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The Contribution of Economic Fundamentals to Movements in Exchange 

Rates 

 

Abstract 

A puzzle in the international finance literature has been that fundamental variables do not help 

forecast the future exchange rate change better than the random walk benchmark. Recently Engel 

and West (2005, 2006) show that such a result can be explained by the present value model of 

the exchange rate if the discount factor for the expectation of future fundamental variables is 

close to one and the fundamental variables are I(1).  The approach we take in this paper allows 

us not only to directly estimate the discount factor but also to study the expectation dynamics 

that are important in evaluating these exchange rate models. Our estimates are based on a century 

of data for the US and UK. We employ a Bayesian approach to account for both uncertainty 

about the specification of the underlying state space model as well as parameter uncertainty. 

First, we show that the degree of model uncertainty is great and that the implied contribution of 

observed monetary fundamentals is imprecisely estimated.  Second, we deal with the weak 

identification by bringing additional information to bear on the analysis.  This additional 

information comes in the form of data on interest rate and price differentials and prior 

information about PPP half-lives and the semi-elasticity of money demand. In general, we find 

that monetary fundamentals (money and output differentials) and money demand shifters 

contribute most to movements in exchange rates while uncovered interest parity risk premium 

contribute to a lesser degree.  
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1. Introduction 

 The well-known papers by Meese and Rogoff (1983a, 1983b) showed that a simple 

random walk model for exchange rates can beat various time series and structural models in 

terms of out-of-sample forecasting performance.  Although some of the subsequent literature on 

exchange rate predictability find evidence in favor of beating the random walk benchmark, most 

of those results do not hold up to scrutiny.  The extant literature has found the linkage between 

the nominal exchange rate and fundamentals to be weak (Cheung, Chinn, and Pascual 2005; and 

Sarno, 2005).  This weak linkage has become known as the “exchange rate disconnect puzzle”.  

Engel and West (2005) took a new line of attack in this analysis and demonstrate that this 

so-called disconnect between fundamentals and nominal exchange rates can be reconciled within 

a rational expectations model. The Engel and West (2005) model implies that the exchange rate 

is the present discounted value of expected economic fundamentals.  Specifically,  
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where ts is the spot exchange rate, tf  is the current value of observed fundamentals (for example 

money growth and output growth differentials), and ψ  is the discount factor.  The term tR  

includes current and expected future values of unobserved fundamentals (risk premia, money 

demand shocks, etc) as well as perhaps “nonfundamental” determinants of exchange rate 

movements.   

The “exchange rate disconnect puzzle” reflects the fact that fluctuations in tt fs −  can be 

“large” and persistent, while the promise of the present value approach is that this disconnect can 

be explained by the expectations of future fundamentals.  The potential empirical success of the 

Engel and West model hinges on two major assumptions.  First, fundamentals are non-stationary.  
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Second, the factor used to discount future fundamentals is “large” (between 0.9 and unity).  

Nonstationary fundamentals impart nonstationarity to exchange rates while a large discount 

factor gives greater weight to expectations of future fundamentals relative to current 

fundamentals.   As a result, current fundamentals are only weakly related to exchange rates as 

exchange rates appear to follow an approximate random walk. The first assumption of 

nonstationary fundamentals has been supported by empirical work (Engel and West, 2005; 

Engel, Mark, and West, 2007), however, only recently has there been direct evidence in support 

for the second assumption of a large discount factor (Sarno and Sojli, 2009).    

The key research question that still remains is to what extent can expectations of future 

fundamentals explain exchange rate movements?  The challenge in evaluating the present value 

model is that not only the expected future fundamentals are not observed but other economic 

fundamentals, i.e. the tR  in equation (1.1), are also not observed.  Indeed, Engel and West 

(2005) acknowledge that the kind of decompositions based on forecasting observed 

fundamentals such as those applied to stock prices (see Campbell and Shiller (1988)) is made 

difficult by the presence of unobserved fundamentals.   

In this paper, we use a simple monetary model of exchange rates to specify explicitly the 

relationship between economic fundamentals and exchange rates.  To sharpen our focus on 

expectations about future fundamentals, we use a state space model to conveniently model the 

relationship between observed fundamentals and the unobserved predictable components of 

fundamentals.  We integrate the state space model into the present value model of the exchange 

rate to show the links between the predictable component of fundamentals and exchange rate 

fluctuations.  We use annual data on the pound to the dollar exchange rate, money, output, 

prices, and interest rates for the UK and US from 1880 to 2010.  The directly observed 
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fundamental in our model is money supply differentials between the UK and US minus output 

differentials between the UK and the US.  This variable has been the primary focus of the 

literature’s examination of fundamentals’ contribution to exchange rate movements. For 

example, Mark (1995) evaluate the ability of this variable to forecast the future exchange rate 

movements for a set of countries including the United States, Canada, Germany, Japan, and 

Switzerland since the end of the Bretton Woods regime.  Rapach and Wohar (2002) construct 

this variable for 14 industrial countries covering a period of more than a century and study the 

cointegration relationship between the exchange rates and the fundamentals. Mark and Sul 

(2001) further demonstrate that the panel data techniques are able to find more evidence of 

predictability of this variable to the future exchange rate movements. More recently, Cerra and 

Saxena (2010) conduct a comprehensive study of a very large dataset consisting of 98 countries 

and find more evidence that this fundamental variable help forecast the future exchange rate 

movements.  

