The Distribution of the Size of Price Changes*

Alberto Cavallo ${ }^{\dagger}$
MIT Sloan

Roberto Rigobon ${ }^{\ddagger}$
MIT Sloan \& NBER

December 16, 2010

- Preliminary and Incomplete -

Abstract

Different theories of price stickiness have distinct implications on the properties of the distribution of price changes. One of those characteristics is the number of modes in the distribution. We formally test for the number of modes in the price change distribution of 32 supermarkets, spanning 23 countries and 5 continents. We present results for three modality tests: the two best-known tests in the statistical literature, Hartigan's Dip and Silverman's Bandwith, and a test designed in this paper, called the Proportional Mass test (PM). Three main results are uncovered. First, when the traditional tests are used, the unimodality around zero is rejected in about 90 percent of the establishments. When we used the PM test, which is more conservative than the first two, we still reject unimodality in two thirds of the supermarkets. There is significant heterogeneity across countries: the US, UK and Uruguay are the most "unimodal" while the other countries in the sample exhibit significant bi-modality. Second, if we center the PM test on the largest mode - as opposed to zero - we have few rejections of unimodality. Finally, the rejection of unimodality changes through time and with the level of inflation. In countries where there is large inflation the distribution is unimodal around a positive value. In those countries when the inflation drops - which happened almost everywhere during the recent financial recession - unimodality at zero starts to disappear again. These results offer new stylized facts that theoretical models of price stickiness need to match. We perform a simple simulation exercise at the end using the model by Alvarez, Lippi, and Paciello (2010) and applying our PM test of unimodality to the model's distributions.

[^0]
1 Introduction

With the availability of the individual prices underlying the construction of the CPIs from several developed countries, the micro-pricing literature in macroeconomics has become one of the most active areas of research in recent years. ${ }^{1}$ One of the main stylized facts uncovered by this literature is that the distribution of price changes (conditional on a change) is close to a unimodal centered at zero percent, with a large share of small price changes. This finding has also been shown to hold in scanner datasets from retailers in the US. ${ }^{2}$

This result is important because the different theories of price stickiness have direct implications on the form of the distribution of price changes. For example, the standard state-dependent model, such as Golosov and Lucas (2007), predicts that the distribution of price changes should be bimodal, with very little mass near zero. The intuition is that small deviations from the optimal price are less costly than the adjustment cost and therefore those changes should be infrequent. By contrast, time-dependent models of price stickiness - such as the classical Calvo (1983) model - imply that the distribution of price changes should inherit the same properties of the distribution of cost changes, and in low inflation setting such costs will tend to have a unimodal shape centered around zero. ${ }^{3}$ A third kind of models combines elements of time and state-dependent pricing, giving rise to a variety of distributions whose shape depends on the relative importance of observation and adjustment costs. Examples include Woodford (2009) and Alvarez, Lippi, and Paciello (2010). Surprisingly, even though the shape of the distribution plays a crucial role in distinguishing the different theories of price stickiness, no paper has formally evaluated the number of modes.

In this paper, we test for modality using three statistical tests and a new dataset that covers many countries and retailers. We go beyond the graphical analyzes performed in the literature and develop a new test methodology which can be scaled to test for modality in multiple countries and sectors. ${ }^{4}$

The data include individual-product prices in 37 supermarkets across 23 countries and 5 continents. They were collected by the Billion Prices Project (BPP) at MIT Sloan using a scraping software that records, on a daily basis, the price information for all goods sold by

[^1]supermarkets with online shopping platforms. ${ }^{5}$ These prices were collected between October 2007 and February 2010, and although there are different starting dates for each supermarket, in all cases we have at least one year of data. On average, for each retailer we have 571 days of data, 20 thousand individual products, with 5 million price observations and 100 thousand price changes.

The scraped dataset has several advantages. First, we collect prices every day, as opposed to once a month (or two months) like most prices used in the CPI. The daily data reduce the sampling biases that are associated with low frequency prices. Second, we collect the full array of products sold by each retailer and therefore do not have forced item substitutions, nor need to rely on hedonics or other imputation procedures to compute prices - as it occurs in some of the items underlying the CPI. Third, there are no adjustments for product discontinuations and technological improvements because these are rare in supermarket goods. Finally, we collect posted prices as opposed to unit values. In most scanner's data, prices are unit values computed as the ratio between total sales and total quantity sold at given frequencies (usually every week). Even if they were available on a daily basis, unit values can experience small fluctuations due to different intensities in the use of loyalty cards, coupons, and quantity discounts which can introduce small price changes that are unrelated to the actual posted price change. ${ }^{6}$

The first part of our analysis uses the two best-know tests for unimodality available in the statistical literature: Hartigan's Dip and Silverman's Bandwidth. These tests are intuitive, easy to compute, and statistically very powerful. This last characteristic is, in fact, a limitation for our purposes. We find that Hartigan's Dip rejects unimodality in 36 out of 37 supermarkets, while Silverman's test rejects the null of unimodality in 33 of those supermarkets. The reason for this rejection is that these tests are too sensitive to even tiny bumps in the distribution, some of which may not be economically meaningful. ${ }^{7}$ Our goal in this paper is to reject unimodality only when the distribution exhibits additional modes that are sufficiently large - as opposed to a small jolt in the distribution. A second important limitation of both tests is that they are not designed to measure modality around a specific value, like zero percent.

To deal with these limitations we develop a new test called the Proportional Mass (PM) test. It is designed to find unimodality around specific value of the distribution, like zero

[^2]percent or the largest mode, and to allow for small modes in the distribution as part of the null-hypothesis. The test first computes the mass of price changes smaller than certain bounds in absolute terms (for example, at 1% and 5% from the center). In an unimodal distribution, the mass in the small interval is larger than the proportional (per unit) mass in the larger interval. In the bimodal distribution (with two significantly large modes away from the center) the opposite occurs. This is a more conservative test because it requires the different modes to be of relatively similar importance in order to affect the results. A distribution with one large mode and a series of smaller bumps will exhibit a similar proportional mass than a purely unimodal distribution. The intuition is simple: the test is not rejected for a multimodal distribution if the masses of the smaller modes can be rearranged to form a unimodal distribution with the same proportional mass.

One possible source of concern in our test is the fact that sales can produce modes in the distribution that would lead us to reject unimodality. For example, imagine that the company does frequent temporary sales of 10 percent. In this case, the distribution of price changes will have symmetric modes around the negative and positive values of -10 and 10 . In order to deal with this problem we focus our modality analysis in the -5 to +5 percent price change window, because reported and unreported sales smaller than 5 percent are rare. In addition, we expect adjustment costs that create any bimodality to have their largest impact within this range of values. ${ }^{8}$

Three results are worth highlighting. First, in most supermarkets (2/3) we reject unimodality around zero percent. This provides evidence of adjustment costs in price setting decisions. Second, we find less rejection of unimodality when we center the test around the largest mode, which is typically away from zero. The existance of large modes away from zero is consistent with the effects of inflation (or even deflation), which moves the mass of price changes away from zero in both time-dependent or state-dependent models. Third, we find that unimodality away from zero disappears over time in countries with falling inflation rates. When inflation falls, the two theories of price stickiness have different predictions. A time dependent model would imply that the distribution is unimodal around the average inflation, and therefore, the degree of unimodality should not change through time, only the location of its mode. A state dependent model, on the other hand, implies that when inflation is large the distribution only exhibits one large mode, but when inflation comes down the distribution it becomes bimodal around zero percent. This is precisely what we find in

[^3]this data.
The first result, i.e. the lack of unimodality at zero percent, is at odds with the existing literature based on CPI and scanner dataset. We explore possible explanations to reconcile the differences. We find two reasons for the discrepancies with scanner data findings. First, scanner data tend to have unit values and not actual prices. Stores report the total sales and total quantities per item, and prices are computed as the ratio between these two values. The unit values exhibit changes due to shift in consumer purchase's practices. Consumers might decide to buy with or without coupons, or with or without loyalty cards. Therefore, the unit values change in small proportions due to the randomness in consumer's demand and not because the posted price has indeed shifted. Second, scanner data is usually reported on a weekly basis, so there is also an averaging that takes place through out the week. Although in our data we do not have prices with loyalty cards, we can simulate a weekly averaging or unit value. When we take our data and average the weekly prices, we fail to reject unimodality in 32 out of 37 supermarkets. In other words, the constant-weight weekly average of the prices is enough to create unit values whose changes are sufficiently unimodal so that we fail to reject unimodality. A more challenging task is to reconcile our results with those underlying the CPI data. In the case of the US, our results are not necessarily at odds with the ones found in the CPI data, because 2 out of 3 supermarkets in our sample are indeed unimodal. Still, there are important differences between our results and those found in other countries with monthly CPI data. The differences in sampling frequency do not seem to be the explanation in the CPI data: when we re-sampled our data to replicate the monthly sampling from statistical offices we find weaker results, but not weak enough to reduce the number of rejections of unimodality. The second possibility is the fact that statistical offices sometimes impute missing values with hedonic estimates and average changes for similar goods. ${ }^{9}$, in cases of forced substitutions, discontinuations, and out-of-stock items. ${ }^{10}$ Unfortunately we do not have access to the CPI data to determine how common these practices are, and therefore we must leave this important question for future research.

