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Abstract. We propose a new model of two-sided matching markets, which allows for
complex heterogeneous preferences, but is more tractable than the standard model,
yielding rich comparative statics and new results on large matching markets.

We simplify the standard Gale and Shapley (1962) model in two ways. First,
following Aumann (1964) we consider a setting where a finite number of agents on
one side (colleges or firms) are matched to a continuum mass of agents on the other
side (students or workers). Second, we show that, in both the discrete and continuum
model, stable matchings have a very simple structure, with colleges accepting students
ranked above a threshold, and students demanding their favorite college that will
accept them. Moreover, stable matchings may be found by solving for thresholds
that balance supply and demand for colleges. We give general conditions under which
the continuum model admits a unique stable matching, in contrast to the standard
discrete model. This stable matching varies continuously with the parameters of the
model, and comparative statics may be derived as in competitive equilibrium theory,
through the market clearing equations. Moreover, given a sequence of large discrete
economies converging to a limit economy, the set of stable matchings of the discrete
economies converges to the stable matching of the limit economy.

We bound the rate of convergence of the set of stable matchings of large discrete
economies to the continuum approximation, and show that comparative statics regard-
ing the unique stable matching of the continuum model extend to strong set ordering
of the sets of stable matchings of approximating discrete economies. We model the
transferrable utility case, as in Becker (1973). We characterize the limit of school
choice mechanisms used in practice, generalizing previous results of Che and Kojima
(2010). Finally, we illustrate the model’s applicability by quantifying how competi-
tion induced by school choice gives schools incentives to invest in quality. Specifically,
we show that schools have muted, and possibly even negative incentives to invest in
quality dimensions that benefit lower ranked students.
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1. Introduction

1.1. Overview. In two-sided matching markets buyers and sellers have preferences
over who they interact with on the other side of the market. For example, consulting
firms competing for college graduates care about which workers they hire. Such a
market clears not only through wages, as a college graduate cannot simply demand the
firm he prefers - he must also be chosen by the firm. These are key features of many
important markets, and matching markets have been extensively studied in Economics.
Much of the literature is based on one of two classic frameworks, each with distinct
advantages and limitations.1

One strand of the literature follows Becker’s (1973; 1974) marriage model. These
models often assume simple preferences, with men and women being ranked from best
to worst. Moreover, utility is transferable, so that a couple may freely divide the gains
from marriage. These stark assumptions lead to simple models with rich comparative
statics that have been applied to diverse problems such as explaining sex differences
in educational attainment, changes in CEO wages, and the relationship between the
distribution of talent and international trade.2

Another line of research follows Gale and Shapley’s (1962) college admissions model.
These models allow for complex heterogeneous preferences, and (possibly) for limita-
tions on how parties may divide the surplus of a relationship. Due to its generality, this
model is a cornerstone of market design, and has been applied to the study and design
of market clearinghouses (e.g. the National Resident Matching Program, that matches
30,000 doctors and hospitals per year; the Boston and New York City public school
matches, which match over 100,000 students per year),3 the use of signaling in labor
markets,4 the relationship between matching and auctions,5 and supply chain networks.6

This framework has had less success in empirical applications, where the multiplicity of
solutions is an issue,7 and in obtaining comparative statics results. In contrast to the

1In this paper we focus on frictionless matching markets, where the appropriate equilibrium concept
is the notion of stability defined below. Another important literature pioneered by Mortensen and
Pissarides (1994), considers matching markets with frictions. We do not pursue this line of inquiry.
2See respectively Chiappori et al. (2009); Gabaix and Landier (2008) and Tervio (2008); Grossman
(2004), and the related paper by Grossman and Maggi (2000).
3The redesign of the National Resident Matching Program is described in Roth and Peranson (1999).
School choice was introduced as a mechanism design problem in the seminal paper of Abdulkadiroglu
and Sönmez (2003), and the redesign of the Boston and New York City matches is described in
Abdulkadiroglu et al. (2005a,b).
4Coles et al. 2010, 2011; Lee et al. 2011.
5Hatfield and Milgrom 2005.
6Ostrovsky 2008.
7See Sorensen (2007) for a discussion of the issue of multiplicity of stable matchings for the estimation
of matching models, and a set of assumptions under which it can be circumvented. The Gale and
Shapley model is often used for the simulation of outcomes once preferences have been estimated, as
in Lee et al. (2011) and Hitsch et al. (2010).
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former strand of the literature, comparative statics results are often difficult and of a
limited nature in this framework.8

This paper proposes a new model of matching markets based on Aumann’s (1964)
insight that markets with a continuum of traders may be considerably simpler than
those with a finite number of traders. Like the Gale and Shapley (1962) framework the
proposed model allows for rich heterogeneous preferences and (possible) restrictions on
transfers. However, like the Becker (1973) model, it also permits straightforward deriva-
tion of comparative statics. Finally, the new model implies new results on matching
markets with a large but finite number of agents, and we apply it to examine the effects
of competition among public schools on school quality.

The basic features of our model follow the standard Gale and Shapley college admis-
sions model. Agents on one side (colleges or firms) are to be matched to many agents
on the other side (students or workers). Throughout most of the paper we consider the
extreme case where there are no transfers between agents. As in the standard model,
the solution concept is stability. A matching between students and colleges is stable if
no pair of a student and a college would like to break away from a match partner and
match to each other.

We make two key simplifications to the standard Gale and Shapley model. First,
we consider a model where each of a finite number of colleges is matched, not to a
discrete number of students, but to a continuum mass of students. Therefore, our model
approximates a situation where each agent on one side is matched to a large number of
agents on the other side. This is the case in a number of important matching markets,
such as college admissions, school choice clearinghouses, diverse labor markets (e.g. the
market for associates at major US law firms),9 and debt and equity underwriting.10

The assumption of a continuum of students and finite number of colleges is similar to
Aumann’s (1964) use of a continuum of consumers trading finitely many types of goods.

The second key simplification is applying the logic of supply and demand to matching
markets. We give a new characterization of stable matchings that allows us to use
standard techniques from competitive equilibrium models in a matching setting. We

8For example, Crawford’s (1991) main results are comparative statics theorems. He shows, in a gener-
alization of the Gale and Shapley model, that adding a firm to the economy makes the worker-optimal
and the firm-optimal stable matchings better for all workers. Hatfield and Milgrom’s Theorem 6 shows
that, in their model, a similar result is true when a worker leaves the market. Both these results,
although unsurprising, are nontrivial, and the proofs depend on the Gale Shapley algorithm and its
generalizations. In contrast, in our model comparative statics are obtained simply by differentiating
the market clearing equations. This reveals not only the direction but also the magnitude of changes,
and gives a systematic technique to derive comparative statics, which works in cases that may be less
straightforward than the addition of a worker or firm.
9See Ginsburg and Wolf (2003) and Oyer and Schaefer (2010) for a description of institutional features
of this market.
10This market is discussed in Asker and Ljungqvist (2010).
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show that, in both the continuum and the discrete models, stable matchings have a
very simple structure, given by admission thresholds Pc at each college c. We term
such a threshold a cutoff, and colleges are said to accept students who are ranked above
the cutoff. Given a vector of cutoffs P, a student’s demanded college is defined as
her favorite college that would accept her. We show that for every stable matching
there exists a vector of cutoffs such that the demand function determines the match
of each student. Moreover, at any vector of cutoffs P that clears supply and demand
for colleges, the demand function yields a stable matching. Therefore, finding stable
matchings in the Gale and Shapley model is equivalent to finding a solution P to a set
of market clearing equations11

D(P ) = S.

Mathematically, this is the same as solving a general equilibrium model, with cutoffs P
in the stead of prices.

The continuum assumption considerably simplifies the analysis. First, in the contin-
uum model, the correspondence between stable matchings and cutoffs that clear the
market is one-to-one. Second, we show that with great generality the continuum model
has a unique stable matching, and that this stable matching varies continuously with the
underlying fundamentals. This result is in the spirit of Aumann’s finding that the core
allocation is unique in an economy with a continuum of traders. The results imply that
comparative statics may be derived from the market clearing equations, using standard
techniques. This is in contrast with the standard discrete model, that possibly has mul-
tiple stable matchings, which are typically found using the Gale and Shapley algorithm,
rendering techniques such as the implicit function theorem not directly applicable.

To justify using the simpler continuum model as an approximation of real markets,
we give a set of convergence results, which are our main theoretical contribution. A
sequence of increasingly large discrete economies is said to converge to a continuum
economy if the empirical distribution of student types converges to the distribution
in the continuum economy, and the number of seats per student in each college con-
verges. Whenever the continuum economy has a unique stable matching, all of the
stable matchings of the discrete economies converge to this unique stable matching of
the continuum economy. Moreover, we show that all stable matchings of the large dis-
crete economies become very similar (in a sense we make precise). Therefore, even in
a large discrete economy, the concept of stability clears the market in a way that is
essentially unique.

