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Abstract

This paper provides new stylized facts in the price stickiness literature with the

introduction of a novel source of micro-price information, called Scraped Data. Scraped

data are collected every day from online retailers and have a unique advantage in terms

of sampling frequency, accessibility, and country availability. Using a dataset with 34

million prices in four Latin American countries, from October 2007 to August 2010,

I present patterns of price stickiness yielding three main empirical results. First, the

distributions of the size of price changes are bimodal in most countries, with few changes

close to zero percent. Second, hazard functions are hump-shaped, increasing for the

first 40 to 90 days. Third, there is daily synchronization in the timing of price changes

among closely competing goods. These results differ considerably from previous findings

in the literature that uses CPI and scanner data, implying a more important role for

adjustment costs and strategic interactions in price setting decisions. The availability

of daily prices is essential to measure these empirical patterns and explains some of the

differences with previous papers.
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1 Introduction

Starting with Bils and Klenow (2004), a large number of papers have studied the pric-

ing decisions of firms and the implications for price stickiness using micro-level prices from

both CPI and scanner datasets.1 Most of the results of this empirical literature have been

recently summarized by Klenow and Malin (2009) in a set of ten stylized facts. There is

little controversy over these facts because they consistently appear in CPI and scanner data

around the world. From this set, three facts can strongly influence how theoretical models

are constructed: 1) the distribution of the size of price changes is unimodal, with a large

share of small changes, 2) the likelihood (hazard rate) of a price change does not increase

with the time since the last price adjustment, and 3) the timing of price changes is largely

un-synchronized across sellers. The theoretical implications of these facts are important: a

large number of small changes and non-increasing hazards are not consistent with standard

state-dependent models with adjustments costs, while the lack of synchronization can affect

the response of prices to shocks in both time-dependent and state-dependent pricing models.

This paper shows that these facts can change dramatically with the introduction of a

new source of micro-price information, called Scraped Data, which has a unique advantage in

sampling frequency, accessibility, and country availability. Using daily prices from four coun-

tries, I present three main empirical findings: 1) the distribution of the size of price changes

is bimodal in most countries, with few changes close to zero percent, 2) hazard functions are

hump-shaped, increasing for the first 40 to 90 days , and 3) there is a daily synchronization

in the timing of price changes among close substitutes. Compared to previous findings, my

results imply a more important role for adjustment costs and strategic interactions in price

setting decisions, and are consistent with models that combine elements of time and state

dependent pricing, such as Alvarez et al. (2010) and Woodford (2009).

Scraped data are collected from online retailers using a software that scans the underly-

1See Nakamura and Steinsson (2008), Klenow and Kryvtsov (2008), Klenow and Willis (2007), Klenow
and Kryvtsov (2008), Dhyne et al. (2005), Boivin et al. (2007), Wulfsberg (2008), Gagnon (2007). and the
surveys by Mackowiak and Smets (2008) and Klenow and Malin (2009).
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ing code in public webpages and records the relevant price information. The resulting data

contain daily prices on the full population of products sold by individual retailers, which

greatly reduces the chances for measurement errors and other biases. It is more easily ac-

cessible than CPI and scanner data, and can be collected in a large number of countries and

economic settings. Here, I focus on four Latin American countries where price stickiness has

not been extensively studied before: Argentina, Brazil, Chile, and Colombia. The dataset

contains a total of 34 million price observations from over 80 thousand individual products,

scraped on a daily basis between October 2007 and August 2010.

I first show that the distribution of the size of price changes is bimodal in Argentina,

Chile, and Brazil. The bimodality is caused by a drop in the mass of price changes close

to zero percent. This effect, which is robust over time, is shown graphically using detailed

histograms, and statistically using two non-parametric tests of modality, Hartigan’s Dip and

Silverman’s Bandwidth tests. The lack of mass close to zero percent is consistent with state-

dependent mechanisms, which predict that small changes are not optimal in the presence of

adjustment costs.

I then use survival analysis to find evidence of hump-shaped hazard functions in individual

price adjustments. Hazards measure the probability of a price change conditional on the

time passed since the previous change. In this data, aggregate hazard functions are upward-

sloping in all countries for the first 40 to 90 days, and then become downward-sloping over

time. Given heterogeneity in individual hazards, the downward-sloping portion can be driven

by “survivor bias”: goods with more upward sloping hazards tend to disappear faster from

the aggregate sample, causing the estimated probability of price changes to drop significantly

because only long-lasting duration spells remain. I show that this ”survivor bias” is indeed

affecting my aggregate estimate by separating goods into three levels of rigidity. In all cases,

the shape of the hazard function becomes more upward-sloping over time.

Finally, I show that there is daily price change synchronization among closely competing

goods. I focus on goods displayed next to each other in a single webpage or “URL”, which
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corresponds to a narrowly-defined category such as “extra-virgin olive oil” or “ground beef”.

To measure synchronization I develop a simple test of independence based on the binomial

distribution. For each day, I count the number of products that adjust their prices at the

same time. Under a null of no synchronization, this is a collection of independent Bernoulli

random variables that is binomially distributed. Using the number of competing products

in each URL and the observed frequencies of simultaneous changes, I obtain the implied

probability that is consistent with the binomial distribution. If there is no synchronization,

then this probability is constant. By contrast, when there are incentives to synchronize

changes, the probability increases when another product changes its price. The rate at

which the probability increases with each additional price changes is taken as a measure

of the degree of price change synchronization (or departure from the null hypothesis of no-

synchronization). Taking the mean across URLs, I find positive degrees of synchronization

in every country, both for price increases and decreases.

These results differ considerably from previous findings in the literature. Klenow and

Kryvtsov (2008) and Midrigan (2005b) found unimodal distributions in the size of changes,

with a large share of small price changes. Klenow and Kryvtsov (2008) and Nakamura

and Steinsson (2008) found hazard functions that are either downward-sloping or flat in US

data. Although there is no evidence for price change synchronization in CPI data, a few

studies such as Lach and Tsiddon (1996) and Midrigan (2005b) found synchronization with

grocery-store data for selected categories of goods at weekly or monthly frequencies. This

paper goes further, focusing exclusively on closely competing brands of products and finding

synchronization on a daily basis.

Most of the differences with the literature are due to the sampling characteristics of

scraped data. In CPI and scanner data, prices are often adjusted to reflect changes in the

use of coupons and other discounts; while in scanner data, prices are typically computed as

weekly averages and “unit values”, dividing the sales volume over the number of units sold

in a week. Both of these factor can increase the number of small changes observed in the
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data. Indeed, I show that using weekly averages in my data makes the distributions appear

unimodal in all countries.2 Daily prices are also important to observe the initial increase

in hazard rate for the first two or three months. In adition, high-frequency data and the

fact that I can observe prices for all products in each retailer allows me to measure daily

synchronization only between goods that are closely competing with each other in narrowly-

defined categories.

