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Abstract

This paper studies a dynamic agency problem which includes limited liability, moral
hazard and adverse selection. The paper develops a robust approach to dynamic con-
tracting based on calibrating the payoffs that would have been delivered by simple
benchmark contracts that are attractive but infeasible, due to limited liability con-
straints. The resulting dynamic contracts are detail-free and satisfy robust perfor-
mance bounds independently of the underlying process for returns, which need not be
i.i.d. or even ergodic.

1 Introduction

This paper considers a dynamic agency problem in which a principal hires an agent to make

investment decisions on her behalf.1 The contracting environment includes limited liabil-

ity, moral hazard, adverse selection, and makes very few assumptions about the underlying

process for returns and information. The paper develops a robust approach to dynamic
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suggestions. SeHyoun Ahn and Juan Ortner provided excellent research assistance.

1Throughout the paper, the principal is referred to as she, while the agent is referred to as he.
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contracting whose main steps are as follows: 1) identify a simple class of high-liability static

linear contracts that satisfy attractive and robust efficiency properties; 2) construct limited-

liability dynamic contracts that achieve the same performance by calibrating the rewards to

the agent so that they approximately satisfy key properties of the benchmark high-liability

contracts. The resulting dynamic contracts—referred to as calibrated contracts—satisfy

attractive performance bounds independently of the underlying process for returns. In par-

ticular, the results do not rely on any ergodicity or stationarity assumptions.

The model considers a risk-neutral principal and a risk-neutral agent. Both the principal

and the agent are patient. The principal is infinitely lived, while the agent has a large but

finite horizon which need not be known to the principal. In every period a fixed amount of

resources is to be invested on behalf of the principal by the agent. The agent has private

information about the process for returns and can exert costly effort to obtain additional

information. The main constraint on contracts is limited liability: the agent cannot receive

negative transfers, and rewards are bounded above by per-period resources, which in this

framework rules out large deferred payments. The paper makes few assumptions on the

underlying probability space and the agent may start with arbitrary private information.

Furthermore, the process for information and returns need not be i.i.d. or even ergodic: it

may be that with non-vanishing probability there is a large number of periods where returns

happen to be negative, or where costly information turns out to be useless.

This is a difficult environment to contract in. The principal is facing both adverse

selection (the agent may have persistent private information about returns, or about the

cost-effectiveness of information acquisition) and moral hazard (the agent expends effort to

acquire information and makes asset allocation decisions). At this level of generality, char-

acterizing optimal contracts is unlikely to be informative and may not actually be possible if

the principal has poorly specified beliefs over the environment. Instead the paper develops

a robust approach to dynamic contracting which emphasizes prior-free performance bounds.

The first step of the approach relaxes limited liability constraints and identifies a suit-
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able high-liability benchmark contract. This benchmark takes the form of a simple linear

contract which rewards the agent a share of his externality on the principal. This contract

exhibits high-liability since the agent is expected to provide compensation for the losses he

causes. While not optimal in every environment, this linear contract constitutes an attrac-

tive benchmark: it is max min optimal in an appropriate sense, weakly renegotiation proof,

and can guarantee the principal a minimum share of first best returns.

The second step of the approach is to develop a simple class of dynamic contracts that

robustly approximate the performance of linear high-liability contracts while satisfying severe

limited liability constraints. The key insight is to calibrate both the rewards to the agent and

the share of total wealth he is investing so that for all possible strategies and all realizations

of uncertainty the payoffs obtained by the agent and the excess returns obtained by the

principal remain as tightly linked as they are under benchmark linear contracts. From

the perspective of any history, these calibrated contracts induce performance approximately

equal to that achieved by the benchmark linear contracts.

Several extensions emphasize the broader applicability of the approach: the methods

developed in the paper can be used to approximate a large class of high-liability contracts

in addition to the linear benchmark; penalized calibrated contracts can induce uninformed

agents to self-screen; multi-agent contracts can be used to jointly manage several agents with

different and varying abilities.

The paper hopes to usefully complement the rich literature on optimal dynamic con-

tracting (see for instance Rogerson (1985), Green (1987), Holmström and Milgrom (1987),

Spear and Srivastava (1987), Laffont and Tirole (1988), and more recently Battaglini (2005),

DeMarzo and Sannikov (2006), Biais et al. (2007, 2010), DeMarzo and Fishman (2007),

Sannikov (2008), Edmans et al. (forthcoming) or Zhu (2010)). Because optimal contracts

depend finely on the details of the underlying environment, this literature has delivered rich

positive predictions on how contract form should vary with the circumstances. However, a

limitation of the optimal contracting approach is that it provides little guidance on how well
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those contracts perform if the environment is misspecified. The current paper gives up on

optimality and develops a class of detail-free contracts that satisfy attractive efficiency prop-

erties for a very broad class of stochastic environments. Notably, the performance bounds

satisfied by these robust contracts hold in environments where solving for optimal contracts

has proved particularly difficult. This includes non-stationary environments (as in Battaglini

(2005), Tchistyi (2006), He (2009), Pavan et al. (2010) or Garrett and Pavan (2010)), and

settings with both moral hazard and adverse selection (such as Sannikov (2007) or Fong

(2008)). Still, the contracts developed in the current paper are substantially connected to

the optimal contracts derived by DeMarzo and Sannikov (2006) or Biais et al. (2007, 2010)

in specific settings. The similarities as well as the differences are instructive and will be

discussed in detail.

The paper contributes to a small literature on dynamic design mechanism design with

patient players. It is most closely related to the work of Rubinstein (1979), Rubinstein and

Yaari (1983) and Radner (1981, 1985) which proves the existence of approximately first-

best contracts in a dynamic moral hazard problem where the agent’s production function is

stationary and common knowledge. More recently Jackson and Sonnenschein (2007) propose

simple quota mechanisms that approximately implement any Pareto efficient allocation rule

in a class of dynamic multi-agent allocation problems where the agents have i.i.d. preferences.

Escobar and Toikka (2009) extend the results of Jackson and Sonnenschein (2007) to the

case where preferences follow an irreducible Markov chain. As in these previous approaches,

the main idea of the current paper is to constrain payoffs to satisfy key properties that

would hold under an ideal benchmark. The central difference between the current paper and

Radner (1981, 1985), Jackson and Sonnenschein (2007) or Escobar and Toikka (2009), is that

they assume the state of the world follows an ergodic process and their analyses rely strongly

on this assumption: the basic idea is to make sure that the empirical distribution of realized

outcomes matches the anticipated distribution of outcomes under first-best behavior. This

approach is not applicable in the current paper since the underlying environment need not
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be ergodic and no law of large numbers need apply.

The methods used in this paper, as well as the emphasis on general stochastic processes,

connect the paper to the literature on testing experts (see for instance Foster and Vohra

(1998), Fudenberg and Levine (1999), Lehrer (2001) or more recently Al-Najjar and Wein-

stein (2008), Feinberg and Stewart (2008) and Olszewski and Sandroni (2008)). However,

the main question here is not whether good tests are available. Rather, this paper takes a

principal-agent approach related to that of Echenique and Shmaya (2007), Olszewski and

Peski (2011) or Gradwohl and Salant (2011). These papers show that in such environments

there are satisfactory ways to identify experts that generate positive surplus. Olszewski and

Peski (2011) relies on ex post high-liability contracts to incentivize truth telling. Gradwohl

and Salant (2011) show it is possible to rely on upfront payments instead. Neither paper

tackles incentive provision when information acquisition is costly.

The paper is also related to a recent finance literature on appropriate performance mea-

sures for wealth managers. Lo (2001), Goetzmann et al. (2007) and Foster and Young (2010)

all emphasize the fragility of many performance measures to gaming by the agent, as well as

the difficulty of both rewarding and screening agents. In particular Foster and Young (2010)

describe environments in which rewarding and screening is in fact impossible. This occurs

because their environment allows for a strong form of private saving such that informed

managers value income in early periods much more than in later periods.2 As a result,

talented managers are unwilling to pay the monetary cost needed to induce screening. In

contrast, the current paper essentially rules out private savings and considers patient players

with constant marginal utility for income. In that case, self-screening can be obtained, even

under severe limited liability constraints. The current paper is also related to recent work

on the incentive properties of high-watermark contracts. Using Goetzmann et al. (2003)’s

valuation of highwatermark contracts as ongoing options, Panageas and Westerfield (2009)

show in a specific environment that high-watermark contracts do not necessarily lead to ex-

2Specifically, consumption can be arbitrarily delayed and managers can save on their own at the same
rate of returns they generate for the firm.
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cessive risk taking when agents have an infinite horizon, although their payoffs are convex in

returns. The current paper shows that in fact, a variation on high-watermark contracts can

approximately align the interests of the agent and the principal for a large class of underlying

stochastic environments.

Finally the paper is related to the literature on robust mechanism design that opera-

tionalizes the doctrine set by Wilson (1987), and attempts to characterize mechanisms that

behave well under weak assumptions over payoff distributions and beliefs. A rich strand

of that literature studies mechanisms that are robust with respect to the solution concept

used to characterize the players’ behavior.3 The paper is especially related to another strand

in this literature, dating back to Hurwicz and Shapiro (1978) and more recently illustrated

by Neeman (2003) or Hartline and Roughgarden (2008), which looks for mechanisms that

satisfy robust performance bounds over broad sets of fundamentals.4 A tricky step, common

to this literature and the current paper, is to define appropriate benchmark performance

measures that allow for informative worst-case analysis of mechanisms.

The paper is structured as follows. Section 2 describes the framework. Section 3 intro-

duces a benchmark class of high liability linear contracts that satisfy a number of attractive

efficiency properties but require high liability. Section 4 is the core of the paper: it devel-

ops the idea of calibrated contracts and analyzes their performance. Section 5 generalizes

the approach in several ways: first by identifying a broader class of high-liability contracts

that can be successfully calibrated; second by providing suitable extensions of the approach

when the principal faces multiple potential agents. Section 6 relates calibrated contracts

to other contracts of interest and concludes. Appendix A extends the analysis to various

environments. Proofs are given in Appendix B, unless mentioned otherwise.

3See for instance Dasgupta et al. (1979), Hagerty and Rogerson (1987), Eliaz (2002), Chung and Ely
(2003, 2007) or Bergemann and Morris (2005).

4Local approaches are possible and informative. For instance Madarász and Prat (2010) consider screening
mechanisms that satisfy strong efficiency bounds for all type distributions within a small neighborhood.
Global incentive compatibility constraints play an important role in their analysis, and will also show up in
this paper.
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2 The Framework

Players, Actions and Payoffs. A principal hires an agent to make investment allocations

on her behalf. The agent is active for a large but finite number of periods N . The principal

has an infinite horizon and need not know the agent’s horizon N . Both the principal and

the agent are patient and do not discount future payoffs.5

In each period t ∈ {1, · · · , N}, the principal invests an amount w at the beginning of the

period. The amount of wealth w invested in each period is constant, and can be thought of

as a steady state amount of wealth to be invested. The realized wealth wt after investment

is consumed at the end of the period, which rules out private saving. Both the principal and

the agent are risk neutral. The agent’s outside option is set to zero.

Wealth can be invested in one of K assets whose returns at time t are denoted by

rt = (rk,t)k∈{1,··· ,K}. Let R denote the set of possible returns rt. An asset allocation at time t

is a vector at ∈ A ⊂ RK such that
∑K

k=1 at = 1. Set A is convex and compact. It represents

constraints on possible allocations. These constraints can be thought of as a mandate set

by the principal as in He and Xiong (2010). Let 〈·, ·〉 denote the usual dot product. Given

asset allocation at and returns rt, the consumer’s wealth at the end of period t is

wt = w × (1 + 〈at, rt〉).

By assumption, returns are bounded below by −1 so that wt ≥ 0 (there cannot be negative

resources at the end of the period).

For any pair of allocations (a, a′) ∈ A2, the distance between a and a′ is defined by

d(a, a′) ≡ sup
rt∈R
| 〈a− a′, rt〉 |. (1)

The following assumption puts constraints on the set of permissible allocations A and is

5Appendix A shows how to extend the analysis when future payoffs are discounted.
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maintained throughout the paper.

Assumption 1. There exists d ∈ R+ such that for all (a, a′) ∈ A2, d(a, a′) ≤ d.

This assumption limits the magnitude of changes that can occur with the principal getting

no feedback.