Overall, our results imply a more important role for adjustment costs than previous findings. We do not, however, want to minimize the importance of time-dependent factors. A minority of retailers have unimodality around zero percent, and even the bimodal distributions we find in most countries are largely consistent with models that combine elements of both pricing strategies. To show this, we perform a simple simulation exercise with the model

[^4]by Alvarez, Lippi, and Paciello (2010). We estimate the PM score from simulated data at various levels of observation and adjustment costs, and show that the typical PM score we obtain in the data is consistent with a model in which time and state dependent behaviors are present. This section also illustrates how the PM test can be used to provide a unique statistic of the modality of the empirical distributions that theoretical models can attempt to match.

The paper is organized as follows: Section 2 describes the data. Section 3 introduces three non-parametric statistical tests of unimodality. Section 4 presents the results of these tests, with evidence rejecting unimodality at zero percent. We also discuss some explanations for the difference in our results with the rest of the literature. Section 5 simulates the Alvarez, Lippi, and Paciello (2010) model for different parameters and computes the PM test for unimodality in the simulated price change distributions. Section6 concludes.

2 Data: The Billion Prices Project

The data was collected by the Billion Prices Project (BPP) at MIT Sloan. We used a scraping software to record, on a daily basis, the price information for all goods sold by online supermarkets.

The scraping methodology for each retailer works in 3 steps: First, at a given time each day we download all public web-pages where product and price information are shown. These pages are individually retrieved using the same URL or web-address every day. Second, we analyze the underlying code and locate each piece of information that we want to collect. This is done by using custom characters in the code that identify the start and end of each variable, according to the format of that particular page and supermarket. For example, prices are usually shown with a dollar sign in front of them and two decimal digits at the end. This set of characters can be used by the scraping software to identify and record the price every day. Third, we store the scraped variables in a panel database, containing one record per product-day. Along with the price and product characteristics, retailers show an id for each product in the page's code (typically not visible when the page is displayed to the customer), which allows us to uniquely identify each product over time. ${ }^{11}$

The retailers included in this paper are detailed in Table 1. There are 37 supermarkets in 23 countries and 5 continents. Prices were collected on a daily basis between October 2007 and February 2010, with different starting dates for each supermarket. In all cases, we

[^5]have at least one year of data, with a mean per retailer of 571 days, 20 thousand individual products, 5 million daily observations and 100 thousand price changes.
[Table 1 about here]

The availability of daily prices and information for every single product sold by each supermarket greatly expands the number of data points available. At the same time, such high-frequency data collection causes frequent gaps in individual price series. These gaps are mostly due to failures in the scraping procedure (for example, when the format of a website changes or one of our server machines crashes) or lack of stock in seasonal items. Scrapingrelated failures are typically resolved in a few days by the BPP scraping team, so in these cases gaps tend to last a short period of time. By contrast, gaps caused by seasonal and other out-of-stock items can last several months. The standard treatment of gaps in the literature, which fills missing values with the last recorded price before calculating price changes, can change the distribution of the size of price changes considerably. The effect depends on the macroeconomic context. For example, in cases of high inflation, price changes would appear larger, because adjustments are accumulated over time. By contrast, in a context with low inflation but many temporary shocks, two large price changes of opposite magnitudes could appear as one small change. To avoid these complications, in this paper we focus on "consecutive" price changes for which information is directly observed at days t and t-1.

3 Tests for Unimodality

The standard analysis of unimodality in the the micro-price literature relies on histograms and cummulative frequency plots. ${ }^{12}$ Although this is adequate to examine the shape of few distributions, it is sometimes hard to determine when particular modes are large enough to grant a rejection. Additionally, it is difficult to compare across a large number of retailers and countries like those included in this paper, particularly if we want to look at differences in modality across categories and over time.

Our contribution is to formally test for unimodality using three non-parametric statistical tests: Hartigan's Dip (or Excess Mass) Test, Silverman's Bandwidth (or Bump) Test, and a test we develop in this paper called the Proportional Mass Test. ${ }^{13}$

[^6]Hartigan's and Silverman's tests are common in the the statistics literature, but have rarely been used in economic applications. One recent exception is Henderson, Parmeter, and Russell (2008), who use both tests to analyze the distribution of income per capita across countries. These tests are intuitively appealing and simple to compute. They are also statistically powerful, minimizing the probability of making a false acceptance. Unfortunately, this means that they tend to reject unimodality very easily. Another major drawback for our purposes is that in micro-price setting applications we want to know whether the unimodality is centered around a particular value, like zero percent, which cannot be done with these tests.

To address these concerns, we developed a more conservative test, called the Proportional Mass Test (PM), which also makes an explicit assessment of the multi-modality of the distribution centered around a specific value of price changes. Using this test, we ignore small modes in the distribution that may not be economically significantly, while at the same time explore the modality both around zero or at any other point of interest of the distribution. This is important to test some of the predictions of time-dependent and state-dependent sticky-price models.

In this section we discuss the three tests and later present the results in Section 4.

3.1 Hartigan's Dip Test

Hartigan's dip test relies on the fact that the cumulative distribution function of a density function f with a single mode at m_{f} is convex on the interval $\left(-\infty, m_{f}\right)$ and concave on the interval $\left(m_{f}, \infty\right) .{ }^{14}$ The intuition of this property is very simple. At the right hand side of the mode, the density is non increasing - meaning that its derivate is non-positive. The opposite occurs at the left of the mode.

The Dip statistic measures the departure of an empirical distribution from the best fitting unimodal distibution. The intuition behind the computation of the dip statistic is straightforward. If the empirical distribution has multiple modes, with a cumulative distribution that has several regions of convexity and concavity, then it will be "stretched" until it takes the shape of an unimodal distribution. The larger the stretch needed, the larger the departure from unimodality. If the empirical distribution has a single mode, then the dip statistic will be zero.

[^7]In Hartigan's method, positive dip values provide evidence to reject the null hypothesis of unimodality. To determine the statistical significance of a positive dip, Hartigan and Hartigan (1985) sets the null hypothesis equal to the uniform distribution, for which, asymptotically, the dip value is stochastically largest among all unimodal distributions. ${ }^{15}$ This increases the power of the test, making it more likely to reject the null hypothesis of unimodality.

3.2 Silverman's Bandwidth Test

Silverman's Bandwidth or "Bump" test uses kernel smoothing functions to evaluate modality. Given a sample $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, a non-parametric kernel estimate of the unknown density function f is given by

$$
\begin{equation*}
\hat{f}(x, h)=(n h)^{-1} \sum_{i=1}^{n} K\left(\frac{x_{i}-x}{h}\right) \tag{1}
\end{equation*}
$$

where h is the smoothing parameter (or "bandwidth") and K is the Gaussian kernel function. Silverman (1981) showed that the larger smoothing h, the fewer the number of modes in $\hat{f}(x, h)$. Therefore, for the null hypothesis of unimodality, he proposed the test statistic

$$
\begin{equation*}
\hat{h}_{c r i t}^{1}=\inf \{h: \hat{f}(x, h) \text { has } 1 \text { mode }\} \tag{2}
\end{equation*}
$$

This is the minimum smoothing required for the smoothed kernel density to have one mode. Large values of $\hat{h}_{\text {crit }}^{1}$ are evidence against the null hypothesis, because larger degrees of smoothing are needed to eliminate additional modes in the density estimate.

The statistical significance of $\hat{h}_{\text {crit }}^{1}$ is evaluated using a smoothed bootstrap method. ${ }^{16}$ For each bootstrapped sample, we compute the minimum bandwidth $\hat{h}_{\text {crit }}^{1 *}$ required to have one mode and estimate the probability \hat{P}, given by

$$
\begin{equation*}
\hat{P}=P\left(\hat{h}_{c r i t}^{1 *} \geq \hat{h}_{c r i t}^{1}\right) \tag{3}
\end{equation*}
$$

\hat{P} gives us a way to know the relative level of $\hat{h}_{\text {crit }}^{1}$. If it is relatively high compared to

[^8]the results from the bootstraped samples, then \hat{P} will be small and there is stronger evidence against the null hypothesis. ${ }^{17}$

This method can be used to test for m modes, and is usually carried out in sequence, starting with one mode and continuing until the test fails to reject the null hypothesis. This is a major advantage of Silverman's approach, because it allows us to test explicitly for bimodality in the size of price changes. In addition, this test is intuitively appealing and easy to compute.