We show the difficulties of using only information on observed fundamentals and 

exchange rates to infer the expectations about future fundamentals.  Using Bayesian model 

averaging across different specifications of a state space model, we show that the posterior 

distribution of the contribution of observed fundamentals to the variance of exchange rates is 

bimodal, with roughly equal weight placed on close to a zero contribution and on close to a 

100% contribution.  The reason for great uncertainty about the relative contributions of observed 

fundamentals is that in the data the predictable component of changes in observed fundamentals 

is relatively small compared to the unpredictable component--most of the information about 

future fundamentals is contained in exchange rates rather than observable fundamentals.  This 
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makes identification of the separate contribution of expectations of future observed fundamentals 

problematic.   

To solve this identification problem, we bring additional information to bear on the 

analysis.  Within the context of the basic monetary model of exchanger rates, data on interest rate  

and price differentials provide information about two previously unobserved fundamentals—

money demand shifters and a risk premium (deviations from uncovered interest parity).  Another 

source of information is prior information about key parameters in the state space model.  

Specifically, prior information about the half-life of deviations from purchasing power parity 

helps to identify expected future deviations from purchasing power parity while prior 

information about the semi-elasticity of money demand which determines the value of the 

discount factor.  Adding this additional information, results in sharper inference about the 

relative contribution of various fundamentals.  We find that monetary fundamentals, money 

minus output differentials and particularly money demand shifters, explain the bulk of exchange 

rate movements.  Fluctuations in the risk premium play a lesser role.  

Our findings have very important implications to the fundamental exchange rate models 

that relate the exchange rate fluctuations to the economic fundamentals such as the output and 

monetary factors.  Our results indicate that these economic fundamentals, either directly 

observed or indirectly inferred, contribute to the exchange rate movement in a substantial way.  

The large literature that finds it hard for economic models to produce a better out-of-sample 

forecasts for the exchange rate than a random walk may simply be due to the predictable 

component of fundamentals is small relative to the unpredictable component.  That is, a simple 

regression cannot detect the small signals buried under the volatile noise. 
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The rest of the paper is organized as follows.  In section 2, we outline the simple 

monetary model of exchange rates used by Engel and West (2005) to show how the spot 

exchange rate can be written as a function of expectations of future fundamentals, some of which 

are observed and some of which are unobserved.  In section 3, we develop a state space model to 

describe the dynamics of the predictable component of observed fundamentals and embed it in 

the simple rational expectations monetary model of exchange rates.  In section 4, we demonstrate 

using Bayesian model averaging that there is substantial uncertainty about the quantitative 

contribution of observed fundamentals to exchange rate movements.  In section 5, we use 

additional information to obtain tighter inferences about relative contributions of observed and 

unobserved fundamentals.  Section 6 concludes. 

 

2. The Monetary Exchange Rate Model 

We start with the classical monetary model as below (all variables are in logarithm, and 

asterisk denotes foreign variable): 

md

ttttt viypm +−=− λφ      (2.1) 

md*

t

*

t

*

t

*

t

*

t viypm +−=− λφ      (2.2) 

The variable definitions used in our model are the natural log of money supply (m), natural log of 

price level (p), and nominal interest rate (i). Variables with asterisk represent the foreign country.  

The terms md

tv  and md*

tv  represent unobserved variables that shift money demand. 

We integrate into the model a generalized Uncovered Interest Parity (UIP) condition that 

allows for a time-varying risk premium, uip

tr , since in general the UIP fails and the equilibrium 

model would imply non-trivial risk premium (see Engel (1996)): 

uip

tttt

*

tt rssEii +−=− +1      (2.3) 



 

6 

where ts is the natural log of the exchange rate.  To complete model, we add the Purchasing 

Power Parity (PPP) relationship: 

ppp

t

*

ttt rpps +−= .      (2.4) 

Since the PPP in general only holds in the long run (Rogoff (1996)), the variable ppp

tr  picks up 

all deviations from the PPP.
1
 

Combining (2.1) through (2.4) together, we can derive a stochastic difference equation 

that describes how exchange rate would depend on observed monetary fundamentals and an 

unobserved remainder. Similar results may be found in standard textbooks such as Mark (2001). 

The algebra can be manipulated so as to express the exchange change rate determination in terms 

of its deviation from observed fundamentals, similar to the stock price decomposition by 

Campbell and Shiller (1988): 

[ ] [ ] tttttttt rfEfsEfs ⋅+∆⋅+−⋅=− +++ ψψψ 111    (2.5) 

where, ( ) ( )**

ttttt yymmf −−−≡ φ  is the observed monetary fundamental, and 
λ
λ

ψ
+

=
1

  is the 

so-called discount factor. In the following estimation exercise, we set 1=φ  as in Rapach and 

Wohar (2002) and Mark (1995). The unobserved term, tr⋅ψ , consists of the unobserved money 

demand shifter as well as deviations from both uncovered interest rate parity and purchasing 

power parity: md

t

ppp

t

uip

tt r)(r)(rr ψψψψ −−−+=⋅ 11  where md*

t

md

t

md

t vvr −= .   

Recently, Engel and West (2005, 2006) show that this asset price formulation for the 

exchange rates is very general and can be derived from a variety of monetary policy models 

including the Taylor rule and may include more fundamental information under that type of 

                                                           
1
 One way to avoid the short-run deviation from the PPP is to choose to estimate the model at a very low frequency 

at which the friction would go away and PPP would hold. 
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monetary policy rules. One advantage of writing the exchange rate determination in terms of its 

deviation from its current fundamentals is that we can study which variable will most likely 

respond to such deviations, and therefore determining which factor is more responsible for these 

deviations.  