There are other possible reasons for the differences with the literature, but they appear

to be less important. First, differences in inflation levels could affect some the stylized facts,

but the main results are still present in Chile, where inflation is comparable to that of the US

and Europe during periods analyzed by the literature. Second, online prices do not appear to

have any special dynamics that could alter the stylized patterns in the data. Using a survey

of offline data collected in physical stores, I show that there are no significant differences

in the timing and size of changes for online and offline prices in these retailers. To further

test the representativeness of online data, I also show that the data can match country-level

trends in inflation: simple price indexes constructed using online scraped data can closely

track official CPI statistics in Brazil, Chile and Colombia.3

The paper is organized as follows. In section 2, I describe the collection methodology and

characteristics of scraped data. In section 3, I present results for the distribution of the size

of changes, the hazard functions, and price synchronization. In section 4, I address concerns

about the representativeness of online data. Section 5 concludes.

2Bimodality is still present in my data when I use a monthly sampling that replicates some characteristics
of CPI data. However, the BLS CPI manual describes adjustments that include corrections for coupons,
seasonal items, and hedonics that could explain many of the small changes that appear in the data.

3Argentina is the only country where scraped data inflation is significantly different from official estimates,
with a 17.1% average annual inflation over the whole period versus the official estimate of 7.6%. This does not
mean that scraped data are biased, but quite the opposite: official statistics have become widely discredited
in Argentina since 2007, when the government intervened the National Statistical Institute. See Cavallo
(2010)
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2 Scraped Data

2.1 The Scraping Methodology

A large and growing share of retail prices are being posted online all over the world.

Retailers show these prices either to sell online or to advertise prices for potential offline

customers. This source of data provides an important opportunity for economists wanting

to study price dynamics, yet it has been largely untapped because the information is widely

dispersed among thousands of webpages and retailers. Furthermore, there is no historical

record of these prices, so they need to be continually collected over time.

The technology to periodically record online prices on a large scale is only now becom-

ing available. Using a combination of web programming languages, I built an automated

procedure that scans the code of publicly available webpages, identifies each relevant piece

of information, and stores the data in an electronic file. This technique is commonly called

“web scraping”, so I will use the term Scraped Data.

The scraping methodology works in 3 steps: First, at a fixed time each day, a software

downloads all public web-pages where product and price information are shown. These

pages are individually retrieved using the same URL or web-address every day. Second, the

underlying code is analyzed to locate each piece of relevant information. This is done by using

custom characters in the code that identify the start and end of each variable, according to

the format of that particular page and supermarket. For example, prices are usually shown

with a dollar sign in front of them and two decimal digits at the end. This set of characters

can be used by the scraping software to identify and record the price every day. Third, the

scraped variables are stored in a panel database, which contains one product record per day.

Along with the price and product characteristics, retailers show an id for each product in the

page’s code (typically not visible when the page is displayed to the customer), which allows

us to uniquely identify each product over time.
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2.2 Comparing Data Sources

The differences between scraped data and the two other sources of price information

commonly used in studies of price dynamics, CPI and Scanner Data, are summarized in

Table 2.

Scraped datasets do have some disadvantages. First, they typically cover a much smaller

set of retailers and product categories than CPI prices. This limitation will recede over time,

as a growing number of firms start posting their prices online. It is not a major issue for

this paper because supermarket products represent over 40% of all CPI expenditure weights

in these four Latin American countries. Second, scraped data do not include information

on quantities sold, as scanner datasets typically do. In the context of measuring stickiness,

quantities can be used to measure elasticities or determine category weights in frequency

statistics, but they are not needed to study the stylized facts discussed in this paper.

On the other hand, scraped data have important advantages that make them a unique

source of information. First, these datasets contain daily prices, which can greatly reduce

measurement error biases in some cases, as is later shown in this paper. Second, the data are

available for a much larger set of countries. In this paper, I focus on developing countries,

where scanner data are scarce and product-level CPI prices are seldom disclosed.4 Third,

scraped data contain detailed information on the full array of a retailer’s products. In partic-

ular, the ability to identify products displayed next to each other plays a key role in measuring

price synchronization among close substitutes. Fifth, there are no forced item substitution,

which occur frequently in official statistics to measure inflation in out-of-stock, seasonal or

discontinued products.5 Sixth, scraped datasets are directly comparable across countries,

4The study of stickiness in developing countries is rare in the literature. A recent exception is Gagnon
(2007), who provides a detailed analysis of sticky prices in Mexico using disaggregated CPI data.

5Forced substitutions occur in CPI data when the agent surveying prices does not find the item she was
looking for, and decides to replace it with another product, which becomes the surveyed item from then
on. In practice, if the old item is supplied again and/or the new product was being supplied before, official
statistics ignore their prices, effectively censoring the price series. By contrast, in scraped data, prices are
recorded from the first moment they enter the sample until the last day they have been offered to consumers,
which solves substitutions for items that go temporarily out of stock. I do not attempt to link price series of
goods that are discontinued with those of similar goods that may replace them, but such substitutions could
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with prices on the same categories of goods and time periods. This makes it possible to per-

form simultaneous cross-country analyses. Finally, scraped data are available on a real-time

basis, without any delays to access the information. This can be used to provide estimates

of stickiness that quickly capture changes in the underlying economic conditions.

2.3 The Data in this Paper

I use a dataset with more than 34 million supermarket prices in Argentina, Brazil, Chile,

and Colombia. The data come from the online price tables of four different retailers, one in

each country, from October 2007 to August 2010.

All the supermarkets included in the dataset are market leaders, with market shares of

approximately 28% in Argentina, 15% in Brazil, 27% in Chile, and 30% in Colombia. With

hundreds of physical stores, they also sell online in cities such as Buenos Aires, Santiago,

Rio de Janeiro, and Bogotá. Every day, for nearly three years, I accessed these websites

and recorded all this information for every good on display. Because buyers cannot physi-

cally see the products, these retailers make an effort to display detailed information on each

item, including a price, the product’s identification number (id), name, brand, package size,

category, and whether it is on sale or under price control.

Table 1 provides details on each country’s database. There are roughly 18,000 daily

prices for each country in Argentina, Chile, Brazil, and 5,000 in Colombia. The initial date

for each database differs by a few days around October 2007, but they all end on October

12th 2008. To compare results for the same product categories across countries, I matched

each supermarket’s classifications into 95 standardized categories containing a large variety

of foods and household items.6 Products can be further classified into “pages”. A page is

an URL or web address for a list of competing products, corresponding to the narrowest

grouping of items in each supermarket.

be potentially achieved in this data using product descriptions.
6See Table A4 in the Appendix for a complete list of product categories. These are based on the ELI

classification used by the US Bureau of Labor Statistics.
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Tables 3 to 5 present general price change statistics are important to interpret the results

in later sections. In particular, I focus on inflation rates and measures of price stickiness.

First, I measure inflation in all countries using simple price indexes with online scraped

data.7 Argentina has the highest inflation by far, with an average annual rate of 17.1% over

this period, followed by Brazil at 5.1%, Colombia at 4.2%, and Chile at 2.7%. Second, as a

measure of price stickiness, I computed the median frequency and implied durations following

the methodology in Bils and Klenow (2004). Results are shown in Table 4. On one extreme,

prices are stickiest in Chile and Argentina, with the daily median frequency of 0.015 and an

implied duration of 66 days. They are followed by Colombia, with a median frequency of

0.019 and an implied duration of 52 days. Finally, Brazil is the most flexible country, with a

median frequency of 0.027 and an implied median duration of 36 days. 8

3 Re-evaluating Three Stylized Facts

3.1 Standard Models and Empirical Literature

Before presenting the empirical results, I briefly discuss the standard models in the litera-

ture. Many microeconomic mechanisms have been proposed to explain why prices are sticky,

but most of them can be broadly classified into either time-dependent or state-dependent

pricing behaviors.