Our paper is the first to characterize the asymptotics of the set of stable matchings in
a class of large matching markets. As an application, we characterize the asymptotics
11As we discuss formally below, the formula D(P ) = S only holds when there is excess demand for
all colleges. In general the system of equations to be solved is for every college c: Dc(P ) ≤ Sc, with
equality if Pc > 0.
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of school choice mechanisms used in practice to match students to schools, such as
deferred acceptance with single tie-breaking. Previously, Che and Kojima (2010) had
characterized the limit of the random serial dictatorship mechanism, and shown that it
was identical to the probabilistic serial mechanism. This corresponds to the particular
case of deferred acceptance with single tie-breaking where students do not have priorities
to schools. Therefore, by allowing for more general preferences, our result covers the case
actually used in practice where schools do give priorities to some students. Moreover, it
gives a unified formula that describes the asymptotics of the important mechanisms of
deferred acceptance with single tie-breaking, random serial dictatorship, probabilistic
serial, and others that are covered by our model.

We illustrate the simple derivation of comparative statics within our framework by
example. We consider how competition among schools induced by flexible school choice,
as practiced in cities such as New York, gives incentives for schools to invest in quality.
This problem has been previously studied in the discrete Gale and Shapley framework
by Hatfield et al. (2011a). Using the continuum model, we give an expression for the
effect for an individual school of investing in quality on the quality of its entering class.
We decompose this effect in a direct effect, the gain from becoming more attractive
keeping the admission thresholds of other schools fixed, and a market power effect,
which is the loss from other schools becoming less selective. Using the decomposition,
we show that schools have muted, or possibly even negative incentives to perform quality
improvements that target lower ranked students. Therefore, while school choice might
give schools incentives to improve, our result raises the concern that such improvements
will disproportionately benefit top students.

Besides this simple example, two papers apply our model to derive Nash equilibria
of games in matching markets where firms may be strategic. Crucially for these appli-
cations, the comparative statics in the continuum model deliver magnitudes of how a
firm’s actions impact market equilibrium. Azevedo (2011) considers what the distor-
tions from market power are in imperfectly competitive matching markets, where firms
may choose how much to invest in capacity. Veiga and Weyl (2011) analyze distortions
in how platforms choose not only capacities, but different characteristics, such as how
much colleges specialize.

For applications of the continuum model to real-life markets, it is important to de-
termine how good an approximation it affords. We give bounds on how close the set of
stable matchings of a large economy are to the stable matching in the continuum model.
We consider the case where student types in a discrete economy are independently iden-
tically distributed according to a given measure. We show that the probability that
cutoffs that clear the market deviate by more than a given constant from their limit
value decreases exponentially with the size of the economy. Moreover, we bound the
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probability that the number of students that receive different matches than what is
expected in the limit is greater than a constant, also by an exponentially decreasing
quantity.

Likewise, it is important to guarantee that comparative statics results derived in
the continuum model can be applied to discrete economies. We give a result showing
that comparative statics in the continuum model extend to large discrete economies.
Using cutoffs, we define orderings over stable matchings. We show that if the unique
stable matchings of two continuum economies are ordered in a particular way, then the
sets of stable matchings of two approximating large discrete economies are strongly set
ordered in the same direction. Therefore, our model can be used to derive comparative
statics in discrete economies. While directly proving such results often involves complex
arguments,8 our model allows an analyst to simply apply the implicit function theorem
to the continuum model, and the results are guaranteed to follow for large discrete
economies.

Finally, in several markets wages or prices are personalized. We extend the model to a
setting where parties (which in this case we term workers and firms) are free to negotiate
contract terms, possibly including wages, in the spirit of Hatfield and Milgrom (2005)
and Kelso and Crawford (1982). The set of possible contracts may have restrictions, so
that the model encompasses the case of no transfers, as in the Gale and Shapley (1962)
model, and the case of transferable utility, as in most of Becker’s (1973) analysis. We
define stability in terms of firm preferences over individual contracts, which is justified
when preferences are responsive. We find that the simple characterization of stable
matchings in terms of a small set of cutoffs still holds. Moreover, under fairly general
conditions analogous to the case without transfers, the model yields a unique allocation
of firms to workers in every stable matching. However, the division of surplus between
firms and workers is no longer uniquely determined.

The paper is organized as follows. Section 1.2 clarifies the connections of our paper
with previous work. Section 2 introduces our model (2.1), gives the new characterization
of stable matchings in terms of supply and demand (2.2), and illustrates our main
results through a simple example (2.3). Section 2 and the application in Section 5.1 are
self-contained and sufficient for readers interested in applying our model.

Section 3 reviews the discrete Gale and Shapley model, and defines the notions of
convergence we use. Section 4 proves our main theoretical results, giving conditions for
the continuum economy to have a unique stable matching, and for convergence of the
discrete model to our model. Section 5 discusses applications and extensions. Section
5.1 applies the model to understand how school competition gives schools incentives
to improve quality, and what types of students are targeted by these improvements.
Section 5.2 discusses bounds on our convergence results, 5.3 shows that comparative
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statics in the continuum model imply comparative statics in the discrete model, 5.4
derives asymptotic characterizations of assignment and school choice mechanisms, 5.5
considers economies with multiple stable matchings, and 5.6 extends the model to
matching with contracts. Omitted proofs are in the Appendix.

1.2. Related Literature. Our paper is related to several active lines of research. First,
our contribution is directly motivated by the literature on the design of large matching
clearinghouses, such as the school matches in Boston and New York City (Abdulka-
diroglu et al. 2005a,b). Such markets are both organized around clearinghouses, so
that the resulting allocations are indeed stable, and have each school being matched to
many students. One direct application of our model is as a framework to understand
the properties of different mechanisms. In Section 5.4 we use our model to derive an
asymptotic characterization of school choice mechanisms used in practice. In this vein,
Azevedo and Leshno (2010) apply our model to perform an equilibrium analysis of a
non-strategyproof mechanism suggested by Erdil and Ergin (2008).

In the mechanism design literature, there is a long tradition of studying the properties
of large markets (Hurwicz 1972; Roberts and Postlewaite 1976; Jackson and Manelli
1997; Reny and Perry 2006; Pesendorfer and Swinkels 2000; Swinkels 2001; Bodoh-
Creed 2010). In the market design literature, many recent papers have focused on large
markets (Kojima and Manea 2009; Manea 2009; Budish and Cantillon Forthcoming;
Budish Forthcoming; Che and Kojima 2010; Azevedo and Budish 2011).

More closely related to our model, are the contributions in market design that study
large matching markets (Roth and Peranson 1999; Immorlica and Mahdian 2005; Ko-
jima and Pathak 2009; Lee 2011). The focus of these papers is quite different from
ours. Roth and Peranson (1999), using simulations and data from the National Resi-
dent Matching Program observed that, even though stable matching mechanisms are
manipulable in theory, they seem to be very close to strategyproof in large markets.
This spurred several subsequent papers that theoretically evaluate this proposition.
Our work differs from this literature in two key aspects. The first is that previous
work has focused on showing approximate incentive compatibility of stable matching
mechanisms.12 In contrast, we characterize the limit of the set of stable matchings in

12These papers are also typically concerned with showing that in large matching markets the set
of stable matchings is small, according to some definition. These are usually referred to as core
convergence results. Indeed, establishing that supply and demand uniquely clear the market in the
continuum model is one of our main results, as it adds tractability to the continuum model, and is
an important feature of matching markets. Moreover, we prove a core convergence result showing
that the set of stable matchings does become small in large economies. Moreover, while our setting is
different, we prove this result without the assumptions of short preference lists, or a specific probability
generating process for preferences, which is necessary for the combinatorial arguments commonly
used in this literature. Another related strand of the literature imposes conditions on preferences
to guarantee uniqueness of a stable matching in a given finite economy (Eeckhout 2000; Clark 2006;
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large matching markets. Second, the type of limit we take is different. While papers
in this literature consider the limit where both sides of the market grow, we consider
the case where there is a fixed finite number of colleges, and the number of students
grows. The two different limits are suited for analyzing different situations. The former
models a situation where each college or firm is a small part of a thick market, and its
choices have a vanishing effect on other firms. In contrast, our model is better suited
for situations where firms are differentiated, and may have some market power. In such
settings, firms do have incentives to misreport preferences to a mechanism, for example
by reducing quantity as in a standard oligopoly model (Azevedo 2011).