Unfortunately, it also has some weaknesses. First, it is easily affected by outliers in the tails of the distribution. Second, it is sensitive to tiny bumps which lead to frequent rejections of the null hypothesis, especially with large samples. ${ }^{18}$

3.3 Proportional Mass Test

We now propose a more conservative "Proportional Mass Test" that compares the relative mass of the distribution between bounds to determine the degree of unimodality around a centered value.

The test relies on the fact that unimodal distributions have a high proportion of their mass close to the mode. If we take an interval around the mode and make it progressively larger, the mass increases by smaller increments each time. By contrast, in a bimodal distribution the mass increases by larger increments each time. Therefore, the relative size of these additional increments of mass can be used to determine the degree of unimodality in the distribution.

Consider the case where the distribution is unimodal centered at zero percent, as illustrated in Figure 1. The mass between -1% and 1% should be larger than the mass between -5 and 5 per unit, that is,

$$
\begin{equation*}
P(|\Delta p| \leq 1) \geq P(|\Delta p| \leq 5) / 5 \tag{4}
\end{equation*}
$$

The proportional mass between $i=1$ and $j=5$ is thus given by

$$
\begin{equation*}
P M_{1,5}^{0}=\ln \frac{P(|\Delta p| \leq 1)}{P(|\Delta p| \leq 5) / 5} \tag{5}
\end{equation*}
$$

[^9]This ratio is positive when the distribution is unimodal around zero. ${ }^{19}$ By contrast, when the distribution is strictly bimodal around zero, $P M_{1,5}^{0}$ is negative. These cases are illustrated in Figures 1(a) and 1(b). Finally, if the distribution is bimodal but the modes are not significantly large, as seen in Figures 1(c) and 1(d), then the PM will remain positive. This ensures that minor bumps in the distribution will not cause a rejection of unimodality.

The ratio is generalized to incorporate information from different intervals and compute the Proportional Mass Score around zero, given by

$$
\begin{equation*}
P M^{0}=\frac{1}{|Z|} \sum_{i j \in Z} P M_{i j} \tag{6}
\end{equation*}
$$

where Z is the set of all combination $i j$ such that $i<j$.
The same logic applies when we want to test the degree of unimodality around a mode m, with $P M^{m}$ given by

$$
\begin{equation*}
P M^{m}=\frac{1}{|Z|} \sum_{i j \in Z} \ln \frac{P(|\Delta p-m| \leq i)}{P(|\Delta p-m| \leq j) /(j / i)} \tag{7}
\end{equation*}
$$

In our computations, we consider the intervals $i, j \in\{1,2.5,5\}$, but we also test the robustness of our results to changes in these intervals. Future research should solve the optimal bandwidth in the Proportional Mass test, which is beyond the scope of the present paper.

The null hypothesis is that the PM score is positive (i.e. unimodal distribution), and the statistical significance is evaluated using bootstrapped samples from the data and calculating the share with positive PM scores. The lower the share of bootstraps with positive PM scores, the stronger the rejection of unimodality.

4 Results

4.1 Rejection of Unimodality at 0%

We first run Hartigan's Dip test in all supermarkets. The first two columns in Table 3 show the dip statistics and p-values for the null hypothesis of unimodality. The dip statistics are consistent with a simple graphical analysis of the histograms in Figures 2 to 4. For

[^10]example, the lowest dips belong to AUSTRALIA-4, NETHERLANDS-1, UK-1, UK2, UK-3, and COLOMBIA-1. These are cases that either uniformly distributed or have a large dominating mode. Unfortunately, as a statistical test, Hartigan's method is too powerful. At the 1% significance level, unimodality is rejected in 36 out of 37 supermarkets. The test rejects the null hypothesis even for distributions with only minor departures from unimodality,and unfortunately, there is no way to reduce its power with large samples.

[Table 3 about here]

Next, we consider Silverman's bandwidth test. The results are shown in columns 3 to 5 of Table 3. The critical bandwidth values, which measure the degree of "smoothing" needed to obtain a single-mode kernel estimate, are also consistent with a simple graphical analysis. Some of the lowest critical values are, once again, in AUSTRALIA-4, UK-1, UK-2, UK-3 and COLOMBIA-1. However, although slightly more conservative, Silverman's test still rejects the null of unimodality in 33 out of 37 supermarkets. The rejection level is high even when we consider the null hypothesis of 2 or less modes. In fact, in 22 supermarkets we find evidence supporting more than 2 modes. The test appears to be too sensitive to tiny bumps in the distribution. This is especially true in those retailers with the largest number of observations, such as URUGUAY-1, CHINA-2, CHILE-1, RUSSIA-1, IRELAND-1, US-1 and NEWZEALAND-1, where we reject both unimodality and bimodality around zero. This is a major limitation for our purposes. The test detects small bumps caused by the aggregation across categories or types of products, which are are not relevant for our main objective. We are looking for modes that are sufficiently large and can provide insights into the importance of menu costs and other pricing behaviors.

Finally, the estimates for the PM test centered at 0% are presented in Table 4. Column 3 shows the PM score point estimate, columns 4 and 5 show the mean and the standard deviation in 500 bootstrapped samples, and column 6 shows the share of bootstrapped estimates that have a positive PM score (bimodality).

[Table 4 about here]

As expected, the PM test is far more conservative. We fail to reject unimodality in 13 supermarkets, or $1 / 3$ of the total. This test does a better job at ignoring small bumps in the distribution, because it spreads their additional mass in relatively wide intervals used to calculate the proportional mass ratios. Still, even though we have been stacking the odds to find unimodality, the PM test continues to rejects the null hypothesis in 24 supermarkets, or $2 / 3$ of the total. The evidence against unimodality at zero percent is simply overwhelming.

Comparing the PM results to Silverman's test, and the graphical distribution in Figures 2 to 2 , we can see why the PM score is a better measure for your purposes. For example, the largest PM scores belong to URUGUAY-1, UK-2, UK-1, and US-1, which are all identified as unimodal. By contrast, Silverman's test implied that they where all bimodal or multimodal. URUGUAY-1 has nearly all its mass within -1 and 1 . Silverman's test rejected unimodality because the lack of mass at zero percent has a great impact on the smoothed kernel for this tiny range of values. UK-2, UK-1, and US-1 clearly have one big mode, but lots of tiny modes that cause Silverman's test to reject unimodality.

The PM score computed at quarterly intervals show little variation over time, as seen in In Table 5. The negative scores (bimodality) are common thought the table for most retailers.
[Table 5 about here]

Overall, our three statistical tests strongly reject the hypothesis of unimodality around zero percent. We have shown results within the interval of -5% to 5%, but these findings are robust to extensions with distributions at the $+/-10 \%$ and $+/-50 \%$ intervals. In fact, the wider the range of the distribution, the lower the evidence of unimodality around zero percent.

4.2 Unimodality away from 0%

There may be no unimodality around zero percent, but the size distributions can still have large modes away from zero. This can be explored using the PM test centered on the mode (i.e. the highest "mode" in the distribution), rather than zero. Positive PM scores in this case would indicate the presence of modes that are large enough to dominate the mass of price changes within a $+/-5 \%$ interval. These modes could reflect the outcome of an inflationary (or deflationary) macroeconomic context.

In Table 6, we center the PM test around the highest mode in each supermarket, which is negative in 13 and positive in 21 supermarkets. With this new test, 34 out of 37 supermarkets have a positive PM score, which is consistent with the existence of a major mode away from zero percent. The share of bootstrapped samples with negative PM scores, shown in the last column, confirms that there is little evidence of bimodality away from zero.
[Table 6 about here]

The PM scores away from zero can be use to explore the changes in modality with different levels of inflation. Indeed, changes in the pattern of modality can have important implications for some theoretical models. For example, standard state-dependent models would predict that an economy that moves gradually from a peak of inflation to a peak of deflation will have a distribution that looks initially unimodal with a positive mode, then bimodal at zero, and finally unimodal with a negative mode. Table ?? shows the estimates of the PM test centered around the largest mode for each quarter. We find that the distributions became less unimodal (away from zero) in late 2008 and early 2009. The last row in Table 7 shows that the share of retailers with evidence of bimodality starts to rise in the fourth quarter of 2008 and peaks in the second quarter of 2009. This is a time when recession was affecting many of these countries. Although the shift in modality is not as stylized as standard models predict, they suggest that modality and inflation are closely linked over time.
[Table 7 about here]

4.3 Reconciling differences with the Literature

Our main finding, the lack of unimodality of price changes around zero percent, is at odds with the existing literature that uses Scanner and CPI data. In this section, we consider possible explanations for these differences by replicating some of the sampling methodologies in these two types of data.