In time-dependent pricing (TDP) models, the decision to adjust prices is driven by time.

In standard models, the timing is exogenous and adjustment can occur after a fixed number

7Section 4 compares these findings with official statistics and provides more details on the use of daily
online indexes.

8In principle, we would expect price stickiness and inflation to be negatively correlated across countries.
That is the case for Chile, Colombia, and Brazil, where less stickiness leads to progressively higher levels of
inflation. However, Argentina breaks this pattern completely. It is both the stickiest country (shared with
Chile) and the one with the highest inflation rate by far. It would appear that low frequency of changes is
compensated with a large mean size of changes, as seen in Table 5. However, the size of price increases and
decreases, when computed separately, is not larger than in the other countries. The reason the mean size of
changes is so large in Argentina is that there are more increases than decreases, as can be seen in Table 5.
The last rows in Table 4 suggest that what is important for inflation is not the overall level of stickiness, but
the relative stickiness of price increases over price decreases.

9



of periods, as in Taylor, 1980, or randomly every period, as in Calvo, 1983. More recent

versions of these models can endogenously generate the timing of adjustment with imperfect

information and observations costs. In all cases, the price stickiness (and therefore the real

effects of monetary policy) comes from the fact that firms are not constantly monitoring their

prices, which is done only at specific times.

In state-dependent pricing (SDP) models, by contrast, the decision to change prices de-

pends directly on how far the current price is from the optimal price. Early examples include

the menu cost models of Barro (1972) and Sheshinski and Weiss (1977), and more recently

Dotsey et al. (1999) and Golosov and Lucas (2007). In these models, firms are able to change

their prices at any time, but must pay an adjustment cost to do so (“menu cost”). 9 Whether

a firm changes its price or not depends on whether the benefits from adjustment (given by

the curvature of the profit function) are greater than the menu costs.

A more recent strand of the literature combines TDP and SDP mechanisms using a mix-

ture of information and adjustment costs. Examples include Alvarez et al. (2010), Woodford

(2009), and Bonomo et al. (2010). These are imperfect information models where firms must

pay an information-gathering cost to compute their optimal price, and then pay an additional

menu cost if they decide to adjust the current price. If the information cost is relatively high,

firms will prefer a time-dependent rule. If, by contrast, the menu cost is relatively more

important, firms will tend to have a state-dependent pricing rule.

Over time, the empirical literature has produced a set of stylized facts that can be used

to test models. Most of them where found first in the US CPI data and later confirmed with

European CPI and US scanner datasets. Klenow and Malin (2009) provide ten stylized facts

that are becoming part of the conventional wisdom on price stickiness. In this paper, I will

9“Menu costs” may include various kinds of adjustment costs, such as labor costs to stamp new prices,
managerial costs to make a decision, or even “customer anger” costs linked to the consumer’s reaction after a
price adjustment. An example of models that include the latter are “Fair Pricing” models, such as Rotemberg
(2005), Rotemberg (2008), and L‘Huillier (2009). These are based on the idea that prices are sticky because
firms do not want to antagonize customers. Blinder et al. (1998) found in a survey of price setters that this
was a major concern for firms setting prices in the US. I explore some evidence for this type of mechanisms
in the Appendix, using data from Argentina.
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re-evaluate the robustness of three: First, that there are many small price changes; second,

that the hazard rate of price changes does not increase with the age of the price; third, that

the timing of price changes is little synchronized across sellers. I focus on these three facts

because standard models have sharp predictions about them, so they can greatly influence

the way models are built in the future.

3.2 Bimodal Distributions of the Size of Changes

Different theories of price stickiness have different implications for the size of price changes.

Standard SDP models, such as the menu-cost model of Golosov and Lucas (2007), predict

bimodal distributions with relatively few changes close to zero percent. The intuition is that

small price changes are not optimal once the menu costs are taken into account. That is,

the benefit from correcting small deviations from the optimum price may not be enough to

cover the adjustment cost. In the end, what the menu cost does is to create a dip in the

distribution of changes around zero percent. By contrast, in standard TDP models such as

Calvo (1983), any size of price change is possible. The timing of the adjustment is not driven

by how far the current price is from the optimum. Therefore, when the time comes to adjust,

firms will make all price changes, regardless of their size, so that the predicted distribution

of sizes tends to be unimodal.10

Many papers in the empirical literature have looked at the distribution of price changes

using CPI and Scanner data. Examples include Kashyap (1995), Midrigan (2005b), Klenow

and Willis (2007), Baudry et al. (2007), and Kackmeister (2007). In most cases, the distri-

butions where found to be unimodal and centered at zero percent, with a large number of

small changes. This has shaped the theoretical literature considerably. For example, Midri-

gan (2005b) builds a SDP model with economies of scope in menu costs that can generate

10In fact, the distribution of the size of changes will inherit the properties of the distribution of shock
to marginal costs. If shocks are approximately normal, the distribution of changes will be unimodal with a
mode that depends on the overall level of inflation. If inflation is low, the mode is close to zero percent, and
there are many small price changes. If inflation is high, the shape would still be unimodal but the mode
would shift to some positive value given by the average level of inflation.
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small price changes, while unimodality contributes to the conclusion by Woodford (2009)

that the predictions in Calvo’s time-dependent model are more reliable than what has often

been suggested. Indeed, the existence of small price changes has key implications for the

parametrization of recent models like Woodford (2009) and Alvarez et al. (2010).

Scraped data can be used to examine the distribution of the size of changes in much

greater detail. The daily nature of the data means that there are between 108K and 366K

observed price changes in each retailer, which allows me to focus on what happens with the

mass of price changes close to zero percent, by using histograms with very narrow bins (0.1%)

in Figures 1 and 2. These distributions are conditional on a price change (no mass at zero),

and are truncated at an absolute value of 50% to facilitate the graphical analysis.

The most striking feature for most distributions is their bimodality, with a sharp dip of

mass close to zero percent. This happens in Argentina, Brazil, and Chile. The effect can

be seen clearly in the smoothed kernel densities shown for each graph. Table 5 presents

some statistics that emphasize the lack of small changes. The share of changes below 1%

in absolute value is only 4.2% in Argentina, 4.3% in Brazil, and 3.6% in Chile, significantly

lower than the 11.3% reported by Klenow and Kryvtsov (2008) using US CPI data. This

bimodality provides evidence of the existence of adjustment costs in price changes, and is

consistent with the predictions of SDP models like Golosov and Lucas (2007), and also mixed

imperfect information models like Alvarez et al. (2010).11

The only case where the distribution appears unimodal is Colombia, where 7% of price

changes are smaller than 1% in absolute value. The shape of the distribution is roughly

unimodal and centered at 0%. In fact, this shape closely resembles the findings in previous

papers in the literature, not only with a large share of small changes, but also relatively fat

tails. The unimodality could be an indication of time-dependent pricing in this supermarket.

It is also consistent with menu costs under certain conditions. For example, there could be

11An alternative explanation for the dip, independent of any shocks, is that many of these changes are
connected to sale events, and small sales may be unattractive to customers and ineffective for the store to
use. However, the dip in the distribution does not disappear once sales are excluded, as shown in Figure 6.
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different menu costs for different goods (as in Dotsey et al., 1999), one menu cost for a large

number of goods (as in Midrigan, 2005b), or simply smaller menu costs for online pricing.