One paper that does give a sharp asymptotic characterization of the outcome of a
mechanism is Che and Kojima (2010). Their main result is that the random serial dic-
tatorship mechanism is asymptotically equivalent to Bogomolnaia and Moulin’s (2001)
probabilistic serial mechanism. As we discuss below, this is a particular case of our char-
acterization of school choice mechanisms. The derivation of such results is considerably
simpler within our framework; instead of employing combinatorial arguments as in the
extant literature, we apply differential topology techniques, an approach introduced by
Debreu (1970) in general equilibrium theory.

Another central contribution of our paper is the characterization of stable matchings
in terms of cutoffs clearing supply and demand. We highlight several related results
in the literature. An early result by Roth and Sotomayor (1989) shows that different
entering classes in a college at different stable matchings are ordered in the sense that,
save for students which are in both entering classes, all students of an entering class are
better than those in the other entering class. This suggests that parametrizing the set of
stable matchings by the lowest ranked student is possible, though their result does not
describe such a parametrization, and the proof is independent from ours. Balinski and
Sönmez (1999) give a characterization of fair allocations13 based on threshold scores.
Biró (2007) studies the algorithm used to compute the outcome of college admissions
in Hungary. The algorithm, while very similar to the Gale and Shapley algorithm, uses
scores at each stage. Biró (2007) states without proof that a definition of stability in
terms of cutoffs is equivalent to the standard definition. Abdulkadiroglu et al. (2008)
consider a particular continuum economy, motivated by a school choice problem. They
compute a stable matching of this economy, and find that this stable matching can be
described in terms of cutoffs.

Niederle and Yariv 2009). Recent work has sought to bound the number of stable matchings given
restrictions on preferences (Samet 2010).
13Formally, fairness is a concept that applied to the “student placement problem” as defined by Balinski
and Sönmez (1999). A matching is individually rational, fair, and non-wasteful if and only if it is stable
for the “college admissions problem” that is associated to the original problem, as defined by Balinski
and Sönmez (1999).
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Finally, an influential paper by Adachi (2000) gives a characterization of stable match-
ings in terms of fixed points of an operator over pre-matchings.14 This insight has been
widely applied in the matching with contracts literature.15 Adachi’s (2000) result is
quite different from ours, as pre-matchings are considerably more complex than cutoffs,
and our characterization is in terms of supply and demand and not a fixed point. How-
ever, it is informative to dissect the connection. A pre-matching specifies a college for
each student, and a set of students for each college. Therefore, the very dimensionality
of the set of pre-matchings is considerably larger than that of cutoffs, which specify only
an admission threshold for each college. Adachi defines an operator over pre-matchings
as follows. Given a pre-matching v, agents on either side pick their preferred matches
that would be willing to match with them and leave their matches at v. He then shows
that stable matchings are associated with fixed points of this operator. A commonality
of the two characterizations is therefore that pre-matchings work as reservation values
for each agent in the Adachi operator. However, Adachi’s construction necessitates
the extra information included in the high-dimensional object of pre-matchings, and
cannot simply be reduced to cutoffs. To clarify this point, in Appendix D we give a
simple example where, starting with a pre-matching defined by market clearing cutoffs,
Adachi’s map produces a pre-matching that does not have the cutoff structure.

Our characterization Lemma 2 is analogous to the Fundamental Theorems of Welfare
Economics. Segal (2007) shows that these theorems may be stated for a wide class of
social choice problems: namely, socially optimal outcomes can be decentralized with a
notion of price equilibrium that is appropriate for the problem. Furthermore, he char-
acterizes the prices that that verify a problem’s solutions with minimal communication
(Segal’s Theorems 2, 3). Applied to stable many-to-one matching, his characterization
yields pre-matchings as the appropriate prices (Segal’s Proposition 5). In our model,
where colleges’ preferences are defined by students’ scores, the minimally informative
prices in Segal’s Theorem 3 coincide with our notion of market clearing cutoffs.

Finally, some recent papers explore connections between the matching theoretic con-
cept of stability and Walrasian Equilibrium (Hatfield and Milgrom 2005; Hatfield et al.
2011b), and their equivalence in certain settings.16 While we do make such a connec-
tion, the scope and spirit of our result is quite different. Our results imply that stable
matchings may be found by solving for selectivity cutoffs P that equate demand and
supply for each college. This means that stable matchings can be found by solving

14These ideas have been extended to many-to-one and many-to-many matching markets in important
papers by Echenique and Oviedo (2004, 2006).
15See for example Ostrovsky (2008); Hatfield and Milgrom (2005); Echenique (Forthcoming).
16Specifically,Hatfield et al. (2011b) show that in a trading network with quasilinear utilities, free
trasnfers of a numeraire between agents, and substitutable preferences the set of stable outcomes is
essentially equivalent to the set of Walrasian equilibria.
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market clearing equations for a given excess demand curve D(P ) − S. This is equiva-
lent to solving for equilibrium prices in a general equilibrium economy. This is a useful
connection, and cutoffs do share some properties with prices. However, we highlight
that cutoffs are not prices, and there is no equivalence between stability and Walrasian
equilibrium in our model.

2. The Continuum Model

2.1. Definitions. We begin the exposition with the simpler, and novel continuum
model, and examine its connection with the standard discrete Gale and Shapley (1962)
model in Sections 3 and 4. The model follows closely the Gale and Shapley (1962)
college admissions model. The main departure is that a finite number of colleges
C = {1, 2, . . . , C} is matched to a continuum mass of students. A student is described
by her type θ = (�θ, eθ). �θ is the student’s strict preference ordering over colleges.
The vector eθ ∈ [0, 1]C describes the colleges’ ordinal preferences for the student. We
refer to eθc as student θ’s score at college c. Colleges prefer students with higher scores.
That is, college c prefers17 student θ over θ′ if eθc > eθ

′
c . To simplify notation we assume

that all students and colleges are acceptable.18 Let R be the set of all strict preference
orderings over colleges. We denote the set of all student types by Θ = R× [0, 1]C .

A continuum economy is given by E = [η, S], where η is a probability measure19

over Θ and S = (S1, S2, . . . , SC) is a vector of strictly positive capacities for each
college. We make the following assumption on η, which corresponds to colleges having
strict preferences over students in the discrete model.

Assumption 1. (Strict Preferences) Every college’s indifference curves have η-
measure 0. That is, for any college c and real number x we have η({θ : eθc = x}) = 0.

The set of all economies satisfying Assumption 1 is denoted by E .

17We take college’s preferences over students as primitives, rather than preferences over sets of students.
It would have been equivalent to start with preferences over sets of students that were responsive to
the preferences over students, as in Roth (1985).
18This assumption is without loss of generality. If some students find some schools unacceptable we can
generate an equivalent economy where all schools are acceptable. Add a fictitious “unmatched” school
with a large capacity and set student preferences to rank it as they would rank being unmatched. Set
student preferences to rank all unacceptable schools as acceptable, but ranked below the fictitious
school. Since the fictitious school never reaches its capacity, any student that is matched to an
unacceptable school can form a blocking pair with the fictitious school. Therefore stable matching
of the resulting economy are equivalent to stable matching of the original one. Likewise, we can add a
fictitious mass of students that would be ranked bellow all acceptable students and ranked above the
unacceptable students.
19We must also specify a σ-algebra where η is defined. The set Θ is the product of [0, 1]C and the
finite set of all possible orderings. We take the Borel σ-algebra of the product topology (the standard
topology for RC times the set of all subsets topology for the discrete set of preference orderings) .
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A matching µ describes an allocation of students to colleges. Formally, a matching
in a continuum economy E = [η, S] is a measurable function µ : C ∪Θ→ 2Θ∪ (C ∪Θ),
such that

(1) For all θ ∈ Θ: µ(θ) ∈ C ∪ {θ}.
(2) For all c ∈ C: µ(c) ⊆ Θ, and η(µ(c)) ≤ Sc.
(3) c = µ(θ) iff θ ∈ µ(c).
(4) (Right continuity) For any sequence of students θk = (�, ek), with ek converging

to e, and ekc ≥ ek+1
c ≥ ec for all k, c, we can find some large K so that µ(θk) =

µ(θ) for k > K.

The definition of a matching is analogous to that in the discrete model. Conditions
1-3 mirror those in the discrete model. (1) states that each student is matched to a
college or to herself. (2) that colleges are matched to sets of students with measure
not exceeding its capacity. (3) is a consistency condition, requiring that a college is
matched to a student iff the student is matched to the college.

