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Abstract

This paper studies optimal patent policy in a dynamic setting with sequential in-

novation. Firms innovate by undertaking “research” activities to generate new ideas

and by undertaking “developement” activities to commercialize these ideas. To pro-

vide firms with incentive to invest in R&D, the social planner grants a monopoly right

(patent) to an innovator to exclude its opponent from producing the goods based on

its innovation for a certain period of time. If the idea arrival process is exogenous,

the optimal policy is stationary and a new idea is patentable if its quality is better

than a constant cutoff. If idea arrival is endogenously determined by firms’“research”

investment, the optimal policy is in general nonstationary and characterized by two

cutoffs, and the policy switches from one cutoff to the other cutoff only once.

1 Introduction

The cumulative nature lies in the heart of innovation activities. Most new technologies are

results of a sequence of incremental improvements. Two well-documented examples from

British industrial revolution are the blast furnace in the iron industry (Allen, 1983) and the

Cornish pumping engine in the mining industry (Nuvolari, 2004). More recent examples

include the invention of laser and spreadsheet (Scotchmer, 2004). The laser was inspired by

its predecessor —the maser, and Microsoft Excel spreadsheet built on its predecessor Lotus

1-2-3, while Lotus itself was an improvement upon the first electronic spreadsheet —VisiCalc.
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The cumulative nature of innovation gains growing importance in the past century, especially

for modern industries such as semiconductor and biotechnology.

Patent system plays an important role in providing firms with incentives to innovate. By

granting an innovator the monopoly rights to produce and market the patented product for a

certain period of time, a patent allows the innovator to recover and profit from its investment

in innovation. In industries where innovation is cumulative or sequential, a social planner

who is restricted to use patents to reward innovation faces two important trade-offs. First,

the total discounted horizon of monopoly rights as innovation reward is finite, so a stronger

patent today constrains the social planner to reward future innovators tomorrow. Second,

in order to fulfill the promise of a stronger patent protection today, the social planner has

to increase the breath and scope of the patent, denying many more ideas the opportunity to

file a patent in the future. This may discourage future innovators from investing in research

to generate new ideas.

We introduce a model of sequential innovation where firms compete in “research”activ-

ities to generate ideas and in “development” activities to commercialize these ideas. The

terms “research”and “development”are often used together or interchangeably in the lit-

erature and practice when referring to innovation activities. This paper will treat research

and development separately. In particular, we use research to refer activities undertaken

primarily to acquire new knowledge, while we use development to refer to activities that use

existing knowledge gained from research to produce new products or install new processes,

or to improve existing products or processes. We study these two important trade-offs faced

by the social planner and characterize the optimal patent policy.

We model the line of current and future products as a quality ladder. Firms compete

in innovation to improve the quality of the product so that they can climb high on the

quality ladder. The size of the improvement depends on the idea quality and subsequent

development effort. New ideas arrive sequentially according to a Poisson process and the

arrival rate depends on the firm’s investment on research.

When a firm gets an idea, it decides how much to invest in order to develop the idea into

a viable product. Better ideas are associated with lower development costs. For simplicity,

we assume that the quality of idea is publicly observable.1 However, we assume that its

subsequent development investment are private information of the firm. We also assume

that the patents held by the incumbent expire immediately whenever the entrant successfully

files a new patent. The goal of the paper is to investigate the implication of the nature of

cumulative innovation on the optimal patent policy.

To provide firms with incentives to innovate, the authority grants a monopoly right

1Under a standard sorting condition, one can derive a mechanism to induce truth-telling when the idea

of quality is not observable. See, for example, Hopenhayn, Llobet and Mitchell (2006).
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(patent) to an innovator to exclude its opponent from producing the goods based on its

innovation for a certain period of time. Since innovation is cumulative, future innovations

will necessarily build on the current technology. This leads to two important trade-offs.

First, the total discounted duration of monopoly rights available to the authority is finite,

so a longer duration of market power assigned to the current innovator limits the size the

possible reward to future innovators. Therefore, the social planner must trade-off rewarding

current innovators versus rewarding future innovators. Second, a stronger patent must be

associated with a sequence of higher cutoffs, which means that only very good ideas are

patentable. Therefore, the entrant will have less incentive to invest in research, leading to a

lower arrival rate of new ideas.

Our main result is a characterization of the optimal patent policy in our setting. We show

that if the idea arrival process is exogenous, then the optimal patent policy is stationary.

Under the optimal policy, future ideas are patentable as long as their quality exceeds a

constant cutoff which is a function of the strength of the current patent protection. If the

arrival rate of ideas is endogenously determined by firms’investment in research activities,

then the optimal policy is in general nonstationary. This nonstationary optimal policy

consists of two cutoffs that determine the set of patentable ideas and the optimal policy

switches from one cutoff to the other cutoff only once. For this general case, we characterize

these two cutoffs, the switching time, and the welfare implications.

This paper is closely related to the patent design literature that is pioneered by Nordhaus

(1969), who considers how to set the length of the patent to provide social optimal incentives

for innovation. Built on Nordhaus (1969), Gilbert and Shapiro (1990) and Klemperer (1990)

add the scope (or breadth) of the patent to the designer’s toolkit and investigate the trade-off

between the length and breadth of a patent in providing rewards to innovators. In particular,

Gilbert and Shapiro shows that the optimal length of patent is infinite under fairly general

conditions in a static environment. In our dynamic setting, the optimal patent length is also

infinite, but it is contingent on possible arrival of future innovations.

Cornelli and Schankerman (1999) and Scotchmer (1999) introduce mechanism design

approach to the literature, and show that when the patent granting authority does not have

information about the value of an innovation, a patent may be superior than the alternative

incentive tools, because it can tie the value the innovation to the length and scope of patent

protection. Cornelli and Schankerman (1999) show that it is optimal for the government

to offer firms a menu of patent lives and associated lump-sum patent fees. Hopenhayn

and Mitchell (2001) showed that, under certain sorting condition, such a scheme may be

dominated by a menu that trades off the breadth and length of a patent and with zero

patent fees.

