now, take any   0 and let   () as defined above. Then using that e ≤  implies

that 0  (e ) ≤ ()(). Thus if  is chosen very small, then 0(e ) can
be made arbitrarily large, in particular much larger than a particular number greater than

1, let’s say 2. By construction it also holds that (e ) ≤ e + . If it holds that for all

 ∈ (e − 2e) that 0(e ) ≥ 2 then it must be true that for some  ∈ [e − 2e) that
( 


) = , providing the desired contradiction and concluding the proof.

For all  ∈ (e−2e) it holds that ( ) ≥ (( 

))(( 


)) ≥ ()() ≥

(e− 2)(e− 2) = . Also,

( 

) ≤ ()()(( 


)−) ≤ (( )−)sup


() = (( 


)−) (19)

holds.26 This implies that

0( 

) ≥ 

(( 

)− )

 (20)

If  was chosen small enough in the first place, then



(e ) ≥ 


 2 (21)

holds and thus 0(e ) ≥ 2. Consequently, (( )− ) is increasing in  at (e ). This
implies that ( 


) − ) ≤  if  is close enough (but less than) to e. But as long as

( 

)− ) ≤  holds and  is chosen small enough, such that (21) holds, then using (20)

it is still true that 0( 

) ≥ 

((

)−) ≥




 2. Suppose that when decreasing 

we leave the region where 0( 

) ≥ 2. By continuity at that critical value of , denoted

by ∗, it holds that 0(
∗ 


) = 2. Since for all  ∈ (∗e) it holds that 0( ) ≥ 2 and

thus (
∗ 


)− ∗  (e )−e ≤ . Therefore, (20) implies that

0(
∗ 


) ≥ 

((∗ 

)− ∗)





 2

contradicting the starting assumption that 0(
∗ 


) = 2. This implies that we never leave

the region (as we decrease  starting from e) where 0( ) ≥ 2, which completes the proof.
26 It follows from the continuity of  that () is bounded on interval [0 1], and thus its supremum is

bounded.
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8 Appendix 2

In this Appendix, I establish the result claimed in the Example of the main text, i.e. that

in the three bidder auction considered in the Example, the asymmetry of bid distributions

between the bidders is reduced by the presence of resale compared to the benchmark case

of no resale. I assume that  is decreasing and that

4
√

is increasing in . Note, that these

assumptions (together with the assumption that  is increasing) imply that
()


and

()


are decreasing in .27

Evaluating (3) at  = () and using that when  = 1 then e =  one obtains that

0() =
(()− ())2()()

(())2
 (22)

Letting  = (), and combining (22) with (6) (again evaluated at  = () and using

that  = e =  when  = 1) imply that

0() =
()

()(())

(())(()− ()) + ()(()− )

(()− ())
 (23)

Now, let us examine the situation with three bidders like above but with no resale. Let

  denote the bid functions of a weak bidder and the strong, with inverse functions

  and let () = (()). I show below that it must hold that ()  ()   for

all  ∈ (0 ) for all  ∈ (0 ), which implies that there is less asymmetry in the distribution
of bids produced by the two types of bidders when resale is allowed. Following the analysis

of Maskin and Riley (2000) it is routine to establish that

0() =
()

()

(())(2()− − ())

(())(− ())
 (24)

and

0() =
(()− ())2()()

(())2


I prove at the end of this Appendix that 00(1)  00(1) and 0(1) = 0(1) Thus, since
(1) = (1) it follows that ()  () for all  ∈ (1 −  1) for a low enough . Take

the largest value   1 where () = (). By construction 0() ≥ 0() must hold, but
I show that whenever () = () =  holds it also holds that 0()  0(), which yields
contradiction and establishes the proof that no such point  exists and thus for all  ∈ (0 1)
it holds that ()  (). First, note that

0() =
()

()()
(() +

()(()− )

(()− ())
)

and

0() =
()

()()
(() +

()(2 − 2)
( − ())

)

Therefore, it is sufficient to prove that

()(()− )

(()− ())


()(2 − 2)
( − ())

. (25)

27These assumptions are strong sufficient conditions, and I conjecture that they can be relaxed significantly

without changing the results.
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Next, note that () ∈ argmax


((())−())+(() and the first order condition
implies that

(())− (())− (())(()− ) = 0. (26)

Since by assumption  is a decreasing function, therefore

0 = (())− (())− (())(()− ) ≤ (())(() + − 2()

or () ≤ ()+

2
holds and thus () ≤ +

2
. Equation (22) implies that

()− () =

Z 

0

(
()

()
)20()

Differentiating first order condition (26) by  yields

()
0() = ()(2

0()− 1) +  0()(()− )

Since by assumption  0 ≤ 0, therefore the last equation implies that 0() ≥ 1
2
for all .