4.3.1 Differences with Scanner Data

Scanner datasets have two important differences with our data. First, prices are constructed as "unit values", with the ratio of total sales over total quantity sold for each product. Because consumers can sometimes purchase products with or without coupons, with or without loyalty cards, or even at different prices within the same day, this unit value will change in small percentages with the randomness in consumer demand. Second, scanner data are reported on a weekly basis, so there is also an averaging that takes place along the week. The effect of this averaging is discussed by Campbell and Eden (2005). Their focus was not on the size of changes, but they described some complications caused by weekly averages using a simple example. Consider a three week period with a single price change on the middle of the second week. If average weekly prices are used, each week would have a different price and two -smaller- price changes would be observed.

Although we do not have information on the use of loyalty cards and coupons, we can
replicate the weekly averaging in our data and see how it affects our results. We do so by first computing the weekly average price per individual product, and then re-calculating price changes only when consecutive weekly prices are available.

Our results in Table 8 show that the evidence of unimodality increases dramatically with weekly averaged prices. This table compares the effect of weekly averaging on the three measures of modality embedded in our tests: the dip statistic, the critical bandwidth and the PM score (centered at 0\%). A drop in Hartigan's dip means that, on average, the distribution is now closer to being unimodal. A drop in Silverman's critical bandwidth means that less smoothing is needed to obtain an unimodal kernel estimate. An increase in PM scores means that the distribution becomes unimodal around zero. In all three cases, the evidence for unimodality increases dramatically with weekly prices. Furthermore, the PM test centered at zero also fails to reject unimodality in 32 out of 37 supermarkets.
[Table 8 about here]

4.3.2 Differences with CPI Data

Reconciling our results with CPI studies is harder because the differences in the data go far beyond simple sampling methodologies. Nevertheless, the monthly sampling of prices could lead to artificially small price changes when there frequent temporary shocks lasting less than a month. For example, if a price were to fall from $\$ 10$ to $\$ 9$, and then move back to $\$ 10.1$ within a few days, monthly sampling would detect a $+1 \%$ price change instead of two changes of -10% and $+12 \%$. Cavallo (2010) showed that these type of temporary changes can occur frequently in supermarket data, and it can be particularly relevant in low-inflation settings like the US, where most of the literature's CPI findings come from. ${ }^{20}$

To approximate the CPI sampling methods, we randomly picked one day of the month for each individual product and recorded the price. If we chose a day where no price information is available, the price is missing for that month. Next, we re-calculated price changes only when consecutive monthly price observations were available.

In contrast to weekly averages, monthly sampling of the data has no effect on the degree of unimodality. The average dip statistic, critical bandwidth and PM score in Table 8 are similar with daily and monthly data (even though the number of observations drops significantly once monthly data is used).

[^11]An alternative explanation for our differences with the CPI literature it related to individual price corrections in the US CPI series. The BLS makes several adjustments in individual prices that can potentially affect the distribution of the size of changes. First, changes in a price spell can be cause by forced item substitutions that occur when an item is no longer available. In these cases, the BLS estimates a price change using hedonic quality adjustments or the average price change for that category of products. Second, even when no product substitutions occur, the BLS sometimes imputes prices that are considered temporarily missing. Seasonal products -including Fresh Food- are the typical case when this happens. Third, individual prices can also be adjusted for coupons, rebates, loyalty cards, bonus merchandize, and quantity discounts, depending on the share of sales volume that had these discounts during the collection period. Fourth, some food items that are sold on a unit basis -like applesare sometimes weighted in pairs to calculate an average-weight price. These and other price adjustments are described in the BLS Handbook of Methods. ${ }^{21}$ Unfortunately, we do not know how frequent these changes are in practice, or whether they can explain most of the small price adjustments previously found by the literature. Without access to the US CPI data, we must leave this important questions for future research.

5 Simulation of a model with both state and timedependent pricing

In this section we simulate a model that exhibits menu cost and observation/information costs to evaluate the strength and properties of the PM test, and to be able to make an assessment of the relative importances of the two possible costs. We use the model by Alvarez, Lippi, and Paciello (2010). They assume a firm solving a pricing problem, with quadratic cost function, exhibiting fixed cost to change prices, and a fixed cost to observe previous realizations. This is a stylized model that has relatively simple solutions. The fixed cost for changing prices is the standard menu cost, while the observation cost has been shown by Reis, ${ }^{22}$ generates an optimal strategy that resembles the Calvo (1983) model. The advantage of Alvarez, Lippi, and Paciello (2010) is that encompasses both types of costs, and also that deals with the problem of inflation.

We simulate the model using the following parameters:...For each of the simulations, we compute the distribution of price changes and estimate the PM score. Figures 5 and A1 show the results from the simulation. Figure 5 computes the PM test when the 0 to 5 percent

[^12]window is used. ${ }^{23}$ There are two panels in this figure. The top panel shows the surface for several choices of menu cost and observation cost. The bottom panel is an iso-PM score figure - the combination of menu and observation costs that produce the same PM score within the range we studied.

Several features are worth highlighting. First, an increase in the menu cost reduces the PM score unambiguously. Second, an increase in the observation cost increases the PM score also unambiguously. Both of these implications should be expected. When the menu costs are increasing the range of inaction for the firm increases, reducing its mass around zero, and making the distribution more bimodal. On the other hand, increasing the observation costs imply a behavior closer to the standard Calvo model, and therefore the distribution of price changes should inherit the properties of the distribution of the underlying fundamental - which is unimodal and normally distributed.
[Figure 5 about here]

The PM score can be used in the type of models to get a sense of the magnitude and relative importance of the observation and adjustment costs. For example, if the PM score when using the $0-5$ percent windows lies between -0.5 and -0.6 , then the figure tells us the possible ratios between the menu and information cost that are consistent with that score. In this case, the menu cost would have to be relatively small - from 0.006 to 0.01 - while the observation costs are 3 to 5 times larger -0.015 to $0.05-$. This is consistent with the estimates in Alvarez, Lippi, and Paciello (2010)'s own calibrations. Menu costs, in particular, are also close to the the estimate of 0.7% of revenue obtained by Levy, Bergen, Dutta, and Venable (1997), who looked at direct evidence of menu costs in a large US supermarket chain in the 90s.

6 Conclusions

The shape of the distribution of the size of prices changes is an important implication of the different theories behind price stickiness. One of the key characteristics of this shape is the number of modes around -and away- zero percent. We formally tested for this modality in a large set of supermarkets, spanning 23 countries and 5 continents, using the two bestknown tests in the statistical literature -Hartigan's Dip and Silverman's Bandwith- and a test designed in this paper - the Proportional Mass test-. Three important results are uncovered.

[^13]First, when the traditional tests are used, the unimodality around zero is rejected in about 90 percent of the establishments. When we used the Proportional Mass test, which is much more conservative than the first two, we reject unimodality in two thirds of the supermarkets. Second, if we center the test on the largest mode (as opposed to zero) we have fewer rejections of unimodality. Finally, the rejection of unimodality changes through time and with different levels of inflation. In countries where there is large inflation the distribution tends to be unimodal around a high inflation mode. In those countries where the inflation rate drops (as it happened almost everywhere during the recent financial recession) bimodality starts to re-appear.

Although our results suggest an important role for adjustment costs in price-setting decisions, they are not conclusive evidence in favor of any standard theory of price stickiness. The distributions we observe with the data are, in fact, consistent with those predicted by models that combine elements of both time and state-dependent pricing, as in Alvarez, Lippi, and Paciello (2010). We have shown that the PM score can be used to explore issues like these in one particular model, but how important observations costs are relative to adjustment costs is still an open question whose answer is specific to the model being used.

Further research is needed to understand how different theories can explain cross-country and cross-retailer differences in modality results, and how they change through time and across product categories. We believe the Proportional Mass test will be a useful tool for this type of research. Finally, future work should also address the link between the distribution's symmetry and the inflation rate, as well as determine the optimal bandwidth of the PM test.