The nature of cumulative innovation gains a lot of attention and related patent research
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grows quickly. Built on the idea of Green and Scotchmer (1995), O’Donoghue, Scotchmer

and Thisse (1998) study the trade-off between the patent length and the patent breadth

in the sequential innovation case with licensing. They find that a broad patent with short

patent length improves the diffusion of new products, but a narrow patent with long patent

life can lower R&D cost. Bessen and Maskin (2006) develop a model of cumulative and

complementary innovation in a differentiated product market and show that the patent

protection may discourage innovation and reduce social welfare.

Lastly, our work is also related to recent analysis of state-contingent patent policies by

Acemuglu and Akcigit (2008) and Hopenhayn and Mitchell (2010). In a general equilib-

rium framework with cumulative innovation, Acemuglu and Akcigit (2008) find that welfare

maximizing intellectual property rights is state-dependent. Hopenhayn and Mitchell (2010)

characterizes the optimal patent policy in a setting where two long lived firms compete in

innovation. Both firms can innovate repeatedly, but they assume that the idea arrival process

is exogenous and the ideas are homogenous in quality. Both papers find that the optimal

patent policy may favor the technology leader rather than the follower.

2 The Model

Consider a sequential innovation environment where new technologies must build on the old

ones. Firms compete in innovation to improve the quality of the current product in the

market. Each innovation starts with an “idea”. Ideas are heterogenous in quality. The idea

quality z is distributed according to a cumulative distribution Φ (z) with support [0,∞) and

a density φ > 0. New ideas arrive according to a Poisson process, and the arrival rate is

increasing in the amount of investment in “research”activities. The flow cost of generating

new ideas is denoted by an increasing function K (λ), where λ is the arrival rate of new

ideas.

Once a firm has an idea, it has to decide whether and how much to invest in “develop-

ment”activities that transform the idea into a new product. The lump-sum cost of develop-

ment is c (4, z), which is decreasing in z and increasing in the size of quality improvement4
over the current technology. The idea quality z is publicly observable but the investment size

4 is private information of the innovator. An idea is either innovated immediately or lost,

i.e., banking ideas is not possible.2 We exclude the possibility of licensing, so a firm with

a new idea will undertake “development”activities only if the new idea is patentable. We

assume that c (4, z) is increasing and convex in 4, decreasing in z, and its cross derivative
is negative (i.e., ∂

2c(4,z)
∂4∂z < 0).

Firms engage in price competition in the product market. A product can be freely

2See Erkal and Scotchmer (2009) for an analysis allowing innovators to bank ideas for future use.
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imitated unless patented, so a patent holder can charge price p = 4 on patented product

until its patent expires. We assume that there is only one consumer who will buy the product

at the market price. By assuming away the static distortion due to monopoly, we can focus

on the dynamic trade-off purely due to innovation race. Firms discount future with discount

rate r.

For exposition purpose, we assume for now that, at each point of time, one incumbent,

one active challenger, and many potential entrants compete in innovation. The incumbent

is the current patent holder, technology leader and producer who charges price p = 4 for
its patented product. The challenger actively invests in “research”to generate new ideas to

improve upon the current patented technology. If the challenger successfully files a patent

based on a new idea, the current patent expires immediately. We define an innovation as the

process of successfully obtaining a patentable idea and transforming it into a new commercial

product. That is, an innovation consists of activities of both research and development.

We assume that each firm can innovate only once, so once a patent expires the current

incumbent (and patent holder) exits the market. The challenger makes lump-sum investment

in developing its new patent into a new product, and becomes the new incumbent. In

addition, one of the potential entrants enters the market and becomes the new challenger.

We are interested in the optimal patent policy when the planner is restricted to reward

innovators by granting the exclusive right to produce and sell the patented products. Since

the discounted duration of monopoly rights is scarce, the social planner has to trade off be-

tween rewarding current innovation and rewarding future innovations, and trade off between

rewarding “development”and rewarding “research”.

Let t denote the calender time since last innovation and is reset to zero when a new

patent is filed. Immediately after a new patent z is filed, a patent policy must specify the

set of patentable ideas for every future period. We assume that the set of patentable ideas

takes the form of cutoffs: in period t only ideas with quality above cutoff ẑt are patentable.3

Note that a patent holder values a patent because it gives the exclusive right to produce

the patented product. Therefore, a patent holder does not directly concern the sequence of

cutoffs {ẑs}∞s=0 per se but rather the expected discounted duration of this exclusive rights

implied by these cutoffs. This duration, denoted by d (z), summarizes the strength of the

initial protection assigned to patent z implied by the cutoffs {ẑs}∞s=0. In general, the strength

of patent protection may vary over time. If we let Dt denote the remaining protection for

patent z conditional on that no new patent is filed before time t, then the remaining sequence

of cutoffs {ẑs}∞s=t must be consistent with the value of Dt.

Moreover, the current patent holder will be indifferent between two different remaining

3Under our model setting, we show it is optimal to use cutoffs to screen ideas. A proof is given in the

appendix.
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sequences of cutoffs as long as they deliver the same value of Dt. Therefore, for the resource

constraint faced by the social planner, the remaining patent protection Dt can be used as a

state variable at time t as the remaining patent protection she has promised to the current

patent holder.

The sequence of cutoffs {ẑs}∞s=t affects Dt in two ways. First, for a given arrival rate of

new ideas, a lower cutoff ẑt directly increases the likelihood of an idea arriving at time t to

be patentable. Since the filing of a new patent leads to the expiration of the current patent,

a lower ẑt implies a lower expected discounted duration Dt. Second, a lower cutoff ẑt also

gives the challenger a stronger incentive to invest in research activities to increase the arrival

rate of new ideas. A higher arrival rate of new ideas speeds up the arrival of a new patent

and thus the expiration of the current patent.

We focus on the class of patent policies that have the following features. First, the current

patent expires immediately whenever a new patent is filed, so there is always only one active

patent. Second, the reward function d (z) is stationary: it does not depend on t. Therefore,

a patent policy consists of a reward function d (·) and, for each patentable idea z, a sequence
of cutoffs {ẑs}∞s=0 consistent with d (z). Given a patent policy d (·) and {ẑs}∞s=0, immediately

after the patent is approved (t = 0), the current patent holder (the incumbent) chooses

the size of quality improvement 4 once-and-for-all. The challenger firm, on the other hand,

chooses the flow investmentK (λt) in each period t to generate new ideas with arrival rate λt.