At the beginning of every period t, managers can expend cost ct ∈ [0,+∞) towards

acquiring information. This cost can be the actual cost of obtaining data, an effort cost, or

the opportunity cost of time. Managers then make an asset allocation suggestion at ∈ A and

receive a payment πt depending on the realized public history at the end of period t. The

manager’s objective is to maximize his expected average payoffs

E

(
1

N

N∑
t=1

πt − ct

)
. (2)

Information. Information acquired at time t ∈ {1, · · · , N} is represented as a random

variable It from a measurable state space (Ω, σ) to a measurable signal space (I, σI). Publicly

available information is denoted by I0
t , includes realized past returns (rs)s<t, and corresponds

to the information available to the principal. In each period, the agent can choose to acquire

additional signals It(c) at cost c ∈ [0,+∞) from a set of possible signals {It(c)|c ∈ [0,+∞)}

indexed by their cost. By assumption I0
t is measureable with respect to It(0) so that the

agent is more informed than the principal, regardless of the information he acquires. Given

an information acquisition strategy (ct)t≥1, let (Ft)t≥1 be the manager’s filtration (generated

by (It(ct))t≥1), and let (F0
t )t≥1 denote the public information filtration (generated by (I0

t )t≥1).

The framework allows for adverse selection and moral hazard. At the time of contracting,

the agent may already know much more about the process for returns than the principal

(through signal I0(0)). Furthermore, the agent’s information and information acquisition

strategy are private.

For simplicity it is convenient to assume that the principal and the agent have a common
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prior P over the state space (Ω, σ).6 Let P = (Ω, σ, P ) denote the resulting probability space

(P will often be referred to as the environment). The paper does not assume that either

information or returns follow an i.i.d. or ergodic process. This results in a very flexible

model. For instance, there may be non-vanishing probability that returns are below their

period t = 1 expectation for an arbitrarily large number of periods. Also, the value of

the information that managers can collect may vary in arbitrary ways. For instance, once

valuable trading strategies can become obsolete over time.

Strategies. Altogether, an agent’s strategy consists of an information acquisition strategy

c = (ct)t∈N, and an asset allocation strategy a = (at)t∈N, where both ct and at are adapted to

the information available to the manager at the time of decision. Let a0
t and a∗t respectively

denote efficient asset allocations under information F0
t and Ft:

a0
t ∈ arg max

a∈A
E[〈a, rt〉 |F0

t ] and a∗t ∈ arg max
a∈A

E[〈a, rt〉 |Ft]. (3)

Allocation a0
t is the allocation the principal could pick on her own, given public information

F0
t . Let w0

t = w × (1 + 〈a0
t , rt〉) and wt = w × (1 + 〈at, rt〉) denote realized wealth under

allocation a0
t and under the allocation at actually chosen by the agent.

Contracts. Contracts (πt)t∈N are adapted to public histories observed by the principal,

where public histories consist of past public information (including past returns) as well as

past suggested asset allocations by the agent. The principal has commitment power but

transfers are subject to resource constraints: in every period t,

0 ≤ πt ≤ wt, (4)

The constraint that 0 ≤ πt corresponds to a limited-liability constraint on the agent’s side:

the agent does not have access to side resources that can be pledged in the contract. Sym-

6Results extend to a non-common prior setting, taking expectations under the agent’s prior.
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metrically, the constraint that πt ≤ wt limits payments to the agent to resources generated

in that period. This limits how long the payment of wages can be delayed and precludes the

possibility of large deferred payments.

These constraints are at the origin of the contracting problem: the agent does not share

on the downside, and rewards must be given in real time rather than delayed until the end.

Clearly, these are strong liability constraints which may be relaxed in a number of settings.

Naturally, the efficiency bounds derived in the paper remain valid when limited liability

constraint (4) is relaxed.

3 A High-Liability Benchmark

The environment described in Section 2 involves both moral hazard and adverse selection:

the agent must acquire information and makes asset allocation decisions that may or may not

benefit the principal; in addition the information that the agent has or may acquire is private.

At this level of generality, informative characterizations of optimal dynamic contracts are

unlikely and solving for optimal contracts may also be of limited use if the principal doesn’t

have well defined beliefs over the underlying environment.

The paper embraces an alternative approach to dynamic contracting which aims to iden-

tify contracts satisfying robust efficiency properties over broad classes of environments. The

first step of the analysis defines a class of benchmark contracts that have attractive effi-

ciency properties, but violate limited liability constraint (4). The second step of the analysis

constructs a class of dynamic contracts that satisfy constraint (4), and achieve performance

approximately as good as that of the benchmark contracts, regardless of the underlying

environment P .

Benchmark contracts. The contracts used as benchmark are linear contracts in which

the agent’s reward πt in period t is a share α of the externality his decisions have on the
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principal:

∀t, πt = α(wt − w0
t ).

7 (5)

These benchmark contracts are attractive for the following reasons:

(i) they satisfy a robust efficiency bound regardless of the underlying environment

and are max min optimal in an appropriate sense;

(ii) they are weakly renegotiation proof in the sense of Bernheim and Ray (1989) and

Farrell and Maskin (1989);

(iii) they are the only class of contracts satisfying a demanding no-loss condition,

under which the agent makes positive profits if and only if the principal gets

positive surplus

Note that even though both parties are risk-neutral, the fact that the agent has significant

private information means that fixed-price contracts in which all productive assets are sold

to the agent need not be optimal.8

Robust efficiency properties. Recent work by Rogerson (2003), Chu and Sappington

(2007) and Bose et al. (2011) has emphasized that simple contracts can often guarantee large

shares of the second-best surplus in contexts ranging from procurement to principal-agent

problems. These approaches have focused on parametric models for which it is possible to

compute the second-best explicitly.

Theorem 1, stated below, contributes to this literature by providing a non-parametric

bound on the share of first-best surplus that can be obtained through linear contracts, and

showing that benchmark contracts are max min optimal with respect to an appropriate class

of environments.

7Recall that wt and w0
t respectively denote final wealth under the agent’s suggested asset allocation and

under the default, public information, asset allocation. For instance, if α = 20% and the default allocation
a0t is to invest all wealth in risk-free bonds, the benchmark contract pays the agent 20% of the excess-returns
when he beats the risk-free rate, and charges him 20% of the foregone returns when he under-performs the
risk-free rate.

8In the max min problem defined below, fixed price contracts do not robustly guarantee a positive share
of first-best surplus: any positive price will cause the agent not to participate in some environment.
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To show this, additional notation must be introduced. Given a contract π = (πt)t≥0, the

agent solves optimization problem

max
c,a

E

(
1

N

N∑
t=1

πt − ct

)
. (P1)

The corresponding per-period excess returns rπ accruing to the principal (net of payments

to the agent) are

rπ ≡ inf

{
Ec,a

(
1

Nw

N∑
t=1

wt − w0
t − πt

)∣∣∣∣∣(c, a) solves (P1)

}
.

The expression for returns rπ involves an inf since the agent may be indifferent between

multiple strategy profiles. Returns accruing to the principal when the contract is πt =

α(wt − w0
t ) are denoted by rα. In anticipation of technical subtleties to come, it is useful

to note that because the underlying environment is very general, the paper cannot rule out

binding global incentive compatibility constraints.

For any ĉ ∈ [0,+∞), let rmax(ĉ) denote the production function for returns, i.e. expected

per-period returns generated when the agent: 1) incurs an expected per-period cost of infor-

mation acquisition equal to ĉ; 2) chooses optimal asset allocation a∗ given information; and

3) requires no rewards. Formally we have

rmax(ĉ) ≡ sup
c s.t.

E[ 1
N

∑N
t=1 ct] ≤ ĉ

Ec,a∗
(

1

N

N∑
t=1

〈
a∗t − a0

t , rt
〉)

.

First best surplus corresponds to maximizing wrmax(ĉ) − ĉ. Note that since rmax is

bounded above by d, the optimum is necessarily attained for a finite value of ĉ. Denote by

rFB and cFB the first-best average per-period returns and first-best average per-period costs.

For any ρ ≤ 1, denote by

Pρ =

{
P
∣∣∣ cFB
wrFB

≤ ρ

}
12



the set of environments such that the ratio of costs to returns at first-best is bounded above

by ρ. Note that by definition, it must be that cFB
wrFB

≤ 1.

Theorem 1 (robust efficiency bounds). (i) For any probability space P,

wrα ≥ (1− α) sup
ĉ∈[0,+∞)

(
wrmax(ĉ)− c

α

)
. (6)

(ii) For any ρ ∈ (0, 1), the benchmark contract of parameter α =
√
ρ satisfies

max
π=(πt)t≥1

min
P∈Pρ

wrπ
wrFB − cFB

= min
P∈Pρ

wrα
wrFB − cFB

(7)

= 1− 2

√
ρ

1 +
√
ρ
.

Given a benchmark contract πt = α(wt − w0
t ), point (i) provides a lower bound for

the returns that the principal obtains for any environment P . Point (ii) leverages point

(i) to show that the linear contract of parameter α =
√
ρ guarantees the highest possible

proportion of first-best surplus over environments P ∈ Pρ. Specifically, the benchmark

contract guarantees a proportion 1− 2
√
ρ

1+ρ
of first-best surplus.9

Note that although benchmark contracts are static, i.e. they depend only on current out-

comes, Theorem 1 shows that benchmark contracts are max min optimal among all possible

dynamic contracts. This provides foundations for the use of linear contracts as a benchmark.

If one is willing to further restrict the set of possible probability spaces P against which con-

tract performance is evaluated, other contracts may be more attractive. Section 5 returns

briefly to this point.

Other remarkable properties. As was noted previously, benchmark contracts have ad-

ditional merits. The following results hold.

9Without scaling by first-best returns, the max min problem described by (7) would be degenerate: be-
cause first-best returns can be arbitrarily low, unscaled max min returns are equal to 0.
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Fact 1. Benchmark contracts are weakly renegotiation proof in the sense of Bernheim and

Ray (1989) and Farrell and Maskin (1989).

Indeed, since benchmark contracts are independent of history, the principal and the agent

are never tempted to renegotiate to a continuation contract starting from a different history.

Finally, benchmark contracts satisfy the following no-loss property: for any strategy (c, a)

such that the agent obtains positive profit – even suboptimal ones – the principal must also

obtain positive surplus.10

Fact 2 (no loss). Under the benchmark contract, for all environment P and all strategy

profiles (c, a), Ec,a
[∑N

t=1 πt

]
≥ 0 ⇐⇒ Ec,a

[∑N
t=1wt − w0

t − πt
]
≥ 0.

The converse holds. If a contract (πt)t≥1 is such that for all P and all strategy profiles

(c, a), Ec,a
[∑N

t=1 πt

]
≥ 0 ⇐⇒ Ec,a

[∑N
t=1 wt − w0

t − πt
]
≥ 0, then there exists α ∈ (0, 1)

such that for all t, πt = α(wt − w0
t ).

This property is attractive especially in environments where the agent may not be fully

optimizing: provided that a suboptimal strategy profile does not generate negative profit

for the agent, it can only benefit the principal. While the bulk of the paper assumes that

agents are rational and fully optimizing, Appendix A returns to the question of contract

performance when agents can be temporarily irrational.

Theorem 1 and Facts 1 and 2 motivate the use of linear contracts as a robust benchmark.

Unfortunately benchmark contracts do not satisfy limited liability constraint (4). The next

section constructs equally robust dynamic contracts that perform approximately as well as

benchmark contracts in all these respects, while also satisfying limited liability constraints

(4).

10This is a form of robustness to the solution concept which allows for “faulty” non-best-replying agents,
as in Eliaz (2002).
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4 Calibrated Contracts

This section introduces a novel class of dynamic limited-liability contracts, referred to as cal-

ibrated contracts, which robustly approximate the performance of high-liability benchmark

contracts. Calibrated contracts are analyzed in two steps. Section 4.1 describes the contract

and states the main efficiency result. Section 4.2 details the mechanics underlying calibrated

contracts.

4.1 The Contract

In every period t, the agent is allowed to invest a share λt ∈ [0, 1] of the principal’s wealth,

while the remaining share 1− λt is invested in the default asset allocation a0
t . At the end of

each period t, the agent receives a payment πt.
11

Specifying investment shares and rewards (λt, πt)t≥1 requires additional notation. For all

periods T and T ′ < T , define

ΠT =
T∑
t=1

πt ; ΣT =
T∑
t=1

wt − w0
t ; ST =

T∑
t=1

λt(wt − w0
t ) (8)

and

ΣT\T ′ =
T∑

t=T ′

wt − w0
t ; ST\T ′ =

T∑
t=T ′

λt(wt − w0
t ). (9)

Value ΠT corresponds to the payoffs that the agent has obtained; ΣT corresponds to the

excess returns that would have been generated by fully investing according to the agent’s

suggested asset allocation; ST corresponds to the actual excess returns that have been gen-

erated given that only a share λt of wealth w is invested according to the agent’s suggestion.

Values ΣT\T ′ and ST\T ′ compute the same quantities over time range {T ′, · · · , T}.

