
Information Choice Technologies

By Christian Hellwig, Sebastian Kohls and Laura Veldkamp∗

Theories based on information costs or
frictions have become increasingly popular
in macroeconomics and macro-finance. The
literature has used various types of infor-
mation choices, such as rational inatten-
tion, inattentiveness, information markets
or costly precision.1 Using a unified frame-
work, we compare these different informa-
tion choice technologies and explain why
some generate increasing returns and oth-
ers, particularly those where agents choose
how much public information to observe,
generate multiple equilibria. The results
can help applied theorists to choose the
appropriate information choice technology
for their application and to understand the
consequences of that modeling choice.

I. The game

We convey our main intuition using a
beauty contest game (as in Morris and Shin,
2002). Agents seek to take actions close to
the true state and close to the average ac-
tion of others. The agents choose what in-
formation to observe about the true state,
before they play this game. Different infor-
mation choice technologies are represented
as different information cost functions and
different constraints on the signal choice
set.
We use a quadratic objective because of
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its tractability and because by quadrati-
cally approximating objectives, we can map
many models into this framework. In stage
one, nature draws the state variable s from
the distribution N(µ, τ−1

s ) and a series of
signals about s. Agents choose signals to
observe. In stage 2, agents observe their
chosen signals and simultaneously pick an
optimal action.

Specifically, a measure one continuum of
agents, indexed by i ∈ [0, 1] choose an
action ai ∈ R to minimize the expected
squared distance between their action and
a target action, that is a weighted average
of the average action ā =

∫
aidi and the un-

known state s, minus any cost c of acquir-
ing information, where c is denominated in
units of expected utility:
(1)

u (ai, ā, s) = − (ai − rā− (1− r)s)
2 − c.

If s is common knowledge, the best re-
sponse is ai = (1− r) s+rā, and ai = ā = s
constitutes the unique equilibrium. The co-
efficient r < 1 measures the complementar-
ity/substitutability of agents’ decisions. If
r > 0, decisions are complementary: Best
responses are increasing in the prices set by
other agents. If r < 0, decisions are strate-
gic substitutes. A higher r means more
complementarity.

Denote the information set that includes
chosen signals s as Ii. The first order
condition of (1) with respect to ai yields:
ai = E[rā+ (1− r)s|Ii]. Utility (1) is then
simply a conditional variance u (ai, ā, s) =
V ar(rā + (1 − r)s|Ii) − c. The variance of
this sum can be decomposed into the indi-
vidual variances and a covariance term:

(2) E[u (ai, ā, s)] = r2V ar[ā|Ii]

+2r(1−r)Cov[ā, s|Ii]+(1−r)2V ar[s|Ii]−c.

Since (2) is the expected utility of an
agent who acts optimally in the second-
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stage action game, it is the payoff function
for the first-stage information choice game.
Thus, to understand the value of any signal
choices, it is sufficient to know what the in-
formation implies for three moments: the
conditional variance of the state, the con-
ditional variance of the average action and
the covariance between the average action
and the state.
A flexible signal structure. Suppose that

nature selects a k×1 vector of common sig-
nal noises u ∼ N (0, Ik), independent of the
state s. In addition, for each agent, na-
ture selects an l × 1 vector of idiosyncratic
signal noises vi, which are independently
and identically distributed across agents,
vi ∼ N (0, Il), independent of s and u.
These shocks generate an n × 1 vector of
potentially observable signals zi:

(3) zi = 1n·s+Du+Bvi

1n is an n×1 vector of ones andD andB are
diagonal (n× n) matrices of coefficients.2

Thus, we can express agent i’s jth signal
as zij = s + djuj + bjv

i
j. This signal struc-

ture allows for arbitrary correlation in sig-
nals across agents. In particular, by setting
either d or b equal to zero, we can allow
for special cases where all signals are either
purely private, i.e. with noise independent
across agents, or common. If dj + bj = ∞,
signal j is unobserved (or is uninformative).
The agent’s cost of information is deter-

mined by a function c (d,b), which is de-
creasing in both arguments.
Bayesian updating. Each of agent i’s sig-

nals is an unbiased predictor of the state s
with variance b2j + d2j . Bayes’ Law for nor-
mal variables delivers posterior beliefs