References

Alvarez, F. E., F. Lippi, and L. Paciello (2010):"Optimal price setting with observation and menu costs," National Bureau of Economic Research Working Paper Series, No. 15852.

Anderson, G. (2004): "Toward an empirical analysis of polarization," Journal of Econometrics, 122(1), 1-26.

Bajari, P., and A. Hortacsu (2003): "Economic Insights from Internet Auctions: A Survey," National Bureau of Economic Research Working Paper Series, No. 10076, published as Bajari, Patrick and Ali Hortacsu. "Economic Insights from Internet Auctions." Journal of Economic Literature XLII (2004): 457-486.

Bils, M., and P. J. Klenow (2004): "Some Evidence on the Importance of Sticky Prices," Journal of Political Economy, 112, 947-985.

Bils, M., P. J. Klenow, and B. A. Malin (2009): "Reset Price Inflation and the Impact of Monetary Policy Shocks," NBER Working Papers, 14787.

BLS (2009): "The Consumer Price Index," in BLS Handbook of Methods, vol. Chapter 17.
Calvo, G. (1983): "Staggered Prices in a Utility Maximizing Framework," Journal of Monetary Economics, 12, 383-398.

Campbell, J. R., and B. Eden (2005): "Rigid prices: evidence from US scanner data," Federal Reserve Bank of Chicago, Published: Federal Reserve Bank of Chicago.

Carlton, D. W. (1986): "The Rigidity of Prices," American Economic Review, 76(4), 637-58.

Cavallo, A. (2010): "Scraped Data and Sticky Prices," Unpublished paper.
Cecchetti, S. G. (1986): "The Frequency of Price Adjustment: A Study of Newsstand Prices of Magazines," Journal of Econometrics, 31, 255-274.

Cheng, M., and P. Hall (1998): "Calibrating the Excess Mass and Dip Tests of Modality," Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60(3), 579589, ArticleType: primary_article / Full publication date: 1998 / Copyright 1998 Royal Statistical Society.

Dhyne, E., L. Alvarez, H. L. Bihan, G. Veronese, D. Dias, J. Hoffman, N. Jonker, P. Lunnenmann, F. Rumler, and J. Vilmunen (2005): "Price Setting in the Euro Area: Some Stylized Facts from Individual Price Data," Working Paper Series, European Central Bank, No. 524.

Eichenbaum, M., N. Jaimovich, and S. Rebelo (2008): "Reference Prices and Nominal Rigidities," National Bureau of Economic Research Working Paper Series, No. 13829.

Fisher, J. D. K. T. C. G. (2000): "Synchronization of Price Changes by Multiproduct Firms: Evidence from Canadian Newspaper Prices," Economics Letters, 68.

Gagnon, E. (2007): "Price Setting during Low and High Inflation: Evidence from Mexico," International Finance Discussion Papers, Board of Governors of the Federal Reserve System, 896.

Golosov, M., and R. Lucas (2007): "Menu Costs and Phillips Curves," Journal of Political Economy, 115(2).

Gopinath, G., and R. Rigobon (2008): "Sticky Borders," Quarterly Journal of Economics, 23(2).

Hartigan, J. A., and P. M. Hartigan (1985): "The Dip Test of Unimodality," The Annals of Statistics, 13(1), 70-84.

Henderson, D. J., C. F. Parmeter, and R. R. Russell (2008): "Modes, weighted modes, and calibrated modes: evidence of clustering using modality tests," Journal of Applied Econometrics, 23(5), 607-638.

Kackmeister, A. (2007): "Yesterday's Bad Times Are Today's Good Old Times: Retail Price Changes Are More Frequent Today Than in the 1890s," Journal of Money, Credit and Banking, 39(8), 1987-2020.

Kashyap, A. K. (1995):"Sticky Prices: New Evidence from Retail Catalogues.," Quarterly Journal of Economics, 110, 245-274.

Kehoe, P., and V. Midrigan (2007): "Sales and the Real Effects of Monetary Policy," Federal Reserve Bank of Minneaplis Working Paper, No. 413.

Klenow, P. J., and O. Kryvtsov (2008):"State-Dependent or Time-Dependent Pricing: Does it Matter for Recent US Inflation?," The Quarterly Journal of Economics, 73(3), 863903.

Klenow, P. J., and B. A. Malin (2009): "Microeconomic Evidence on Price-Setting," Handbook of Monetary Economics, forthcoming.

Lach, S., and D. Tsiddon (2007): "Small price changes and menu costs," Managerial and Decision Economics, 28(7), 649-656.

Levy, D., M. Bergen, S. Dutta, and R. Venable (1997): "The Magnitude of Menu Costs: Direct Evidence from Large U.S. Supermarket Chains," The Quarterly Journal of Economics, 112(3), 791-825.

Mackowiak, B., and F. Smets (2008): "On Implications of Micro Price Data for Macro Models," Conference Series, Federal Reserve Bank of Boston.

Midrigan, V. (2005): "Menu Costs, Multi-Product Firms and Aggregate Fluctuations," Working Paper.

Muller, D. W., and G. Sawitzki (1991): "Excess Mass Estimates and Tests for Multimodality," Journal of the American Statistical Association, 86(415), 738-746, ArticleType: primary_article / Full publication date: Sep., 1991 / Copyright 1991 American Statistical Association.

Nakamura, E., and J. Steinsson (2008): "Five Facts About Prices: A Reevaluation of Menu Cost Models," Quarterly Journal of Economics, 123(4), 1415-1464.

Neiman, B. (2008): "Multinationals, Intrafirm Trades and International Macro Dynamics," Job Market Paper - Harvard University.

Paapaa, R., and H. K. van DiJk (1998): "Distribution and mobility of wealth of nations," European Economic Review, 42(7), 1269-1293.

Silverman, B. W. (1981): "Using Kernel Density Estimates to Investigate Multimodality," Journal of the Royal Statistical Society. Series B (Methodological), 43(1), 97-99, ArticleType: primary_article / Full publication date: 1981 / Copyright 1981 Royal Statistical Society.

Woodford, M. (2009): "Information-constrained State-dependent Pricing," Journal of Monetary Economics, 56, S100 - S124.

Wulfsberg, F. (2008): "Price Adjustments and Inflation - Evidence from Consumer Price Data in Norway 1975-2004," Norges Bank Working Paper.

Tables

Table 1: Supermarket Data

Database	Country	Started	Days	Obs.	Products	\# Pr P/day	Pr. Ch. (cc)		Sales
ARGENTINA-1	Argentina	10/7/2007	876	13117K	26K	12K	155K	1.2\%	YES
ARGENTINA-2	Argentina	23/7/2007	861	5294K	11K	6K	103K	2.0\%	YES
AUSTRALIA-1	Australia	8/4/2008	574	232K	3K	1K	147K	63.4\%	NO
AUSTRALIA-2	Australia	8/7/2008	571	202K	1K	0K	2K	1.0\%	NO
AUSTRALIA-3	Australia	8/4/2009	209	3292K	7 K	6K	2K	0.1\%	NO
AUSTRALIA-4	Australia	5/3/2008	667	1967K	18K	4K	46K	2.3\%	YES
BRAZIL-1	Brasil	10/10/2007	873	10780K	22K	11K	260K	2.4\%	YES
CHILE-1	Chile	10/24/2007	859	12102K	35K	12K	120K	1.0\%	NO
CHINA-1	China	12/5/2008	451	1101K	7K	3K	6K	0.5\%	NO
CHINA-2	China	3/19/2008	712	6644K	46K	10K	22K	0.3\%	NO
COLOMBIA-1	Colombia	11/13/2007	839	4186K	9K	5K	77K	1.8\%	YES
ECUADOR-1	Ecuador	3/19/2009	347	667 K	3K	2K	6K	0.9\%	NO
FRANCE-1	France	10/29/2008	488	2806K	10K	5K	11K	0.4\%	NO
FRANCE-2	France	11/18/2008	468	4878K	17K	10K	18K	0.4\%	NO
FRANCE-3	France	11/5/2008	481	3102K	21K	6K	33K	1.1\%	NO
GERMANY-1	Germany	10/22/2008	495	453K	3K	3K	1K	0.2\%	NO
HONGKONG-1	Hong Kong	5/24/2008	646	1229K	10K	6K	3K	0.3\%	YES
IRELAND-1	Ireland	5/28/2008	642	11660K	35K	18K	94K	0.8\%	YES
ITALY-1	Italy	11/19/2008	467	1076K	4K	3K	2K	0.2\%	NO
ITALY-2	Italy	12/5/2008	451	1622K	5K	4K	7K	0.4\%	YES
MEXICO-1	Mexico	5/15/2009	290	600K	4K	2K	39K	6.5\%	YES
NETHERLANDS-1	Netherlands	5/2/2009	303	1485K	10K	8K	4K	0.3\%	YES
NEWZEALAND-1	New Zealand	6/17/2008	622	9528K	39K	12K	295K	3.1\%	NO
RUSSIA-1	Russia	2/11/2009	383	13765K	120K	30K	308K	2.2\%	NO
SINGAPORE-1	Singapore	3/20/2009	346	514K	2K	2K	1K	0.1\%	YES
SPAIN-1	Spain	6/27/2008	612	3017 K	11K	5K	28K	0.9\%	YES
TURKEY-1	Turkey	6/4/2008	635	8889K	30K	13K	55K	0.6\%	YES
UK-4	UK	10/5/2008	512	2774K	7K	6K	20K	0.7\%	NO
UK-1	UK	5/7/2008	663	8124K	24K	13K	152K	1.9\%	YES
UK-2	UK	6/27/2008	612	3442K	16K	5K	25K	0.7\%	NO
UK-3	UK	2/17/2009	377	494K	6K	4K	5K	1.0\%	YES
UK-5	UK	6/18/2008	621	433K	4K	3K	1K	0.3\%	NO
URUGUAY-1	Uruguay	10/23/2007	860	12297K	46K	10K	79K	0.6\%	YES
US-1	US	4/11/2009	324	13484K	57K	35K	486K	3.6\%	NO
US-2	US	5/6/2008	664	6309K	14K	10K	35K	0.6\%	YES
US-3	US	5/8/2008	662	11868K	29K	15K	262K	2.2\%	YES
VENEZUELA-1	Venezuela	$5 / 16 / 2008$	654	10292K	20K	13K	49K	0.5\%	NO
Mean			571	5236 K	20K	8K	80K	2.9\%	
Median			612	3292K	11K	6K	33 K	0.8\%	