The technical Condition (4) is novel. It states that given a sequence of students
θk = (ek,�), which are decreasingly desirable, with scores ek → e, then for large
enough k all students (�, ek) in the sequence receive the same allocation, and the limit
student (e,�) receives this allocation too. The reason why we impose this condition
is that in the continuum model it is always possible to add an extra measure 0 set
of students to a school without having it exceed its capacity. This would generate
multiplicities of stable matchings that differ only in sets of measure 0. Condition 4
rules out such multiplicities. The intuition is that right continuity implies that a stable
matching always allows an extra measure 0 set of students into a college when this can
be done without compromising stability. Other than eliminating such multiplicities up
to a measure 0 set of students, the condition does not affect the set of stable matchings.

A student-college pair (θ, c) blocks a matching µ at economy E if the student θ
prefers c to her match and either (i) college c does not fill its quota or (ii) college c
is matched to another student that has a strictly lower score than θ. Formally, (θ, c)

blocks µ if c �θ µ(θ) and either (i) η(µ(c)) < Sc or (ii) there exists θ′ ∈ µ(c) with
eθ
′
c < eθc .

Definition 1. A matching µ for a continuum economy E is stable if it is not blocked
by any student-college pair.

A stable matching always exists. Since the proof is similar to Gale and Shapley’s
(1962) existence proof in the discrete case, we relegate it to the Appendix (see Corollary
A1).

We refer to the stable matching correspondence as the correspondence associating
each economy in E with its set of stable matchings. In some sections in the paper the
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economy is held fixed. Whenever there is no risk of confusion we will omit dependence
of certain quantities on the economy.

2.2. The Supply and Demand Characterization of Stable Matchings. In the
theory of competitive equilibrium, prices play a key role. In this section we show that
selectivity thresholds at each college, which we term cutoffs, play a a similar role in
matching markets, with respect to two key dimensions. One important property of
prices is decentralizing the allocation. If agents’ optimal choices are unique, prices
determine the allocation, with each agent simply choosing her favorite bundle that is
affordable. Another property is that the task of finding an equilibrium is reduced to
finding a vector of prices that clears demand and supply. As the dimensionality of this
vector is often small compared to the number of agents in the economy, prices play an
important computational role. It is important to highlight that cutoffs are very different
than prices, and prices have many properties that cutoffs do not share. For example,
in general equilibrium the price ratio of goods gives the marginal rate of substitution
of a consumer who buys a positive amount of each. No such relationship for cutoffs
holds in our setting, where the allocation depends exclusively on ordinal preferences.
Yet, cutoffs and prices do share the two properties outlined above.

Throughout this subsection, we fix an economy E, and abuse notation by omitting
dependence on E when there is no risk of confusion. A cutoff is a minimal score
Pc ∈ [0, 1] required for admission at a college c. We say that a student θ can afford
college c if Pc ≤ eθc , that is c would accept θ. A student’s demand given a vector of
cutoffs is her favorite college among those that would accept her. That is,

(2.1) Dθ(P ) = arg max
�θ
{c|Pc ≤ eθc} ∪ {θ}.

Aggregate demand for college c is the mass of students that demand it,

Dc(P ) = η({Dθ(P ) = c}).

A market clearing cutoff is a vector of cutoffs that clears supply and demand for
colleges.

Definition 2. A vector of cutoffs P is a market clearing cutoff if it satisfies the
following market clearing equations: for all c

Dc(P ) ≤ Sc

and Dc(P ) = Sc if Pc > 0.

There is a natural one-to-one correspondence between stable matchings and market
clearing cutoffs. To describe this correspondence, we define two operators. Given a
market clearing cutoff P , we define the associated matching µ =MP using the demand
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function:
µ(θ) = Dθ(P ).

Conversely, for a stable matching µ, we define the associated cutoff P = Pµ by:

(2.2) Pc = inf
θ∈µ(c)

eθc .

The operatorsM and P give a bijection between stable matchings and market clear-
ing cutoffs.

Lemma 1. (Supply and Demand Lemma) If µ is stable matching, then Pµ is a
market clearing cutoff. If P is a market clearing cutoff, thenMP is a stable matching.
In addition, the operators P andM are inverses of each other.

The Lemma subsumes two useful facts. First, stable matchings all have a very special
structure. Given any stable matching µ, there must exist a corresponding vector of
cutoffs such that each student is matched to µ(θ) = Dθ(P ). Therefore, any stable
matching corresponds to each student choosing her favorite college conditional on being
accepted at a vector of cutoffs P . Therefore, if one is interested in stable matchings, it
is not necessary to consider all possible matchings, but only those that have this very
special structure. This is similar to the decentralization property that prices have in
competitive equilibrium, where each agent’s allocation is determined by her preferences,
endowment, and market prices.20

Second, the Lemma implies that computing stable matchings is equivalent to finding
market clearing cutoffs, as M and P are a one-to-one correspondence between these
two sets. Therefore, stable matchings can be found by solving market clearing equa-
tions, balancing demand D(P ) and supply S. In particular, finding stable matchings is
equivalent to finding competitive equilibria of an economy with quasilinear preferences
and aggregate demand function D(P ).

2.3. Example: The Supply and Demand Characterization and Convergence
of Discrete Economies to Continuum Economies. This simple example illus-
trates the supply and demand characterization of stable matchings and previews our
convergence results. There are two colleges c = 1, 2, and the distribution of students η
is uniform. That is, there is a mass 1/2 of students with each preference list 1, 2 or 2, 1,
and each mass has scores distributed uniformly over [0, 1]2 (Figure 1). If both colleges
had capacity 1/2, the unique stable matching would have each student matched to her
favorite college. To make the example interesting, assume S1 = 1/4, S2 = 1/2.
20P decentralizes the allocation in the sense that, as in competitive equilibrium, the allocation is
determined solely by (�θ, eθ) and P . Thus, P summarizes the effect of aggregate market conditions
on θ’s allocation. Note, however, that eθ represents colleges’ preferences. Therefore, if colleges have
private information over their preferences, it is not true that P decentralizes the allocation in the sense
that a student’s allocation only depends on her private information and P . See also footnote ??.
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Figure 1. The set of student types Θ is represented by the two squares
on the top panel. The left square represents students that prefer college 1,
and the right square students who prefer college 2. Scores at each college
are represented by the (x, y) coordinates. The lower panels show the first
10 steps of the Gale-Shapley student-proposing algorithm. In each line,
students apply to their favorite colleges that have not yet rejected them
in the left panel, and colleges reject students to remain within capacity in
the right panel. Students in dark gray are tentatively assigned to college
1, and in light gray tentatively assigned to college 2.
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A familiar way of finding stable matchings is using the student-proposing deferred
acceptance algorithm. In the Appendix, we formally define the algorithm, and prove
that it converges to a stable matching. Here, we informally follow the algorithm for
this example, to build intuition on the special structure of stable matchings. At each
step of the algorithm unassigned students propose to their favorite college out of the
ones that still haven’t rejected them. If a college has more students than its capacity
assigned to it, it rejects the lower ranked students currently assigned, to stay within its
capacity. Figure 1 displays the trace of the algorithm in our example. In the first step,
all students apply to their favorite college. Because college 1 only has capacity 1/4,
and each square has mass 1/2, it then rejects half of the students who applied. The
rejected students then apply to their second choice, college 2. But this leaves college
2 with 1/2 + 1/4 = 3/4 students assigned to it, which is more than its quota. College
2 then rejects its lower ranked students. Those who had already been rejected stay
unmatched. But those who hadn’t been rejected by college 1 apply to it, leaving it with
more students than capacity, and the process continues. Although the algorithm does
not reach a stable matching in a finite number of steps, it always converges, and its
pointwise limit (shown in Figure 2) is a stable matching (this is proven in Appendix A).
Figure 1 hints at this, as the measure of students rejected in each round is becoming
smaller and smaller.

However, Figures 1 and 2 give much more information than simply convergence of the
deferred acceptance mechanism. We can see that cutoffs yield a simpler decentralized
way to describe the matching. Note that all students accepted to college 1 have a score
eθ1 above a cutoff of P1 ≈ .640, and those accepted to college 2 have a score eθ2 above
some cutoff P2 ≈ .390. Hence, had we known these numbers in advance, it would have
been unnecessary to run the deferred acceptance algorithm. All we would have to do
is assign each student to her favorite college such that her score is above the cutoff,
eθc ≥ Pc (Supply and Demand Lemma 1).

Additionally, the Supply and Demand Lemma gives another way of finding stable
matchings. Instead of following the deferred acceptance algorithm, one may simply
look for cutoffs that equate supply and demand D(P ) = S. Consider first demand for
college 1. The fraction of students in the left square of Figure 2 demanding college 1 is
1−P1. And in the right square it is P2(1−P1). Therefore D1(P ) = (1 +P2)(1−P1)/2.
D2 has an analogous formula, and the market clearing equations are

S1 = 1/4 = (1 + P2)(1− P1)/2

S2 = 1/2 = (1 + P1)(1− P2)/2.
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Figure 2. A stable matching in a continuum economy with two colleges.
The two squares represent the set of student types Θ. The left square
represents students that prefer college 1, and the right square students
who prefer college 2. Scores at each college are represented by the (x, y)
coordinates. The white area represents unmatched students, dark gray
are matched to college 1, and light gray to college 2.