The difference ΣT\T ′ −ST\T ′ =
∑T

t=T ′(1−λt)(wt−w0
t ) corresponds to the foregone gains

from investing only a share λt of resources according to the agent’s allocation between T ′

11Note that under the benchmark high-liability contract, in equilibrium, it must be that for all t ≥ 1,
E(wt − w0

t ) ≥ 0. This is why under the benchmark contract, parameter λt is optimally set to 1.
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and T . The difference ΠT −αST corresponds to the agent’s excess rewards, the target being

to reward him a share α of his externality ST on the principal. We can now define calibrated

contracts formally.

Using the notation (x)+ = max{0, x}, investment shares and rewards (λt, πt)t≥1 are

defined recursively as follows. Initially set λ1 = 1, π1 = 0.12 For all subsequent periods

T ≥ 1, let

λT+1 ≡
α
[
maxT ′≤T ΣT\T ′ − ST\T ′

]+
[ΠT − αST ]+ + α

[
maxT ′≤T ΣT\T ′ − ST\T ′

]+ (10)

≡ α × maximum foregone gain

excess rewards + α × maximum foregone gain

with the convention that 0
0

= 1, and

πT+1 ≡

 αλT+1(wT+1 − w0
T+1)+ if ΠT ≤ αST

0 otherwise
(11)

≡

 αλT+1(wT+1 − w0
T+1)+ if rewards ≤ α × actual excess returns

0 otherwise
.

Note that the contract specified above satisfies limited liability constraint (4): payments

πt are positive and bounded above by wt. Theorem 2 (stated below) shows that as horizon N

grows large, this class of contracts approximates the performance of benchmark high liability

contracts. Some additional notation is needed. Given a contract specification (λ, π) =

(λt, πt)t≥1, let rλ,π denote the net excess returns delivered by the agent under contract (λ, π):

rλ,π = inf

{
Ec,a

(
1

Nw

N∑
t=1

λt(wt − w0
t )− πt

)∣∣∣∣∣(c, a) solves max
c,a

E

(
N∑
t=1

πt − ct

)}
.

12The choice of initial conditions does not affect long term performance.
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For any history hT , normalized net returns conditional on hT are

rλ,π|hT = inf

{
Ec,a

(
1

Nw

N∑
t=T+1

λt(wt − w0
t )− πt

∣∣∣∣∣hT
)∣∣∣∣∣(c, a) solves max

c,a
E

(
N∑
t=1

πt − ct

)}
.

When the contract in question is the benchmark linear contract of parameter α, net returns

accruing to the principal are denoted by rα (similarly, let rα|hT denote conditional returns

at history hT ).

Theorem 2 (approximate performance). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let α =

α0 +η(1−α0). Consider the calibrated contract (λ, π) defined by (10) and (11). There exists

a constant m independent of time horizon N and probability space P such that,

rλ,π ≥ (1− η)rα0 −m
1√
N

(12)

∀hT , rλ,π|hT ≥ (1− η)rα0|hT −m
1√
N
. (13)

It follows that for N large enough, the calibrated contract described by (10) and (11)

generates a share approximately 1− η of the returns the principal obtains under the bench-

mark contract of parameter α0. Appendix A provides a similar, though weaker, bound when

future payoffs are discounted. Note that this result involves two approximations. First there

is a multiplicative loss 1− η which comes from sharing an additional proportion η of profits

with the agent. Second there is an additive loss of order 1/
√
N which comes from imper-

fectly approximating incentives. The mechanics underlying Theorem 2, and the reason why

an additional incentive η is needed will be discussed in details in Section 4.2.

Note that for Theorem 2 to hold, it is not sufficient to just reward the agent according to

the payment rule (πt)t≥1 defined by (10) and (11). It is important that the principal actually

invest shares (λt)t≥1 of her wealth according to the agent’s suggestion. Indeed the reward

scheme (πt)t≥1 does not to induce perfectly good behavior from the agent.13 Rather, the

13For instance, an agent who has lost or never had any informational advantage may pick allocations at
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payment scheme (πt)t≥1 reduces misbehavior to the point where it can be resolved by using

the cautious investment rule specified by (λt)t≥1.

Finally, note that returns rλ,π and rα0 are computed under the assumption that the agent’s

behavior is an exact best-reply. No approximate best-reply assumption is made. Appendix

A shows that calibrated contracts continue to perform well if rationality is weakened so that

the agent may behave suboptimally over an arbitrary interval of time.

4.2 The Mechanics of Calibrated Contracts

This idea behind calibrated contracts is to identify key incentive properties that hold under

the benchmark contract and calibrate payments (πt)t≥1 to the agent as well as investment

shares (λt)t≥1 so that the same incentive properties are approximately satisfied under the

calibrated contract. The properties of benchmark contracts that calibrated contracts attempt

to satisfy are as follows. For all histories hT , benchmark contracts are such that

ΠT = αST (no excess rewards) (14)

∀T ′ ≤ T, ΣT\T ′ ≤ ST\T ′ (no foregone performance). (15)

In words, the agent receives a share α of his actual performance ST , and over any time interval

{T ′, · · · , T}, his actual performance ST\T ′ (although potentially hindered by investment

shares λt ≤ 1) is at least as high as his potential performance ΣT\T ′ .
14 Note that for any T ,

the family of inequalities (15) can be summarized by the single inequality

max
T ′≤T

ΣT\T ′ − ST\T ′ ≤ 0.

that are inferior to a0t , simply because they are different and, through volatility, induce a non-zero probability
of reward. The investment rule (λt)t≥1 insulates the principal from such misbehavior.

14To obtain only inequality (12) in Theorem 2, it would be sufficient to consider only inequality ΣT ≤ ST
rather than the full family of inequalities described by (15). Considering the full family of inequalities (15)
yields the history-independent performance bound (13).
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Let us now show how (10) and (11) calibrate parameters (λt, πt)t≥1 so that these properties

hold approximately, while satisfying limited liability constraint (4). Define regrets

R1,T ≡ ΠT − αST

R2,T ≡ max
T ′≤T

ΣT\T ′ − ST\T ′ .

RegretR1,T measures how overpaid the agent has been, while regretR2,T measures maximum

foregone profits from not fully investing according to the agent’s allocation. The goals are:

1) to keep R1,T small so that the agent’s reward ΠT is a share approximately α of his actual

externality ST on the principal; 2) to keep R+
2,T small, so that the foregone returns are not

large.

These goals can be achieved by following the regret-minimization approach of Blackwell

(1956) and Hannan (1957).15 Define RT ≡ (R1,T , αR2,T ) and ρT ≡ RT − RT−1 the vector

of flow regrets.16 In order to keep regrets R1,T and R2,T small, it is sufficient to keep vector

RT small. This can be achieved by choosing sequences (πt)t≥1 and (λt)t≥1 so that

∀T ≥ 1, ∀wT+1, ∀w0
T+1,

〈
ρT+1,R+

T

〉
≤ 0. (16)

Inequality (16) is known as an approachability condition, and ensures that flow regrets ρT+1

point in the direction opposite to that of aggregate regrets RT . This puts strong bounds on

the speed at which aggregate regrets (RT )T≥1 can grow.

By construction, regret (R2,T )T≥1—which measures maximum foregone gains—satisfies

R2,T+1 = (1− λT+1)(wT+1 − w0
T+1) +R+

2,T .
17

15See also Foster and Vohra (1999) or Cesa-Bianchi and Lugosi (2006). Regret measure R2,T is related to
“tracking” regrets (Cesa-Bianchi and Lugosi, 2006).

16Vector RT is defined as (R1,T , αR2,T ) rather than (R1,T ,R2,T ) only because it leads to a slight im-
provement in performance bounds.

17This implies that regret R2,T can be computed using at most O(T ) operations.
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Thus, condition (16) is equivalent to

[πT+1 − αλT+1(wT+1 −w0
T+1)]R+

1,T + α2
[
(1− λT+1)(wT+1 − w0

T+1) +R+
2,T −R2,T

]
R+

2,T ≤ 0.

Using the identity (R+
2,T − R2,T )R+

2,T = 0, it follows that approachability condition (16) is

equivalent to

[πT+1 − αλT+1(wT+1 − w0
T+1)]R+

1,T + α2
[
(1− λT+1)(wT+1 − w0

T+1)
]
R+

2,T ≤ 0

⇐⇒ πT+1R+
1,T − [αλT+1R+

1,T − α
2(1− λT+1)R+

2,T ](wT+1 − w0
T+1) ≤ 0.

Hence approachability condition (16) can be satisfied for any realization of wT+1 and w0
T+1

by setting

λT+1 =
αR+

2,T

R+
1,T + αR+

2,T

and πT+1 =

 αλT+1(wT+1 − w0
T+1)+ if R1,T ≤ 0

0 if R1,T > 0

which corresponds to the calibrated contract defined by (10) and (11).

The following lemma shows that under the contract defined by (10) and (11), incentive

properties (14) and (15) are approximately satisfied.

Lemma 1 (approximate incentives). For all T , all T ′ ≤ T and all possible histories,

ΣT\T ′ − ST\T ′ ≤ wd
√
T (17)

−αwd ≤ ΠT − αST ≤ αwd
√
T . (18)

Lemma 1 implies that incentive properties (14) and (15) hold at any possible history hT ,

up to an error term of order
√
T , which is small compared to the number of periods T . Note

that this holds sample path by sample path, rather than in expectation or in equilibrium.

Proof. Let dt = supr∈R | 〈at − a0
t , r〉 | denote the magnitude of positions taken by the agent
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in period t. We first show that ||R+
T ||2 ≤ α2w2

∑T
t=1 d

2
t . The proof is by induction. The

property clearly holds at T = 1. Assume it holds at T . Consider the case where R2,T > 0

(i.e. there are some foregone returns). Since approachability condition (16) holds, we have

that

||R+
T+1||

2 ≤ ||R+
T + ρT+1||2 = ||R+

T ||
2 + 2

〈
R+
T , ρT+1

〉
+ ||ρT+1||2

≤ ||R+
T ||

2 + ||ρT+1||2.

In addition ||ρT+1||2 ≤ α2λ2
T+1(wT+1 − w0

T+1)2 + α2(1− λT+1)2(wT+1 − w0
T+1)2 ≤ α2w2d2

T+1.

Altogether this shows that the induction hypothesis holds when R2,T > 0. A similar proof

holds whenR2,T < 0, taking into account that in this case,R2,T+1 = (1−λT+1)(wT+1−w0
T+1).

Hence, by induction, this implies that for all T ≥ 1, ||R+
T ||2 ≤ α2w2

∑T
t=1 d

2
t . This proves

(17) and the right-hand side of (18).

The left-hand side of (18) is also proven by induction. If ΠT ∈ [αST − αwd, αST ],

then R+
1,T = 0, λT+1 = 1, and πT+1 = α(wT+1 − w0

T+1)+. Hence by construction, ΠT+1 ≥

αST+1 − αwd. If instead ΠT > αST , then by definition of d, ΠT+1 ≥ αST+1 − αwd. This

implies the left-hand side of (18).

As the next lemma shows, the approximate incentive conditions given by Lemma 1 imply

performance bounds for calibrated contracts.

Lemma 2. Pick α0 ∈ (0, 1) and for any η ∈ (0, 1) let α = α0 + η(1 − α0). Consider a

contract (λ, π) and numbers A,B and C such that for all final histories hN , ΣN − SN ≤ A

and −B ≤ ΠN − αSN ≤ C. Then

rλ,π ≥ (1− η)rα0 −
1

Nw

[
C +

1− η
η

(αA+B + C)

]
.

Theorem 2 is an immediate corollary of Lemmas 2 and 1. Intuitively, Lemma 1 shows that

the calibrated contract (λ, π) defined by (10) and (11) gets incentives approximately right.
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Lemma 2 implies that when incentives are approximately right, then performance must

be approximately right as well. This is not an obvious result since approximation errors

with respect to incentives may cause the agent to change his behavior significantly. Indeed,

whenever global incentive constraints are binding or almost binding under the benchmark

linear contract of parameter α0, getting incentives slightly wrong will result in large shifts in

behavior and poor performance. For instance, this would be the case if under the benchmark

contract, the agent were indifferent between working hard and not working at all. For this

reason incentives must be reinforced. By sharing an additional fraction η of her returns,

the principal ensures that potential changes in the agent’s behavior do not compromise

performance. Madarász and Prat (2010) make the same point in a screening context.

5 Extensions

This section presents three important extensions. Section 5.1 shows how the methods de-

scribed in Section 4 can be used to calibrate a broader class of high-liability contracts.

Section 5.2 shows how to induce uninformed agents to self-screen. Section 5.3 proposes a

multi-agent extension of the contracts described in Sections 3 and 4.

5.1 Calibrating a broader class of contracts

Section 3 motivates the use of linear benchmark contracts by showing that they are max min

optimal against classes of environments P such that the ratio of costs to returns at first-best

is bounded above. If we are willing to consider smaller or different classes of environments,

different benchmarks may be desirable.