Table 2: Share of Small Changes

Database	Country	Percent of Price Changes with Size		
		$<\|\mathbf{1 0 \%}\|$	$<\|\mathbf{5 \%}\|$	$<\|\mathbf{1 \%}\|$
AUSTRALIA-1	Australia	13.6	6.2	0.7
AUSTRALIA-2	Australia	13.3	1.9	0.4
AUSTRALIA-3	Australia	50.4	23.9	2.2
CHINA-2	China	73.9	37.7	2.6
ARGENTINA-1	Argentina	54.6	28.7	4.2
URUGUAY-1	Uruguay	69.5	59.5	41.6
ECUADOR-1	Ecuador	43.1	22.2	3.9
SPAIN-1	Spain	66.8	35.4	5.2
VENEZUELA-1	Venezuela	45.9	29.1	3.2
FRANCE-1	France	79.5	53.9	8.3
FRANCE-2	France	42.9	23.4	4.6
FRANCE-3	France	70.9	57.7	13.2
HONGKONG-1	Hong Kong	51.7	27.7	4.0
ITALY-2	Italy	27.4	14.0	1.1
CHILE-1	Chile	48.3	25.8	3.6
US-2	US	39.0	20.3	0.9
MEXICO-1	Mexico	21.3	13.8	3.1
NETHERLANDS-1	Netherlands	80.2	60.2	6.2
BRAZIL-1	Brasil	55.3	35.1	4.3
RUSSIA-1	Russia	40.0	23.7	8.6
US-3	US	14.5	4.4	1.0
SINGAPORE-1	Singapore	66.7	27.8	1.1
UK-1	UK	58.8	47.7	23.6
IRELAND-1	Ireland	38.3	18.9	4.2
TURKEY-1	Turkey	22.2	8.9	1.0
UK-4	UK	16.8	6.8	0.1
UK-2	UK	66.1	53.7	26.5
COLOMBIA-1	Colombia	59.9	37.9	7.6
UK-5	UK	29.3	14.3	1.7
NEWZEALAND-1	New Zealand	35.8	16.2	2.1
Mean		$\mathbf{4 6 . 5}$	$\mathbf{2 7 . 9}$	$\mathbf{6 . 4}$
Median		$\mathbf{4 7 . 1}$	$\mathbf{2 4 . 9}$	$\mathbf{3 . 8}$

Table 3: Estimation of Hartigan's Dip and Silverman's Tests

	DIP Test (calibrated)		Silverman's Test		
	Dip Stat. (lower is unimodal)	$\begin{gathered} \text { Null }=1 \text { mode } \\ \text { P-values } \end{gathered}$	Critical Band. (lower is unimodal)	$\begin{gathered} \text { Null }=1 \text { mode } \\ \text { P-values } \end{gathered}$	Null ≤ 2 modes P -values
AUSTRALIA-1	0.04	0.00	2.21	0.00	0.03
AUSTRALIA-2	0.07	0.04	1.79	0.25	0.24
AUSTRALIA-3	0.02	0.00	1.27	0.00	0.33
AUSTRALIA-4S	0.01	0.00	0.65	0.00	0.00
CN_CARREFOUR	0.02	0.00	1.34	0.00	0.13
CHINA-2	0.02	0.00	1.61	0.00	0.00
ARGENTINA-1	0.07	0.00	1.92	0.00	0.00
URUGUAY-1	0.10	0.00	0.49	0.00	0.00
ECUADOR-1	0.02	0.00	1.60	0.00	0.20
SPAIN-1	0.03	0.00	1.72	0.00	0.00
VENEZUELA-1	0.04	0.00	0.77	0.00	0.00
FRANCE-1	0.02	0.00	1.40	0.00	0.00
FRANCE-2	0.02	0.00	1.10	0.00	0.01
FRANCE-3	0.04	0.00	0.59	0.00	0.00
HONGKONG-1	0.04	0.00	1.22	0.00	0.00
ITALY-1	0.02	0.00	0.92	0.03	0.10
ITALY-2	0.03	0.00	1.57	0.00	0.15
CHILE-1	0.02	0.00	1.74	0.00	0.00
ARGENTINA-2	0.03	0.00	1.47	0.00	0.00
US-2	0.07	0.00	2.42	0.00	0.01
MEXICO-1	0.03	0.00	0.81	0.00	0.00
NETHERLANDS-1	0.01	0.00	1.06	0.00	0.07
BRAZIL-1	0.03	0.00	1.12	0.00	0.00
RUSSIA-1	0.02	0.00	0.95	0.00	0.00
US-3	0.04	0.00	1.56	0.00	0.00
SINGAPORE-1	0.09	0.00	2.48	0.00	0.33
UK-1	0.01	0.00	0.68	0.00	0.00
IRELAND-1	0.05	0.00	1.70	0.00	0.00
TURKEY-1	0.02	0.00	1.62	0.00	0.03
UK-4	0.08	0.00	2.47	0.00	0.00
UK-2	0.01	0.00	0.54	0.00	0.17
UK-3	0.01	0.00	0.83	0.00	0.00
US-1	0.06	0.00	1.05	0.00	0.00
COLOMBIA-1	0.01	0.00	0.66	0.03	0.97
UK-5	0.03	0.00	0.95	0.06	0.12
NEWZEALAND-1	0.05	0.00	2.35	0.00	0.00

Table 4: Proportional Mass Test - Distribution centered at 0\%

Establishment	Observations	Centered Centered	Point Estimate	Mean of Bootstrap	Standard Deviation	Share above zero
AUSTRALIA-1	9140	0	-0.345	-0.344	0.02	0.00
AUSTRALIA-2	35	0	0	-0.087	0.26	0.41
AUSTRALIA-3	585	0	-0.503	-0.501	0.083	0.00
AUSTRALIA-4	19332	0	0.216	0.216	0.008	1.00
CHINA-1	1730	0	-0.241	-0.241	0.039	0.00
CHINA-2	10669	0	-0.62	-0.621	0.021	0.00
ARGENTINA-1	45946	0	-0.15	-0.15	0.007	0.00
GERMANY-1	9	0	0.341	0.352	0.323	0.91
URUGUAY-1	52454	0	0.959	0.959	0.001	1.00
ECUADOR-1	1450	0	-0.081	-0.079	0.037	0.01
SPAIN-1	10084	0	-0.196	-0.196	0.016	0.00
VENEZUELA-1	15779	0	-0.463	-0.463	0.016	0.00
FRANCE-1	6121	0	-0.171	-0.173	0.019	0.00
FRANCE-2	5309	0	-0.089	-0.088	0.02	0.00
FRANCE-3	20355	0	0.103	0.103	0.008	1.00
HONGKONG-1	933	0	-0.111	-0.113	0.049	0.00
ITALY-1	635	0	0.06	0.061	0.052	0.89
ITALY-2	910	0	-0.548	-0.553	0.069	0.00
CHILE-1	31936	0	-0.236	-0.235	0.01	0.00
ARGENTINA-2	20283	0	-0.132	-0.133	0.011	0.00
US-2	5261	0	-1.192	-1.192	0.05	0.00
MEXICO-1	5131	0	0.095	0.094	0.016	1.00
NETHERLANDS-1	2473	0	-0.416	-0.416	0.039	0.00
BRAZIL-1	88811	0	-0.092	-0.092	0.005	0.00
RUSSIA-1	70016	0	0.393	0.393	0.004	1.00
US-3	10466	100	0	0.156	0.156	0.011

Note: Bootstrap derived from 500 replications.