The shape of these distribution in all countries is robust over time. In Figure 3, I plot

three distributions for each country, one for each year of data. In all cases, the number of

major modes remains the same.

This graphical analysis can be formalized with the use of non-parametric modality tests.

Using non-parametric methods is essential to avoid having to make ex-ante assumptions on

the number of possible modes. In the statistics literature, two tests are commonly used to

determine modality: Hartigan’s Dip and Siverman’s Bandswidth tests. These tests are useful

to obtain a measure of the departure from unimodality and show that, not only graphically

but also statistically, the distributions in Figures 1 and 2 do not have a single mode at zero

percent.

Hartigan’s Dip is a test of unimodality. It relies on the fact that the cumulative distri-

bution function of a density function f with a single mode at mf is convex on the interval

(−∞, mf) and concave on the interval (mf ,∞).12 In other words, at the left side of the

mode, the density is non decreasing, while the opposite occurs at the left of the mode. With

this insight, one can find the unimodal distibution that minimizes the difference with the

observed empirical distribution. This difference is measured by the dip statistic, which can

be used as a sort of “score” to measure the departure from unimodality. Therefore, positive

dip values provide evidence to reject the null hypothesis of unimodality. To determine the

statistical significance of a positive dip, Hartigan and Hartigan (1985) sets the null hypothesis

equal to the uniform distribution, for which, asymptotically, the dip value is stochastically

largest among all unimodal distributions.13

Silverman’s Bandwidth method can be used to test for multiple modes. It uses the

non-parametric smoothed kernel density to evaluate the number of modes in an empirical

12See Hartigan and Hartigan (1985)
13Hartigan and Hartigan (1985) also show that this is not always the case with small samples. To address

this concern, I use a calibration of the dip test proposed by ?.
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distribution. The basic insight in Silverman (1981) is that the larger the smoothing applied,

the fewer the number of modes in the estimated density. So for the null hypothesis of

unimodality, he proposed using as a test statistic the minimum smoothing required for the

density to have a single mode. Large values of this statistic (the “critical bandwidth”) are

evidence against the null hypothesis of unimodality, because they mean that larger degrees of

smoothing are needed to eliminate additional modes in the density estimate. The statistical

significance of the score can be evaluated using a smoothed bootstrap method.14

Table 6 reports the results for both tests in all countries. The dip score, shown in column

one, is consistent with the graphical analysis: Argentina has the largest departure from

unimodality, while Colombia the smallest. Statistically, we can reject the null hypothesis of

unimodality in all countries. Silverman’s test provides similar results: the critical bandwidth

is largest in Argentina and smallest in Colombia. We can also reject the null of unimodality

in every country (for Colombia at a higher statistical significance of 3%).15

3.2.1 Differences with the Literature

As mentioned before, the bimodality in the size of price changes is at odds with previous

findings in the literature.

The differences with papers that use scanner data can be fully explained by the use of

daily data. In scanner datasets, prices are typically constructed as “unit values”, taking the

ratio between revenues and quantities sold for a product during a period of time (usually a

week). This means that prices are being averaged along two dimensions. First, at the same

point in time there may be different prices for different units sold of the same product, because

14See Henderson et al. (2008) for more details for both statistical tests.
15Note that with Silverman’s test we stop rejecting in Colombia when there are two or less modes, and in

the other countries when there are three or less modes. In other words, the test suggests there is bimodality
in Colombia and three or more modes in the other countries. The reason is that this test is sensitive to
tiny bumps in the distribution, a problem that is derived from the use of a single bandwidth in the kernel
smoothing estimates. This leads to frequent rejections of the null hypothesis in large samples. Another
issue, which applies to both tests, is that they do not tell us if the rejection of unimodality is caused by
what happens around zero percent (the focus of the sticky price literature). In a related paper with Roberto
Rigobon, we propose an alternative modality test that solves both issues by ignoring tiny bumps in the
distribution and focuses on the relative mass close to zero percent.
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consumers sometimes purchase products with coupons, loyalty cards, or in bundles. This can

create additional price changes in the data. Second, because scanner data are reported on a

weekly basis, prices are also averaged over time. As Campbell and Eden (2005) pointed out,

this can make one large price change appear like two smaller ones. For example, consider a

three-week period with a single price change in the middle of the second week. Computing

weekly averages would yield three different prices, one for each week, and two small price

changes instead of a single larger change. I can test this by looking at the effects of weekly

averages in my own data, as shown in Figure 4. Using weekly averages greatly increases the

number of small price changes and the bimodality disappears (or is hardly visible) in every

country.

The differences with CPI results are harder to reconcile. Monthly-sampled prices could

potentially change the distribution of sizes by aggregating price changes over time. Yet

the effect can have opposite implications depending on the nature and persistence of price

changes. In a low inflation context with many temporary shocks, several price changes that

go in opposite directions could end up looking like a single small change in monthly data.

In a high inflation context, the opposite would be true: persistent increases in prices could

be accumulated over a month and look like a single larger change. I simulated the effects of

monthly sampling with scraped data by randomly selecting a price for each product every

month and re-calculating the distributions, but Figure 5 shows that monthly sampling has

no impact at all in the number of modes in my data.

A more likely explanation for the differences with CPI data is directly related to the

way official prices are recorded. In the US, for example, the BLS Handbook of Methods16

describes several adjustments in individual prices that can affect the distribution of the size

of changes. First, changes in a price spell can occur because of forced item substitutions

that happen when an item can no longer be found in a store. In these cases, the BLS

estimates a price change using the average price change for that category of products or

16See , Chapter 17, pages 30 to 33.
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using hedonic quality adjustments. Second, even when no product substitutions occur, the

BLS sometimes imputes prices that are considered to be temporarily missing, like seasonal

items. Third, individual prices can also be adjusted for coupons, rebates, loyalty cards,

bonus merchandize, and quantity discounts, depending on the share of sales volume that had

these discounts during the collection period. Finally, some food items that are sold on a

unit basis –like apples– are sometimes weighted in pairs to calculate an average-weight price.

Unfortunately, at this stage I do not have access to CPI prices to know how frequent these

changes really are in the data.17

3.3 Hump-Shaped and Upward-Sloping Hazards

A second stylized fact that has received a lot of attention in the empirical literature is the

shape of the hazard function, because it can also be used to distinguish between models. The

hazard is the instantaneous probability of price change at time t, conditional on the price

not changing until that point in time. In Calvo (1983)’s TDP model, the hazard function is

flat because the probability of price change is fixed and exogenously determined. In Taylor

(1980)’s model, the hazard is equal to one at the time when all price changes take place (eg.

a month). With heterogeneity across goods, this can be generalized to have hazards with

”spikes” at given frequencies.