To further solve the model, we can iterate eq. (2.5) forward. Under the assumption of no 

explosive solution, the model can be solved as below: 
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ttt rEfEfs ψψ     (2.6) 

where, tt fs −  is the deviation of current exchange rate from its current observed monetary 

fundamental. Eq. (2.6) is similar to the present discounted value formula for the exchange rate 

derived in Engel and West (2005, 2006), and this equation states that any deviation of current 

exchange rate from its observed fundamentals should reflect the variation of the present 

discounted value of agent’s expected future economic fundamentals.  

Engel and West (2005, 2006) argue that the fundamentals may be primarily driving the 

exchange rate but the close-to-unity discount factor ψ  leads to near random walk behavior for 

the exchange rate and therefore it has been extremely hard to forecast any future exchange rate 

movement using the information of fundamentals. To see this intuitively, we may re-write (2.5) 

to express the one-period-ahead exchange rate change as below: 

( ) ( ) ttttt rfssE −−⋅
−

=∆ + ψ
ψ1

1     (2.7) 

If the discount factor ψ  approaches unity, the current fundamentals would forecast a very small 

fraction of the near future exchange rate change, because essentially the fundamental information 

has too small a loading compared with the remainder. A straightforward extension of (2.7) shows 

that a similar result holds for the multi-period-ahead exchange rate change. 
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3.  Decomposing the contribution of observed fundamentals and unobserved shocks 

One obstacle in evaluating the above exchange rate model is that what matters in 

explaining current deviation of exchange rate from its fundamentals are agent’s expectations of 

future fundamentals and the remainder but these expectations are not directly observable. The 

state-space model offers a convenient framework in which we can model the expectations as 

latent factors and allow them to have flexible dynamics. In doing this, we can extract agent’s 

expectations using the Kalman filter and decompose the current deviation of exchange rate from 

its fundamentals into the contributions of future observed fundamentals and current and future 

unobserved remainder. Furthermore, instead of assuming that the discount factor is close to unity 

as in Engel and West (2005, 2006), we can directly estimate the discount factor and provide 

further statistical evidence for the Engel and West model. 

Denote the expectations by [ ] ttt gfE =∆ +1  
and [ ] ttt rE µ=+1 . Then the realized variables 

are the sum of their conditional expectations and the realized shocks: 

f

ttt gf ε+=∆ −1      (3.1) 

r

tttr εµ += −1       (3.2) 

Where the realized shocks (or forecast errors) f

tε  and r

tε  are white noise. At the same time, the 

expectations processes may embody important dynamics, and here we assume AR processes for 

them: 

g

ttg g)L)L(( εφ =−1
  

   (3.3) 

µ
µ εµφ tt)L)L(( =−1      (3.4) 
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where g

tε  and µε1  are expectation shocks.  The four shocks [ ]'rtf

tt

g

t εεεε µ  are allowed to 

be contemporaneously correlated but they are serially uncorrelated.   

Using equation (2.6) and evaluating expectations, we can write the exchange rate relative 

to observed current monetary fundamental as: 

r

tttttt LBgLBfs ψεψµµ +++=− −121 )()( ,   (3.5)  
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t fE ψ , will in fact depend on current (and possibly lagged) 

values of the unobserved component tg .  The coefficients of the lag polynomials, )L(B1  and 

)L(B2 , depend on the values of ψ , )L(gφ , and )L(µφ .  In general, the larger the value of ψ  

and the more persistent is tg , the larger are the coefficients of )L(B1 .   

Given the observed monetary fundamentals, tf∆ , we can write the model in a state space 

form with the measurement equation: 
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and the transition equation: 
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As none of the state variables are directly observed and must be inferred from the two 

observed time series, identification of the state space model will depend on the dynamics of the 

observed time series and its variance/covariance matrix (see Appendix A).  Balke and Wohar 

(2002) and Ma and Wohar (2011) show that inference about the relative contribution of the 

unobserved components may be very weak if the observed fundamental does not provide a lot of 

direct information about the relative sizes of the predictable component of fundamentals.  For 

example, if the variance of innovations to the predictable components, 
2

gσ , is small relative to 

the unpredictable component, 
2

fσ , then observations of tf∆ provide very little information about

tg , leaving only tt fs −  to infer both tg  and tµ .  One can see this by rewriting the state space 

model as a VARMA: 
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If 2

2

f

g

σ
σ

 is “small”, then observations of tf∆ are not sufficient to identify )L(gφ --this 

polynomial is canceled out in the tf∆ equation.  As there could be numerous combinations of 

)L(gφ  and )L(µφ  would yield the same autoregressive dynamics for tt fs − , 

)L)L()(L)L(( g µφφ −− 11 , whether there is sufficient information to identify )L(gφ  and )L(µφ  

would depend on the moving average dynamics of tt fs − .  These may not be sufficiently rich to 

identify )L(gφ  and )L(µφ . 
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Taking annual observations of the nominal exchange rate, relative money supply, and 

relative real GDP between the US and UK and UK and US interest rates from 1880 to 2010 (see 

appendix C for details of data construction), the top panel of Figure 1 plots the log UK-US 

exchange rate, ts , and the log level of the observed monetary fundamental, tf , while the lower 

panel of Figure 1 plots the realized fundamentals growth ( tf∆ ) along with the deviation of 

current exchange rate from the observed monetary fundamentals ( tt fs − ).  The deviation, tt fs −

, is quite persistent and volatile while the realized fundamentals growth is much less persistent 

and less volatile. Figure 1 suggests that the persistent component tg  is likely to be “small” 

relative to tf∆  which in turn implies that it may be difficult to separately identify tg  and tµ  

from data on tt fs −  alone. 