(4) E[s|Ii] =
τsµ+

∑
j(b

2
j + d2j)

−1zj

τs +
∑

j(b
2
j + d2j)

−1

2For most of our results, D and B can be arbitrary

(n × k) and (n × l) matrices with rank n. Such cross-
signal correlation does not affect the key properties of
the problem. The agent simply uses the inverse of the
variance-covariance to undo the correlation and back out

the underlying orthogonal shocks. But doing so make
the problem less transparent. See Appendix A and Veld-
kamp (2011), chapter 3 for details. The mathematical
appendix, containing derivations and proofs is posted

on the authors’ websites.

(5) V ar[s|Ii] =
1

τs +
∑

j(b
2
j + d2j)

−1
.

How agents update about the average ac-
tion ā depends on the properties of the sig-
nal they observe. We consider symmetric
information choices. This implies that in
equilibrium, all agents choose to observe
signals with the same precision and there-
fore choose the same action rules, although,
signal outcomes and realized actions may
differ. Since the first-order condition and
the Bayesian updating formula are both lin-
ear in signals and priors, ai = γ0µ+

∑
j γjz

i
j,

where γ0 denotes the weight on priors in ac-
tions, γ denotes the weight on the signal if
only 1 signal is observed and γj denotes the
weight on signal j ≥ 1 when multiple sig-
nals are observed. Since vi is independent
across agents, ā = γ0µ +

∑
j γj(s + djuj).

Thus, the beliefs about average actions are
summarized by
(6)

E[ā|Ii] = γ0µ+
∑
j

γj(E[s|Ii]+djE[uj|Ii]).

II. Comparing signal choices

Many frequently-used learning technolo-
gies can be described as special cases of (3),
with some restriction on d and b choice.
We discuss what this restriction implies for
the three sufficient statistics and the infor-
mation choice equilibria.

A. Full revelation (Inattentiveness)

Suppose an agent can chose one of two
options: Observe no signal (d + b = ∞)
or observe s exactly (d = b = 0) at a cost
c. This is a limiting case of either public
or private information acquisition, as the
precision tends to infinity. An example of
this learning technology in the literature is
the “inattentiveness” choice in Reis (2006),
where agents choose dates at which agentes
acquire full information.
For informed agents, the sufficient statis-

tics are simple. Since they know the state
and others’ information sets, they can de-
duce average actions. Thus, V ar[s|s] =
V ar[ā|s] = Cov[ā, s|s] = 0. Let α be the
fraction of agents that choose to become
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informed. The first order condition tells
us that uninformed agents should choose
ai = µ and informed agents should choose
ai = (1−γ)µ+γs where γ = (1−r)/(1−rα).
Then for uninformed agents, the sufficient
statistics are V ar[s] = τ−1

s , V ar[ā] = γ2τ−1
s

and Cov[ā, s] = γτ−1
s .

There are three types of possible equilib-
ria: Either all agents, no agents, or some
agents acquire full information. Which
equilibrium prevails depends on the infor-
mation cost c, the degree of complementar-
ity r and prior precision τs.

PROPOSITION 1: With fixed costs of full
revelation, and complementarity in actions
(r > 0), multiple equilibria exist if c ∈
((1− r)2τ−1

s , τ−1
s ).

When there is strategic substitutability in
actions (r < 0), the game has a unique equi-
librium. But when when actions are com-
plements, information choice is also a com-
plement. The combination of complemen-
tarity and the discrete nature of the choice
(to learn or not to learn) generates multiple
equilibria.