Table 5: Proportional Mass Test for each quarter
(Distribution centered at 0\%)

Estimates through time	Q4.2007	Q1.2008	Q2.2008	Q3.2008	Q4.2008	Q1.2009	Q2.2009	Q3.2009	Q4.2009
AUSTRALIA-1					-0.295	-0.274	-0.106	-0.587	-0.697
AUSTRALIA-2							0.108	0.270	
AUSTRALIA-3					-0.920	-1.403	-0.588	-0.015	-0.134
AUSTRALIA-4			0.234	0.192	0.277				
CHINA-1									-0.222
CHINA-2							-1.221		-0.331
ARGENTINA-1	-0.784	-0.641	-0.704	-0.750	-0.675	-0.865	-0.199	0.454	-0.264
GERMANY-1									
URUGUAY-1	1.055	1.012	0.906	0.939	0.798	0.907	0.935	0.914	-1.555
ECUADOR-1						-0.495	-0.094	-0.347	0.245
SPAIN-1				0.217	0.040	-0.388	-0.392	-0.292	-0.259
VENEZUELA-1			0.508	0.114	0.030	-0.054	-0.901	-0.095	-0.132
FRANCE-1					0.044	-0.338	-0.690	-0.106	-0.219
FRANCE-2					-0.769	-0.235	0.277	-0.358	-0.198
FRANCE-3					-0.600	-0.322	-0.446	0.444	0.357
HONGKONG-1			-0.816	0.029	-1.042	-1.268	-1.316		
ITALY-1					-1.195	-0.462	-0.584	0.085	0.009
ITALY-2					0.238	-0.522	-0.470	-1.032	-0.579
CHILE-1	-0.591	-0.174	-0.263	-0.267	-0.335	-0.222	-0.072	-0.064	0.012
ARGENTINA-2	-0.301	-0.239	-0.239	-0.015	-0.010	-0.102	0.103	-0.391	-0.171
US-2			-1.479	-1.238	-1.800		-1.151	-1.179	-1.114
MEXICO-1							0.719	-0.529	-0.305
NETHERLANDS-1							-0.740	-0.388	-0.419
BRAZIL-1	-1.430	-0.684	-0.459	-0.518	-0.242	-0.513	-0.120	-0.330	0.531
RUSSIA-1						-0.190	-0.121	0.624	0.031
US-3			-0.487	0.106	-0.190	0.212	0.332	0.491	0.160
SINGAPORE-1							-0.866	-1.238	
UK-1			0.686	0.689	0.393	0.510	0.658	0.660	0.674
IRELAND-1			0.007	0.202	-0.711	-0.117	-0.039	-0.207	-0.549
TURKEY-1			-0.430	-0.591	-0.438	-0.686	-0.415	-0.247	-0.689
UK-4						-2.429	-1.132		
UK-2				0.707	0.605	0.581	0.561	0.374	
UK-3							0.107	0.346	
US-1							0.479	0.574	0.376
COLOMBIA-1	-0.017	0.056		0.110	-0.019	0.017	-0.077	-0.061	0.055
UK-5			-0.775	-0.450	-0.379	0.280	0.046		
NEWZEALAND-1			-0.035	-0.016	-0.315	-0.497	0.012	-0.501	-0.549

Table 6: Proportional Mass Test - Distribution centered at the highest Mode

Establishment	Observations	Centered Centered	Point Estimate	Mean of Bootstrap	Standard Deviation	Share above zero
AUSTRALIA-1	9606	-2.9	0.109	0.109	0.012	1.00
AUSTRALIA-2	105	-3.7	-0.565	-0.597	0.232	0.00
AUSTRALIA-3	1078	4.9	0.225	0.221	0.031	1.00
AUSTRALIA-4	19330	-0.3	0.213	0.213	0.008	1.00
CHINA-1	1804	-2.1	0.285	0.284	0.023	1.00
CHINA-2	12691	4.1	0.432	0.432	0.008	1.00
ARGENTINA-1	50598	0.9	0.178	0.178	0.005	1.00
GERMANY-1	13	1.4	00 nan	$00 n a n$	$00 n a n$	1.00
URUGUAY-1	52651	0.3	0.908	0.908	0.001	1.00
ECUADOR-1	1552	4.1	0.115	0.114	0.033	1.00
SPAIN-1	9791	2.1	0.177	0.177	0.012	1.00
VENEZUELA-1	18146	2.7	0.735	0.735	0.004	1.00
FRANCE-1	5486	3.1	0.313	0.313	0.013	1.00
FRANCE-2	6314	4.5	0.305	0.303	0.013	1.00
FRANCE-3	20869	1.1	0.725	0.725	0.004	1.00
HONGKONG-1	1086	1.9	0.22	0.217	0.033	1.00
ITALY-1	594	-2.1	-0.095	-0.091	0.058	0.05
ITALY-2	1020	1.5	0.077	0.075	0.039	0.97
CHILE-1	32092	4.1	0.129	0.128	0.007	1.00
ARGENTINA-2	36321	4.9	0.287	0.287	0.005	1.00
US-2	4684	-3.3	0.261	0.261	0.016	1.00
MEXICO-1	5021	-1.7	0.342	0.341	0.013	1.00
NETHERLANDS-1	2603	-1.1	0.381	0.381	0.017	1.00
BRAZIL-1	90226	1.9	0.38	0.38	0.003	1.00
RUSSIA-1	70366	0.1	0.406	0.406	0.003	1.00
US-3	10780	-0.3	0.159	0.16	0.011	1.00
SINGAPORE-1	83	1.3	0.09	0.085	0.129	0.74
UK-1	71839	-0.5	0.711	0.711	0.002	1.00
IRELAND-1	17991	-0.5	0.152	0.153	0.008	1.00
TURKEY-1	6437	3.1	0.118	0.118	0.014	1.00
UK-4	2132	4.1	0.31	0.31	0.021	1.00
UK-2	13554	-0.5	0.695	0.695	0.005	1.00
UK-3	1769	-0.7	0.46	0.459	0.019	1.00
US-1	230505	-0.1	0.423	0.423	0.002	1.00
COLOMBIA-1	29651	1.1	0.159	0.159	0.007	1.00
UK-5	425	2.9	0.153	0.153	0.058	0.99
NEWZEALAND-1	46034	3.1	0.127	0.127	0.005	1.00
Note: Bootstrap derived from $500 ~ r e p l i c a t i o n s . ~$						

Note: Bootstrap derived from 500 replications.

Table 7: Share of bootstraps with PM above zero for each quarter (Distribution centered at the highest Mode)