Exploring how different classes of environments P map into different max min optimal

high liability contracts is beyond the scope of this paper. Rather, this section takes as given

a high-liability contract with aggregate rewards denoted by Π0
N , where Π0

N is adapted to

the principal’s information at time N . The question is whether high-liability contract Π0
N
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can be calibrated using limited-liability contracts. The following assumption turns out to be

sufficient.

Assumption 2. Benchmark contract Π0
N can be written as Π0

N =
∑N

t=1 π
0
t , such that

(i) π0
t is adapted to the information available to the principal at time t;

(ii) wt = w0
t implies π0

t ≥ 0;

(iii) π0
t ≤ wt and there exists π > 0 such that, sup |π0

t | ≤ π.

It is immediate that Assumption 2 holds for all contracts of the form Π0
N =

∑N
t=1 α

0
t (wt−

w0
t ) where α0

t ∈ (0, 1) is adapted to public information. Assumption 2 also holds for contracts

of the form

Π0
N = G

(
N∑
t=1

φ(wt − w0
t )

)
where φ(0) = G(0) = 0 and G and φ are Lipschitz, with constants κG and κφ such that

κGκφ ≤ 1. For instance, this includes contracts such that the agent gets paid a positive

reward only when returns are above a threshold, i.e contracts such that

Π0
N =


αΣN if ΣN < 0

0 if ΣN ∈ [0,Σ]

α(ΣN − Σ) if ΣN > Σ

. (19)

Calibration. Theorem 3, stated below, shows that the performance of any contract satis-

fying Assumption 2 can be robustly approximated using dynamic limited liability contracts.

As in Section 4 an additional incentive wedge is necessary. For any η > 0 define the

auxiliary contract

πηt ≡ π0
t + η(wt − w0

t − π
η
t ) =

1

1 + η
π0
t +

η

1 + η
(wt − w0

t ).

If contract (π0
t )t≥1 satisfies Assumption 2, then so does contract (πηt )t≥1. In particular,

|πηt | ≤ 1
1+η

π + η
1+η

wd ≡ πη.
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The approach consists in calibrating the incentives provided by contract (πηt )t≥1. The

two instruments used are rewards (πt)t≥1 and the proportion of resources (λt)t≥1 managed

by the agent. Define πηt (λt) = λtπ
η
t . The regrets R1,T and R2,T to be minimized are:

R1,T =
T∑
t=1

πt − πηt (λt) (no excess rewards) (20)

R2,T = max
T ′≤T

T∑
t=T ′

πηt − π
η
t (λt) (no foregone performance). (21)

The usual approachability condition yields contract parameters (λt, πt)t≥1 of the form,

λT+1 =
R+

2,T

R+
1,T +R+

2,T

and πT+1 =


[
πηT+1(λT+1)

]+
if R1,T ≤ 0

0 otherwise.
(22)

As in Section 4, and as detailed in Appendix B, this ensures that the vector of regrets

(R1,T ,R2,T ) remains of order
√
T , so that incentives are approximately correct. The following

performance bounds obtain.

Theorem 3. There exists a constant m independent of environment P and time horizon N ,

such that under contract (λt, πt)t≥1, returns accruing to the principal satisfy

rλ,π ≥
1

1 + η
rπ0 −m 1√

N
(23)

∀hT , rλ,π|hT ≥
1

1 + η
rπ0|hT −m

1√
N

(24)

Hence any contract satisfying Assumption 2 can be calibrated using the methods of

Section 4. This include contracts such that the agent is paid only after returns reach a

minimum threshold, as in (19). What constitutes an appropriate high liability benchmark

will depend on the class of environments against which one wishes to measure efficiency.

Exploring such classes of environments and the corresponding max min optimal high-liability

contracts in left for future research.
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5.2 Inducing self-screening by uninformed agents

The framework of Section 2 allows for arbitrary adverse selection. In particular, under

some realizations, the agent may learn ex ante that he has no ability to generate valuable

information. This section shows how to induce such uninformed agents to self-screen, i.e.

to not participate. This is important when most agents are uninformed and only a handful

can generate positive value added. The next section shows how to extend the approach of

Sections 3 and 4 to jointly manage a small number of agents.

An agent is said to be uninformed if conditional on his initial information I0(0) he cannot

generate positive returns.18 An issue with the calibrated contract defined by (10) and (11)

is that by construction rewards are positive and a sufficiently long-lived uninformed agent

can obtain significant expected payoffs from luck and volatility alone.19 In order to induce

entirely uninformed agents to self-screen, i.e. to not participate in the first place, some

amount of liability is required. The question is how much? Surprisingly, it turns out that for

any liability level b available in the first period, a contract can be found that robustly induces

uninformed agents to self-screen at a minimal efficiency cost, regardless of the agents’ time

horizon, or of environment P .

Specifically, screening is induced by first imposing an initial participation cost −b on the

agent, and then only paying the agent when his performance is above a dynamic hurdle ΘT

which depends on the size of positions he has been taking. Given a free parameter M > 0,

define

ΘT ≡ 2w

1 +

√√√√d
2

+
T∑
t=1

λ2
td

2
t


√√√√M + ln

(
d

2
+

T∑
t=1

λ2
td

2
t

)
, (25)

where dt = suprt∈R | 〈at − a0
t , rt〉 | and λtdt measures the size of the agent’s effective bet

18Formally, maxc,a Ec,a
(∑N

t=1 wt − w0
t

∣∣∣I0(0)
)

= 0.
19Even if the agent has no information and all assets have the same expected returns, systematically

picking assets different from the benchmark allocation will allow the agent to obtain rewards of order
√
N

with non-vanishing probability.
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λt(at− a0
t ) away from the default allocation a0

t (note that by Assumption 1, dt ≤ d). Hurdle

ΘT is an aggregate measure of how active the agent has been. If the agent makes significant

bets away from a0
t in every period then ΘT will be of order

√
T lnT . If the agent makes few

bets, hurdle ΘT will remain small. The quantity d
2

+
∑T

t=1 λ
2
td

2
t is a measure of time under

which (ΣT )T≥1 will have at most the variation of a standard Brownian motion.

Hurdled calibrated contracts are defined by a sequence (λt, πt, π
Θ
t )t≥1. The sequence

(λt, πt)t≥1 is still defined according to recurrence equations (10) and (11), and λt is still the

share of wealth actually invested by the agent. However, for t ≥ 1, reward πt is no longer

paid to the agent for sure. Rather, the agent is paid a hurdled reward πΘ
t such that πΘ

1 = −b,

and πΘ
t = 1St≥Θtπt, i.e. potential reward πt is paid to the agent if and only if the surplus St

he has generated is greater than hurdle Θt.

An intuitive rationale for the form of hurdle ΘT is as follows. Let the agent be uninformed,

so that the process (St)t≥1 is at best a martingale, and imagine that the agent is frequently

active, i.e.
∑T

t=1 d
2
t is of order T . Then hurdle ΘT is of order

√
T lnT . The law of the

iterated logarithm implies that with probability 1, as T gets large, maxT ′≤T ST ′ is of order
√
T ln lnT .20 Because

√
T ln lnT√
T lnT

goes to 0 as T grows large, hurdle ΘT insures that uniformed

agents have very little hope to obtain unjustified returns. Indeed, the following result holds.

Lemma 3 (hurdle effectiveness). If the agent is uninformed, then for any allocation strategy

a, any environment P and any horizon N ,

Ea

(
N∑
t=1

1St≥Θt

)
≤ π2

2
exp(−2M),

where π is the constant 3.1415 . . .

Because hurdles also reduce the payoffs accruing to informed agents, they carry an incen-

tive cost. Still as the next theorem shows, this incentive cost is moderate. Denote by rλ,πΘ

the net expected per-period returns generated by the agent under the hurdled calibrated

20See Billingsley (1995), Theorem 9.5.
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contract. The following result holds.

Theorem 4 (performance with screening). Pick α0 ∈ (0, 1) and for any η ∈ (0, 1), let

α = α0 +η(1−α0). There exists a constant m independent of time horizon N and probability

space P such that for all hT ,

rλ,πΘ|hT ≥ (1− η)rα0|hT −m
√

lnN

N
(26)

Furthermore, whenever −b+ αwd× π2

2
exp(−2M) < 0, it is strictly optimal for uninformed

agents not to participate.

The combination of initial fee −b and hurdle Θt induces self-screening by uninformed

agents. Hurdle Θt is large enough that uninformed agents have little hope to be rewarded by

luck but small enough that it does not significantly affect the incentives of informed agents.

The penalty which was of order 1√
N

in Theorem 2 is now of order
√

lnN
N

. It is possible to

prove an improved bound in some circumstances. Appendix B shows that when returns are

grainy, i.e. either zero or bounded away from 0, the performance loss from screening is only

of order 1√
N

.

5.3 Multi-agent contracts

The analysis so far has focused on contracting with a single agent. This section shows how to

extend the logic of Sections 3 and 4 to environments with multiple agents. The framework is

identical to that of Section 2 except that there are now K agents denoted by k ∈ {1, · · · , K},

each of whom makes private information acquisition decisions ck,t ∈ [0,+∞), inducing a

filtration Fkt . In each period t, manager k suggests an asset allocation ak,t inducing potential

wealth wk,t = w(1+〈ak,t, rt〉). As in Section 2 the environment is general. Public and private

signals (I0
t , I

k
c (ck,t))k∈{1,··· ,K} are arbitrary random variables from an underlying measurable

state space (Ω, σ) to a measurable signal space (I, σI). The environment P = (Ω, σ, P )

is specified by defining a probability measure P on (Ω, σ). This probability measure is
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unrestricted: the agents may have access to different information, their respective ability

to generate information may differ and vary over time, or be correlated in arbitrary ways.

Filtration F0
t still denotes the public information filtration available to the principal. The

first step of the analysis extends the high-liability benchmark contract of Section 3. The

second step of the analysis shows how to calibrate this high-liability contract.

Multi-agent benchmark contracts. The multi-agent contract described here is a direct

extension of the linear contract described in Section 3. Each agent k ≥ 1 is paid according

to a linear contract in which the allocation of agent k − 1 serves as the default allocation

previously corresponding to a0
t .

Specifically, in each period t, allocations ak,t are submitted by agents increasing order of

k. This ordering is a constraint imposed by the mechanism. The mechanism informs each

agent k of the allocations (ak′,t)k′<k chosen by agents k′ < k. Agent k receives no information

about the allocations chosen by agents k′′ > k. Under the benchmark contract, payments

πk,t to agent k are defined by

∀k ∈ {1, · · · , K}, πk,t = α(wk,t − wk−1,t). (27)

Finally, resources are invested according to the allocation aK,t suggested by the last agent.

Under this multi-agent contract, each agent is paid a share α of his externality on the

principal, taking into account the information provided by previous agents.

The strategy profile (ck, ak) of agent k must be adapted to the information available to

the agent (by construction this includes allocations by previous managers). The set of such

adapted strategies is denoted by Ck×Ak.21 Furthermore define (c, a) = (ck, ak)k∈{1,··· ,K} and

C × A =
∏

k∈{1,··· ,K} Ck × Ak the set of adapted strategy profiles. For any ĉ ∈ [0,+∞), the

21 Because of the hierarchical structure of the mechanism, agent k′ < k is indifferent about whether of not to
send information to agent k. Agent k′ could be made to strictly prefer sharing information by being awarded
a small share of manager k’s profits. The analysis that follows holds for any amount of information provided
by previous managers to future managers. Different assumptions about such information transmission simply
correspond to different measurability constraints on the class of strategies Ck ×Ak.
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maximum returns that can be obtained at an expected per-period cost of ĉ are denoted by

rmax(ĉ) = max
(c,a)∈C×A

1
N
E(

∑
k,t ck,t)≤ĉ

1

wN
Ec,a

(
N∑
t=1

wKt − w0
t

)
.22

Denote by rα the average returns accruing to the principal under this benchmark contract.

The following bound extends point (i) of Theorem 1.

Lemma 4. For any environment P,

rα ≥ (1− α) max
ĉ∈[0,+∞)

(
rmax(ĉ)− ĉ

αw

)
.

As in Theorem 1, this lower bound implies that by optimizing over α, one can find a

benchmark contract that guarantees a fixed share of the first-best surplus. Similarly to the

benchmark contract of Section 3, this contract is weakly renegotiation proof and satisfies

no-loss.

Calibrated contracts. The high-liability multi-agent contract described in (27) can be

calibrated using the methods of Section 4. The main difference is that there are now K

scaling factors λt = (λk,t)k∈{1,··· ,K} ∈ [0, 1]K that are used to define adjusted allocations aλk,t

in the following recursive manner:

aλ0,t = a0,t and ∀k ≥ 1, aλk,t = λk,tak,t + (1− λk,t)aλk−1,t.