Solving this system, we get P1 = (
√

17 + 1)/8 and P2 = (
√

17− 1)/8. In particular,
because the market clearing equations have a unique solution, the economy has a unique
stable matching (Theorem 1 shows this is a much more general phenomenon).

We show below that the cutoff characterization is also valid in the discrete Gale and
Shapley (1962) model, save for the fact that in discrete model each stable matching
may correspond to more than one market clearing cutoff (Lemma 2). Figure 3 illus-
trates cutoffs for a stable matching in a discrete economy with 1, 000 students. The
1,000 students were assigned random types, drawn from the distribution η used in the
continuum example. For that reason, the empirical distribution of types of the discrete
economy approximates that of the continuum economy. In this sense, this discrete
economy approximates the continuum economy. Note that the cutoffs in the discrete
economy are approximately the same as the cutoffs in the continuum economy. The-
orem 2 shows that, generically, the market clearing cutoffs of approximating discrete
economies approach market clearing cutoffs of the continuum economy.

3. The Discrete Model and Convergence Notions

This section reviews the discrete Gale and Shapley (1962) college admissions model,
states the discrete Supply and Demand Lemma, and defines convergence notions used
to state our main results.
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Figure 3. Cutoffs of a stable matching in a discrete economy approxi-
mating the continuum economy in the example. The two squares repre-
sent the set of student types Θ. The left square represents students prefer
college 1, and the right square students who prefer college 2. Scores at
each college are represented by the (x, y) coordinates. There are 2 col-
leges, with capacities q1 = 250, q2 = 500. 500 students have preferences
�θ= 1, 2, ∅ and 500 students have preferences 2, 1, ∅. Scores eθ were drawn
independently according to the uniform distribution in [0, 1]2. The Fig-
ure depicts the student-optimal stable matching. Balls represent students
matched to college 1, squares to college 2, and Xs represent unmatched
students.

3.1. The Discrete Gale and Shapley Model. The set of colleges is again C. A finite
economy F = [Θ̃, S̃] specifies a finite set of students Θ̃ ⊂ Θ, and an integer vector of
capacities S̃c > 0 for each college. We assume that no college is indifferent between two
students in Θ̃. A matching for finite economy F is a function µ̃ : C∪Θ̃→ 2Θ̃∪(C∪Θ̃)

such that

(1) For all θ in Θ̃: µ(θ) ∈ C ∪ {θ}.
(2) For all c ∈ C: µ(c) ∈ 2Θ̃ and #µ(c) ≤ S̃c.
(3) For all θ ∈ Θ̃, c ∈ C: µ(θ) = c iff θ ∈ µ(c).

These conditions may be interpreted as follows. (1) Each student is matched to a
college or to herself, (2) each college is matched to at most S̃c students, and (3) the
consistency condition that a college is matched to a student iff the student is matched
to the college.

The definition of a blocking pair is the same as in Section 2.1. A matching µ̃ is
said to be stable for finite economy F if it has no blocking pairs.

Given a finite economy F = [Θ̃, S̃], we may associate with it the empirical distribution
of types

η =
∑
θ∈Θ̃

1

#Θ̃
δθ,
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where δx denotes is the probability distribution associating probability 1 to the point
x. The supply of seats per student is given by S = S̃/#Θ̃. Note that [η, S] uniquely
determine a discrete economy F = [Θ̃, S], as Θ̃ = support(η) and S̃ = S·#Θ̃. Therefore,
either pair [Θ̃, S̃] or [η, S] uniquely determine a finite economy F . Throughout the
remainder of the text we will abuse notation and refer to finite economies simply as

F = [η, S].

This convention will be useful for stating our convergence results below, as it makes
finite economies F comparable to continuum economies E.

3.1.1. Cutoffs. In this section we fix a finite economy F = [η, S], and will omit depen-
dence on F in the notation. A cutoff is a number Pc in [0, 1] specifying an admission
threshold for college c. Given a vector of cutoffs P , a student’s individual demand
Dθ(P ), the aggregate demand function D(P ), and market clearing cutoffs are defined
as in Section 2.2.

In the discrete model, we define the operators M̃ and P̃ , which have essentially
the same definitions as M and P . Given market clearing cutoffs P , µ̃ = M̃P is the
matching such that for all θ ∈ Θ̃: µ̃(θ) = Dθ(P ). Given a stable matching µ̃, P = P̃µ̃
is given by Pc = 0 if η(µ̃(c)) < Sc and Pc = minθ∈µ̃(c) e

θ
c otherwise.

In the discrete case, we have the following analogue of the Supply and Demand
Lemma.

Lemma 2. (Discrete Supply and Demand Lemma) In a discrete economy, the
operators M̃ and P̃ take stable matchings into market clearing cutoffs, and vice versa.
Moreover, M̃P̃ is the identity.

Proof. Consider a stable matching µ̃, and let P = P̃µ̃. Any student θ who is matched
to a college c = µ̃(θ) can afford her match, as Pc ≤ eθc by the definition of P̃ . Likewise,
students who are unmatched may always afford being unmatched. Note that no student
can afford a college c′ �θ µ̃(θ): if she could, then Pc′ ≤ eθc′ , and by the definition of
P̃ , there would be another student θ′ matched to c′ with eθ

′

c′ < eθc′ , or empty seats at
c′, which would contradict µ̃ being stable. Consequently, no student can afford any
option better than µ̃(θ), and all students can afford their own match µ̃(θ). This implies
Dθ(P ) = µ̃(θ). This proves both that M̃P̃ is the identity, and that P is a market
clearing cutoff.

In the other direction, let P be a market clearing cutoff, and µ̃ = M̃P . By the
definition of the operator and the market clearing conditions it is a matching, so we
only have to show there are no blocking pairs. Assume by contradiction that (θ, c) is a
blocking pair. If c has empty slots, then Pc = 0 ≤ eθc . If c is matched to a student θ′ that
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it likes less than θ, then Pc ≤ eθ
′
c ≤ eθc . Hence, we must have Pc ≤ eθc . But then we have

c �θ Dθ(P ) = µ̃(θ), so (θ, c) cannot be a blocking pair, reaching a contradiction. �

The Lemma guarantees that stable matchings always have a cutoff structure µ̃ =

M̃P even in a discrete market. Therefore, it is still true that in the discrete model
cutoffs decentralize the allocation, and that for finding all stable matchings one only
has to consider market clearing cutoffs. The only difference between the Lemmas for
the discrete and continuous case, is that in the continuum model the correspondence
between market clearing cutoffs and stable matchings is one-to-one. In the discrete
model, in contrast, each stable matching may be associated with several market clearing
cutoffs. The reason is that changing a particular Pc in a range where there are no
students with scores eθc does not affect the demand function.

3.2. Convergence Notions. To describe our convergence results, we must define no-
tions of convergence for economies and stable matchings. We will say that a sequence of
continuum economies {Ek}k∈N, Ek = [ηk, Sk] converges to a limit economy E = [η, S]

if the measures ηk converge in the weak sense to η,21 and if the vectors Sk converge to
S.

We take the distance between stable matchings to be the distance between their
associated cutoffs in the supremum norm in RC . That is, the distance between two
stable matchings µ and µ′ is

d(µ, µ′) = ‖Pµ− Pµ′‖∞.

A sequence of finite economies {F k}k∈N, F k = [ηk, Sk] converges to a continuum
economy E = [η, S] if the empirical distribution of types ηk converges to η in the weak
sense, and the vectors of capacity per student Sk converge to S.

Given a stable matching of a continuum economy µ, and a stable matching of a finite
economy µ̃, we define

d(µ̃, µ) = sup
P
||P − Pµ||∞

over all vectors P with M̃P = µ̃.
The sequence of stable matchings {µ̃k}k∈N with respect to finite economies F con-

verges to stable matching µ of continuum economy E if d(µ̃k, µ) converges to 0.
Finally, we will show that the set of stable matchings of large finite economies becomes

small under certain conditions. To state this, we define the diameter of the set of stable
matchings of a finite economy F as sup{‖P − P ′‖∞ : P and P ′ are market clearing
cutoffs of F}.

21Weak convergence of measures is defined as the integrals
´
fdηk converging to

´
fdη for every

bounded continuous function f : Θ→ R. In analysis, this is usually termed weak-* convergence.
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4. Main Results: Convergence and Uniqueness

We are now ready to state the main results of the paper. The first result shows
that, typically, continuum economies have a unique stable matching. We first define a
minimal notion of smoothness of measures.