By contrast, in SDP models hazard functions tend to be upward-sloping. The intuition is

that shocks increase deviations from the optimal price over time, so as the price gets “older”,

the conditional probability of a price change also rises. Upward-sloping hazards are intuitively

appealing, but there is no evidence for them in the current empirical literature. Nakamura

and Steinsson (2008) found evidence of downward sloping hazards in US CPI prices, while

17There are other possible explanations for the differences with both CPI and scanner data. First, the
countries studied here have higher inflation levels. Inflation could be moving the mass of price changes
away from zero, simply because the marginal cost shocks experienced by the firms are larger. However, this
does not appear to be an important explanation because I find bimodality in both high-inflation Argentina
and low-inflation Chile (see the critical bandwidth scores in Table 6). In addition, the average size of price
increases and decreases does not vary much across countries, as can be seen in Table 5, so it is hard to argue
that inflation moves prices further away from zero. Second, this paper uses online prices that could behave
differently from offline prices. In section 4, I use a survey of offline prices to show that this is not the case.
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Klenow and Kryvtsov (2008) found mostly flat hazard functions in similar data.

Scraped data has some advantages for the study of hazards rates. First, we can look

at hazards in countries with higher inflation that the US or Europe. In contexts where

aggregate shocks are strong and persistent, it should be easier to find evidence of upward-

sloping hazards. Second, we can see how the probability of change varies on a daily basis,

which is important when most goods adjust within a few months.

I measure hazard rates using standard Survival Analysis, which studies the time elapsed

from the “onset of risk” until the occurrence of a “failure” event. In a price-setting context,

we are interested in the time between the firm’s optimal price adjustments. The set of

constant prices between these two dates is called a “price spell” and the duration (measured

in days) is the length of the spell.

To estimate hazards, I use a non-parametric approach due to Nelson (1972) and Aalen

(1978), which does not require any distributional assumptions.18 It provides a simple estimate

of the cumulative hazard function H(t), given by:

Ĥ(t) =
∑

j|tj6t

cj
nj

(1)

where cj is the number of price changes at time tj and nj is the number of price spells that

can still change at time tj . The incremental steps cj/nj are an estimate for the probability

of price change at tj, taking into account only those price spells that have survived until that

point in time.

To obtain the smoothed hazard function ĥ(t), I take the discrete changes in Ĥ(t) and

weight them using a kernel function:

ĥ(t) =
1

b

∑

j∈D

K

(
t− tj
b

)
∆Ĥ(tj) (2)

18I choose this method because I want to study the shape of the hazard function h(t), not the effects of any
covariates. My results are robust to the use of a semi-parametric Cox model that can incorporate covariates
and account for unobserved heterogeneity at the category level.
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where K is a symmetric kernel density, b is the smoothing bandwidth, and D is the set

of times with price changes. Following the literature, I implicitly assume that each price

change restores the optimum price and treat all duration spells independently. I include

right-censored spells, because we know for certain how old they are at each point in time,

affecting nj in equation 1. However, I exclude left-censored spells, for which the time since the

last adjustment is unknown. I further exclude sale prices in Argentina, Brazil, and Colombia.

Sale events are likely to have special dynamics and have short durations that can increase

survival biases, as explained below.19 Finally, spells of all durations are used to construct

hazard estimates, but since only a small fraction of spells lasts more than six months as

shown in Figure 7, I focus the discussion on shape of the hazard functions during the first

six months.20

Figure 8 plots the estimated hazard with 99% confidence intervals, with a y-axis scale

matched to facilitate comparisons. In all countries, the aggregate hazard function has a

hump-shaped pattern. For a short period of time, lasting from 1 to 3 months, the probability

of price change increases with the age of the price spell.21 In Argentina, the hazard reaches its

maximum at approximately 90 days. In Chile, this occurs sooner, at 40 days (likely affected

by the inclusion of sales, which tend to have very short durations). Both Brazil and Colombia

have peaks at 60 days.

These hump-shaped patterns do not fit standard TDP or SDP models. However, they

could potentially be explained with TDP models if there are multiple firms adjusting at

different times, with a majority of goods doing so at 40, 60, or 90 days. They could also be

explained with SDP models when temporary shocks are relatively important, as Nakamura

and Steinsson (2008) point out, because these shocks would cause a reversal of the adjustment

19The median duration of sale prices is extremely short, with 6, 7 and 17 days in Argentina, Brazil, and
Colombia respectively. Hazards including sales are shown in the Appendix. Sales significantly increase the
hazard rate at durations with one and two weeks, although hazard functions continue to be hump-shaped.

20Hazards are either flat of downward sloping after six months, but there are few spells on which to base
the analysis. See the Appendix for the full three-year hazard functions.

21Also, the overall level of each hazard function is consistent with the fact that prices more flexible in
Brazil and Colombia, and stickier in Chile and Argentina.
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within a short period of time.

The evidence for SDP is reinforced by the fact that Argentina, with its high-inflation

rates, has an upward-sloping hazard for a longer period of time. Even in standard SDP

models, the higher the inflation rate, the more upward-sloping hazards become, because the

deviation from the optimal price increases over time.

The methodology makes it hard to find upward-sloping functions because I am not correct-

ing for the “survival” bias caused by heterogeneity across products in the shape of individual

hazards. This bias is illustrated in Figure 9 with a hypothetical example. Consider two

types of goods with upward sloping hazards. One type changes prices more frequently, so

it has higher hazard rates and will disappear from the sample faster. If we estimate the

aggregate hazard for both goods, initially we would be using spells from both of them, but at

some point in time we would start using only spells from goods with the lower hazard rates.

This“survival” bias would tend to flatten the estimate, creating hump-shaped results. This

is a well-know result in survival analysis.

I find evidence of the existence of survival bias in Figure 10, where I separate goods

in terms of their average durations and re-estimated their hazard functions. The dotted

line represents goods that have average durations of less than 50 days, the dashed line is

for goods with average durations of 50 to 100 days, and the solid line represent stickier

goods with average durations over 100 days. The patterns are indeed very similar to the

example in Figure 9. The more flexible goods still have hump-shaped patterns, but the

confidence interval widens as the hazard becomes flat, reflecting the fact that there are fewer

spells with which to obtain an estimate. Furthermore, as we separate goods into different

categories, each one of these hazards became more consistently upward sloping.22. The hump-

shaped patterns does not disappear completely because each one of these three hazards is

itself constructed by aggregating across many goods, and therefore they are still affected by

22This is not caused by the peak moving further to the left, which naturally occurs with stickier goods if
the hazards are really hump-shaped. The interesting finding is that hazards for all categories become closer
to straight upward- sloping lines as we separate them into different categories
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survivor biases. Completely controlling for heterogeneity at the individual-good level requires

far more price changes per product that I currently have, but these results are an indication

that the underlying hazard rates tend to be far more upward sloping than what the aggregate

estimate is showing. As such, my results should be taken as a lower-bound indication for the

existence of upward-sloping hazards.

Once again, my results differ considerably from previous findings in the literature, where

hazards are typically flat or downward sloping hazards. One possible reason for this difference

is that these scraped prices come from higher inflation economies, were SDP models predict

more upward-sloping hazards. In principle, if there is some sort of state-dependent pricing

behavior, it should be easier to find upward-sloping hazards in a country like Argentina.

However, a major reason for the difference is related to the use of daily data. At least for

this sample of products, where the mean duration is just a few months, having daily data is

essential to obtain the upward sloping portion of the aggregate hazards.