B. Private signals (rational inattention)

In many settings, signals about the
state s are conditionally uncorrelated across
agents (D = 0). Suppose the agent observes
a single signal. Then, zi = s + bivi where
vi ∼ N(0, 1) are independent across i. Each
agent chooses bi to maximize expected util-
ity (2), subject to a cost-function c(bi) that
is decreasing in bi.
An example of this kind of learning tech-

nology is rational inattention (Sims, 2003),
where all information is potentially avail-
able to an agent. But their limited informa-
tion processing ability causes them to add
noise to whatever they observe. Each agent
creates their own noise, independent of any
other agent.3

Setting d = 0 in (5) and (6) reveals that

3In principle, rational inattention allows agents to
choose not only the precision of their private signal, but
also the shape of this signal noise distribution. Since
our objective function is quadratic, normal signals are

optimal in this setting (Sims, 2003).

the three summary statistics are

(7) V ar[s|Ii] = 1/(τs + (bi)−2)

(8) V ar[ā|Ii] = (1− γ0)
2V ar[s|Ii]

(9) Cov[ā, s|Ii] = (1− γ0)V ar[s|Ii].

If agent i observes more information,
V ar[s|Ii], V ar[ā|Ii] and Cov[s, ā|Ii] all fall
by the same proportion.

A unique information choice equilibrium.
If other agents acquire more information,
they put more weight on the more pre-
cise private signals when forming their ac-
tions. Thus, (1 − γ0) rises. When actions
are complements (r > 0), this increases
the marginal value of reducing V ar[s|Ii]
by acquiring information oneself. This is
a complementarity in information acquisi-
tion. But this complementarity is not suffi-
ciently strong to generate multiple equilib-
ria (Hellwig and Veldkamp, 2009).

The choice of one signal’s precision is
unique. With two or more private signals
and a cost function of the sum of the signal
precisions, there will always be multiplicity.
Learning from two signals with precisions τ1
and τ2 or with τ1+t ≥ 0 and τ2−t ≥ 0 leaves
all the sufficient statistics and the informa-
tion cost unchanged. Thus, an agent is in-
different between any signal precisions that
have the same sum. So, multiple equilib-
ria exist, but the distinction between these
equilibria is not economically meaningful.

Rational inattention and cost concavity.
When the state s and the signals are nor-
mally distributed, rational inattention dic-
tates that the amount of information pro-
cessed is K = 1

2
ln (|V ar(s)|/|V ar(s|Ii)|).

It then allows for any arbitrary cost func-
tion c(K), or simply a bound on K.

Rational inattention has a form of dimin-
ishing marginal cost of precision in it. Here
are examples of that property: 1) When
s is a scalar, a one-unit increase in sig-
nal precision increases posterior precision
1/V ar(s|Ii) by one unit. That increase
has a marginal cost proportional to V ar(s).
This implies that learning about something
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unfamiliar (high V ar(s)) is costly. 2) In a
dynamic problem, if an agent learns more
about s over time, V ar(s) falls. For a given
amount of K, signal precision could grow
over time. 3) When there are multiple risks,
K depends on the determinant of the preci-
sion matrix |V ar(s|Ii)

−1|. If risks and sig-
nals are independent, this is a product of
posterior precisions:

∏
j(τsj+b−2

j ). Increas-
ing the precision of signals that are already
precise (high b−2

j ) increases the product by
less (is less costly).
The fact that knowing more makes ac-

quiring additional signals less costly rep-
resents a process of refined search. The
amount of information K is approximately
the number of binary signals required
the transmit information of that precision
(Sims, 2003). Suppose that the first binary
signal tells the observer whether the out-
come is above or below the median. The
second signal, in conjunction with the first,
tells the observer which quartile the out-
come is in, and so forth. If the outcomes
are uniformly distributed, each signal is re-
ducing the standard deviation by half (in-
creasing the precision 4-fold). Increasing
precision proportionately is always equally
costly. The fact that the interpretation
of the second signal depends on the first
illustrates how existing information helps
agents interpret new information more ef-
fectively.
While cost concavity may have a realis-

tic foundation, it can also generate multiple
equilibria. When a non-convex cost is sub-
tracted from a concave objective, multiple
utility-maximizing choices may arise. See
Myatt and Wallace (2011) for a proof and
examples.