Definition 3. Measure η is regular if the closure of the set of points

{P ∈ [0, 1]C : D(·|η) is not continuosuly differentiable at P}

and its image under D(·|η) have Lebesgue measure 0.

This definition is very general, and includes cases where η does not have a density, and
where it has points where demand is not differentiable. While the condition is somewhat
technical, it is always satisfied for example if D(·|η) is continuously differentiable, and
also if η admits a continuous density.

The next result gives conditions for the continuum model to have a unique stable
matching.

Theorem 1. Consider an economy E = [η, S].
(1) If η has full support, then E has a unique stable matching.
(2) If η is any regular distribution, then for almost every vector of capacities S with∑
c Sc < 1 the economy E has a unique stable matching.

The Theorem has two parts. First, it shows that whenever η has full support, a limit
economy has a unique stable matching. Therefore, whenever the set of students is rich
enough, an economy has a unique stable matching.22 Moreover, it shows that, even if
the full support assumption does not hold, in a very general setting for almost every S
there exists a unique stable matching. Therefore, the typical case is for the continuum
model to have a unique stable matching, with supply and demand uniquely clearing
the market.

Proof Sketch. Here we outline the main ideas in the proof, which is deferred to Appen-
dix B. The core of the argument employs tools from differentiable topology, an approach
pioneered in general equilibrium theory by the classic paper of Debreu (1970).23 More-
over, the proof uses two results, developed in Appendix A, extending classic results
of matching theory to the continuum model. The first is the Lattice Theorem, which

22The assumption of full support may be weakened to all sets of the form

{θ ∈ Θ : θ ≮ P, θ < P ′, for P ≤ P ′, P 6= P ′}
having positive η measure. For details see the working paper version of Azevedo (2011). This assump-
tion is satisfied for example in the case of perfectly correlated college preferences, that is when for all
θ ∈ support(θ) and c, c′ ∈ C eθc = eθc′ .
23For an overview of the literature spurred by this seminal paper see Mas-Colell (1990).
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P−

P+

Figure 4. The Figure illustrates the Proof of Theorem 1. The shaded
area corresponds scores in the set {eθ ∈ [0, 1]C : eθ < P+, eθ ≮ P−},
which is used in the proof of Theorem 1 Part (1). Students who find all
schools acceptable and have scores in this set are matched under P− but
are unmatched under P+.

guarantees that for any economy E the set of market clearing cutoffs is a complete lat-
tice. In particular, this implies that there exist smallest and largest vectors of market
clearing cutoffs. In the proof we will denote these cutoffs P− and P+. The other re-
sult is the Rural Hospitals Theorem, which guarantees that the measure of unmatched
students in any two stable matchings is the same.
Part (1).
In the text we focus on the case where P+ > 0, and defer the general case to the

Appendix. Note that the set of unmatched students at P+ contains the set of unmatched
students at P−, and their difference contains the set

{θ ∈ Θ : eθ < P+, eθ ≮ P−}.

By the Rural Hospitals Theorem, the mass of unmatched agents at P+ and P− must
be the same, and therefore this set must have η measure 0. Since η has full support,
this implies that P− = P+, and therefore there is a unique stable matching (Figure 4).

Part (2).
For simplicity, consider the case where the function D(P |η) is continuously differen-

tiable. The general case is covered in the Appendix.
We begin by applying Sard’s Theorem.24 The Theorem states that, given a continu-

ously differentiable function f : Rn → Rn, we have that for almost every S0 ∈ Rn the
derivative ∂f(P0) is nonsingular at every solution P0 of f(P0)− S0 = 0. The intuition

24See Guillemin and Pollack (1974); Milnor (1997).
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for this result is easy to see in one dimension. It says that if we randomly perturb
the graph of a function with a small vertical translation, all roots will have a non-zero
derivative with probability 1.

Given S, as we assumed that there is excess demand for colleges (
∑

c Sc < 1), the
market clearing cutoffs are the set of roots P of the equation

D(P |η) = S.

By Sard’s Theorem, we have that for almost every S, the derivative ∂PD(·|η) is invert-
ible at every market clearing cutoff associated with [η, S]. Henceforth, we will restrict
attention to an economy E = [η, S] where this is the case, as this is the case for almost
every S.

To reach a contradiction, we assume that E has more than one stable matching.
Therefore, there must be smallest and largest market clearing cutoffs with P− ≤ P+.
For simplicity we restrict attention to the case where 0 < P− < P+, and defer the gen-
eral case to the Appendix. For any P in the cube [P−, P+], the measure of unmatched
students

(4.1) 1−
∑
c

Dc(P |η)

must be higher than the measure of unmatched students at P− but lower than the
measure at P+. However, by the Rural Hospitals Theorem, this measure must be the
same at P− and P+. Therefore, the expression in equation 4.1 must be constant in the
cube [P−, P+]. This implies that the derivative matrix of D at P− must satisfy∑

c

∂Dc(P
−|η) = 0.

This implies that the matrix of derivatives ∂D(P−|η) is not invertible, contradicting
Sard’s Theorem.

�

The next Theorem establishes the link between the continuum model and the stan-
dard discrete Gale and Shapley model. It shows that when an economy E has a unique
stable matching, which is the generic case, (1) it corresponds to the limit of stable
matchings of approximating finite economies, (2) approximating finite economies have
a small set of stable matchings, and (3) the unique stable matching varies continuously
with the fundamentals of the economy.

Theorem 2. Assume that the continuum economy E admits a unique stable matching
µ. We then have

(1) For any sequence of stable matchings {µ̃k}k∈N of finite economies in a sequence
{F k}k∈N converging to E, we have that µ̃k converges to µ.
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(2) Moreover the diameter of the set of stable matchings of {F k}k∈N converges to 0.
(3) The stable matching correspondence is continuous at E within the set of contin-

uum economies E.

The Theorem considers continuum economies E with a unique stable matching, which
Theorem 1 guarantees that this is the typical case.

Part (1) states that the unique stable matching of the limit economy is the limit of
any sequence of stable matchings of approximating finite economies. This implies that
the continuum model we propose does correspond to the limit of the discrete Gale and
Shapley (1962) model. We emphasize that for a sequence of finite economies {F k}k∈N
to converge to a limit economy E means that the empirical distribution of student
types converges, and that the vector of capacities per student converges. Therefore, the
economies F k have an increasing number of students, and a fixed number of colleges.

Part (2) states that the diameter of the set of stable matchings of any such sequence
of approximating finite economies converges to 0. This means that, as economies in the
sequence become sufficiently large, the set of stable matchings becomes small. More
precisely, even if such an economy has several stable matchings, cutoffs are very similar
in any stable matching. To a first approximation, supply and demand clear large
matching markets uniquely.

Finally, Part (3) states that the stable matching of E varies continuously in the set of
all continuum economies E . This means that stable matchings vary continuously with
the fundamentals of the economy E. This result is of significance for studies that use
data and simulations to inform market design (Abdulkadiroglu et al. 2009; Budish and
Cantillon Forthcoming). It implies that in large matching markets the conclusions of
such simulations are not sensitive to small changes in the parameters.

The proof of Theorem 2 Part (1) is based on the observation that if a sequence of
economies F k converges to an economy E, then its demand functions converge. With
this observation it is possible to prove that any sequence of stable matchings of {F k}k∈N
converges to a stable matching of E. Since E has a unique stable matching, any such
sequence must converge to the same stable matching. Part (2) then follows from Part
(1). As for Part (3), the argument is similar to that in Part (1). Uniqueness plays an
important role in Theorem 2. In Section 5.5 we give a knife edge example of an economy
with multiple stable matchings, and where Theorem 2 fails. Moreover, we give a result
showing that in a large set of cases where uniqueness fails, the set of stable matchings
may change discontinuously with small changes in the fundamentals, and that none of
the conclusions of Theorem 2 hold.
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5. Applications and Extensions

5.1. Comparative Statics and a Price-Theoretic Analysis of the Incentives to
Invest in School Quality. To illustrate the derivation of comparative statics in the
continuum framework, we will derive measures of the incentives for schools to invest in
quality in a city where there is school choice, and schools compete for the best students.
This problem is studied in Hatfield et al. (2011a), using the standard discrete Gale and
Shapley framework.25 They show that in large markets the incentives for schools to
invest in quality are nonnegative, but are silent about their magnitude, and to what
types of investments schools pursue. To address these issues, we approach the problem
from a price-theoretic perspective.