If the challenger gets an idea z′ with z ≥ ẑt at time t, the challenger files a new patent, and

the old patent expires immediately. As a result, the old incumbent is out, and the challenger

becomes the new incumbent and decides how much to invest in development additivities to

transform the new patent into a commercial product. A potential entrant enters the market

and the process repeats.

The initial promised duration D0 at t = 0 and the remaining promised duration Dt at

time t are endogenously determined by the future arrival rates and the sequence of cutoffs.

We derive a formula to link durations to the future arrival rates and the remaining sequence

of cutoffs.

Lemma 1 D0 =
∫∞

0
e−

∫ s
0 (λτ (1−Φ(ẑτ ))+r)dτds, and Dt =

∫∞
t
e−

∫ s
t (λτ (1−Φ(ẑτ ))+r)dτds.

Proof. The remaining duration Dt can be written recursively as

Dt = dt+ λt (1− Φ (ẑt)) dt · 0 + e−rdt [1− λt (1− Φ (ẑt)) dt]Dt+dt.

Subtracting both sides by e−rdtDt, dividing both sides by dt, and let dt→ 0, we have

Ḋt − (λt (1− Φ (ẑt)) + r)Dt = −1.
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We can use the integrating factor e−
∫ t
0 (λτ (1−Φ(ẑτ ))+r)dτ to find the solution to the above ordi-

nary differential equation:

e−
∫ t
0 (λτ (1−Φ(ẑτ ))+r)dτDt −D0 = −

∫ t

0

e−
∫ s
0 (λτ (1−Φ(ẑτ ))+r)dτds.

Note that D∞ < 1/r, so we have

e−
∫ t
0 (λτ (1−Φ(ẑτ ))+r)dτDt = e−rt · e−

∫ t
0 λτ (1−Φ(ẑτ ))dτDt → 0,

as t→∞. Therefore,

D0 =

∫ ∞
0

e−
∫ t
0 (λτ (1−Φ(ẑτ ))+r)dτdt and Dt =

∫ ∞
t

e−
∫ s
t (λτ (1−Φ(ẑτ ))+r)dτds.

Note that given patent policy {ẑs}∞s=0 and its implied patent protection d (z), the incum-

bent chooses the size of increment 4 to maximize its profit. That is

π (d(z), z) ≡ max
4

[d(z)4− c (4, z)] .

On the other hand, the challenger chooses λt at time t to maximize

λt

∫ ∞
ẑt

π (d(ξ), ξ)φ (ξ) dξ −K(λt),

where π (d(z), z) is the expected profit (excluding cost of research investment) defined above.

Therefore, we can write the optimal choice of arrival rate λt as a function of the cutoff ẑt:

λ (ẑt).

For an “development”of size 4 based on idea z at time t, the social value (excluding

cost of research investment) is given by

R (d (z) , z) =
1

r
4 (d (z) , z)− c (4, z) .

By comparing the social value and the private value of “development”, one can see that each

“development”benefits the society with discounted duration 1/r, but benefits the individual

innovator only in the period d(z) that the product is protected. Since the discounted duration

d(z) cannot be higher than 1/r, the private incentive for “development”is always lower than

the social incentive for “development”. As a result, the social planner should set the patent

policy to encourage as much “development”as possible.

Although the social gain from an innovation of fixed size 4 is higher than the individual

gain, it is not necessarily true that the individual incentives to invest in “research”activities

are always higher than the social incentives. This is because there is a negative externality
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of “research”investment. To see this, consider an increase in investment K. Since a higher

K implies a higher λ and shortens the expected waiting time to obtain the next new idea,

the planner must raise the cutoffs in order to keep the promise d (z). Therefore, some ideas

that were previously patentable are now lost. This negative externality may give excessive

incentives for firms to invest in “research”.

Suppose at time t = 0, a new idea z0 is filed for patent and is rewarded with a protection

D0 which is a number. The social planner needs to specify the reward function d (·) for future
patentable ideas and a sequence of cutoffs that is consistent with the promised protection

D0 to the current patent. We can write the social planner’s problem as

max
d(·),{ẑt}∞t=0

∫ ∞
0

{
λ (ẑt)

∫ ∞
ẑt

[R (d(ξ), ξ) + V (d (ξ))]φ (ξ) dξ −K (λ (ẑt))

}
e−

∫ t
0 [λ(ẑτ )(1−Φ(ẑτ ))+r]dτdt

subject to ∫ ∞
0

e−
∫ s
0 (λ(ẑτ )(1−Φ(ẑτ ))+r)dτds ≥ D0.

To understand the objective function, note that, under policy {ẑs}∞s=0, the arrival process

of patentable ideas is a non-homogeneous Poisson process with arrival rate at time t being

λ (ẑt) (1− Φ (ẑt)). Therefore, we use the distribution of waiting time for the next patentable

idea to form expectation, because only when a new patentable idea arrives, we will have

static social value from new innovation and the corresponding continuation value.

3 The Optimal Patent Policy

In this section, we will characterize the optimal sequence of cutoffs to support a given reward

functionD0. For a given protectionD0 assigned to the current patent, the planner’s dynamic

optimization problem is to choose the sequence of cutoffs {ẑt}∞t=0 to maximize the expected

total social welfare:

max
{ẑt}∞t=0

∫ ∞
0

{
λ (ẑt)

∫ ∞
ẑt

[R (d(ξ), ξ) + V (d (ξ))]φ (ξ) dξ −K (λ (ẑt))

}
e−

∫ t
0 [λ(ẑτ )(1−Φ(ẑτ ))+r]dτdt

subject to the constraint that these cutoffs are consistent with protection D0∫ ∞
0

e−
∫ s
0 [λ(ẑτ )(1−Φ(ẑτ ))+r]dτds ≥ D0.

It is useful to introduce the arrival rate of patentable ideas u (ẑt) as

u (ẑt) ≡ λ (ẑt) [1− Φ (ẑt)] .

Since both λ (ẑt) and [1− Φ (ẑt)] are decreasing functions of ẑt, there is one-to-one mapping

between u (ẑt) and ẑt. Now we want to reformulate the planner’s problem as choosing u (ẑt)
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instead of ẑt. To simplify notations, we use ut to denote u (ẑt). Define a function Q (ut) as

Q (ut) ≡ λ (ẑt (ut))

∫ ∞
ẑt(ut)

[R (d(ξ), ξ) + V (d (ξ))]φ (ξ) dξ −K (λ (ẑt (ut))) .