We address this potential identification problem in two ways.  First, in following section, 

we estimate decompositions of exchange rate deviations from monetary fundamentals for five 

separate non-nested models that reflect different specifications of )L(gφ  and )L(µφ .  We use 

Bayesian model averaging to account for model uncertainty in attributing the source of exchange 

rate fluctuations.  Second, in section 5, we bring additional information to bear on the analysis.  

This additional information comes in the form of data on interest rate differentials and price level 

differentials.  We use the simple monetary model outlined above to link the additional 

observations to components in the unobserved remainder term.  This additional information 

allows us to break up the remainder term into its constituent components: uiip

tr , ppp

tr , and md

tr .  

The other source of information is prior information about key parameters in the state space 

model—specifically, the half-life of deviations from PPP and the semi-elasticity of money 

demand λ which determines the value of the discount factor ψ
 
in equation (2.6). 
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4.  Bayesian model averaging of alternative state space models 

As suggested above, most of the information about the predictable component of the 

observed monetary fundamentals might actually be in the exchange rate, tt fs − , rather than in 

observed monetary fundamentals growth itself, tf∆ .  This suggests that the model is weakly 

identified as essentially a single data series ( tt fs − ) is used to identify two components ( tg  and 

tµ ).  To evaluate to what extent this potential identification problem holds in practice, we 

consider five alternative, non-nested models.  Each of these five models gives rise to an 

ARMA(4,4) model for tt fs −  but will imply very different exchange rate decompositions.  We 

will take as the benchmark model an AR(2) for both L)L(gφ  and L)L(µφ  with the innovations 

in the four components [ ]'rtf

tt

g

t εεεε µ  to be correlated with one another.  The alternative 

four models are different combinations of AR models for L)L(gφ  and L)L(µφ  that still yields 

an ARMA(4,4) model for  tt fs − .  These include AR(4) and AR(0), AR(3) and AR(1), AR(1)  

and AR(3), AR(0) and AR(4) as well as AR(2) and AR(2) for L)L(gφ  and L)L(µφ  

respectively. 

We take a Bayesian approach to account for uncertainty about the specification of the 

underlying state space model.  To evaluate these alternative models, we first estimate the 

posterior distribution of the parameters for each of the five competing models.  The posterior 

distribution of the parameters given the data and a particular model, we will denote as 

]mM,|[P Tm =Yθ , where m is the model and mθ is the parameter vector of model m .  The 

posterior probability of model m is then: 
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∑
∈

=

Mm

)m(h)m(B

)m(h)m(B
]Y|m[P ,     (4.1) 

where M is the set of models, )m(h is the prior probability of model m, 

∫= mmmT d)(h),(L)m(B θθθY , ),(L mT θY is the likelihood, and )(h mθ  is the prior density of 

the parameters.  As we are interested in determining the relative contribution of fundamentals to 

exchange rate decomposition we calculate the variance decomposition, )m,(V mθ , implied by a 

given model m and parameter vector, mθ .  Given the posterior distribution of the parameters, we 

can obtain the posterior distribution of the variance decomposition for a given model, 

],m|)m,(V[P Tm ΥΥΥΥθ .  Finally, we can employ Bayesian model averaging to account for model 

uncertainty on the posterior distribution of the variance decomposition. 

Given the nonlinear (in parameters) structure of the model, there is no closed form 

solution for the posterior distribution given standard priors; therefore, we use a Metropolis-

Hastings Markov Chain Monte Carlo (MH-MCMC) to approximate the posterior distribution of 

the parameters given the model (see Appendix B for details).  We can easily construct the 

posterior distribution of the variance decomposition from the results of the MH-MCMC as well 

the posterior probabilities for the five models given the data.  In this section, we consider the 

case of very diffuse priors so that the likelihood function is the principal determinant of the 

posterior distribution.
2
  The posterior distribution is based on 500,000 draws from the MH-

MCMC after a burn-in period of 500,000 draws.   

                                                           
2
 Formally, for each of the models the individual autoregressive parameters have a prior distribution of N(0,100), the 

prior distribution ψ is U(0,1), the variances in Q are distributed U(0,1000) while the co-variances in Q are 

distributed U(-1000,1000).  Draws in which F matrix implies nonstationarity are rejected as are draws where the Q 

matrix is not positive definite.  These prior distributions ensure that for this model and data, the acceptance in the 

Metropolis-Hastings sampler depends only on the likelihoods; thus, when comparing models the likelihoods are 

going to be decisive. 
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Figure 2 presents for the benchmark model (AR(2), AR(2))  the histogram of the 

posterior distribution of parameters (the histograms for the other four models are available upon 

request).  Consider the posterior distribution of the autoregressive coefficients 1gφ  and 2gφ .  

These parameters play a key role in determining the contribution of observed fundamentals to 

exchange rate movements.  The values of 1gφ  and 2gφ  determine the persistence of the 

predictable component of observed fundamental growth, tg , In general, the more persistent is tg

, the larger its effect on exchange rates.  From Figure 2, the posterior distributions of these 

parameters are quite disperse—substantially more disperse than implied by just the standard 

errors from standard maximum likelihood estimation (available upon request).
3
  On the other 

hand, the joint probability distribution of 1gφ  and 2gφ  has mass concentrated close to 1gφ  + 2gφ = 

1, see the three-dimensional histogram of 1gφ  and 2gφ  and the associated heat plot in Figure 3.  