22Note that these returns depend on the measurability constraints imposed on C × A (see footnote 21).
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Let wλk,t denote the corresponding wealth realizations. For all k ≥ 1, define regrets

R1
k,T =

T∑
t=0

πt − α(wλk,t − wλk−1,t) (no-excess payments) (28)

R2
k,T = max

T ′≤T

T∑
t=T ′

wk,t − wλk,t (no foregone returns). (29)

Keeping these regrets small corresponds to implementing appropriate generalizations of in-

centive properties (14) and (15) for all agents. The usual approachability condition im-

plies that regrets (R1
k,T ,R2

k,T )k∈{1,··· ,K} can be kept small by choosing contract parameters

(λk, πk)k∈K according to,

λk,T+1 =
α
[
R2
k,T

]+
α
[
R2
k,T

]+
+
[
R1
k,T

]+ and πk,T+1 =

 α(wλk,T+1 − wλk−1,T+1)+ if R1
k,T ≤ 0

0 otherwise
.

Under this calibrated multi-agent contract the following result obtains.

Theorem 5. Pick α0 > 0 and for η ∈ (0, 1), set α = α0 + η(1−α0). There exists a constant

m independent of environment P, time horizon N and number of agents K such that the

multi-agent calibrated contract (λ, π) = (πk, λk)k∈K of parameter α satisfies

rλ,π ≥ (1− η)rα0 −m
√
K

N
(30)

∀hT , rλ,π|hT ≥ (1− η)rα0 |hT −m
√
K

N
. (31)

This extends the approach of Sections 3 and 4 to environments where the principal relies

on the information acquired by several agents. Note that the bounds provided by Theorem

5 are useful only if K is small compared to N . In this respect, inducing uninformed agent

to self-screen will help reduce K. The screening strategy developed in Section 5.2 can be

adapted without difficulty to multi-agent contracts.
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6 Discussion

This paper develops a robust approach to dynamic contracting in two steps. The first step

identifies high-liability linear contracts that satisfy attractive efficiency properties regardless

of the underlying environment. The second step shows how to approximate the performance

of benchmark contracts using limited-liability dynamic contracts. The contracting strategy

is to calibrate rewards to the agent as well as the share of wealth he manages so that key

properties of the benchmark contract are approximately replicated. The resulting calibrated

contracts are simple, and perform approximately as well as an attractive benchmark under

very general conditions. The approach can be extended to calibrate a much broader class of

high-liability contracts, induce self-screening by uninformed agents, or jointly manage several

agents. Appendix A shows that the analysis is robust to partial departures from rationality

by the agent and can be extended to the case where future payoffs are discounted.

The remainder of this section discusses in further detail how calibrated contracts relate

to other contracts of interest and delineates possible avenues for future research.

6.1 Relation to Other Contracts

High-watermark contracts. The calibrated contracts described in Section 4 are closely

related to the high-watermark contracts frequently used in the financial industry (see for

instance Goetzmann et al. (2003) who develop an option-pricing approach to high-watermark

contracts, or Panageas and Westerfield (2009) who show in a specific context that high-

watermark contracts need not lead to excessive risk-taking). High-watermark contracts are

structured as follows: at time T , the investment share λT is always 1, and the agent gets

paid

πwmk
T = α

(
T∑
t=1

wt − w0
t −max

T ′<T

[
T ′∑
t=1

wt − w0
t

])+

. (32)
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Quantity maxT ′<T

[∑T ′

t=1 wt − w0
t

]
is referred to as the high-watermark and represents the

maximum historical cumulated returns at time T . The agent only gets paid when he improves

on his own historical performance. Note that high-watermark contracts are dynamic and

satisfy limited liability constraint (4). In particular, for all T , πT ∈ [0, wT ].

High-watermark contracts, as well as calibrated contracts, attempt to reward the agent a

share α of his externality on the principal. In other words, both types of contracts attempt to

keep aggregate rewards ΠT close to αST . Lemma 1 shows that calibrated contracts achieve

this goal for any realization of uncertainty and any allocation strategy. High-watermark

keep aggregate rewards ΠT close to αST along paths such that the process for value-added

(ST )T≥1 is on average increasing, but not if the process for value-added has significant down-

turns. This is illustrated by Figure 1(a). Whenever there is an extended drop in perfor-

mance, the relationship between rewards ΠT and performance αST breaks down. Indeed

ΠT is by construction weakly increasing while under the high-watermark contract, αST can

decrease in arbitrary ways. More explicitly, imagine that the agent delivers performance

(1, 1,−1, 1, 1,−1, · · · , 1, 1,−1) so that total surplus is N/3. Cumulated value-added ST is

on average increasing and under the high-watermark contract the agent obtains a reward

αN/3 + o(N). If instead the agent delivers returns (1, 1, · · · , 1) for the first 2N/3 periods,

followed by (−1,−1, · · · ,−1) for the last N/3 periods, then the surplus generated by the

agent is still N/3, but the high-watermark contract now gives him a payoff 2αN/3 + o(N).

This has two implications. First, because the agent does not suffer from extended down-

turns, an agent who has lost the ability to generate positive return (e.g. his information has

become unreliable) may cause large losses by choosing negative expected value investments

that generate variance. Second, if a talented agent has been unlucky and experienced a drop

in returns, the difficulty of catching up with a high watermark may discourage investment

altogether. As a result high-watermark contracts exhibit large gains to renegotiation. If

a manager performed well for an extended amount of time, following which he experiences

sharp losses, the principal and the agent may both benefit strongly from forgiving the losses
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and pretending that the current high-watermark is lower than it really is.

As Figure 1(b) illustrates, calibrated contracts ultimately boil down to writing a high-

watermark contract on the modified performance measure ST . By choosing investment shares

λt appropriately, calibrated contracts are able to keep tight the relationship between rewards

ΠT and actual performance ST at every history. As a result, extended downturns have a much

more limited impact on incentives. Note that investment shares λt must move smoothly with

performance instead of taking values 0 or 1. Rather than a stop-loss provision, it is more

accurate to think of the calibrated investment shares (λt)t≥0 as continuously implementing a

robust option on the agent’s potential performance ΣT .23 The fact that calibrated contracts

do not generate large foregone performance (Lemma 1) implies that along parts of the path

of play where the agent is generating positive returns, investment shares will be close to

one. Inversely, investment shares may be significantly below one along portions of the path

where the agent is not generating positive returns. As discussed in Appendix A this makes

calibrated contracts robust to temporarily suboptimal play by the agent.
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scaled potential returns: αΣT

high watermark rewards

(a) high-watermark contract: potential returns αΣT ,
rewards Πwmk

T
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scaled actual returns: αST
reward: ΠT

(b) calibrated contracts: potential returns αΣT , ac-
tual returns αST , rewards ΠT

Figure 1: high-watermark and calibrated contracts for a sample path of potential returns
(ΣT )T≥1, with target reward rate α = 20%.

23See DeMarzo et al. (2009) for work on the relation between approachability and robust option pricing.
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Connection with optimal contracting. It is instructive to note that for sufficiently

high discount factors, DeMarzo and Sannikov (2006) as well as Biais et al. (2007, 2010)

derive high-watermark contracts as optimal contracts in their specific environments. The

link is not entirely obvious because their optimal contracts are described in the standard

(forward looking) language of continuation values. Because calibrated (and high-watermark)

contracts are detail-free, they can only be described in reference to (backward looking)

realized observables. This difference however is superficial and the connection between the

two approaches is in fact significant.24 To a first order, DeMarzo and Sannikov (2006) and

Biais et al. (2007, 2010) find that in their environment, under optimal contracts, the agent’s

continuation value follows a Brownian motion, proportional to the agent’s performance, and

reflected at some upper bound W . Whenever the agent’s continuation value hits this upper

bound, he is paid a fixed proportion of the surplus he generates. This in fact encodes for

a high-watermark contract. Imagine that at time t, the agent is promised value W , and

that he starts losing money. Then, his continuation value moves in a way proportional

to his performance, and he is only paid again when his performance covers his losses so

that his continuation value climbs back to W . This coincides with the reward profile of a

high-watermark contract: the agent only gets paid once he has recouped his losses. This

connection should not be entirely surprising: DeMarzo and Sannikov (2006) as well as Biais

et al. (2007, 2010) consider environments with linear production technology in which the

benchmark high-liability contracts of Section 3 are close to optimal; calibrated contracts are

specifically designed to approximate the performance of such contracts.

The connection is particularly strong with Biais et al. (2007) and especially Biais et al.

(2010) who emphasize the role of downsizing the size of the project managed by the agent

as a function of his performance. This is related to varying investment shares (λt)t≥1 in the

current paper. The use of downsizing in Biais et al. (2007, 2010) however is slightly different.

24The optimal contracts derived by DeMarzo and Sannikov (2006) and Biais et al. (2007, 2010) can be
given a backward looking description since there is a one to one mapping between realized payoffs and
continuation values.

34



In their work, downsizing occurs when continuation values are so low that at the current size

of the project, optimal behavior can no longer be enforced. Downsizing allows to deliver the

promised low values while maintaining appropriate incentive compatibility conditions in the

continuation game. As a result, downsizing occurs only after sufficiently long strings of poor

performance. In the current paper, (λt)t≥1 can be seen as a preventive downsizing scheme,

which rules out continuation values so low that incentive provision becomes problematic.

6.2 Future Work

The relative simplicity of the analysis presented in the paper gives reasonable hope that

the approach may be gainfully used in other settings. Three directions seem particularly

attractive for further theoretical work. First, it would be valuable to develop a better under-

standing of how more restrictive max min problems map into different benchmark contracts,

and whether these contracts can be calibrated. A second challenge is to allow for risk-

aversion. Some suggestions are offered in Chassang (2011), but more work remains to be

done, part of the difficulty being to characterize appropriate benchmark contracts. A third

avenue for research is to expand the analysis of multi-player environments. This may be use-

ful to fine tune parameters of the contract such as reward rate α, or select the most promising

K agents out of a large number. This may also be interesting beyond the principal-agent

setting that this paper focuses on. For instance many attractive allocation mechanisms, such

as Vickrey-Clarke-Groves mechanisms, require agents to make significant payments and are

therefore ill-suited in environments where agents are severely cash constrained. A dynamic

calibration approach such as the one developed in this paper may help relax such limited

liability constraints.

In addition, with actual implementation in mind, it seems important to determine whether

calibrated contracts really do induce approximately good behavior from agents. Indeed,

Theorem 2 relies on the agent’s ability to understand the dynamic incentive properties of

calibrated contracts. This is a demanding rationality requirement and whether or not it
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holds in practice is ultimately an empirical question. An advantage of the detail free ap-

proach developed here is that it lends itself naturally to realistic experiments using actual

returns data, since the contracts should perform well regardless of the agent’s beliefs over

the process for returns.

Appendix

A Additional Results

This appendix presents a number of additional results. Appendix A.1 shows that the cal-

ibrated contracts of Section 4 perform well even if the agent isn’t rational and behaves

suboptimally over any arbitrary interval of time. Appendix A.2 extends the analysis to the

case where principal and agent discount future payoffs; Appendix A.3 allows for varying

levels of wealth. Appendix A.4 considers principal-agent problems where the set of actions

is not convex.

A.1 Robustness to Accidents

The analysis presented in this paper assumes that the agent is rational. It turns out that

calibrated contracts are robust to the possibility of “accidents” during which the agent can

behave sub-optimally over an extended amount of time.

An accident may correspond to a temporary mistake in the agent’s trading strategy or an

error in his data; alternatively, the agent may be temporarily irrational or have unmodeled

incentives to misbehave (e.g. he is bribed to unload bad risks on the principal). Formally,

this is modeled by assuming that during a random time interval [T1, T2]—in the accident

state—the agent uses an exogenously specified allocation strategy aMt .25 This strategy may be

arbitrarily bad (within the bounds imposed by Assumption 1) and need only be measurable

25The analysis given here allows accidents to occur over a single interval of time. The analysis extends
without change to environments with a bounded number of intervals.
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with respect to FN . For instance, during the lapse of the accident, the agent could pick the

worst ex post asset allocation in every period. Robustness to accidents of this kind is related

to Eliaz (2002) which studies how well mechanisms perform if some players are faulty, i.e. if

they use non-optimal strategies. Here, robustness to accidents corresponds to fault tolerance

with respect to the agent’s selves over [T1, T2].

It should be noted that in this environment, the benchmark linear contract is no longer

sufficient to guarantee good performance. Accidents can undo all the profit generated by

the well incentivized agent in his normal state. Strikingly, in spite of accidents, calibrated

contracts are such that the excess returns generated by the agent will be approximately as

high as the returns he could generate when accidents are “lucky”, i.e. when the exogenous

allocation during accident states is

∀T ∈ [T1, T2], aMMT =

 a0
T if

∑T2

t=T1
wM
t − w0

t < 0 (accident is unlucky)

aMT if
∑T2

t=T1
wM
t − w0

t > 0 (accident is lucky)

where wM
t is the realized wealth under the aMt at time t. Denote by rMλ,π the net expected

returns to the principal when accidental behavior is aMt and the calibrated contract is used.