Then we can rewrite the social planner’s optimization problem as

max
{ut}

∫ ∞
0

Q (ut) e
−
∫ t
0 (uτ+r)dτdt subject to

∫ ∞
0

e−
∫ s
0 (uτ+r)dτds ≥ D0.

Let’s define u0 and u∗ as follows:

u0 =
1

D0

− r so that D0 =
1

u0 + r

u∗ ∈ arg max
u>0

Q (u)

u+ r

It is clear that u0 is uniquely defined for each D0. If Q(u) is strictly concave, u∗ is unique.

Otherwise, there may exist several u-values that maximizes Q(u)
u+r

, we define u∗ as the smallest

of these u-values. That is, u∗ is the smallest arrival rate of patentable ideas that maximizes
Q(u)
u+r

.

Theorem 1 (Binding Constraint) (1) If u∗ ≤ u0, the optimal patent policy is stationary

with constant u∗ and the promise-keeping constraint is redundant. (2) If u∗ > u0, then the

promise-keeping constraint must be binding in optimum.

Proof. (1) Note that our objective function is∫ ∞
0

Q (u (t)) e−
∫ t
0 [u(τ)+r]dτdt

=

∫ ∞
0

Q (u (t))

u (t) + r
[u (t) + r] e−

∫ t
0 [u(τ)+r]dτdt

≤
{

max
u

Q (u)

u+ r

}∫ ∞
0

[u (t) + r] e−
∫ t
0 [u(τ)+r]dτdt

= max
u

Q (u)

u+ r
.

The last equality follows from the fact that∫ ∞
0

[u (t) + r] e−
∫ t
0 [u(τ)+r]dτdt = 1.

If u∗ ≤ u0, then the upperbound maxu
Q(u)
u+r

is achieved by setting u∗ (t) = u∗ and the

constraint is not binding because∫ ∞
0

e−
∫ t
0 [u∗+r]dτdt =

1

u∗ + r
≥ 1

u0 + r
= D0.
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(2) (Sketch and incomplete) Now assume u∗ > u0. Suppose, by contradiction, that under

the optimal policy u∗ (t) the constraint is not binding. Then the optimal u∗ (t) cannot be

equal to u∗ for all t, otherwise, the promise-keeping constraint would have violated. Moreover,

in order to meet the constraint, we must have u∗ (t) < u∗ for some interval with positive

measure. Consider an interval [t, t+ dt] where u∗ (t) < u∗, and replace it by u∗. Then by the

defintion of u∗, such a deviation will improve the social value. Because the promise-keeping

constraint is not binding, such a deviation is feasible.

Therefore, from now on, we only need to consider the case where the resource constraint

is binding, that is, u∗ > u0.

3.1 Optimal Policy with Concave Q Function

We start with the simple case when function Q (ut) is concave in ut. We prove that the

optimal policy is stationary with constant cutoffs over time.

We first reformulate our optimal control problem. Let’s define the state variable x (t) as

x (t) = e−
∫ t
0 [u(τ)+r]dτ

with boundary condition as x0 = 1 and x∞ = 0. Then we have

ẋ (t) = − [u (t) + r]x (t) .

Let’s introduce another state variable y (t) which is defined as

y (t) =

∫ t

0

x (s) ds.

Then the promise keeping constraint
∫∞

0
x (t) dt = D0 can be replaced by

ẏ (t) = x (t) with boundary condition y0 = 0 and y∞ = D0.

Therefore, using u (t) as the control variable and (x (t) , y (t)) as the state variables, we

rewrite the control problem as

Program C : max
u

∫ ∞
0

Q (u (t))x (t) dt

subject to : ẋ (t) = − [u (t) + r]x (t)

: ẏ (t) = x (t)

: x0 = 1 and x∞ = 0

: y0 = 0 and y∞ = D0.

From now on, we will refer to this concave optimal control problem as Program C.
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Theorem 2 (Concave Q) The optimal solution to Program C is u∗ (t) = u0 for all t.

Proof. The Hamiltonian is defined as

H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t) = Q (u (t))x (t)− p1 (t) [u (t) + r]x (t) + p2 (t)x (t) .

Let (x∗ (t) , y∗ (t)) denote the optimal path corresponding to control u0. We first find a pair

of continuous and piecewise continuously differentiable function p1 (t) and p2 (t) such that

ṗ1 (t) = −∂H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)

∂x
= −Q (u0) + p1 (t) (u0 + r)− p2 (t) (1)

ṗ2 (t) = −∂H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)

∂y
= 0 (2)

and

H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t) ≥ H (x∗ (t) , y∗ (t) , u, p1 (t) , p2 (t) , t) for all u ∈ U. (3)

The last condition implies that

∂H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)

∂u
= [Q′ (u0)− p1 (t)]x∗ (t) = 0 (4)

Therefore, p1 (t) = Q′ (u0), which implies that ṗ1 (t) = 0. As a result, from (1) and (2), we

have

p1 (t) = Q′ (u0) ,

p2 (t) = Q′ (u0) (u0 + r)−Q (u0) .

In order to show that our candidate policy u0 indeed maximizes the objective function,

it is suffi cient to show that, for all u (t) ∈ U,

4 ≡
∫ ∞

0

Q (u0)x∗ (t) dt−
∫ ∞

0

Q (u (t))x (t) dt ≥ 0.

By definition of the Hamiltonian, we have

Q (u (t))x (t) = H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t) + p1 (t) [u (t) + r]x (t)− p2 (t)x (t)

= H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t)− p1 (t) ẋ (t)− p2 (t) ẏ (t) .

Therefore,

4 =

∫ ∞
0

{H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)−H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t)} dt

+

∫ ∞
0

p1 (t) [ẋ (t)− ẋ∗ (t)] dt+

∫ ∞
0

p2 (t) [ẏ (t)− ẏ∗ (t)] dt

=

∫ ∞
0

{H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)−H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t)} dt

+Q′ (u∗)

∫ ∞
0

[ẋ (t)− ẋ∗ (t)] dt+ [Q′ (u∗) (u∗ + r)−Q (u∗)]

∫ ∞
0

[ẏ (t)− ẏ∗ (t)] dt

=

∫ ∞
0

{H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)−H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t)} dt

11



The last equality uses the boundary conditions that x (0) = x∗ (0), x (∞) = x∗ (∞) , y (0) =

y∗ (0), and y (∞) = y∗ (∞) .