Moreover, since 

is decreasing in  it holds that for all  ≤ 

(
()

()
)2 ≥ 2

2
.

The above then imply that

()− () =

Z 

0

(
()

()
)20() ≥ 

6
.

Also, we know it from Maskin and Riley (2000) that in an auction without resale the

weak bidders bid more aggressively if they face a strong bidder than if they face only weak

bidders.28 Therefore,

() ≥
1

(())2

Z 

0

2()()

Using that
(())

2

√


is an increasing function it follows that if  ≥ , then (
()

()
)2 ≤

√
√


and thus a first order stochastic dominance argument yields that

() ≥
1

(())2

Z 

0

2()() ≥ 1√


Z 

0

√


2
 =



3
 (27)

Putting everything together and also using that    yields that

()(()− )

(()− ())


()( − )2

6
=
3()( − )


=

=
2()( − )

23
≤ 2()( − )

 − ()


which concludes the proof.

28They only establish it for the case of two bidders, but extending their results is routine.
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Proof that 00(1)  00(1) and 0(1) = 0(1):
The first order conditions (23) and (24) imply that at the upper end of the support of

valuations ( = 1) it holds that 0(1) = 0(1) = (1)

(1)
 1, since (1) = (1) = (1) = 1

holds. Also, for all  ∈ (0 1) it holds that   ()  () and thus 1  0(1)  0(1) =
0(1).29 Now, I show that 00(1)  00(1). Using (23) and (24), it is sufficient to show that
at  = 1 it holds that

(
(())(()− ()) + ()(()− )

(()− ())
)0  (

(())(2()− − ())

(− ())
)0

Since 0(1)  1 holds, it follows that at  = 1

(
(())(()− ()) + ()(()− )

(()− ())
)0  (

(())(2()− − ())

(()− ())
)0.

Therefore, it is sufficient to establish that at  = 1

(
(())(2()− − ())

(()− ())
)0  (

(())(2()− − ())

(− ())
)0

which is equivalent to

(
(2()− − ())

(()− ())
)0  (

(2()− − ())

(− ())
)0

since 0(1) = 0(1). This last inequality is equivalent to

1− 0(1)
1− (1)


2(1− 0(1))
1− (1)

. (28)

Since (1) = (1) = 1 and for all  ∈ (0 1) it holds that ()  1+()

2
, thus it follows that

0(1)  1+0(1)
2

=
1+0(1)

2
and thus

1− 0(1)
1− (1)


1− 0(1)
2(1− (1))

.

Therefore, inequality (28) is satisfied if

4(1− (1))  1− (1).

Also, (27) implies that (1) ≥ 13 and thus it is sufficient to prove that (1)  5
6
. To

prove this last inequality, consider the problem of bidder 3 with type 3 = 1 and note that

by bidding (1) he surely gets the object at a price of (1). Suppose now, that he deviates

and bids zero in the auction stage and obtains the object at the resale stage only. In this

case, resale always takes place because the winning bidder offers a resale price less than 1

with probability 1 and thus one needs to only establish that bidder 3 pays less than 56

for the object in expectation. To estimate the expected resale price, note that if a bidder

(other than 3) wins with type  then his resale offer is () ≤ +()

2
 +1

2
. Since

()


is

decreasing, thus distribution  is stochastically dominated by distribution () = . Let

29The inequalities are strict as long as (1)  0, which we assumed throughout.

28



 be the distribution function for the type of the winner when the strong bidder bids zero

in the original auction. Then

 () = ()
2 ≥ 2

and thus the expected price is estimated as

 =

Z 1

0

() () 

Z 1

0

+ 1

2
∗ 2 = 5

6


which concludes the proof.
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