Thus, while there is substantial uncertainty about individual parameters, there is little uncertainty 

about the overall persistence of the predictable component of the fundamentals in the benchmark 

model. 

Figure 4 displays for all five models the posterior distribution of the contributions of the 

predictable component of the fundamentals, tg , to the variance of deviations of the exchange 

rate from observed monetary fundamentals, tt fs − .  For the benchmark model, the posterior 

distribution of the observed fundamental’s contribution to exchange rate variance is concentrated 

around 100 percent but does show a small secondary mode close to zero. Model 2, in which 

)L(gφ  is an AR(4)  and )L(µφ  is an AR(0), also implies that the observed fundamentals 

                                                           
3
 Note also the posterior distribution for some of parameters is skewed or multi-modal suggesting that using standard 

maximum likelihood methods for inference would miss these features. 
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explains nearly all the variance of exchange rates.
4
  Models 4 and 5, on the other hand, imply 

that observed monetary fundamentals explain almost none of the variance of exchange rates 

( )L(gφ  is an AR(1) and )L(µφ  is an AR(3) for Model 4 and AR(0) and AR(4), respectively, for 

Model 5).  Model 3 ( )L(gφ  is an AR(3) and )L(µφ  is an AR(1)), suggests a bimodal distribution 

with probability mass concentrated on the extremes.     

Which of the five models does the data prefer?  From the MCMC posterior distribution, 

we can construct the posterior distribution of the log likelihoods, )),(Llog( mT θY , for each 

model. Figure 5 displays the cumulative distribution of the posterior distribution of log 

likelihoods for the five models.
5
  From Figure 5, the CDF of the posterior likelihood values are 

quite close to one another, and while the benchmark model appears to stochastically dominate 

models 3, 4, and 5 it does not dominate model 2.  Table 1 presents the posterior probabilities of 

the five models.  While the benchmark model has the highest posterior probability, it is not 

substantially higher than Model 5.  

Figure 6 plots the histogram for the observed monetary fundamental’s variance 

decomposition of tt fs −  once we account for model uncertainty. Here the variance 

decomposition for each model is weighted by its posterior.  Taking into account of model 

uncertainty suggests that a bimodal distribution for the contribution of observed monetary 

fundamentals on the variance of tt fs − , with the probability mass concentrated on either a zero 

contribution or 100 percent contribution.  This suggests that using data on exchange rates and 

                                                           
4
 We use the term “observed” monetary fundamentals because we have direct observations on f =  ((m-m*) –( y-

y*)), but we do not have direct observations on r
uip
,or r

md
,  

5
 The maximum log likelihood values for the five models were: -889.44, -884.81, -889.87, -889.61, and -890.18, 

respectively. 
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observed monetary fundamentals alone is not sufficient to determine whether to what extent 

exchange rates are driven by monetary fundamentals.  

 

5.  Prior information and data on interest differentials and money demand 

 As the previous section suggests, using data on observed monetary fundamentals, Δ��, 

and exchange rates does not yield a precise decomposition of sources of exchange rate 

movements.  In this section, we use a combination of additional data, restrictions implied by the 

model, and prior information about key parameters to sharpen inferences about the sources of 

exchange rate fluctuations.  Specifically, we break the remainder, tr⋅ψ , into its constituent parts: 

an unobserved money demand shifter md

tr , deviations from uncovered interest parity uip

tr , and 

deviations from purchasing power parity ppp

tr . These along with the observed monetary 

fundamentals will help determine exchange rate movements.   

We assume each of the four components of exchange rates consists of a predictable and 

unpredictable component: 

Δ���� � �� � 	���


,  ��
������ � 	���

�
   (5.1) 

����
���

� ��
���

� 	���
���
,  ��,���
������

���
� 	���

�,���
  (5.2) 

����
���

� ��
���
� 	���

���
   ��,���
������

���
� 	���

�,���
  (5.3) 

����
�� � ��

�� � 	���
��    ��,���
������

���
� 	���

�,���
  (5.4) 

We specify ��
��, ��,���
��, ��,���
��,  ��,��
�� to be AR(1)’s to keep the model 

parsimonious.  The state vector is: 

[ ]′= −−−−
md

t

ppp

t

uip

t

f

t

md

t

md

t

ppp

t

ppp

t

uip

t

uip

tttt ggS εεεεµµµµµµ 1111 and the 

transition equation to be  
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ttt FSS Σ+= −1      
(5.5) 

with 
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and

 

[ ]′=Σ md

t

ppp

t

uip

t

f

t

md,

t

ppp,

t

uip,

t

g

tt εεεεεεεε µµµ 0000
.
 

We use data on interest rate and price level differentials, to construct two additional 

observations equations.  Our observation vector now consists of four variables: relative money 

demand (�� � 
�� � ��
��), interest rate differentials (�� � ��

�), along with the growth rate in 

observed monetary fundamentals (Δ��) and the exchange rate relative to current observed 

monetary fundamental ( tt fs − ).  The relative money demand equation is given by: 

�� � 
�� � ��
�� � � �

���

�� � ��

�� � ��
��.    (5.7) 

The uncovered interest rate condition is given by: 

( ) ( ) uip

tttttttttt rfsfEfsEii +−−∆+−=− +++ 111

* .   (5.8) 

Recall that the growth rate of observed monetary fundamentals is  

Δ�� � �� � � 	�


,      (5.9) 
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and the exchange rate equation is given by 


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where md

t

ppp

t

uip

tt r)(r)(rr ψψψψ −−−+=⋅ 11 . 