Consider the integrand of the last expression:

H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)−H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t)

= Q (u0)x∗ (t)− p1 (t) (u0 + r)x∗ (t) + p2 (t)x∗ (t)

− [Q (u (t))x (t)− p1 (t) [u (t) + r]x (t) + p2 (t)x (t)]

= {Q (u0)−Q′ (u0) (u0 + r) +Q′ (u0) (u0 + r)−Q (u0)}x∗ (t)

−{Q (u (t))−Q′ (u0) [u (t) + r] +Q′ (u0) (u0 + r)−Q (u0)}x (t)

= −{Q (u (t))−Q′ (u0) [u (t)− u0]−Q (u0)}x (t)

Since Q (u) is weakly concave in u, for any u (t) 6= u0, we have

Q (u (t)) ≤ Q (u0) +Q′ (u0) [u (t)− u0] .

Together with the fact that x (t) > 0 for all t, we have

H (x∗ (t) , y∗ (t) , u0, p1 (t) , p2 (t) , t)−H (x (t) , y (t) , u (t) , p1 (t) , p2 (t) , t) ≥ 0.

Therefore, 4 ≥ 0.

3.2 Optimal Policy with Exogenous Idea Arrival Process

Suppose the arrival rate λ of new ideas is exogenous and is independent of investment K.

Therefore, firms will set K = 0. The social planner’s optimization problem becomes

max
{ut}

∫ ∞
0

QE (ut) e
−
∫ t
0 (uτ+r)dτdt subject to

∫ ∞
0

e−
∫ s
0 (uτ+r)dτds = D0,

where

QE (ut) = λ

∫ ∞
ẑt(ut)

[R (d(ξ), ξ) + V (d (ξ))]φ (ξ) dξ

Theorem 3 (Exogenous Arrival) Suppose the arrival process of new ideas is exogenous
with arrival rate λ. Let z0 be the unique solution to the equation u0 = λ [1− Φ (z0)] , Then

the optimal policy is a stationary policy with ẑt = z0 for all t.

Proof. By Theorem 2, it is suffi cient to show that QE (ut) is concave in ut. If we write

η (u) ≡ ẑt (u) , then by definition, u = λ [1− Φ (η (u))] , which implies 1 = −λφ (η (u)) η′ (u).

12



Therefore,

Q′E(u) = −λ [R (d(η (u)), η (u)) + V (d (η (u)))]φ (η (u)) η′ (u)

= R (d(η (u)), η (u)) + V (d (η (u)))

Q′′E(u) = −d [R (d(η (u)), η (u)) + V (d (η (u)))]

dη (u)

1

λφ (η (u))

= −d [R (d(ẑt), ẑt) + V (d (ẑt))]

dẑt

1

λφ (ẑt)

This implies that QE is concave if R (d(ẑt), ẑt) + V (d (ẑt)) is increasing in ẑt.

To show that R (d(ẑt), ẑt) + V (d (ẑt)) is increasing in ẑt, suppose the opposite the true.

That is, R (d(ẑt), ẑt) + V (d (ẑt)) is strictly decreasing around some ẑt. Therefore, we have a

ẑt and a ẑ′t > ẑt, such that R (d(ẑt), ẑt) + V (d (ẑt)) > R (d(ẑ′t), ẑ
′
t) + V (d (ẑ′t)). Consider the

following deviation: If idea quality ẑ′ arrives at time t, provide it with protection d (ẑt) instead

of d (ẑ′t). Due to the lower innovation cost associated with higher idea quality, it follows that

R (d(ẑt), ẑt) + V (d (ẑt)) < R (d(ẑt), ẑ
′
t) + V (d (ẑt)). Thus d (ẑ′t) cannot be optimal, which

means that R (d(ẑt), ẑt) + V (d (ẑt)) is monotonically increasing. Thus QE(u) is concave in a

model with exogenous λ.

3.3 Optimal Policy with General Q Function

Concavity of the Q (u) function is a restrictive assumption as it uncompatible with typical

caracteristics of research cost structures. There are often returns to scale in research activi-

ties, which gives rise to discontinuities in the investment functions λ (ẑt). This implies that as

ẑt decreases, eventually the return of research become so small that reasearch is unprofitable

at any scale, in which case λ jumps to zero. Since u (ẑt) ≡ λ (ẑt) [1− Φ (ẑt)], this imples that

there are value of u that are not feasible, there are empty segments in u. More generally,

the cost function of reasearch activities can be complex, and give rise to convex segments

in the Q(u) function. In both cases a stationary policy may not be optimal. However, as

shown below, the optimal policy can always be described as a two-point policy. As part of

the proof, we use the convex envelope of the Q(u) function.

Suppose we form a concave function Q (u) from the original Q (u) by replacing all its

non-concave segments by corresponding linear segments as illustrated in the graph below.

For illustrative purposes, the figure includes empty u-segments, [0, u′] and non-concave Q(u)
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segments [u′′, u′′′].

Q(u)

u’ u’’ u’’’

Q(u)

Q
(u

)

Let Q (u) denote the obtained concave function from the original function Q (u).

Let V (D0) denote the optimal value obtained from the following maximization problem

V (D0) ≡ max
{ut}

∫ ∞
0

Q (ut) e
−
∫ t
0 (uτ+r)dτdt subject to

∫ ∞
0

e−
∫ s
0 (uτ+r)dτds = D0.

Let V (D0) denote the optimal value obtained from the following maximization problem

V (D0) ≡ max
{ut}

∫ ∞
0

Q (ut) e
−
∫ t
0 (uτ+r)dτdt subject to

∫ ∞
0

e−
∫ s
0 (uτ+r)dτds = D0.

By Theorem 2, the optimal solution to the second maximization problem is ut = u0 for all t.

It is clear that the optimal value V (D0) achieved with the convex envelope Q (u) is

weakly higher than the optimal value V (D0) achieved with original function Q (u). The

next theorem shows show that, in fact, V (D0) = V (D0).

Theorem 4 (Optimality) V (D0) = V (D0).