3.4 Synchronization of Price Changes

A third stylized fact that has received attention in the literature is the degree of synchro-

nization in the timing of price changes. In TDP models, higher synchronization reduces the

persistence of the real effects of monetary policy. In SDP models, synchronization is closely

linked to strategic complementarities. Firms selling strategic complements will imitate each

other’s actions by attempting to synchronize the timing of their price changes.23

Synchronization with product-level price data has been studied before in the macro lit-

erature, but at lower sampling frequencies, with smaller samples and broader categories of

23See Cooper and Haltiwanger (1996) for a general discussion of how agents have an incentive to synchro-
nize discrete decisions under strategic complementarities. Strategic complementarities have been introduced
in state-dependent models as a form of real rigidity, in the spirit of Ball and Romer (1990), to increase the
real effects of nominal frictions. The intuition is that while some firms are free to adjust their prices, they
may decide to wait until competitors react to the shock. The fact that some firms have not yet adjusted
(due to a nominal friction like menu costs), could make other firms delay their own price changes (a real
rigidity). See Klenow and Willis, 2006 and Burstein and Hellwig, 2007. See Midrigan (2005b) for results on
synchronization with scanner data and Neiman (2008) for evidence of synchronization in international trade
data.
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goods. For example, Lach and Tsiddon (1996) found evidence of monthly within-store syn-

chronization for wines and meat products in Israel, while Midrigan (2005b) found weekly

synchronization with scanner data in the US. To the best of my knowledge, no paper has

been able to study synchronization on a daily basis and focusing only on goods that are close

competitors.

Scraped data are especially well suited to find close competitors because a URL indicator

is available to identify products displayed next to each other. In addition, the daily nature of

the data is key for price interactions in high-inflation countries because, as Lach and Tsiddon

(1996) noted, a sufficiently long sampling interval would ensure that all prices appear to

change simultaneously regardless of the degree of synchronization.

To focus on synchronization between competing firms, I consider only one product per

brand in each URL. This eliminates simultaneous price changes caused by the same good

with different package sizes and flavors, or different goods sold by the same firm under a

single brand.24

3.4.1 A Non-Parametric Test of Synchronization

To measure the degree of synchronization in each URL, I propose a simple method based

on the binomial distribution.25 I start by looking at Yjt, the number of products that change

their price in URL j on day t:

Yjt =
∑

i

Xijt (3)

Xijt is a binary indicator equal to one if good i changed its price at time t. Let Pijt =

Pr(Xijt = 1) be the probability that the price of that product changes that day. Then Xijt is

24For each brand, I keep the product with the largest number of price observations available. The results
are qualitatively robust to a random selection criteria per brand, or the inclusion of all products in an URL.
This sample still includes products from the same manufacturer that are sold under different brands (within
the same URL). Unfortunately, there is no manufacturer information for individual products or simple ways
to link brands to manufacturers.

25Similar results can be with the Fisher-Konieczny index (Fischer and Konieczny, 2000).
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a Bernoulli random variable, with success probability pijt. Assuming all products in an URL

are identically distributed with a constant probability of price change, then pijt = pj, ∀i, t.

If there is no synchronization in price changes, then Xijt is independent across products,

and Yjt is distributed as a Binomial(Nj , pj), where Nj is the number of products in the

URL. Therefore, to determine whether prices are synchronized or not, we can observe the

distribution of Yjt in each URL and compare it to the binomial distribution. This is done

by computing the implied probabilities under the assumption of a binomial distribution.

That is, given the number of products Nj in a particular URL, we can find the individual

probability pj that would generate the observed frequency of simultaneous changes under

the assumption of a binomial distribution. If price changes were really independent, then

these implied probabilities would be constant; however, if there are incentives to synchronize

changes, the implied probabilities would increase with the number of items adjusting at the

same time.

To illustrate this methodology, I use the “Rice” URL in each country as an example.

First, I compute the distribution Yjt in Figure 11, by plotting the fraction of days with a

given number of synchronized price changes. For example, the value at two (e.g. 0.046 for

Argentina) indicates the fraction of days where only two products in that URL changed their

price, or Yjt = 2.

Second, under the hypothesis of a binomial distribution, I calculate the implied proba-

bilities. For example, since there are 25 products in the “Rice” URL for Argentina, when

Yjt = 2 the implied probability p solves the equation:

Pr[Yjt = 2] = 0.046 =




25

2


 p2(1− p)25−2 (4)

In this case, p is equal to 0.0145. The same calculation is repeated for all values of Yjt,
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up to Yjt = 10.26

Figure 12 plots the implied probabilities for the “Rice” URL in all countries. In all cases,

the probabilities increase with the number of simultaneous price changes, consistent with

synchronization.

For a single URL, we can measure the degree of synchronization by fitting a linear trend

and obtaining the slope of implied probabilities. The higher the slope, the larger the deviation

from the binomial distribution and, therefore, the stronger the synchronization.

We can further generalize the analysis and average all URL slope coefficients to get a

country-level measure of synchronization.27

Table 7 shows high levels of synchronization in all countries. The average slope of implied

probabilities is 0.008 in Argentina, 0.007 in Brazil, 0.007 in Chile, and 0.012 in Colombia.

Compared to the median frequencies (the unconditional probabilities of daily price change

reported in Table 4), these coefficients imply that the probability of price change increases

by 63% in Argentina, 25% in Brazil, 46% in Chile, and 63% in Colombia every time an

additional price change occurs at the same time.

Table 7 also shows that synchronization is not affected by the exclusion of sales. There

is, however, a large difference between price increases and decreases, when considered sepa-

rately. In Argentina, Brazil, and Colombia, price increases are more synchronized than price

decreases.

There are several possible causes for price change synchronization within URL. Prices

could be driven by a common sectoral shock affecting the URL. Even with no common

shocks, supermarkets may choose to change the prices of many similar products at the same

time to save on adjustment costs. For example, when there is a fixed cost to walk to an URL

and manually change prices (or connect to a database and input the new values) but low

26To obtain a unique solution, I solve for p in:

Pr[Yjt = k]

Pr[Yjt = 0]
=

(
Nj

k

)(
p

1− p

)k

, ∀k ∈ [1, 10]

27Only urls with at least 3 products are considered. In addition, urls with slope coefficients that are not
statistically significant in a 95% confidence interval are assumed to have no synchronization.
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marginal costs to change the price of additional items within the URL. This is the case of

increasing returns to scale in adjustment costs, studied by Midrigan (2005b). In addition, if

there are strategic complementarities across products, firms will try to match the timing of

each other’s price changes.

4 Online vs Offline Prices

In the previous section, I have used scraped data to challenge some commonly-held views

in the empirical sticky-price literature. However, a common concern with scraped data is that

they may not be representative of a country’s pricing behaviors, because online purchases are

still a small share of transactions in most countries. In this section, I address this concern in

two parts. I first consider whether online and offline prices behave similarly for each retailer.

I then examine whether these supermarkets are representative of each country’s aggregate

inflation trends.

4.0.2 Matching Offline Price Behaviors

Between December 2008 and February 2009, I conducted simultaneous surveys of offline

and online prices in all the supermarkets where I collect the data. These surveys took place

in Buenos Aires, Santiago, Rio de Janeiro, and Bogotá, with the help of four local volunteers.