C. Public signals (information markets)

One way of modeling information fric-
tions is by assuming that agents can pur-
chase signals from an information market
(Veldkamp, 2006). Typically, the producer
of the signal has to pay a fixed cost to dis-
cover the signal. Once discovered, he can
replicate it and sell it to others. Because
the seller is selling exact replicas of the same
signal, it is a purely public signal (b = 0).

Agents choose a set J i of signals to pur-
chase and observe. Hellwig and Veldkamp
(2009) consider a setting with a large num-
ber of signals and take a limit as the signal
precision (d−2

j ) and the cost per signal ap-
proach zero. This effectively eliminates the
discreteness in the choice variable.
Multiple equilibria. A key property of this

problem is that in a symmetric equilibrium,
V ar[ā|Ii] = 0 and Cov[s, ā|Ii] = 0. Only
the state is still uncertain: V ar[s|Ii] =
1/(τs +

∑
jϵJi d

−2
j ). An agent who learns

less public information than others would
reduce V ar[ā|Ii] by learning more. But
an agent who learns more public informa-
tion than others does not change V ar[ā|Ii].
This features creates a discontinuity in the
marginal utility of information that is re-
sponsible for multiple equilibria (Hellwig
and Veldkamp, 2009).
The intuition is that, when actions are

complements, public information is more
valuble because it can be used both to fore-
cast the state and to directly forecast oth-
ers’ actions (reduce V ar[ā|Ii]). Thus, the
marginal value of public information ex-
ceeds the marginal value of private infor-
mation. But learning one additional incre-
ment of public information, beyond what
others have learned, is effectively learning
private information. It is potentially public
because others can learn that bit of infor-
mation, but it is effectively private because
others have chosen not to learn it. If others
observe that additional public signal, then
learning the signal has a higher marginal
value because it lowers V ar[ā|Ii]. Learn-
ing that signal becomes a best response. If
others choose not to learn that signal, it
is effectively private, has lower value, and
therefore may not be optimal to learn.

D. Correlated signals

Finally, we consider signals with both
public and private noise. First, we fix the
amount of public noise and allow agents to
choose private noise, as in Myatt and Wal-
lace (2011). Then, we fix the amount of
private noise and allow agents to vary the
weight their signal places on public noise.
As in Myatt and Wallace (2011), we inter-
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pret a lower bj as “paying more attention”
and a lower dj as “clarifying” signal j.
Such information choices affect all three

sufficient statistics: First, equation (5)
gives us V ar[s|Ii]. It reveals that more
attention to signal j (lower bj) lowers the
conditional variance of the state forecast.
Reducing bj has a larger effect if dj is
also small and vice-versa: Paying attention
is more valuable when the signal is clear;
clearer signals are more valuable if one can
pay close attention to them. Second, the
covariance of this average action with the
state s is given by (9). It is proportional
to V ar[s|Ii]. The third statistic, the con-
ditional variance of the average action, de-
pends on how agents forecast others’ signals
and on the weight they place on the jth sig-
nal in actions (γj):

(10) V ar[ā|Ii] =
∑
j

γ2
j b

2
j

τ−1
s + d2j

τ−1
s + d2j + b2j

.

If agents pay little attention to signal j (bj
is large), then signal j becomes a private
signal. This increases uncertainty about ā
because the agent has little idea of what
signals others observe. If agents pay lots
of attention to signal j (bj is small), it
becomes public. As all entries of b go
to zero, agent i knows ā with certainty:
limb→0V ar[ā|Ii] = 0. In between these two
extremes, there is a continuous monotonic
mapping that increases V ar[ā|Ii] as signal
correlation falls.
Choosing attention to public signals. In

order to characterize equilibria, it is useful
to simplify the setting. Suppose agent i ob-
serves two signals: zij = s + djuj + bjv

i
j for

j ∈ {1, 2}. The d’s are exogenous. Agents
can choose private precisions b−2

1 , b−2
2 , sub-

ject to a cost function c(b1, b2).