Denote by rMMα the net expected returns to the principal when accidental behavior is aMMt and

the benchmark contract of parameter α is used. Consider the contract (λ, π) defined by (10)

and (11). The following holds.

Theorem A.1 (accident proofness). Pick α0 and for any η > 0, set α = α0 + η(1 − α0).

There exists a constant m, independent of N and P such that,

rMλ,π ≥ (1− η)rMMα0
− m√

N
.

Proof. Let wMM
t and ΣMM

N =
∑N

t=1w
MM
t − w0

t denote potential realized wealth and aggregate

excess returns when accidents are lucky. The notation of Section 4 extends, adding super-

scripts M and MM to denote relevant objects under the original accidental allocation aM, and

37



under the lucky accidental allocation aMM. The key step is to provide an adequate extension

of Lemma 1.

Inequality (18) still applies, and we necessarily have that

−αwd ≤ ΠM
N − αSM

N ≤ αwd
√
N. (33)

In addition, let us show that for any investment strategy of the agent,

ΣMM
N − 4wd

√
N ≤ SM

N (34)

i.e. up to an order
√
N , given any investment strategy, the actual excess returns generated

under the calibrated contract are at least as high as the returns generated when accidents

are lucky. We have that ΣMM
N = ΣM

N\T2+1 +
[
ΣM
T2\T1

]+

+ ΣM
T1−1. Because inequality (17) still

holds, this implies that

ΣMM
N ≤

 SM
N + wd

√
N if ΣM

T2\T1
> 0

SM
N\T2+1 + SM

T1−1 + 3wd
√
N otherwise

By (33), it follows that

ΠM
T2
− αwd

√
T2 ≤ αSM

T2
≤ ΠM

T2
+ αwd

ΠM
T1−1 − αwd

√
T1 − 1 ≤ αSM

T1−1 ≤ ΠM
T1−1 + αwd.

Subtracting these two inequalities yields that,

ΠM
T2\T1

− αwd(1 +
√
T2) ≤ α(SM

T2
− SM

T1−1) = α(SM
T2\T1

).

Since flow rewards are weakly positive, ΠM
T2\T1

≥ 0, which implies that for any realization of
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returns,

ΣMM
N ≤ SM

N\T2+1 + SM
T2\T1

+ SM
T1−1 + 4wd

√
N

≤ SM
N + 4wd

√
N.

This implies (34). Given (33) and (34). Theorem A.1 follows from a reasoning identical to

that of Lemma 2.

A.2 Discounting

The analysis of Section 4 can be extended to environments where principal and agent dis-

count the future by a factor δ so that the agent’s payoffs are E
(∑N

t=1 δ
t−1(πt − ct)

)
and the

principal’s surplus is E
(∑N

t=1 δ
t−1(wt − w0

t )
)
. Let Nδ =

∑N
t=1 δ

t. This appendix shows that

under discounting, the performance bound of Theorem 2 extends with a loss of order
√

1/Nδ

instead of
√

1/N .

Benchmark contract. The benchmark contract is still to reward the agent α(wt−w0
t ) in

every period t. This linear contract guarantees the principal a robust payoff bound similar

to that given for the benchmark contract in Section 3. For any contract (λ, π), where λ may

be constant and equal to 1, define

rλ,π = inf

{
Ec,a

(
1

wNδ

N∑
t=1

δt−1
[
λt(wt − w0

t )− πt
]) ∣∣∣∣∣(c, a) solves max

c,a
E

(
N∑
t=1

δt−1[πt − ct]

)}

the average discounted per-period returns accruing to the principal under contract (λ, π).

Let rα denote returns accruing to the principal under the benchmark contract. In addition

define

rmax(ĉ) ≡ sup
c s.t.

E
[

1
Nδ

∑N
t=1 δ

t−1ct
]
≤ ĉ

Ec,a∗
(

1

Nδ

N∑
t=1

δt−1
〈
a∗t − a0

t , rt
〉)
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the maximum discounted per-period returns that can be generated at an expected discounted

per-period cost of ĉ.

Lemma A.1. For all environments P,

rα ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)− ĉ

αw

)
.

Proof. The proof is identical to that of Theorem 1, point (i).

Calibration. The calibrated contract is built using the following regrets

R1,T =
T∑
t=1

δt−1(πt − α(wt − w0
t )) and R2,T = max

T≤T ′

T∑
t=T ′

δt−1(1− λt)(wt − w0
t ).

Contract parameters (λt, πt)t≥1 are computed recursively according to

λt =
αR+

2,T

R+
1,T + αR+

2,T

and πt =

 α(wt − w0
t ) if R1,T ≤ 0

0 otherwise
.

The following result extends Lemma 1, showing that incentives are approximately correct.

Lemma A.2 (approximate incentives). For all T , and all possible histories,

1

Nδ

N∑
t=1

δt−1(1− λt)(wt − w0
t ) ≤

wd√
Nδ

(35)

−wd
Nδ

≤ 1

Nδ

N∑
t=1

δt−1[πt − α(wt − w0
t )] ≤

wd√
Nδ

. (36)

Proof. Let RT = (R1,T , αR2,T ) denote the vector of regrets, and ρT+1 = RT+1 −RT . Con-

tract (λ, π) is calibrated so that in every period
〈
R+
T , ρT+1

〉
= 0. It follows that

||R+
N ||

2 ≤
N∑
t=1

||ρT ||2.
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Furthermore, we have that ||ρT ||2 ≤ δ2Twd, which implies that

||R+
T ||

2 ≤ wd
N∑
t=1

δ2(t−1) ≤ wd
N∑
t=1

δt−1.

This implies the right-hand sides of (35) and (36). The left-hand side of (36) follows from a

proof identical to that of the left-hand side of (18).

This implies the following bounds for returns rλ,π.

Theorem A.2. Pick α0 and for η > 0, let α = α0 + η(1 − α0). There exists m ≥ 0 such

that for all environments P, all δ and all N ,

rλ,π ≥ (1− η)rα0 −
m√
Nδ

(37)

rλ,π ≥ (1− α) sup
ĉ∈[0,+∞)

(
rmax(ĉ)− ĉ

αw
− 3d√

Nδ

)
. (38)

Inequality (37) is an extension of (12) but involves an unspecified constant m which may

be large in practice. Inequality (38) gives a more explicit performance bound directly related

to that given in Lemma A.1 for the benchmark contract. Note that in both cases the proof

does not attempt to optimize constants and improved bounds can be obtained.26

Proof. Inequality (37) follows from Lemma A.2 and Lemma 2.

Inequality (38) follows from Lemma A.2 and a reasoning identical to the proof of Theorem

1, point (i). Denote by (c, a) the optimal strategy profile under contract (λ, π). Under any

alternative strategy profile (c′, a′), we have

Ec,a

(
N∑
t=1

δt−1(πt − ct)

)
≥ Ec′,a′

(
N∑
t=1

δt−1(πt − c′t)

)
26For instance the constant 3 in (38) can be replaced by 2 + 1/

√
Nδ.
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Using (36) and (35), this implies that

Ec,a

(
N∑
t=1

δt−1[αλt(wt − w0
t )− ct]

)
+ wd

√
Nδ ≥ Ec′,a′

(
N∑
t=1

δt−1[α(wt − w0
t )− ct]

)
−wd

(√
Nδ + 1

)
Since this holds for every strategy profile (c′, a′), it follows from rearranging that,

rλ,π ≥ (1− α) sup
ĉ≥0

(
rmax(ĉ)− ĉ

αw
− d2

√
Nδ + 1

Nδ

)
.

A.3 Varying Wealth

The calibrated contracts described in Section 4 perform equally well if the invested wealth in

each period varies within some set [0, w]. Let wit denote the initial invested wealth in period

t. Given a contract (λ, π), quantities ΣT , ST and ΠT are defined as

ΠT =
T∑
t=1

πt ; ΣT =
T∑
t=1

wit
〈
at − a0

t , rt
〉

; ST =
T∑
t=1

λtw
i
t

〈
at − a0

t , rt
〉
.

Similarly, let ΣT\T ′ = ΣT − ΣT ′−1, ΠT\T ′ = ΠT − ΠT ′−1, ST\T ′ = ST − ST ′−1. As in Section

4, regrets R1,T and R2,T are defined by

R1,T = ΠT − αST and R2,T = max
T ′≤T

ΣT\T ′ − ST\T ′ .

Contract (λ, π) is unchanged:

λT+1 =
αR+

2,T

αR+
2,T +R+

1,T

and πT+1 =

 αλT+1(wT+1 − w0
T+1)+ if R1,T ≤ 0

0 otherwise
.
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Under this adjusted contract, Theorem 2 extends as is, with an identical proof.

A.4 Principal-Agent Problems Without a Convex Action Space

This appendix extends the analysis to a principal-agent framework more general than the

financial contracting problem studied in the paper. The principal and the agent are still

risk-neutral, but in every period the agent suggests and implements an action at ∈ A, where

A is a potentially non-convex set of actions. Every period, a state of the world rt is drawn

which, given action a, yields observable payoffs w(a, rt) to the principal. Cost ct may now

represent the cost of information acquisition or the cost of taking a specific action. Action

a0
t is the action that the principal would (could) implement on her own. The main difference

is that because set A need not be convex, the principal must use randomized strategies to

calibrate her contract with the agent.

The calibrated contract of Section 4 can be adapted as follows. Parameter λt now denotes

the probability that the principal follows or authorizes the action suggested by the agent.27

Let aλt denote the action actually taken at time t. Denote by ψt ≡ w(at, rt) − w(a0
t , rt) the

potential excess returns and by ψλt ≡ w(aλt , rt) − w(a0
t , rt) the realized excess returns. The

benchmark contract is to reward the agent αψt in each period. As in Section 4, define

ΣT =
T∑
t=1

ψt, ΠT =
T∑
t=1

πt, ST =
T∑
t=1

ψλt ,

as well as ΣT\T ′ = ΣT − ΣT ′−1, ΠT\T ′ = ΠT − ΠT ′−1 and ST\T ′ = ST − ST ′−1. As in Section

4, regrets are defined by

R1,T ≡ ΠT − αST and R2,T ≡ max
T ′≤T

ΣT\T ′ − ST\T ′ .

27For calibration results to hold, it is important that the agent not be able to condition his suggested action
on the outcome of the principal’s randomization. If the agent takes the action on behalf of the principal, λt
should be interpreted as the probability that the principal approve the agent’s proposed course of action.
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Let RT = (R1,T , αR2,T ). Contract (λt, πt)t∈N is defined by

λT+1 =
αR+

2,T

R+
1,T + αR+

2,T

and πT+1 =

 0 if R1,T > 0

α
[
ψλT+1

]+
if R1,T ≤ 0

(39)

with the convention that 0
0

= 1. Lemma 1 extends as follows.

Lemma A.3 (approximate incentives). For all T , and any strategy (c, a) of the agent, we

have that

Ec,aΣT − Ec,aST ≤ wd
√
T (40)

−αwd ≤ ΠT − αEc,aST ≤ αwd
√
T . (41)

Proof. The left-hand side of (41) follows from a proof identical to that of the left-hand side

of (18).

Let us turn to the other inequalities. Let ρT = RT − RT−1 denote flow regrets, and

observe that Ec,a
(〈
R+
T−1, ρT

〉)
≤ 0. Hence, a proof identical to that of Lemma 1 yields that

∀(c, a), Ec,a||R+
T ||

2 ≤ (αdw)2T.

It follows from Jensen’s inequality that for all i ∈ {1, 2},

Ec,a(R+
i,t) ≤ Ec,a

(√[
R+
i,t

]2) ≤√Ec,a
([
R+
i,t

]2) ≤ αwd
√
T .

This implies (40) and the right-hand side of (41).

Given Lemma A.3, a proof identical to that of Lemma 2 yields the following performance

bound: pick α0, η > 0 and let α = α0 + η(1− α0). There exists m independent of N and P

such that

rλ,π ≥ (1− η)rα0 −
m√
N
.
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B Proofs

B.1 Proofs for Section 3

Proof of Theorem 1: Let us begin with point (i). Let (cα, a
∗) denote the agent’s policy

under the benchmark contract. For any ĉ ∈ [0,+∞), denote by (c, a∗) a surplus maximizing

policy with average expected cost 1
N
E
(∑N

t=1 ct

)
≤ ĉ. Recall that a∗ denotes the optimal

allocation strategy conditional on information. Since policy (c, a∗) guarantees the agent a

per-period payoff of αwrmax(ĉ)− ĉ, it must be that α
1−αwrα−Ecα ≥ αwrmax(ĉ)− ĉ. Since the

agent must expend weakly positive effort, this implies that α
1−αwrα ≥ αwrmax(ĉ)− ĉ, which

yields point (i).