They were asked to select any branch of the supermarket and randomly buy 100 products,

divided in 10 pre-defined categories. These categories were chosen to ensure some variety in

the type of goods purchased: Dairy, Bakery, Beverages, Cereal and Flours, Fats and Oils,

Meats, Pasta and Rice, Fruits and Vegetables, Cleaning Products, and Bath Products. After

the first purchase, we checked which of these random products were also being sold online

by comparing product ids and descriptions.28 Those items that could not be matched to the

online database were removed from the product list for subsequent purchases. In total, four

28In Argentina, Brazil, and Colombia, the matching was based exclusively on product ids. In Chile the
matching was based on the item’s name, description, and package size.
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purchases took place in each supermarket, at 15-day intervals, always in the same branch.

The same items were bought every time, with identical flavors and package sizes. If a product

was out of stock, no price was recorded for that day, but we attempted to buy the product

again in subsequent purchases.

Table 9 shows the results from this validation exercise. The percentage of offline products

that were also available online is high in all countries. It ranges from 74% in Colombia to

100% in Argentina. Most of the products that could not be matched are raw-food items,

which tend to be re-packaged for online sales and have different id numbers and descriptions.

I then compare prices both in terms of their levels and the timing and size of changes.

Even though price levels are not always the same across samples, online and offline price

changes behave similarly in terms of timing and size of adjustments in all countries.

In Chile, the matching of price levels is extremely close. 361 out of 388 comparable

prices were exactly the same. The 27 price discrepancies, which averaged 2% in size, were

concentrated in only 12 goods (mostly raw-food products), so that 89% of products have

identical price levels across samples. This ensures that price changes behave almost identically

across samples.

In Argentina, price levels are typically higher online: 252 out of 323 comparable prices

were higher in the scraped database. Yet in nearly every case, there was a difference of

5% across samples. This constant markup means that price changes are highly correlated:

93% of products that have identical price change series (defined as an indicator variable,

conditional on a change). Furthermore, the ratio of all price changes over total observations

is 0.215 in both samples, and the mean size of these changes is 1.6% offline and 1.4% online.

The cases of Brazil and Colombia are more complex, but the samples still show similar

price change behaviors. The evidence suggests these supermarkets treat their online stores as

independent branches, with similar strategies in terms of price adjustments. In Brazil, price

levels are identical 42% of the time. Unlike Argentina, online prices can be either higher

or lower depending on the product. In terms of price changes, the matching is much better
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because most of the timing differences are concentrated in a small share of products: 75%

of all goods have identical price change series across samples. For all products, the ratio

of changes over total observations is 0.356 offline and 0.411 online, while the mean size of

changes is 4.9% offline and 5.3% online. In Colombia, the matching of price levels, at 29%,

is lower than in Brazil. However, price differences are small, while the matching of price

changes is high, with 67% of identical price changes series. The ratios of changes over total

observations match perfectly, at 0.433 in both samples, while the mean size of changes is

8.1% offline and 8.2% online.

4.0.3 Tracking Official Statistics

Online price changes in these supermarkets are also able to capture country-level inflation

trends. I show this by comparing scraped price indexes with official price statistics.

Figure 14 plots a supermarket index (constructed using daily scraped data) and the

official CPI index in each country. I focus the comparison on CPI indexes to emphasize

aggregate levels of inflation and because products sold in supermarkets represent over 40% of

CPI weights in all these countries. In Section A.3 of the Appendix I provide similar results

comparing only a subset of food indexes.

Figure 14 shows that daily online indexes closely track the official CPI series in Brazil,

Chile, and Colombia. Although these scraped indexes are meant to be just rough approxima-

tions to the official statistics, they can still capture the main trends in inflation, particularly

when measured at lower frequencies, smoothing from the short-term volatility of daily prices.

This can be seen clearly in Figure 15, where I plot a daily estimate of annual inflation in

every country. This price series is constructed as the percentage change in the average daily

index during the past 30 days versus the same period a year ago.

Argentina is the only country where scraped indexes are not consistent with official statis-

tics. The scraped data show a mean annual inflation rate of 17.1%, but the mean CPI inflation

was only 7.6% per year during this time period. However, the difference is not surprising be-
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cause official data have become widely discredited since January 2007, when the government

started interfering with the construction and publication of price indexes at the National

Statistics Institute (INDEC).29

5 Conclusions

This paper introduces a new way of collecting price data and applies it to re-evaluate some

important stylized facts in the price stickiness literature. Scraped data, obtained directly from

online sources, are a unique source of price information. Scraped prices are easier to collect

than CPI and scanner data, and can provide information at daily frequencies for all products

sold by hundreds of retailers in many countries around the world. The data can be collected

without any delays and the collection methodology can be customized to match the specific

needs of the researcher. Furthermore, online prices behave similarly to offline prices in terms

of timing and size of changes, and price indexes created with scraped data can capture the

main inflation patterns in official statistics.

Using these unique data, the paper provides three new stylized facts for the sticky-price

literature. First, the distribution of the size of price changes tends to be bimodal, with few

changes close to zero percent. Second, aggregate hazard functions are hump-shaped, with

the conditional probability of a price change increasing for a period between 30 and 90 days.

Third, there is daily price synchronization among closely competing goods. Although these

results do not offer conclusive evidence in favor of any standard sticky-price model, they are

mostly consistent with models that combine elements of both TDP and SDP, such as Alvarez

et al. (2010).

Still, a great deal of research with scraped data is needed. What happens to these stylized

facts when scraped prices are used in countries like the US and Europe? How do these and

other stickiness patterns change with different levels of inflation, market structures, and over

time? There are also some puzzling patterns in these data that deserve further attention. The

29For more on Argentina’s inflation, see Cavallo (2010).
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distribution of the size of changes becomes more asymmetric with higher levels of inflation,

but the mean size of price increases and decreases stays relatively constant. More puzzlingly,

countries with higher inflation can also have stickier prices. Although this observation is

based on a small cross section of countries, it suggests that what is important for inflation

(and therefore output) may not be the overall level of stickiness, but the relative rigidity of

price increases over price decreases.

More generally, the potential uses of scraped data in macroeconomics go far beyond

those explored in this paper. Scraped prices can be used to create daily price indices that

complement official statistics, compare and test theories of international prices, exchange

rate and commodity pass-through, study the pricing effect of new product introductions,

and provide real-time estimates of sectoral stickiness. These are all topics to explore in

future research.
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Tables

Table 1: Database Description

Argentina Brazil Chile Colombia

Total observations 10.8M 9.8M 9.7M 3.9M
Total Products 28813 23115 24336 9526
Initial date 10/7/2007 10/10/2007 10/24/2007 11/13/2007
Final date 08/13/2010 08/13/2010 08/13/2010 08/13/2010
Days 1041 1038 1024 1004
Categories 74 72 72 59
Urls 993 319 292 122
Product Description Yes Yes Yes Yes
Sale indicator Yes Yes - Yes
Price Controls Yes - - -
Brand, Size, Bulk Price Yes Yes Yes Yes
Missing obs. within spells 32% 25% 33% 22%
Obs with sales 2.99% 4.38% - 7.55%
Products with sales 39% 22% - 25%
Products with price controls 1.5% - - -
Life of goods (in days, Mean/Median) 549/540 558/502 590/634 523/525
Obs per good (Mean/Median) 375/304 423/376 398/380 410/349

Notes: The missing values are caused by items that go out of stock or failures in the scraping software that tend
to last for only a few days. Gor the analysis in this paper, I replaced missing values within price series with the previous
price available for that particular product. For those results that exclude sales, I created a regular price series by
replacing all sale prices with the previous non-sale price available for that product. I also removed all price changes
exceeding 500%. These represent a negligible number of observations but can bias statistics related to the magnitude
of price changes. See Section A.1 in the Appendix for more details on data treatments.