Proof. First note that V (D0) = V (D0) if Q (u0) = Q (u0), because V (D0) is attained

under Q (u) by simply setting u∗ = u0. Now suppose Q (u0) 6= Q (u0). Then Q (u0) must lie

on a linear segment of Q (u). Let Q (u1) and Q (u2) denote the two end points of this linear

segment, with u1 < u0 < u2. Then Q (u1) = Q (u1) and Q (u2) = Q (u2). Geometrically, we

must have

Q (u0) = Q(u1) +
Q (u2)−Q (u1)

u2 − u1

(u0 − u1) .

Therefore,

V (D0) = D0

[
Q(u1) +

Q (u2)−Q (u1)

u2 − u1

(u0 − u1)

]
.
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Now consider a (u1, u2) policy underQ (u). The transition time t is such that the promise-

keeping constraint is satisfied:

D0 =
(
1− e−(u1+r)t

) 1

u1 + r
+ e−(u1+r)t 1

u2 + r

=⇒ e−(u1+r)t =
1

u1+r
−D0

1
u1+r
− 1

u2+r

.

Then

V (D0) =

∫ t

0

Q(u1)e−[u1+r]sds+ e−[u1+r]t

∫ ∞
t

Q(u2)e−(u2+r)(s−t)ds

= Q(u1)
(
1− e−(u1+r)t

) 1

u1 + r
+Q(u2)e−(u1+r)t 1

u2 + r

= Q(u1)

[
D0 − e−(u1+r)t 1

u2 + r

]
+Q(u2)e−(u1+r)t 1

u2 + r

= Q(u1)D0 − [Q (u1)−Q (u2)]
1

u1+r
−D0

1
u1+r
− 1

u2+r

1

u2 + r

= D0

[
Q(u1) +

Q (u2)−Q (u1)

u2 − u1

(u0 − u1)

]
Therefore, V (D0) = V (D0).

As a result, the optimal patent policy under original Q (u) can be stated as follows. (1) If

u0 ≥ u∗, then the optimal policy is stationary with arrival rate u∗, and the promise-keeping

constraint is redundant. (2) If u0 < u∗ and Q (u0) = Q (u0), then the optimal policy is

again stationary, but the arrival rate is u0 and the promise-keeping constraint is binding.

(3) If u0 < u∗ and Q (u0) > Q (u0), then the optimal policy is a two point policy (u1, u2, τ)

where Q (u1) and Q (u2) are the end points of the linear segment that Q (u0) lies on, with

u1 < u0 < u2. The transition time τ is chosen such that the promise keeping constraint is
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satisfied. The following graph summarizes the above three possible cases.

Q(u)

u’ u1 u2

Q(u)

Q
(u

)
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e 1
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e 
3
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e 

2

Cas
e 
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Remark 1 (Neutrality Principle) When u0 lies in the linear segment of the convex en-

velope, the optimal policy is a two-point patent policy. For example in case 2 of the above

figure, the policy will use u1, u2 and a switching time t to replicate the value of Q (u0). There

are two ways to implement these two-point policy. The planner could implement u1 first and

then switch to u2 at some time t1. Alternatively, the planner could implement u2 first and

then switch to u1 at some time t2. It turns out that these two ways of implementation are

equivalent in terms of social welfare and the expected players’payoffs. We call this fact as

Neutrality Principle.

Remark 2 (Incentives for Research and Development) The incentive for the incum-
bent to invest in development activities is always socially insuffi cient, because the social gain

from quality improvement is always higher than the individual gain from quality improve-

ment. In contrast, the incentive for the challenger firm to invest in research activities to

generate ideas is not necessarily socially insuffi cient due to the negative externality of re-

search activities imposes on the promised patent protection.

4 An Illustrating Example

This section solves a simple specification of our model to illustrate the optimal two-point

policy. First, we assume that ideas are homogeneous in quality, although we will use the

variable z to index ideas. Therefore, the cost of development c (4) will be the function of

quality improvement 4 only, which is assumed to be strictly increasing and convex. Second,
we assume that the challenger firm’s research decision is binary: either invest or not invest.
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If the firm invests, new ideas arrive with a given arrival rate λ; if the firm does not invest,

no ideas arrive. The cost of the investment in research is K.

Since ideas are homogenous, all ideas will be rewarded with the same duration D0. The

static social value of an innovation is independent of z:

R (D0) =
1

r
4 (D0)− c (4 (D0)) ,

where

4 (D0) = arg max
4

[4 ·D0 − c (4)] .

The first-order condition for 4 (D0) is given by D0− c′ (4 (D0)) = 0. Let use π (D0) denote

a firm’s expected profit given protection D0:

π (D0) = 4 (D0) ·D0 − c (4 (D0)) .

Recall that the variable z is used as an index for new ideas, so we can still use cutoffs {ẑt}
to select patentable ideas in all future period t. The term (1− Φ(ẑt)) will be the probability

that a new idea is patentable at time t. The arrival rate of patentable ideas ut will be defined

as before:

ut = λt (1− Φ(ẑt)) =

{
λ (1− Φ(ẑt)) if firm invests K at time t

0 if firm does not invest K at time t
.

The firm invests in research at time t if ut ≥ K/π (D0). Note that ut ∈ (0, K/π) is not

feasible, because if ut ∈ (0, K/π) the firm will not invest and thus ut = 0.

Note that the Q (u) function in this setting reduces to

Q (u) = λ (u)

∫ ∞
ẑ(u)

[R (D0) + V (D0)]φ (ξ) dξ −K (λ (u))

= u [R (D0) + V (D0)]−K (λ (u))

=

{
λ (1− Φ(ẑ)) [R (D0) + V (D0)]−K if u ≥ K/π

0 if u = 0

Therefore,
Q(u)

u+ r
=

{
u[R(D0)+V (D0)]−K

u+r
if u ≥ K/π

0 if u = 0

Note that when u ≥ K/π, Q(u)/ (u+ r) is strictly increasing in u everywhere. Therefore,

by definition u∗ = arg maxQ(u)/ (u+ r), we have u∗ = λ.

It is clear that Q (u) is not concave in u, but we can easily construct its convex envelope

as

Q(u) = u

[
R (D0) + V (D0)− K

λ

]
.

The Q(u) function and the convex envelope Q(u) are illustrated in the following figure.
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uu0

Q(u0)

Q(u0)

λK/π0

The Q (u) function consists of the origin and the solid line starts from u = K/π. The upper

dash line represents the convex envelope Q(u).