PROPOSITION 2: Suppose that informa-
tion costs are a function of the sum of pri-
vate precisions: c(b−2

1 +b−2
2 ). Then the equi-

librium information choice is unique.

See Myatt and Wallace (2011). When
actions are complements, choices of signal
precision are complements as well. But,
just like in the private signal case, this com-

plementarity is not strong enough to gen-
erate multiple equilibria. Because agents
are choosing the amount of private noise,
rather than whether to see the next incre-
ment of information, the choice is contin-
uous and there is no kink in the marginal
benefit curve.
Choosing signal clarity. Consider the

same signal structure as the previous sec-
tion. But instead of fixing d and choosing
b, we fix b and allow agents to choose d.
One way to interpret this technology is that
agents choose from a continuum of news
outlets that have the same news with some
common noise. But some outlets achieve
a higher signal-to-noise ratio than others.
In addition, agents may add independent
signal processing noise to whatever they
read, but they cannot control this process-
ing noise.

PROPOSITION 3: When c(d) is a convex
function, there is a unique symmetric equi-
librium in the choice of signal clarity d .

One might think that the choice of d and
choosing how much of the newspaper to
read (II.C) would be isomorphic problems.
Moreover, it is not the presence of private
signal noise that explains why one problem
has multiple equilibria and the other does
not. If B = 0, proposition 3 still holds.
Rather, the key difference is that one prob-
lem has a continuous marginal utility and
the other does not.
Clarity vs. quantity of public informa-

tion. One key distinction between these in-
formation choice technologies is that in the
newspaper model, an agent can decompose
his signal into information that others see
and information they do not. The infor-
mation others observe has a discretely dif-
ferent marginal utility than the additional
information others have not observed. That
discrete difference creates the kink in util-
ity and multiple equilibria. In the signal
clarity problem, there is no such decompo-
sition. In fact, if B = 0, then an agent who
observed two signals with different degrees
of clarity could infer the public noise u and
the true state s exactly.
A second property that distinguishes the

two technologies is that more signal clarity
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can lower expected utility. A precise signal
about s reveals little about u and thus tells
the observer little about what others know
and what they will do. In other words,
it can raise V ar[ā|Ii]. In the newspaper
model, an agent who learns more informa-
tion never forgets his existing information
and therefore cannot become more uncer-
tain about ā. Therefore, more information
always increases expected utility.
Finally, a clearer signal has the same

state s and same noise u with different
weights on them. Learning more newspaper
information could be represented as choos-
ing a signal with more precision. But as the
precision changed, the noise u, and its cor-
relation with the u in others’ signals, would
have to change as well.

III. Conclusion

Formulating a problem with informa-
tion choice requires a learning technology.
Which technology is appropriate depends
on the type of data agents are acquiring.
Inattentiveness is a useful way to describe
facts that can be objectively known and
easily transmitted, e.g., one’s bank balance,
a stock price, or an election outcome. Look-
ing up the result might require effort, but
it is not likely to be observed with noise.
Everyone who observes it knows that other
observers have seen the same signal. Ra-
tional inattention is a useful way to de-
scribe more subjective evaluations, such as
the probability of crisis, an optimal price, or
future productivity. Shown the same data,
reasonable people might come to different
conclusions. More cognitive effort might
improve estimates. Similarly, public signal
choice describes a situation where the signal
may not be right, but once we see the an-
nouncement, we all know what we saw and
we know that other observers saw the same
thing. Correlated signals represent both the
idea that the underlying signal may have er-
ror and that agents may disagree about how
to interpret that signal.
In each case, there was also a similar-

ity: When agents want to do what other
do, they want to know what others know.
They also want to know more when others

know more. Both the choice of which sig-
nals to observe and the precision with which
to observe those signals exhibit the same
strategic motives in actions. But there are
various sources of non-concavities, discrete-
ness in choice variables, or discontinuities
in marginal utilities that can arise, depend-
ing on the information choice technology.
When coupled with complementarity in in-
formation acquisition, these features can
generate multiple equilibria.
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