Taking expectations and writing equations (5.7)-(5.10) in terms of the state variables, tS , 

yields the following measurement equation: 
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where 

[ ]000100000010=∆fH
, 

[ ]001000001000=uipH
 

[ ]100010000000=mdH  

[ ])(BBBBBBBBH d ψψψ −−−= 1104241323122211211 , 

[ ] ( )[ ]01
1

1211

−−⋅= gBB ψφψ
 , 

[ ] ( )[ ]ψψφψ 12

2221 1
−−⋅= uipBB

,
 

[ ] ( )[ ])()(BB ppp ψψφψψ −−⋅−= −
111

1

3231 , 

[ ] ( )[ ])()(BB md ψψφψψ −−⋅−= −
111

1

4241 .
 

Equations (5.5), (5.6), and (5.11) describe the state space model which includes observations on 

relative money demand, interest rate differentials, growth rate of observed monetary 

fundamentals, and the exchange rate. 
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We can also bring prior information to bear on the estimation of the model parameters.  

One of the unobserved factors represents deviations from purchasing power parity.  We do not 

use observations on PPP deviations as they are just a linear combination of two other observation 

variables: (�� � 
�� � ��
�� and ( tt fs − ). There is, however, a large literature on PPP deviations 

that we can draw upon to provide information about ppp

tµ .  We assume a prior distribution for 

pppφ  so that the half-life for PPP deviations is similar to that found in the literature (see Rogoff, 

1996).  Specifically, we assume a Beta(10,2)  distribution for the prior distribution of  pppφ .  

Figure 7 displays the prior distribution for pppφ  as well as the prior distribution of PPP half-lives 

implied by pppφ .   

One of the other key parameters in the model is 
λ
λ

ψ
+

=
1

where λ is the semi-elasticity 

of interest rates on money demand.  We set the prior distribution of λ to be a normal distribution 

with mean equal to 25 and standard deviation of 15, truncated at zero.  We chose this prior based 

on studies of long-run money demand that typically estimate the semi-elasticity of money to be 

in the range from around 10 to 40.
6
. Figure 8 displays the prior distribution of λ and the implied 

prior distribution for ψ .7 

Results: 

Figure 9 displays posterior distribution of autoregressive parameters for the four 

predictable components: tg ,
uip

tµ , ppp

tµ , and md

tµ  .  The autoregressive parameters suggest that all 

                                                           
6
 Bilson (1978) estimates λ to be 60 in the monetary model, whereas Frankel (1979) finds λ to be equal to 29 and 

Stock and Watson (1993, 802, table 2, panel I) give a value of λ equal to 40.  A more recent study by Haug and Tam 

(2006) suggest values ranging from around 10 to 20. 
7
 Prior distributions on the other autoregressive parameters is fairly diffuse: N(0.5,(1.5)

2
).  The variances in Q are 

distributed U(0,1000) while the co-variances in Q are distributed U(-1000,1000).  Draws in which F matrix implies 

nonstationarity are rejected as are draws where the Q matrix is not positive definite. 
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the unobserved predictable components are fairly persistent.  Figure 10 displays posterior 

distribution of λ and ψ .  The posterior distribution for λ suggests a semi-elasticity of around 25, 

similar to the mode of the prior distribution, but it is substantially tighter than the prior 

distribution for λ . The posterior distribution for the discount factor, ψ , suggests a value around 

.96 not far from the mode of the prior, but again substantially tighter.   

Figure 11 displays the posterior distribution of variance decomposition of ( tt fs − ).
8
  We 

can see that the contributions of the risk premium (r
uip
) and of  deviations from PPP (r

ppp
) are 

small. However, the joint contribution of monetary fundamentals, g and r
md
, is very large. The 

greatest contribution comes from the money demand shifter, r
md
, while the contribution of 

predictable component of directly observed monetary fundamentals, g, is more modest.  Thus, 

the exchange rate disconnect in our context appears due to fluctuations in money demand.   

Figure 12 displays historical decomposition of the level of the exchange rates. The 

historical decompositions display the contribution of each of the states over the entire sample.  

To calculate these decompositions, the parameters of the state space model are drawn from their 

posterior distribution using Metropolis-Hasting MCMC.  For each parameter draw !
��, we draw 

"#

��
� $%�


��
, … , %�


��
, … , %#


��
' from the conditional posterior distribution for the unobserved states, 

 using the “filter forward, sample backward” approach of Carter and Kohn 

(1994).  The contribution of the states in time period t for a given parameter and state draw is 

(
!
���%�

��
.  The historical decompositions reported in Figure 12-16 are based on the 5

th
, 95

th
 , 

and 50
th
 percentiles of the sample distribution of 500,000 draws from the Metropolis Hasting 

                                                           
8
 These values can be above 100% due to covariances.   
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Markov Chain.  Note because the Q matrix (variance-covariance matrix in the transition 

equation) in the state space model is not diagonal, the states are in general correlated with one 

another and the historical decomposition are in general not orthogonal.   