Let us now turn to point (ii). Using the bound given in point (i) with α =
√
ρ and

ĉ = cFB yields after manipulation that

wrα
wrFB − cFB

≥ 1− 2

√
ρ

1 +
√
ρ
.

We now show that no contract can improve on this bound over the class of environments Pρ.

For this it is sufficient to show that no contract can improve on this bound for some subclass

of environments included in Pρ. We consider the following family of settings.

There are two assets, 1 and 2. Asset 1 is riskless with returns r1,t = 0 every period. Asset

2 is risky and i.i.d. with negative expected value. Specifically, r2,t = 1 with probability 1/3

and r2,t = −1 with probability 2/3. The agent can only acquire information in period t = 1,

but that information is valuable over the entire course of the relationship. Expending cost

Nc in the first period implies that with probability p(c) the agent learns the entire profile of

realizations (r2,t)t≥1. With probability 1− p(c) the agent does not observe any information

and there are no more information acquisition opportunities.

Environments P in this subclass of interest differ by the probability p(c) the agent can

learn the profile of returns (r2,t)t≥1. This is equivalent to a per-period expected returns
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rmax(c) = p(c)/3. Attention is restricted to expected return production functions of the form

rmax(c) = rmax(0) ≥ 0 for c ∈ [0, cFB] and rmax(c) = rFB for c ∈ [cFB,+∞). Furthermore we

impose the restriction that cFB
wrFB

= ρ. In this environment, without loss of efficiency, one can

restrict attention to contracts in which aggregate payments ΠN are decided and transferred

in the last period. Define π = ΠN/N the corresponding per-period reward. Reward π need

only be conditioned on the following events

� the agent only invests in asset 1 (and obtains returns 0) (event 0)

� the agent invests in asset 2 and only obtains returns 1 when he does (event 1)

� the agent invests in asset 2 and obtains returns -1 at one history (event -1).

It is optimal to discourage the agent to choose asset 2 unless he knows that returns are equal

to 1. Indeed, π(−1) can be set arbitrarily low and event -1 will not occur on the equilibrium

path.

Define ∆ = π(1) − π(0) the difference in rewards between events 1 and 0. The agent’s

per-period expected payoff from putting effort c is

p(c)
[
(1− (2/3)N)π(1) + (2/3)Nπ(0)

]
+ (1− p(c))π(0)− c

= π(0) + rmax(c)
[
1− (2/3)N

] ∆

3
− c,

while the principal’s per-period payoff is

−π(0) + rmax(c)

(
w −

[
1− (2/3)N

] ∆

3

)
.

Let us first show that any contract such that π(0) 6= 0 cannot guarantee a positive share

of first-best surplus. Indeed, if π(0) < 0, then for values of rFB low enough, the agent’s

payoff is strictly negative for all values of c ∈ [0,+∞), which implies that the agent doesn’t

participate and the principal gets profits equal to 0. If instead π(0) > 0, then for values of

rFB low enough, the principal will get negative profits.
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Now consider the case where π(0) = 0. If ∆ < 3 cFB
rFB [1−(2/3)N ]

, then the agent chooses

cost level c = 0, which leads to zero profits in environments where rmax(0) = 0. Assume

now that ∆ ≥ 3 cFB
rFB [1−(2/3)N ]

. For any ε > 0, in environments such that r(0)∆
3

[
1− (2/3)N

]
=

rFB
∆
3

[
1− (2/3)N

]
−cFB+ε, the agent chooses to expend cost c = 0, and the principal obtains

payoff (
rFB −

cFB − ε
[1− (2/3)N ] ∆/3

)(
w −

[
1− (2/3)N

]
∆/3

)
Letting ε go to 0 and maximizing over ∆ (which gives ∆ = 3w

1−(2/3)N
√
ρ), yields that the

principal can guarantee himself a payoff of at most

(wrFB − cFB)

(
1−

2
√
ρ

1 +
√
ρ

)
.

This concludes the proof.

Proof of Fact 2: The fact that benchmark contracts satisfy no-loss is immediate. Let us

turn to the converse.

Contract (πt)t≥1 induces indirect vNM preferences for the agent and the principal over

lotteries with outcomes (wt, w
0
t )t≥1. Given such a lottery L, the principal and the agent

respectively have expected utility

EL

(
N∑
t=1

wt − w0
t − πt

)
and EL

(
N∑
t=1

πt

)
.

Because no-loss must hold for every underlying environment P and every strategy of the

agent, it implies that for every probability distribution L over outcomes (wt, w
0
t )t≥1,

EL

(
N∑
t=1

wt − w0
t − πt

)
≥ 0 ⇐⇒ EL

(
N∑
t=1

πt

)
≥ 0.

Hence, if EL(
∑N

t=1wt − w0
t ) = 0, then EL(

∑N
t=1 πt) and -EL(

∑N
t=1 πt) must have the same
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sign, which implies that

EL

(
N∑
t=1

wt − w0
t

)
= 0 ⇒ EL

(
N∑
t=1

πt

)
= 0.

Consider the deterministic sequence such that for all t > 1, wt = w0
t = 0, w1 = 0 and w0

1 = 1.

Let α = −
∑N

t=1 πt for this deterministic sequence of outcomes. Let L−1 denote the lottery

putting unit mass on this outcome. For any lottery L such that EL(
∑

t≥1 πt) ≥ 0, consider

the compound lottery L̂ = pL−1 + (1− p)L, with p/(1− p) = EL(
∑

t≥1 πt). By construction,

EL̂(
∑

t≥1wt − w0
t ) = 0 so that necessarily,

EL̂

(
N∑
t=1

πt

)
= 0 ⇐⇒ −pα + (1− p)EL

(
N∑
t=1

πt

)
= 0

⇐⇒ EL

(
N∑
t=1

πt

)
= αEL

(
N∑
t=1

wt − w0
t

)
.

Since this must hold for all lotteries L, it must be that for all t, πt = α(wt − w0
t ). Finally it

is immediate that in order to satisfy no-loss, it must be that α ∈ (0, 1).

B.2 Proofs for Section 4

Proof of Lemma 2: Under any benchmark linear contract, the agent uses conditionally

optimal allocation policy a∗. Let (c, a∗) denote the agent’s policy under the benchmark

contract of parameter α, (c̃, ã) his policy under contract (λ, π), and (c0, a
∗) the agent’s

policy in the benchmark contract of parameter α0.

By optimality of (c̃, ã) under contract (λ, π), we have that

Ec̃,ã

[
ΠN −

N∑
t=1

c̃t

]
≥ Ec,a∗

[
ΠN −

N∑
t=1

ct

]
.
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We obtain that

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+C ≥ Ec,a∗

[
αSN −

N∑
t=1

ct

]
−B ≥ Ec,a∗

[
αΣN −

N∑
t=1

ct

]
−B−αA. (42)

By optimality of (c, a∗) under the benchmark contract of parameter α, we have that

Ec,a∗
[
αΣN −

N∑
t=1

ct

]
≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]
. (43)

By optimality of (c0, a
∗) under the benchmark contract of parameter α0 we obtain

Ec0,a∗
[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,a∗

[
α0ΣN −

N∑
t=1

c̃t

]
.

Note that by definition of a∗ and SN , Ec̃,a∗ΣN ≥ Ec̃,ãSN . Indeed, under a∗, ΣT delivers

positive expected returns every period, while ST (under any allocation policy) provides at

best a fraction of these returns. This implies that

Ec0,a∗
[
α0ΣN −

N∑
t=1

c0,t

]
≥ Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
. (44)

Combining (42), (43) and (44) yields

Ec̃,ã

[
αSN −

N∑
t=1

c̃t

]
+ αA+B + C ≥ Ec0,a∗

[
αΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec0,a∗
[
α0ΣN −

N∑
t=1

c0,t

]

≥ (α− α0)Ec0,a∗ΣN + Ec̃,ã

[
α0SN −

N∑
t=1

c̃t

]
.

Altogether, this implies that (α−α0) [Ec0,a∗ΣN − Ec̃,ãSN ] ≤ αwd(2
√
N+1). Hence we obtain
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that

Ec̃,ã[SN − ΠN ] ≥ (1− α)Ec0,a∗ΣN − (1− α)
αA+B + C

α− α0

− C.

Dividing by Nw, this yields that rλ,π ≥ (1− η)rα0 − 1
Nw

[
C + 1−η

η
(αA+B + C)

]
.

B.3 Proofs for Section 5

B.3.1 Proofs for Section 5.1: Calibrating a Broader Class of Contracts

The proof of Theorem 3 uses the following extension of Lemma 1.

Lemma B.1 (incentive approximation). For any realization of uncertainty,

−πη ≤
T∑
t=1

πt − πηt (λt) ≤ πη
√
T (45)

−πη
√
T ≤ max

T ′≤T

T∑
t=T ′

πηt − π
η
t (λt) ≤ πη

√
T . (46)

Proof. Let RT = (R1,T ,R2,T ) denote the vector of regrets and ρT = RT −RT−1 the vector of

flow regrets. Using the fact that R2,T+1 = R+
2,T + (1− λT )πηT+1, and exploiting the equality

R+
2,T (R2,T −R+

2,T ) = 0, we have

〈
R+
T , ρT+1

〉
= R+

1,T [πT − λT+1π
η
T ] +R+

2,T (1− λT+1)πηT+1

= R+
1,Tπt + [(1− λT+1)R+

2,T − λT+1R+
1,T ]πηT+1.

Hence, the contract (λt, πt)t≥1 defined by (22) ensures that for all realizations of rT+1,〈
R+
T , ρT+1

〉
= 0.

We now prove by induction that ||R+
T ||2 ≤

∑T
t=1 (πηt )2. The property clearly holds for

T = 1. We now assume that it holds at T and show it must hold at T + 1. Consider first
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the case where R2,T > 0.

||R+
T+1||

2 ≤ ||R+
T + ρT+1||2 ≤ ||R+

T ||
2 + 2

〈
R+
T , ρT+1

〉
+ ||ρT+1||2

≤ ||R+
T ||+ ||ρT+1||2

where we used the fact that by construction,
〈
R+
T , ρT+1

〉
= 0. Furthermore, we have that

||ρT+1||2 ≤ (πT+1 − πηT+1(λT+1))2 +
(
R+

2,T + (1− λT+1)πηT+1 −R2,T

)2

≤ λ2
T+1(πηT+1)2 + (1− λT+1)2(πηT+1)2

≤ (πηT+1)2.

Using the induction hypothesis, this implies that ||RT+1||2 ≤
∑T+1

t=1 (πηt )2. A similar proof

holds when R2,T < 0, taking into account that in this case, R2,T+1 = (1−λT+1)πηT+1. Hence,

by induction, this implies that for all T ≥ 1, ||R+
T ||2 ≤

∑T
t=1(πηt )2. Since |πηt | ≤ πη, this

implies inequality (46) and the right-hand side of (45). The left-hand side of (45) follows

from an induction identical to that used to prove the left-hand side of (18).

Proof of Theorem 3: We begin with the proof of (23). Let (ĉ, â) denote an optimal

strategy for the agent under calibrated contract (λ, π), and let (c, a) denote an optimal

strategy for the agent under benchmark contract π0 = (π0
t )t≥1. By optimality of â under

(λ, π), we obtain that

Eĉ,â

(
N∑
t=1

πt − ĉt

)
≥ Ec,a

(
N∑
t=1

πt − ct

)
.

By (45) this implies that

Eĉ,â

(
N∑
t=1

πηt (λt)− ĉt

)
+ πη
√
N ≥ Ec,a

(
N∑
t=1

πηt (λt)− ct

)
− πη.
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By (46) we obtain

Eĉ,â

(
N∑
t=1

λtπ
η
t − ĉt

)
+ πη
√
N ≥ Ec,a

(
N∑
t=1

πηt − ct

)
− πη(1 +

√
N).

Using the fact that (c, a) is optimal under contract (π0
t )t≥1, and that Ea,c(π0

t ) ≥ 0, this

implies that

Eĉ,â

(
N∑
t=1

λtπ
0
t + λtη(wt − w0

t − π
η
t )− ĉt

)
≥ Ec,a

(
N∑
t=1

π0
t + η(wt − w0

t − π
η
t )− ct

)
− πη(2

√
N + 1)

≥ Eĉ,â

(
N∑
t=1

λtπ
0
t − ĉt

)
+ Ec,a

(
N∑
t=1

η(wt − w0
t − π

η
t )

)
− πη(2

√
N + 1).