Table 2: Alternative Data Sources

Scraped Data CPI Data Scanner Data

Product Categories Covered Few Many Few
Retailers Covered Few Many Few
Quantities Sold No No Yes
Data Frequency Daily Monthly - Bi-Monthly Weekly
Countries Available for Research ∼50* 10-15 <5
All Products in Retailer (Census) Yes No No
Comparable data across countries Yes Limited Limited
Details: sale, price control, other Yes Limited Yes
No Forced Substitutions Yes No Yes
Real-Time data availability Yes No No

Notes:

*Data from over 50 countries are currently being collected by the Billion Prices Project (www.billionpricesproject.org).
** Only goods purchased are scanned.
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Table 3: Price Changes by Country and Sale Treatment

Including Sales Excluding Sales*
Arg. Brazil Chile Col. Arg. Brazil Col.

Price Changes 244K 366K 221K 108K 195K 289K
Products with no price changes 19% 10% 21% 14% 22% 10% 21%
Price changes per good (Mean/Median) 8/5 15/8 9/4 11/7 2.6/2 13/7 4/3
Price increases (% of price changes) 68% 57% 54% 56% 84% 59% 57%
Price decreases (% of price changes) 32% 43% 46% 43% 16% 41% 43%
Inflation (%, average annual rate) 17.1% 5.1% 2.7% 4.2%

Notes: *No sales information is available for Chile.

Table 4: Median Frequencies by Country - Increases and Decreases

Including Sales Excluding Sales

Arg Brazil Chile Col Arg Brazil Col

Daily Frequency 0.015 0.027 0.015 0.019 0.012 0.023 0.016
Implied Durations (days) 66 36 66 52 83 43 62
Implied Durations (months) 2.2 1.2 2.2 1.73 2.8 1.4 2.1

Frequency of Increases (Freq+) 0.010 0.016 0.008 0.011 0.009 0.014 0.009
Frequency of Decreases (Freq-) 0.004 0.0011 0.007 0.008 0.003 0.009 0.007
Freq+/Freq- 2.5 1.5 1.1 1.4 3 1.6 1.3

Notes: *Bils and Klenow (2004) methodology taking the mean within categories and then the median
across categories.

Table 5: Size of Price Changes by Country and Sale Treatment

Including Sales Excluding Sales
Arg. Brazil Chile Col. Arg. Brazil Col.

Size of changes (Mean*) 5.0% 1.7% 3.6% 2.0% 5.5% 1.5% 1.8%
Size of price increases (Mean*) 13% 11.7% 17.6% 11.8% 11.8% 9.3% 8.3%
Size of price decreases (Mean*) -11% -11.9% -14.2% -10.5% -10.2% -10.1% -7.4%
Share of price changes under |1%| 4.3% % 3.6 % % % % %
Share of price changes under |5%| 27% 33% 25% 37% % % %

Notes: *Mean size of changes per individual good, then the mean per category, and finally the mean across all categories.

36



Table 6: Tests of Modality

DIP Test (calibrated) Silverman’s Test
Dip Stat. Null Critical Band. Null Null Null

1 mode 1 mode 2 modes 3 modes
p-value p-value p-value p-value

Argentina 0.07 0.00 1.92 0.00 0.00 0.06
Brazil 0.02 0.00 1.12 0.00 0.00 0.07
Chile 0.03 0.00 1.74 0.00 0.00 0.18
Colombia 0.01 0.00 0.66 0.03 0.97 0.99

Table 7: Mean Synchronization within Urls

Argentina Brazil Chile Colombia

All Price Changes 0.008 0.007 0.007 0.012
Excluding Sales 0.008 0.006 - 0.011

Price Increases 0.007 0.006 0.002 0.006
Price Decreases 0.003 0.005 0.002 0.004

Notes: Results based on 824 urls in Argentina, 281 in Brazil, 256 in Chile and 103 in Colombia.

Table 8: URL Synchronization and the Coefficient of Variation in Size of Changes

Argentina Brazil Chile Colombia

Correlation* -0.24 -0.23 -0.27 -0.10
p-value 0.00 0.00 0.01 0.44

Notes: *Correlation between the degree of URL synchronization and the mean coefficient of variation (CV)
in the URL. CV is the daily sd/mean of the absolute size of price changes. All price changes included in
calculations, but CV is estimated only when there are two or more price changes in a day within an URL.
Only URL with significant coefficients for synchronization (95% level) are included.
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Table 9: Online vs. Offline Prices

Argentina Brazil Chile Colombia

Matching ids Yes Yes No Yes
% Available Online 100% 80% 90% 74%

PRICE LEVELS
online=offline 18% 42% 93% 29%
online>offline 78% 34% 4% 32%
Price Difference (Mean %) 5 9 2 0

PRICE CHANGES
Products with Identical Change Series* 93% 75% 94% 67%
Ratio of Changes over Observations
Offline 0.215 0.356 0.274 0.433
Online 0.215 0.411 0.249 0.433
Mean Size of Changes (%)
Offline 1.6 4.9 1.4 8.1
Online 1.4 5.3 1.3 8.3

Notes: *Indicator variable: 1 if the price increased, -1 if it dropped, 0 if it is constant.

Table 10: Average Annual Inflation (% per year)

Scraped Supermarket Index Official Consumer Prices (CPI)

Argentina 17.1 7.6
Brazil 5.1 4.6
Chile 2.7 3.7
Colombia 4.2 6.1
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Figure 1: Distribution of the Size of Price Changes
Notes: Bin size is 0.1%. Smoothed kernel density shown.
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Figure 2: Distribution of the Size of Price Changes
Notes: Bin size is 0.1%. Smoothed kernel density shown.
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Figure 3: Distribution of the Size of Price Changes - Over Time
Notes: Bin size is 0.1%. Smoothed kernel density shown.
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Figure 4: Distribution of the Size of Price Changes - Weekly Averages
Notes: Bin size is 0.1%. Smoothed kernel density shown.
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Figure 5: Distribution of the Size of Price Changes - Monthly Sampling
Notes: Bin size is 0.1%. Smoothed kernel density shown.
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Figure 6: Magnitude of Price Changes - Excluding Sales
Notes: Bin size is 0.1%. Estimated kernel density shown. Brazil shown without changes on 15/12/07 and 29/12/07.
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Figure 8: Smoothed Hazard Functions

Notes: Left-censored spells are excluded. Sales are excluded in Argentina, Brazil, and Colombia. Initial 180
days shown.
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Figure 9: Heterogeneity and Survival Bias
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Figure 10: Hazards for Different Duration Groups

Notes: Notes: Left-censored spells are excluded. Sales are excluded in Argentina, Brazil, and Colombia.
Initial 180 days shown.
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Figure 11: Distribution of Synchronized Changes - Example with Bottled Water Urls
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Figure 12: Implied Probabilities - Example with Bottled Water Urls
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Figure 13: Magnitude of Offline Price Changes
Notes: Bin size is 0.5%
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Figure 14: Scraped Index vs. the Official CPI
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Figure 15: Annual Inflation: Scraped vs CPI
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