The optimal policy with respect to the convex envelope Q (u) is stationary with cutoff

u0. However, since Q (u0) > Q (u0), the optimal policy with respect to the function Q (u)

is a two-point policy: two cutoffs (ẑ1 =∞, ẑ2 = 0) and a switching time t. This implies

that u1 = 0 and u2 = λ, and the switching time t is implicitly determined by the reward

constraint:

D0 =
1

u0 + r
=
(

1− e−rt
) 1

r
+ e−rt

1

λ+ r
.

Remark 3 Alternatively, the optimal two-point policy could set (ẑ1 = 0, ẑ2 =∞) and a

switching time t′, where t′ is chosen to maintain the reward constraint. According to neu-

trality principle, these two policies are welfare equivalent.

However, if the firm, in addition to the flow cost K, has to pay a fixed start-up cost K0

at the point in time it starts to invest in research. Let V01 denote the value under policy(
∞, 0, t

)
and let V10 denote the value under policy

(
0,∞, t′

)
. Then we have

V01 = [R + V01 −K]
u0

u0 + r
− e−rtK0

= [R + V01 −K]
u0

u0 + r
− u0

u0 + r
(1 + r)K0

That is

V01 =
u0 [R−K − (1 + r)K0]

r

Similarly, under policy
(

0,∞, t′
)

V10 = [R + V10 −K]
u0

u0 + r
−K0
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That is

V10 =
u0 [R−K]− (1 + r)K0

r

Therefore, the policy
(
∞, 0, t

)
dominates policy

(
0,∞, t′

)
because

V01 − V10 = (1− u0)
(1 + r)K0

r
> 0.

According to Theorem 4, the optimal two-point policy achieves V (D0). Therefore,

V (D0) = V (D0) =
Q (u0)

u0 + r

=
u0

u0 + r

[
R(D0) + V (D0)− K

λ

]
= (1− rD0)

[
R(D0) + V (D0)− K

λ

]
We can solve V (D0) as

V (D0) =

(
1

rD0

− 1

)[
R(D0)− K

λ

]
.

Next we can evaluate the welfare loss when the social planner is restricted to choose

stationary policies. The optimal stationary policy is to implement u0 = (1/D0 − r). To
make the comparison interesting, we assume that the challenger firm will invest K under

cutoffs ẑt = ẑ such that u0 = λ [1− Φ (ẑ)]. The social welfare under the stationary policy u0

is

V S(D0) =

∫ ∞
0

{
u0

[
R (D0) + V S (D0)

]
−K

}
e−(u0+r)sds

=
u0

[
R (D0) + V S (D0)

]
−K

u0 + r

= (1− rD0)
[
R (D0) + V S (D0)

]
−D0K

Therefore, we can solve

V S(D0) =

(
1

rD0

− 1

)
R (D0)− K

r

Therefore, the welfare loss is given by

V (D0)− V S(D0) =

(
λ+ r

)
D0 − 1

λrD0

K.

Note that if D0 ≤ 1/
(
λ+ r

)
, then the reward constraint is not binding, so the optimal

patent policy is stationary. Therefore, it is no loss for the social planner to restrict to the
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stationary policy. If the reward constraint is binding, D0 > 1/
(
λ+ r

)
, then there is always

a loss by restricting to the stationary policy. Moreover, the size of the loss is larger when K

is larger or the reward constraint is tighter in the sense that D0 − 1/
(
λ+ r

)
is larger.

So far we assume that D0 is exogenously fixed. We now consider the optimal D∗0 which

is defined as

D∗0 ∈ arg max
D0

{
V (D0) = V S(D0) +

(
λ+ r

)
D0 − 1

λrD0

K

}
.

If the planner is restricted to adopt stationary policy, the optimal DS
0 will solve the following

maximization problem:

DS
0 ∈ arg max

D0
V S(D0).

From the theorem of maximum, it is clear that the solutions to both maximization problem

exist. Note that the extra term in V (D0) is increasing inD0, which implies that the maximum

of V (D0) lies to the right of the maximum of V S(D0). That is, D∗0 > DS
0 .

The intuition is the following. Consider the impact on social welfare of a marginal

increase in duration D0. For both stationary policy and two-point optimal policy, a higher

D0 increases a firm’s incentive to invest in development, but it also leads to a longer expected

waiting time for the next innovation. However its impact on average research cost per unit of

discounted time differs between the two policy regimes. Under the optimal policy, increasing

D0 means that the period of no research is extended in time. Under the stationary policy, the

research investment flow is the same as before, the higher reward is realized by an increase

in the cutoff. Hence, for every unit increase in duration, relative to the stationary policy,

the optimal policy saves the flow of research cost K for the entire extended period.

5 Extensions and Future Research

We can incorporate entry into this model. We can also embed this model to a general

equilibrium model of industry dynamics. To be added.

6 Conclusions

To be added
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7 Appendix

7.1 Proof of the Optimality of the Cutoff Policy (sketch)

Consider the following deviation policy. Immidatly after the present patent is provided, the

planner deviates by introducing a cut off for the next idea. This is done as follows: By con-

struction the probability distribution of promises are equal under the orginal policy and the

deviation policy. Since the idea distribution under the deviation policy first order dominates

the deviation policy under the original policy, the deviation policy can be constructed such

that any d value is mapped with a weakly better idea under the deviation policy than under

the original policy.

The cut of set such that u0
t = u1

t at each point in time, where 0 refers to the original

policy, and 1 to the deviation policy.

Since the idea distribution is replicated it is convenient to integrate over d instead of z.

First assume that d is monotone. Let F (d) be the probability distribution, and let p(z) be

the probability that an idea of quality z is patentable. Since the deviation policy maps a

weakly better idea to each d, it follows that z1(d) ≥ z0(d).

The firm maximizes

λ

∫ ∞
0

Π (d, z(d)) dF (d)−K(λ)

with respect to λ. Since z1d) ≥ z0(d) we have that Π (d, z1(d)) ≥ Π (d, z0(d)), thus λ1 ≥ λ0.