The top left panel displays the historical decomposition of the monetary fundamentals, 

both observed, tf , and unobserved money demand shifters, 
md

tr .  The individual contributions of 

deviations from uncovered interest rate parity, uip

tr , and deviations from PPP, ppp

tr , are also 

presented in Figure 12.  From Figure 12, one observes that most of movement in the UK/US 

exchange rate, especially in the later part of the sample, appear due to monetary fundamentals, 

and in particular to money demand shifters , md

tr .  The risk premium, uip

tr , while not as 

important as either monetary fundamental, does contribute  to exchange rate fluctuates in a few 

instances.  Deviations from PPP, on the other hand, contribute very little to exchange rate 

fluctuations.  The results suggest that monetary factors explain the long run swings of the 

exchange rate but deviations from uncovered interest parity, uip

tr , appear to explain some of the 

short-run movements in exchange rates. The lower right graph in Figure 12 shows the total 

contribution of all the factors to movements of the exchange rate.  This graph is a check to see 

that the contributions of the factors add up to the exchange rate itself.   

We can also examine historical decomposition of the other observable variables.  Figure 

13 displays the historical decomposition of UK/US interest rate differentials.  Here monetary 

factors, particularly the unobserved money demand shifter, contribute to movements in the 

UK/US interest rate differential.  The uncovered interest rate premium has a modest contribution 

to interest rate differential movements while PPP deviations factor have only a minor 

contribution.  
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 Figure 14 displays the historical decomposition of money demand differentials 

( )pp(f *

ttt −− ).  Again, monetary factors ( tf∆  and md

tr ) contribute to most of the fluctuations 

in ( )pp(f *

ttt −− ) with the money demand shifter, md

tr , being a large contributor. The money 

demand shifts has two effects here.  There is a direct effect by shifting money demand.  There is 

also an indirect in that md

tr affects ts which in turn affects interest rate differentials, 
*

tt ii − , 

which in turn leads to changes in money demand differentials.  Deviations from uncovered 

interest parity and deviations from PPP yield only modest contributions.  

Our original conjecture was that the predictable component of observed monetary 

fundamentals, tg , was relatively small compared to observed fundamentals, tf∆ .  Figure 15 

presents the historical decomposition of tf∆ .  From Figure 15, it is clear that fluctuations in the 

predictable component of tf∆  are relatively small.  This is consistent with the results in section 

4, where inference about the relative importance of the predictable component was plagued by 

weak identification when using only tt fs −  and tf∆ as observables.  When we add additional 

information, the contribution of predictable component of tf∆ is small both for exchange rates 

and for tf∆  
itself. 

Recall that the sum of ( tt fs − ) and money demand differentials ( )pp(f *

ttt −−  equal 

deviations from PPP.  As a check of the model, we calculate historical decomposition of PPP 

deviations which are displayed in Figure 16.  The model assumes that PPP deviations are driven 

entirely by ppp

tr .  From Figure 15, we observe that indeed the fluctuations in PPP deviations are 

driven entirely by ppp

tr . 
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6. Conclusion 

In this paper, we use the asset pricing approach proposed by Engel and West (2005) to 

quantify the contribution of monetary fundamentals to exchange rate movements.  We show that 

using information on just directly observed monetary fundamentals, )yy(mm *

tt

*

tt −−− , and 

exchange rates is plagued by weak identification of the expected future fundamentals.  We solve 

the problem by using the restrictions implied by a simple rational expectations version of the 

monetary model of exchanges rates, additional data on interest rate and price differentials, and 

prior information about key parameters in the model.  Adding this additional information results 

in sharper inference about the relative contribution of various fundamentals.  We find that 

directly observed monetary fundamentals and money demand shifters contribute most to 

movements in exchange rates and movements in interest rate differentials to a lesser degree.  The 

results suggest that monetary fundamentals, as defined in this paper, appear to explain long-run 

movements in exchange rates (consistent with the monetary approach to exchange rate 

determination) while risk premium associated with deviations from uncovered interest parity 

explains some of the short-run movements in exchange rates. 
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Table 1. Posterior Model Probabilities for Competing Models 

Model Posterior probability 

Benchmark – AR(2), AR(2) 0.38 

Model 2 – AR(4),  AR(0) 0.09 

Model 3 – AR(3), AR(1) 0.11 

Model 4 – AR(1), AR(3) 0.15 

Model 5 – AR(0), AR(4) 0.27 

 

Note.  The first AR(p) refers to the autoregressive process for L)L(gφ  while the second AR(p) 

refers to the autoregressive process for L)L(µφ . 
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Appendix A.   

We use the AR(2) specification for the latent expectations to illustrate the identification. 

Specifically we can derive: 
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F ; (A.1) corresponds to the contribution of expected 

future fundamentals to current deviation of exchange rate from its fundamentals; (A.2) denotes 

the contribution of expected future remainder to current deviation of exchange rate from its 

fundamentals .  

Assume that the 1 by 2 row vectors [ ] ( ) [ ]1211

1
01 BBFI g =−⋅⋅ −ψψ ,  and 

[ ] ( ) [ ]2221

1201 BBFI =−⋅⋅ −
µψψ . Then, we can set up the following state-space model for the 

exchange rate model: 
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Transition Equations: 
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Where, the variance-covariance matrix of the vector of four shocks 
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Because of the economic constraint (2.6) we only need to explicitly model d  and f∆ , 

and then r  can be backed out as a residual. This appendix shows that the above state-space 

model implies a general VARMA reduced-form representation for  [ ]'11 ++∆ tt df  and derives the 

specific mapping between the structural and reduced-form model. Following Morley, Nelson, 

and Zivot (2003), we show in the Appendix that the above structural model is identified. 