Consider a city with a number of public schools c = 1, · · · , C, each with capacity
Sc. Students are assigned to schools through a clearinghouse, via a stable matching
mechanism. This is a stark description of the institutional arrangements in New York
City. Students are denoted as i ∈ I. Schools’ preferences over students are given by
scores eic. We assume that the vectors ei are distributed according to a distribution
function G(·) in RC , with a continuous density g > 0.

Students’ preferences depend on the quality δc ∈ R of each school. δc should be
interpreted as a vertical quality measure, in that all students prefer higher δc. However,
different students may be affected differently by δc. So, for example, if δc measures the
quality of a school’s calculus course, then students of high academic caliber, or with
a focus in math, will be more sensitive to changes in δc. One of the advantages of
our approach is that it predicts which groups of students a school would like to target
with improvements in quality. Student i has utility uic(δc) > 0 of attending school c,
increasing in δc, and utility 0 of being unmatched. The measure of students who are
indifferent between two schools is 0. Given δ, preferences induce a distribution ηδ over
student types Θ, which we assume to be have a density fδ > 0, smooth in δ and θ.

Under these assumptions, given δ, there exists a unique stable matching µδ. Let P ∗(δ)
be the unique associated market clearing cutoffs. Dependence on δ will be omitted when
there is no risk of confusion.

For concreteness, we define the aggregate quality of a school’s entering class as

Qc(δ) =

ˆ
µδ(c)

eθcdηδ(θ)

25A related problem is how competition among school districts affects school performance when parents
may only choose schools insofar as they can move (Tiebout 1956; Hoxby 2000, 2003). In what follows
we follow Hatfield et al. (2011a) and abstract away from the possibility that students can move, and
consider the absence of school choice as a benchmark where the incentives derived below are 0. A more
realistic approach would be to explicitly model Tiebout competition.
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That is, the integral of scores eθc over all students matched to the school. We consider
how a school’s quality affects the quality of its entering class. The motivation is that,
following Hatfield et al. (2011a), if schools are concerned about Qc,26 then a direct link
between δc an Qc gives school administrators incentives to improve quality δc.

To derive an expression for the effect of investing in quality, we must define relevant
quantities. Let Yc(P, δ, e) be the fraction of students of scores e who prefer school c out
of all schools they can afford.

Yc(P, δ, e) = Pr{c �θ c′∀c′ : Pc′ ≤ eθc′ |eθ = e, θ ∼ ηδ},

if ec ≥ Pc and 0 otherwise. Define the student types who are marginally accepted to
school c′ and would go to school c otherwise as

M̃c′c = {θ : c′ �θ c, Pc′ = eθc′ , Pc ≤ eθc , Pc′′ > eθc′′∀c′′ 6= c′ : c′′ �θ c}.

Let the C − 1 dimensional mass, and average score of these students be

Mc′c =

ˆ
M̃c′c

fδ(θ)dθ

P̄c′c = E[eθc |θ ∈ M̃c′c].

The effect of school quality δc on the quality of the entering class Qc is as follows.

Proposition 1. Assume that P ∗(δ) > 0, and that P is differentiable in δc. Then Qc is
differentiable in δc, and its derivative can be decomposed as

(5.1)
dQc

dδc
=

ˆ
e:ec≥P ∗c

[ec − P ∗c ] · dYc
dδc

(P ∗, δ, e)dG(e)︸ ︷︷ ︸
Direct Effect

−
∑
c′ 6=c

[P̄c′c − P ∗c ] ·Mc′c · (−
dP ∗c′

dδc
)︸ ︷︷ ︸

Market Power Effect

.

The direct effect term is weakly positive, always giving incentives to invest in quality.
The market power terms increase (decrease) the incentives to invest in quality if an
increase (decrease) in the quality of school c increases the market clearing cutoff of
school c′, that is dP ∗c′(δ)/dδc > 0 (< 0).

The Proposition states that the effect of an increase in quality can be decomposed in
two terms. The direct effect is the increase in quality, holding cutoffs P fixed, due to
students with ec ≥ P ∗c choosing school c with higher frequency. Note that this integrand
is proportional to ec − P ∗c . Since the total number of students that the school takes in
is fixed at Sc, the gain is only a change in composition. As the school attracts more
students with scores ec it must shed marginal students with scores P ∗c . The change in

26There is evidence that schools in NYC are concerned about the quality of their incoming classes,
as many schools used to withhold capacity to game the allocation system used previously to the
Abdulkadiroglu et al. (2005b) redesign of the match.
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quality ec−P ∗c must be multiplied by the dYc/dδc term, which measures the number of
students who change their choices.

The market power effect measures how much the school loses due to its higher quality
decreasing the equilibrium cutoffs of other schools. It is (the sum over all other schools
c′ of) the product of the change in cutoffs of the other school (−dP ∗

c′
dδc

), times the quantity
of students in the margin that change schools due to a small change in cutoffs, Mcc′ ,
times the difference in the average quality of these students and the quality of a marginal
student P̄c′c−P ∗c . The market power effect from school c′ has the same sign as dP ∗c′/dδc.
It reduces the incentives to invest in quality if increasing δc reduces the selectivity of
school c′. However, it can be positive in the counterintuitive case where improving the
quality of school c increases the selectivity of school c′. The latter case is only possible if
C ≥ 3.27 The intuition for the direction of the market power effect is that improvements
in quality help if they induce competing schools to become more selective, but harm in
the more intuitive case where improving quality makes other schools less selective, and
therefore compete more aggressively for students.

Hatfield et al.’s (2011a) main result is that, in a large thick market, where each
school comprises a negligible fraction of the market, the incentives to invest in quality
are weakly positive. Within our framework this can be interpreted as saying that, in
such markets, the market power term becomes small, and therefore dQc/dδc ≥ 0.

Note that the breakdown of incentives in Equation (5.1) gives conditions where
schools have muted incentives to invest in quality improvements for lower ranked stu-
dents. If δc is a dimension of quality such that dYc(e)/dδc ≈ 0 unless ec ≤ Pc or ec ≈ Pc,
then the direct effect ˆ

εc

[ec − Pc] ·
dȲc
dδc

(P (δ), δ, e)dG(e) ≈ 0.

Consider the case where the effect of the quality of school c on the cutoffs of other
schools is either small, as in a large market, or has the intuitive sign dP ∗c′/dδc ≤ 0.
Then the small direct effect and weakly negative market power effect imply dQc/dδc ≤ 0.
Therefore, by allowing schools to competes, school choice gives incentives to invest in
improvements benefiting the best students, but not the marginal accepted students. An

27To see this, write the aggregate demand function conditional on δ as D(P, δ). Then D(P ∗(δ), δ) = S.
By the implicit function theorem, we have ∂δP ∗ = −(∂PD)−1 · ∂δD. If C = 2, solving this system
implies dP ∗c′/dδc ≤ 0 for c 6= c′. With C = 3, an example of dP ∗c′/dδc > 0 for c 6= c′ is given by

∂PD =

−10 1 1
4 −10 1
4 1 −10

 , ∂δ1D = (10,−9,−1).

In this example the effect of increasing the quality of college 1 on cutoffs is ∂δ1P ∗ = (.98,−.49, .24), so
that the cutoff of college 3 goes up with an increase in δ1. The intuition is that an increase in quality
of college 1 takes more students from college 2 than college 3, and the decrease in the selectivity of
college 2 induces college 3 to become more selective.
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example would be that a school has incentives to invest in a better calculus teacher,
and assigning counselor time to advise students in applying to top schools; and at the
same time small or negative incentives to improve the quality of classes for lower ranked
students, or invest counselor time in helping students with low grades. The logic of this
result is that, since the quantity of students Sc that are matched to school c is fixed,
for every student of score ec that a school gains by improving quality it must shed a
marginal student with score P ∗c . The direct effect can only be profitable if ec − P ∗c is
appreciably greater than 0. The argument is completed by the observation that the
market power term is weakly negative if dP ∗c′/dδc ≤ 0. Note that marginal students
with scores ec ≈ Pc are not necessarily “bad”. For a top-ranked special high school,
cutoffs Pc should be high, in the sense that a student of type ec is very desirable. Yet,
since changes in quality only shift the composition of an entering class, it is still the
case that the incentives to invest in attracting such students is small. Another way to
frame this discussion is that the only scenario where the incentives to invest in marginal
students may be positive is when a school does have market power, in the sense that
it can affect the cutoffs of other schools, and for at least one of these other schools
dP ∗c′/dδc > 0.

The model yields an additional distortion. Even though quality affects uic(δc) for all
students, schools are only concerned with the impact on students who are indifferent
between different schools, as Equation (5.1) only depends on changes in Y and fδ. This
is the familiar Spence (1975) distortion of a quality setting monopolist. Its manifestation
in our setting is that schools’ investment decisions take into account marginal but not
inframarginal students.