Then we have

22



∫ ∞
0

{
λ0

∫ ∞
0

[R (d(ξ), ξ) + V (d (ξ))] p(ξ)φ (ξ) dξ −K (λ0)

}
e−

∫ t
0 [uτ+r]dτdt

=

∫ ∞
0

{
λ0

∫ ∞
0

[R (d, z0(d)) + V (d)] dF (d)−K (λ0)

}
e−

∫ t
0 [uτ+r]dτdt

=

∫ ∞
0

{
λ0

∫∞
ẑt

[R (d, z0(d)) + V (d)− Π (d, z0(d))] dF (d)

+λ0

∫∞
0

Π (d, z0(d)) dF (d)−K (λ0)

}
e−

∫ t
0 [uτ+r]dτdt

=

∫ ∞
0

{
λ0

∫∞
0

[(
1
r
− d
)

∆(d, z0(d))− C(∆(d, z0(d)), z0(d)) + V (d)
]
dF (d)

+λ0

∫∞
0

Π (d, z0(d)) dF (d)−K(λ0)

}
e−

∫ t
0 [uτ+r]dτdt

≤
∫ ∞

0

{
λ1

∫∞
0

[(
1
r
− d
)

∆(d, z1(d))− C(∆(d, z1(d)), z1(d)) + V (d)
]
dF (d)

+λ0

∫∞
0

Π (d, z1(d)) dF (d)−K(λ0)

}
e−

∫ t
0 [uτ+r]dτdt

≤
∫ ∞

0

{
λ1

∫∞
0

[(
1
r
− d
)

∆(d, z1(d))− C(∆(d, z1(d)), z1(d)) + V (d)
]
dF (d)

+λ1

∫∞
0

Π (d, z1(d)) dF (d)−K(λ1)

}
e−

∫ t
0 [uτ+r]dτdt

The first inequality follows from the first order dominance z1(d) ≥ z0(d), which also

explains λ1 ≥ λ0. The second inequality follows from the definition of λ1 as argmax. If

the initial policy is not a cut off policy, we have z1(d) > z0(d) for some d, thus the weak

inequalities can be replaced by strict.

If d(z) is not monotone, the same argument applies, but F (d) must be interpreted differ-

ently as follows: d must be ordered not according to value, but according to the z variable

- it can be done correcly, but very messy. If we can prove that d(z) is monotone, we avoid

this.

7.2 Proof of Monotonicity of d(z) (sketch)

(1) The proof consists of two steps. We first show that d (z) is weakly increasing in z , and

then show that the monotonicity is strict.

Step One. Assume on the contrary that d (z) is strictly decreasing in z over some

interval. Consider two ideas in this interval with z0 ≤ zL < zH . Then d (zL) ≥ d (zH).

Define

pH = φ(zL)/max[φ(zH), φ(zL)],

and

pL = φ(zH)/max[φ(zH), φ(zL)].

Consider the following policy deviation: if zH arrives, with probability pH provide it

with protection d (zL) and with probability (1− pH) provide it with protection d (zH) ; if zL
arrives, with probability pL provide it with protection d (zH) and with probability (1− pL)
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provide it with protection d (zL). Since the deviation occurs only if zL or zH arrives we can

ignore all other z-values. The follow graph illustrates the effect of the policy deviation on dc
when φ(zL) > φ(zH) so that pH = 1 and pL < 1 :

( )Hc zd

( )Lc zd

( )Lzφ

( )Hzφ

( )Hzφ

( )Hc zd

( )Lc zd

( )Lzφ ( )Hzφ

( )Hzφ

Original patent policy Proposed policy deviation

Observe that the above policy deviation simply switches probabilistically between the

original property rights assignment with idea zH and the assignment with idea zL, in a way

such that the distribution of the promised expected durations d (z) is unchanged. Therefore,

the deviation has no effect on continuation values.

Consider the effect on firm’s reseach λ. The firm’s first order condtion is∫ ∞
ẑt

π (d(ξ), ξ)φ (ξ) dξ = K ′(λt) (5)

Now consider the net expected effect on the left hand side of (5):

pHφ(zH) [π(d(zL), zH)− π(d(zH), zH)] (6)

−pLφ(zL) [π(d(zL), zL)− π(d(zH), zL)]

=
φ(zH)φ(zL)

max[φ(zH), φ(zL)]

{
[π(d(zL), zH)− π(d(zH), zH)]

− [π(d(zL), zL)− π(d(zH), zL)]

}

= − φ(zH)φ(zL)

max[φ(zH), φ(zL)]

zH∫
zL

zH∫
zL

π12(d(s), ζ)
∂d(s)

∂s
dsdζ.

Note that ∂d(s)
∂s

is non-positive by assumption, thus the above expression is positive if π12 > 0.

But

π12(d, z) = d412 −41c12.

The first term is positive by the sorting assumption. The second term is positive since c12 < 0

and 41 > 0. Thus the deviation (cet.par) induces the firm to increase λ. To comply with

initial promises, the cut offmust increase. Consider the following construction: for any given
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increase in the cut off, the d(z) function is adjusted such that the probability distribution

for d is replicated. Since the cut off is increased, this implies that each given d is attached

to a weakly better idea.

Finally, consider the impact on social surplus. From the previous proof we know that the

increase in the cut off is welfare improving. Thus it remains to show that the intitial switch

between zL and zH is beneficial. Replacing π with R in (6), the same argument applies

(oberve by construction, the deviation has no impact on continuation values).

Therefore, under Assumption 1 and 2, the suggested policy deviation increases social

welfare: a contradiction to the optimality of d (z). Therefore, d (z) is weakly increasing in z

if d (z) > 0.

Step Two. We only need to show that d (z) can not be constant over some interval if

d (z) > 0. Assume on the contrary that d (z) is constant over some interval. Consider two

ideas in this interval with z0 ≤ zL < zH with d (zL) = d (zH) = d. Then

d ∈ arg max
d(z)
{R (z, d (z))− V (d (z))}

where

R (z, d (z)) =
1

r
4 (d (z) , z)− c (4, z)

is the static welfare which depends on duration d (z) and idea quality z, and V (d (z)) is

the continuation value which depends on duration d (z) only. Notice that a slight increase

in d increases static social welfare R (z, d) but decreases the continuation value V (d). The

necessary first-order conditions for the optimality of d imply that

0 = R2

(
zL, d

)
− V ′

(
d
)

= R2

(
zH , d

)
− V ′

(
d
)
.

Therefore, 41

(
d, zL

)
= 41

(
d, zH

)
. But this contradicts our sorting condition —Assumption

2. Therefore, d (z) is strictly increasing in z if d (z) > 0.
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