Estimates through time	Q4.2007	Q1.2008	Q2.2008	Q3.2008	Q4.2008	Q1.2009	Q2.2009	Q3.2009	Q4.2009
AUSTRALIA-1					0.92	1.00	0.02	1.00	1.00
AUSTRALIA-2							0.10	0.86	
AUSTRALIA-3					1.00	1.00	0.95	0.41	0.51
AUSTRALIA-4			1.00	1.00	1.00				
CHINA-1									1.00
CHINA-2							1.00		1.00
ARGENTINA-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
GERMANY-1									
URUGUAY-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ECUADOR-1						0.95	0.95	1.00	1.00
SPAIN-1				1.00	0.99	0.20	1.00	1.00	1.00
VENEZUELA-1			1.00	1.00	0.52	1.00	1.00	1.00	0.88
FRANCE-1					1.00	1.00	1.00	1.00	0.88
FRANCE-2					1.00	1.00	1.00	1.00	0.01
FRANCE-3					1.00	1.00	1.00	1.00	1.00
HONGKONG-1			1.00	1.00	1.00	0.93	0.75	1.00	1.00
ITALY-1					0.65	0.94	0.99	0.89	0.99
ITALY-2					0.81	1.00	0.98	0.88	0.99
CHILE-1	1.00	1.00	1.00	1.00	1.00	1.00	0.07	0.04	1.00
ARGENTINA-2	1.00	1.00	1.00	1.00	1.00	0.98	0.80	1.00	0.78
US-2			1.00	1.00	1.00		1.00	1.00	1.00
MEXICO-1							1.00	1.00	1.00
NETHERLANDS-1							1.00	1.00	1.00
BRAZIL-1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
RUSSIA-1						1.00	1.00	1.00	1.00
US-3			1.00	1.00	0.00	1.00	1.00	1.00	1.00
SINGAPORE-1							0.88	0.98	0.99
UK-1			1.00	1.00	1.00	1.00	1.00	1.00	1.00
IRELAND-1			0.97	1.00	0.98	1.00	0.96	1.00	1.00
TURKEY-1			0.79	1.00	1.00	0.99	1.00	1.00	1.00
UK-4					1.00	0.91	1.00	1.00	0.99
UK-2			1.00	1.00	1.00	1.00	1.00	1.00	
UK-3							1.00	1.00	
US-1							1.00	1.00	1.00
COLOMBIA-1	0.98	0.93	1.00	0.01	1.00	1.00	1.00	1.00	1.00
UK-5			0.85	1.00	0.98	0.82	0.81		
NEWZEALAND-1			1.00	0.31	1.00	1.00	0.71	1.00	1.00
Supermarkets with "Bimodality"	1	1	4	3	8	10	14	6	9
Supermarkets	6	6	17	18	26	26	34	32	31
Ratio with "Bimodality"	0.17	0.17	0.24	0.17	0.31	0.38	0.41	0.19	0.29

Table 8: Comparison with Scanner and CPI sampling methods

	Daily Data	Weekly Average	Monthly Sampling
Mean Dip (Hartigan)	0.035	0.019	0.046
Mean Critical Bandwidth (Silverman)	1.351	0.799	1.471
Mean PM Score	-0.143	0.145	-0.203

Note: Unimodal distributions have lower Dips, lower CBs and positive PMs.

Figures

Figure 1: Example of PM values

Figure 2: Histogram of Changes - Range -5% to 5%

Figure 3: Histogram of Changes - Range -5\% to 5\%

Figure 4: Histogram of Changes - Range -5\% to 5\%

Figure 5: PM Score and Contours for 0-0.05 percent range

The Distribution of the Size of Price Changes
 Alberto Cavallo Roberto Rigobon
 Harvard University MIT \& NBER

December 16, 2010

A Appendix

A. 1 Additional Tables and Figures

Table A1: Implied Mean and Median Durations

	Mean (days)	$\begin{gathered} \hline \text { Median } \\ \text { (days) } \end{gathered}$
AUSTRALIA-1	16	11
AUSTRALIA-2	139	67
AU_GROCERIES4U	465	526
CHINA-1	165	112
CHINA-2	188	163
ARGENTINA-1	122	82
GERMANY-1	90	70
URUGUAY-1	173	131
ECUADOR-1	136	98
SPAIN-1	106	81
VENEZUELA-1	226	164
FRANCE-1	260	251
FRANCE-2	251	238
FRANCE-3	96	78
HONGKONG-1	315	291
ITALY-1	374	479
ITALY-2	243	236
CHILE-1	171	96
ARGENTINA-2	73	50
US-2	175	109
MEXICO-1	48	29
NETHERLANDS-1	175	140
BRAZIL-1	70	53
RUSSIA-1	66	55
US-3	89	45
SINGAPORE-1	244	229
UK-1	106	61
IRELAND-1	144	101
TURKEY-1	196	126
UK-4	386	470
UK-2	113	78
UK-3	125	87
US-1	66	28
COLOMBIA-1	85	57
UK-5	105	53
NEWZEALAND-1	49	23
AUSTRALIA-4	42	29
Mean	159	135
Median	136	87

Note: Implied Durations using method in Bils and Klenow (2004)

Figure A1: PM Score and Contours for 0-0.20 percent range

Figure A2: Histogram of Changes - Range - 50% to 50%

Figure A3: Histogram of Changes - Range - 50% to 50%

Figure A4: Histogram of Changes - Range - 50% to 50%

[^0]: *We are grateful to Alberto Alesina, Greg Mankiw, Emmanuel Farhi, and seminar participants at Harvard, MIT, BLS, ITAM, Oxford, Queen's University at Belfast, and the Central Bank of Norway for helpful comments and suggestions.
 ${ }^{\dagger}$ email: acavallo@mit.edu
 ¥email: rigobon@mit.edu

[^1]: ${ }^{1}$ As can be attested by the excellent survey by Klenow and Malin (2009). See ?, Dhyne, Alvarez, Bihan, Veronese, Dias, Hoffman, Jonker, Lunnenmann, Rumler, and Vilmunen (2005), Nakamura and Steinsson (2008), Bils, Klenow, and Malin (2009), Gagnon (2007), Gopinath and Rigobon (2008), Klenow and Kryvtsov (2008), Wulfsberg (2008).
 ${ }^{2}$ See Midrigan (2005).
 ${ }^{3}$ In addition, some recent state-dependent models can also imply unimodal distributions. For example, a model with economies of scope in menu costs, such as Midrigan (2005)
 ${ }^{4}$ A paper by Cavallo (2010) previously found evidence of bi-modality in four Latin American countries: Argentina, Brazil, Chile, and Colombia.

[^2]: ${ }^{5}$ For an introduction to Scraped Data, see Cavallo (2010)
 ${ }^{6}$ From the inflation calculation point of view, scanner data could have an advantage over the data we use. This would be the case if there are frequent changes in the use of discounts or other aspects of consumers demand, which are an important part of the welfare calculations of inflation that our data misses.
 ${ }^{7}$ In fact, when we apply Silverman's test to a null of bimodality - with an alternative hypothesis of more than two modes - it still rejects it for 14 supermarkets.

[^3]: ${ }^{8}$ As we show below unimodality is easily rejected if the whole distribution is used. As an alternative, we can exclude sales using explicit indicators posted by the retailers online. However, only a fraction of retailers have sale indicators that we can collect, and even in those some cases, it is possible that not all sale events are explicitly identified.

[^4]: ${ }^{9}$ See BLS (2009)
 ${ }^{10}$ From the inflation measurement point of view, the computation of hedonics and the imputation of missing variables using statistical methods is the correct procedure. These practices, however, might lead to a pricing behavior that is not completely reflective of the posted prices by firms

[^5]: ${ }^{11}$ For more on the scraping methodology, see Cavallo (2010) and www.billionpricesproject.org

[^6]: ${ }^{12}$ See Kashyap (1995), Klenow and Kryvtsov (2008), Kackmeister (2007), Midrigan (2005) and Cavallo (2010)
 ${ }^{13}$ Parametric tests of modality are more common in economics. For example see Paapaa and van Dijk (1998) and Anderson (2004) for methods involving mixing normal distributions and their mass overlaps.

[^7]: Unfortunately, these tests require the ex-ante assumption of a number of clusters or groups and are useful only to reject the null hypothesis of normality, not unimodality.
 ${ }^{14}$ See Hartigan and Hartigan (1985)

[^8]: ${ }^{15}$ Hartigan and Hartigan (1985) also show that this is not always the case with small samples. To address this concern, we use a calibration of the dip test proposed by ?, also used by Henderson, Parmeter, and Russell (2008).
 ${ }^{16}$ The bootstraps are drawn from an smoothed conditional function re-scaled to have a variance equal to the sample variance. See Henderson, Parmeter, and Russell (2008) for details.

[^9]: ${ }^{17}$ Because the number of modes is non-increasing with h, \hat{P} is equivalent to the share of bootstraps that have more than one mode when evaluated with bandwidth $\hat{h}_{c r i t}^{1}$. We use this approach to estimate \hat{P}, also called the achieved significance level in the bootstrap literature, because it is easier to compute.
 ${ }^{18}$ These problems are derived from the use of a single bandwidth in the kernel smoothing estimates.

[^10]: ${ }^{19}$ If the distribution is uniform, $P M_{1,5}^{0}=0$ when the domain of the distribution is wider than 5 , otherwise $P M_{1,5}^{0}$ is positive

[^11]: ${ }^{20}$ In a setting with high inflation, monthly sampling can have the opposite effect, accumulating several small price changes that occur within a month.

[^12]: ${ }^{21}$ See, Chapter 17, pages 30 to 33.
 ${ }^{22}$ More references

[^13]: ${ }^{23}$ See the Appendix Figure A1 for a wider window of 0 to 20 percent in PM Scores