This appendix presents the mapping between the state-space model and its reduced-

form VARMA representation, and discusses relevant identification issues. Plug the 

transition equation into the measurement equation to obtain: 
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 (A.5) 

Where, ( )2211)( LLL ggg φφφ −−=  and ( )2211)( LLL µµµ φφφ −−= . Denote the LHS of (A.5) by: 
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From the eq. (A.2), we can derive the second moments of its RHS: 
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Therefore, by Granger and Newbold’s Theorem (1986), the structure of the second moments 

implies that the 
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x
 has a reduced-form VMA(4) process. The AR parameters of 

( )2211)( LLL ggg φφφ −−=  and ( )2211)( LLL µµµ φφφ −−=  can be identified by the AR structure of 
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. The parameters left in the state-space model as set up in (A.3) and (A.4) are 10 variance 

and covariance parameters and these parameters can be identified by the moving average terms 

of the 
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 as shown above. Therefore, the state-space model is identifiable.  
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Appendix B.  Details of Markov Chain Monte Carlo. 

 Each of the three models has an empirical state space model of the form: 

        (B1) 

     (B2) 

where obs

tY  
is the vector of observable time series,

tS  is the vector of unobserved state variables, 

and θ  is the vector of structural parameters.  The predictive log likelihood of the state space 

model is given by: 

      (B3) 

where 
1−t|tS  and 

1−t|tP  are the conditional mean and variance of 
tS from the Kalman filter.   

 Given a prior distribution over parameters, , the posterior distribution, , is  

.         (B4) 

Because the log-likelihood is a nonlinear function of the structural parameter vector, it is not 

possible to write an analytical expression for the posterior distribution.  As a result, we use 

Bayesian Markov Chain Monte Carlo methods to estimate the posterior distribution of the 

parameter vector, .  In particular, we employ a Metropolis-Hasting sampler to generate draws 

from the posterior distributions.  The algorithm is as follows: 

(i) Given a previous draw of the parameter vector, , draw a candidate vector cθ  from the 

distribution .   
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(ii) Determine the acceptance probability for the candidate draw,  

. 

(iii) Determine a new draw from the posterior distribution, . 

 with probability  

 with probability . 

(iv) Return to (i). 

Starting from an initial parameter vector and repeating enough times, the distribution parameters 

draws, , will converge to the true posterior distribution.   

In our application, , where  is drawn from a multivariate t-distribution with 

50 degrees of freedom and a covariance matrixΣ .  We set Σ  to be a scaled value of the Hessian 

matrix of evaluated at the maximum likelihood estimates.  We choose the 

scaling so that around 50 percent of the candidate draws are accepted.  We set a burn-up period 

of 500,000 draws and then sampled the next 500,000 draws. We can also obtain the posterior 

distributions for the unobserved states.  Given a parameter draw, we draw from the conditional 

posterior distribution for the unobserved states, .  Here we use the “filter forward, 

sample backwards” approach proposed by Carter and Kohn (1994) and discussed in Kim and 

Nelson (1999).  
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Appendix C.  Details on Data Construction 

This appendix describes the sources of the data used in the text. 

The US/UK nominal exchange rate comes from Taylor (2001): specifically the pre-1948 

data are from the statistical volumes of Brian Mitchell; and the series after 1948 are period 

average observations taken from the IMF’s International Financial Statistics (IFS). 

UK real national income. Data series of 1880 – 1948 are real GDP taken from Bordo et 

al. (1998) that are originally from Mitchell (1988); and data series after 1948 are real GDP taken 

from the IFS. When combining two series we adjust those observations of the earlier period by 

using the formula: 
Bordo

IFS

t
y

y
y

,1948

,1948×  for 19481880 ≤≤ t .  

US real national income. Data series of 1880 – 1948 are real GNP taken from Bordo et al. 

(1998) that are originally from Balke and Gordon (1986); and data series after 1948 are real GDP 

taken from the IFS. When combining two series we adjust those observations of the earlier 

period by using the formula: 
Bordo

IFS

t
y

y
y

,1948

,1948×  for 19481880 ≤≤ t . 

UK money suppy. Data series of 1880 – 1966 are net money supply (M2) taken from 

Bordo et al. (1998) that are originally from Sheppard (1986); and data series after 1966 are 

money plus quasi-money taken from the IFS. When combining two series we adjust those 

observations of the earlier period by using the formula: 
Bordo

IFS

t
y

y
y

,1966

,1966×  for 19661880 ≤≤ t . 

US money supply. Data series of 1880 – 1971 are money supply (M2) taken from Bordo 

et al. (1998) that are originally from Balke and Gordon (1986); and data series after 1971 are 

money plus quasi-money taken from the IFS. When combining two series we adjust those 

observations of the earlier period by using the formula: 
Bordo

IFS

t
y

y
y

,1971

,1971×  for 19711880 ≤≤ t . 

UK price level. Data series of 1880 – 1988 are from Rapach and Wohar (2002); and data 

series after 1988 are CPI taken from the IFS. When combining two series we adjust those 

observations of the earlier period by using the formula: 
RW

IFS

t
y

y
y

,1988

,1988×  for 19881880 ≤≤ t . 



 

35 

US price level. Data series of 1880 – 1948 are from Rapach and Wohar (2002); and data 

series after 1948 are CPI taken from the IFS. When combining two series we adjust those 

observations of the earlier period by using the formula: 
RW

IFS

t
y

y
y

,1948

,1948×  for 19481880 ≤≤ t . 

 

UK interest rate. Prime bank bill rates from NBER macro history database. 

US interest rate. Commercial paper rates from NBER macro history database. 
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