Thus, using (45) and the fact that wt − w0
t − π

η
t = 1

1+η
(wt − w0

t − π0
t ), we obtain that

Eĉ,â

(
N∑
t=1

λt(wt − w0
t − π

η
t )

)
− Ec,a

(
N∑
t=1

wt − w0
t − π

η
t

)
≥ −π

η

η
(2
√
N + 1)

⇒ Eĉ,â

(
N∑
t=1

λt(wt − w0
t )− πt

)
≥ 1

1 + η
Ec,a

(
N∑
t=1

wt − w0
t − π0

t

)
− πη

η

(
2
√
N + 1 + η

)
.

Inequality (23) follows from normalizing by 1/wN . Inequality (24) follows from the fact that

by Lemma B.1 incentives are approximately correct from the perspective of any history hT .

Indeed, since payments (πt)t≥0 are positive, the fact that (45) holds at every time t implies

that for all T ,

−πη(
√
N + 1) ≤

N∑
t=T

πt − πηt ≤ πη(
√
N + 1).

Furthermore, (46) implies that

−π
√
N ≤

N∑
t=T

πηt − π
η
t (λt) ≤ π

√
N.
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Hence a proof identical to that of inequality (23) implies inequality (24).

B.3.2 Proofs for Section 5.2: Self Screening by Uninformed Agents

The proof of Lemma 3 requires the following extension of the Azuma-Hoeffding inequality.

Lemma B.2 (an extension of Azuma-Hoeffding). Consider a martingale with increments

∆t such that |∆t| ≤ γ. Filtration (Ft)t≥1 corresponds to the information available at the

beginning of period t. Let γt ≡ sup |∆t|
∣∣∣Ft and Tm ≡ inf

{
T
∣∣∣ γ2 +

∑T
t=1 γ

2
t ≥ m

}
. The

following hold.

(i) ∀κ > 0, Prob
(∑Tm

t=1 ∆t ≥ κ
)
≤ exp

(
−2κ

2

m

)
(ii) ∀κ > 0, Prob

(
maxT≤Tm

∑T
t=1 ∆t ≥ κ

)
≤ 2 exp

(
−2κ

2

m

)
.

Proof of Lemma B.2: Let us begin with point (i). By Hoeffding’s Lemma (see Hoeffding

(1963) or Cesa-Bianchi and Lugosi (2006), Lemma 2.2), we have that

E(exp(λ∆t)|Ft) ≤ exp

(
λ2γ2

t

8

)
.

By construction
∑Tm

t=1 γ
2
t ≤ m. Hence, using Chernoff’s method, we have that for any λ > 0

Prob

(
Tm∑
t=1

∆t ≥ κ

)
≤ exp(−λκ)E

(
Tm∏
t=1

exp(λ∆t)

)
≤ exp(−λκ)E (exp(λ∆1)E (exp(λ∆2) · · ·E (exp(λ∆Tm)|FTm) | · · · |F2))

≤ exp(−λκ)E

(
exp

(
λ2

8

Tm∑
t=1

γ2
t

))
≤ exp(−λκ) exp

(
λ2

8
m

)
.

Minimizing over λ (i.e. setting λ = 4κ/m) yields point (i).

Point (ii) follows from point (i) by adapting the standard reflection techniques used for

Brownian motions. LetBT =
∑T

t=1 ∆t. Pick κ > 0. We want to evaluate Prob(maxT≤Tm BT ≥

κ). Consider the process B̃T =
∑T

t=1 εt∆t, where εt = 1[maxs<tBs]<κ − 1[maxs<tBs]≥κ. Process
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B̃T is a martingale, corresponding to reflecting BT the first time it crosses level κ. Note also

that |εt∆t| = |∆t|. We have that

Prob

(
max
T≤Tm

BT ≥ κ

)
= Prob(BTm ≥ κ) + Prob(BTm < κ and max

T≤Tm
BT ≥ κ)

≤ Prob(BTm ≥ κ) + Prob(B̃Tm ≥ κ). (47)

Note that (47) is an inequality, rather than an equality as in the case of a Brownian

motion, because of the discreteness of martingale increments. Still this suffices for our

purpose. Indeed, by applying point (i) to both BTm and B̃Tm , we obtain that indeed,

Prob
(

maxT≤Tm
∑T

t=1 ∆t ≥ κ
)
≤ 2 exp

(
−2κ

2

m

)
. This concludes the proof.

Proof of Lemma 3: We have that

ST =
T∑
t=1

λtEa[wt − w0
t |F0

t ] +
T∑
t=1

λt(wt − w0
t − Ea[wt − w0

t |F0
t ]).

Since the agent is uninformed, by definition of w0
t , we have that for all allocation strategies

a, Ea[wt − w0
t |F0

t ] ≤ 0. Define ∆t ≡ λt(wt − w0
t − Ea[wt − w0

t |F0
t ])/w. ∆t is a martingale

increment such that |∆t| ≤ 2λtdt.

Let us define χT = d
2

+
∑T

t=1 λ
2
td

2
t . For all m ∈ N, let Tm denote the stopping time

inf {T |χT ≥ m}. Using Lemma B.2, we obtain that for all m

Prob
(
STm ≥ 2w

√
χTm

√
M + lnχTm

)
≤ Prob

(
Tm∑
t=1

∆t ≥ 2
√
χTm

√
M + lnχTm

)
≤ exp (−2(lnm+M)) ≤ exp(−2M)

1

m2
.

In addition, conditional on STm ≤ 2w
√
χTm

√
M + lnχTm , Lemma B.2 implies that the
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probability that there exists T ∈ [Tm, Tm+1 − 1] such that ST ≥ ΘT is less than

Prob

(
sup

T∈{Tm,··· ,Tm+1−1}

T∑
t=Tm

∆t ≥ 2
√
M + lnm

)
≤ 2 exp(−2M)

1

m2
.

Hence it follows that

Ea

(
N∑
t=1

1St>Θt

)
≤ 3 exp(−2M)

∑
m∈N

1

m2
≤ π2

2
exp(−2M).

This concludes the proof.

Let us now turn to the proof of Theorem 4. Let ΠΘ
T =

∑T
t=1 π

Θ
t denote actual rewards,

up to time T . The following lemma extends Lemma 1.

Lemma B.3 (approximate incentives). For all T , T ′ < T , and all paths of play, we have

that

ΣT\T ′ − ST\T ′ ≤ w

√√√√ T∑
t=1

d2
t (48)

−αΘT − αwd− b ≤ ΠΘ
T − αST ≤ αw

√√√√ T∑
t=1

d2
t . (49)

Proof. A proof identical to that of Lemma 1 yields the left-hand side of (48) and the right-

hand side of (49). The left-hand side of (49) is proven by induction. Assume it holds at

time T . If αST+1 − αΘT+1 ≤ 0, then the inequality holds trivially. Consider now the case

where αST+1 − αΘT+1 > 0. If ΠT ≥ αST − αΘT then we necessarily have ΠT+1 ≥ αST+1 −

αΘT+1−αwd since ΘT is increasing in T . If instead, ΠT ∈ [αST −αΘT −αwd, αST −αΘT ],

then necessarily, ΠT < αST , so that λT+1 = 1 and πT+1 = α(wT+1 −w0
T+1)+. It follows that

ΠT+1 ≥ αST+1 − αΘT+1 − αwd.

Proof of Theorem 4: Combining Lemmas 2, 3 and B.3 yields Theorem 4.
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It is worth noting that the efficiency bound given in Theorem 4 can be improved in some

circumstances. The following theorem shows that when returns are either zero or bounded

away from 0, the performance loss will be of order
√

1/N rather than
√

lnN/N .

Assumption 3 (grainy returns). Let (c, a∗) denote the agent’s policy under the benchmark

contract with rate α0. There exists ξ > 0 such that whenever Ec,a∗ [wt − w0
t |Ft] > 0, then

Ec,a∗ [wt − w0
t |Ft] > ξ.

Theorem B.1. Pick α0 and for any η > 0, set α = α0 + η(1− α0). If Assumption 3 holds,

there exists a constant m such that for all N and all probability spaces P,

rλ,πΘ ≥ (1− η)rα0 −m
1√
N
.

Proof. As in the case of Theorem 4, the proof strategy is to adapt the the bounds of Lemma 1

and apply the reasoning of Lemma 2. Specifically, the left-hand side of bound (49) in Lemma

B.1 must be improved. Let (c, a∗) denote the agent’s optimal strategy under the benchmark

contract of parameter α. To exploit the reasoning of Lemma 2 and obtain Theorem B.1, it

is sufficient to prove a bound of the form

−B ≤ Ec,a∗
[
ΠΘ
N − αSN

]
, (50)

where B is a number independent of N and P . We show that this is indeed the case. By

construction, we have that

Ec,a∗ΠΘ
N ≥ Ec,a∗αSN − αwd− αwdEc,a∗

[
N∑
T=1

1ST<ΘT

]
.

Hence, it is sufficient to show that under (c, a∗), the expected number of periods where the

hurdle is not met is bounded above by a constant independent of N .

Let ∆t = wt−w0
t −E[wt−w0

t |Ft] and χT = d
2
+
∑T

t=1 d
2
t . Note that under strategy (c, a∗),
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Assumption 3 implies that if dt > 0, then Ec,a∗(wt − w0
t |Ft) > ξ. Hence

∑T
t=1 Ec,a∗(wt −

w0
t |Ft) ≥ ξ(χT/d

2 − 1). By (48), for any T ,

Probc,a∗(ST < ΘT ) ≤ Probc,a∗ (ΣT < ΘT + w
√
χT )

≤ Probc,a∗

(
T∑
t=1

E[wt − w0
t |Ft] +

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
ξ

[
χT

d
2 − 1

]
+

T∑
t=1

∆t < ΘT + w
√
χT

)

≤ Probc,a∗

(
T∑
t=1

∆t < −ξ
[
χT

d
2 − 1

]
+ ΘT + w

√
χT

)
.

An argument similar to that used in the proof of Lemma 3 yields that∑+∞
T=1 Prob

(∑T
t=1 ∆t < − ξ

d
2χT + ξ + ΘT + w

√
χT

)
is bounded above by a constant. This

concludes the proof.

B.3.3 Proofs for Section 5.3 (multi-agent contracts)

Proof of Lemma 4: Optimal strategies for the agents (c∗, a∗) = (c∗k, a
∗
k)k∈K are such that

for any other profile of strategies (c, a) = (ck, ak)k∈K , and for all k ∈ K,

Ec∗k,a∗k

[
N∑
t=1

α(wk,t − wk−1,t)− c∗k,t

]
≥ Eck,ak

[
N∑
t=1

α(wk,t − wk−1,t)− ck,t

]
.

Summing over k, this implies that

Ec∗,a∗
[

N∑
t=1

α(wK,t − w0,t)−
∑
k∈K

c∗k,t

]
≥ Ec,a

[
N∑
t=1

α(wK,t − w0,t)−
∑
k∈K

ck,t

]
.

This implies that

Ec∗,a∗
[

N∑
t=1

(1− α)(wK,t − w0,t)

]
≥ 1− α

α
Ec,a

[
N∑
t=1

α(wK,t − w0,t)−
∑
k∈K

ck,t

]
.
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Since this holds for any strategy profile (c, a), we obtain that indeed

rα ≥ (1− α) max
c∈[0,+∞)

(
rmax(c)− c

αw

)
.

Proof of Theorem 5: The proof is similar to that of Theorem 2. LetRT = (R1
k,T , αR2

k,T )k∈{1,··· ,K}

denote the vector of regrets. We first show that regrets are at most of order
√
KN . Let

ρT = RT −RT−1 and consider the dot product

〈
R+
T , ρT+1

〉
=
∑
k∈K

[
R1
k,T

]+ [
πk,T+1 − α(wλk,T+1 − wλk−1,T+1)

]
+ α2

[
R2
k,T

]+
(wk,T+1 − wλk,T+1)

=
∑
k∈K

[
R1
k,T

]+
πk,T+1 + α

(
α
[
R2
k,T

]+
(1− λk,T+1)−

[
R1
k,T

]+
λk,T+1

)
(wk,T+1 − wλk−1,T+1).

This implies that contract parameters (λt, πt) are such that
〈
R+
T , ρT+1

〉
= 0. Using a proof

identical to that of Lemma 1, the fact that
〈
R+
T , ρT+1

〉
= 0 and the fact that ||ρT+1||2 is

bounded above by Kw2d
2

imply that for every k,

N∑
t=1

πk,t − α(wλk,t − wλk−1,t) ≤ wd
√
KN

max
T ′≤T

N∑
t=T ′

wk,t − wλk,t ≤ wd
√
KN.

Furthermore, by construction, we have that

N∑
t=1

πk,t − α(wλk,t − wλk−1,t) ≥ −wd.

Hence the conditions to apply Lemma 2 hold, and it follows that

rπ,λ ≥ (1− η)rα0 −m
√
K

N
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For m independent of N , K and P . As in the case of Theorem 2, a similar proof holds from

the perspective of every history hT .
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