Finally, if we assume that schools are symmetrically differentiated, it is possible to
gain further intuition on the market power effect. If the function fδ(θ) is symmetric
over schools, and all Sc = Sc′ , δc = δc′ , then the market power term reduces to

− 1

C − 1
· Mc′c

Mc∅ + C ·Mc′c
· [P̄c′c − P ∗c ] · ∂δcDc(P

∗|ηδ),

where Mc∅ =
´
{θ:eθc=Pc,eθc′<Pc′∀c

′ 6=c} fδ(θ)dθ is the C − 1 dimensional mass of agents who
are marginally accepted to school c and not accepted to any other schools.

In the symmetric case, the market power effect is negative, and proportional to
the quality wedge P̄c′c − P ∗c times the amount of students that school c attracts with
improvements in quality, ∂δcDc(P

∗|ηδ). Ceteris paribus, the absolute value of the market
power effect grows with Mc′c, the mass of students on the margin between school c′ and
c. These are the students that school c may lose to c′ if c′ competes more aggressively.
The absolute value of the market power effect also decreases with the number of schools
C, and holding fixed the other quantities it converges to 0 quadratically as the number of
schools grows. The equation suggests conditions under which schools having incentives
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to deteriorate quality for marginal applicants is a concern. This is the case when a small
number of schools compete fiercely for densely populated margins M̃cc′ . An example
would be a city with a small number of elite schools, that compete for the best students
but are horizontally differentiated, so that many students are in the margins M̃cc′ .

The analysis in this Section could be extended in a number of ways. If the model
specified costs for schools to invest, it would be possible to derive first order conditions
for equilibrium play of schools. By specifying social welfare, the equilibrium conditions
could be compared with optimization by a social planner. As the goal of this Section is
simply to illustrate the derivation of comparative statics in the continuum framework,
in the interest of space we leave these extensions for future research, and discuss related
applications in the conclusion.

5.2. Random Economies and Convergence Rates. This section extends the con-
vergence results to randomly generated finite economies. The results also give bounds
on the speed of convergence of the set of stable matchings. These results are use-
ful for performing simulations with randomly generated economies. Moreover, many
mechanisms used in practical market design explicitly incorporate randomly generated
preferences, so that the results imply new characterizations of the asymptotics of such
mechanisms, which we explore in the next section.

We begin this section bounding the difference between market clearing cutoffs in a
continuum economy and in a finite approximation.

Proposition 2. Assume that the continuum economy E = [η, S] admits a unique stable
matching µ, and

∑
c Sc < 1. Let P ∗ be the associated market clearing cutoff, and assume

D(·|η) is C1, and ∂D(P ∗) is invertible. Then there exists α ≥ 0 such that for any finite
economy F = [ηF , SF ].

sup{|P F − P ∗| : P F is a market clearing cutoff of F}
≤ α · ( sup

P∈[0,1]C
|D(P |η)−D(P |ηF )|+ |S − SF |).

The Proposition shows that the distance between market clearing cutoffs of a con-
tinuum economy and a discrete approximation is of the same order of magnitude as
the distance between the associated vectors of capacities, plus the difference between
the demand functions. Therefore, if the distance between the empirical distribution
of types ηF and η is small, and the distance between the supply vectors SF and S is
small, the continuum model is guaranteed to provide a good approximation for finite
economies.

We now extend the convergence in Theorem 2 to economies where agents are ran-
domly drawn, with types independently and identically distributed. The following
Proposition implies not only convergence of the sets of stable matchings, but also a
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strong bound on the rate of convergence. For a real number x we denote by {x} the
nearest integer to x.

Proposition 3. Assume that the continuum economy E = [η, S] admits a unique stable
matching µ, and

∑
c Sc < 1. Let F k = [ηk, Sk] be a randomly drawn finite economy, with

k students drawn independently according to η and the vector of capacity per student
Sk defined as Skk = {Sk}. Let {µ̃k}k∈N be a sequence of random variables, such that
each µ̃k is a stable matching of F k. We have the following results.

(1) F k converges almost surely to E, and µ̃k converges almost surely to µ.
(2) Take ε > 0. Let P ∗ be the unique market clearing cutoff of E. If D(·|η) is C1,

and ∂D(P ∗) is invertible, then there exist constants α, β ≥ 0 such that probability that
F k has a market clearing cutoff P k with |P ∗ − P k| ≥ ε is bounded by

Pr{F k has a market clearing cutoff P k with |P k − P ∗| ≥ ε} ≤ α · e−βk.

(3) Moreover, if η can be represented by a continuous density, let the Gk be fraction of
students in economy F k that receives a match different from that in the limit economy,
that is, Dθ(P k) 6= Dθ(P ∗) for some market clearing cutoff P k of F k . Then Gk converges
to 0 almost surely, and there exist α′, β′ ≥ 0 such that the probability that Gk ≥ ε is
bounded by

Pr{Gk ≥ ε} ≤ α′ · e−β′k.

The first part of the Proposition says that the stable matchings of the randomly
drawn economies converge almost surely to stable matchings of the limit approximation.
This justifies using the continuum model as an approximation of the discrete model in
settings where preference are random.

The second part of the Proposition gives bounds on how fast convergence takes
place. Given ε > 0, the Corollary guarantees that the probability that market clearing
cutoffs in F k deviate from those in E by more than ε converges to 0 exponentially.
Moreover, it guarantees that the fraction of students that may receive different matches
in the continuum and finite economy is lower than ε with probability converging to 1

exponentially.
Crucially, the proofs of the bounds above are constructive. Therefore, besides pro-

viding an exponential rate of convergence, the results may be used to produce specific
constants for convergence, as a function of η and S. The proof of Proposition 2 starts
by observing that the excess demand function z(·|E) = D(·|E) − S must be bounded
away from 0 outside of a neighborhood of P ∗. It then uses the approximation of z by its
derivative to bound the distance market clearing cutoffs of economy F to P ∗. The proof
of Proposition 3 uses the Glivenko-Cantelli Theorem to show almost sure convergence
of the empirical distributions of types ηF to η. Theorem 2 then guarantees almost sure
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convergence of stable matchings µ̃k to µ. The exponential bounds follow from Propo-
sition 3, and from the Vapnik and Chervonenkis (1971) bounds from computational
learning theory, that guarantee fast convergence of D(P |F k) to D(P |E), uniformly in
P .

5.3. Comparative Statics in Large Finite Markets. One of the advantages of the
continuum model is that comparative statics can be derived using standard techniques.
However, the applicability of the model depends on the comparative statics results
extending to actual finite markets. The following Proposition guarantees that this is
the case.

Proposition 4. Consider two limit economies E,E ′, with unique market clearing cut-
offs P, P ′. Let {F k}k∈N, {F ′k}k∈N be sequences of finite economies with F k → E,F ′k →
E ′. Then there exists k0 such that for all k ≥ k0 and any pair of market clearing cutoffs
P k of F k and P ′k of F ′k, if Pc > P ′c then P k > P ′k, and if Pc < P ′c then P k < P ′k.

The Proposition concerns continuum economies E,E ′ with unique stable matchings.
It shows that if the market clearing cutoffs are ordered in a particular way, then the
sets of market clearing cutoffs of approximating discrete economies are strongly ordered
in the same way. Therefore, even though discrete economies may have several stable
matchings, setwise comparative statics must be the same as in the continuum model.

5.4. Market Design Applications.

5.4.1. The Random Serial Dictatorship Mechanism. The assignment problem consists
of allocating indivisible objects to a set of agents. No transfers of a numeraire or any
other commodity are possible. The most well-known solution to the assignment problem
is the random serial dictatorship (RSD) mechanism. In the RSD mechanism, agents are
first ordered randomly by a lottery. They then take turns picking their favorite object,
out of the ones that are left. Recently, Che and Kojima (2010) have characterized the
asymptotic limit of the RSD mechanism. In their model, the number of object types is
fixed, and the number of agents and copies of each object grows. Their main result is
that RSD is asymptotically equivalent to the probabilistic serial mechanism proposed
by Bogomolnaia and Moulin (2001). This is a particular case of our results, as the serial
dictatorship mechanism is equivalent to deferred acceptance when all colleges have the
same ranking over students. This section formalizes this point.

In the assignment problem there are C object types c = 1, 2, . . . , C, plus a null object
C + 1, which corresponds to not being assigned an object. A particular instance of the
assignment problem is given by AP = (k,m, S), where k is the number of agents, m is
a vector with m� representing the fraction of agents with preferences � for each �∈ R,
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and S a vector with Sc being the number of copies of object c available per capita. An
allocation specifies for each agent θ a probability xθ(c|AP ) of receiving each object c.

We can describe RSD as a particular case of the deferred acceptance mechanism
where all colleges have the same preferences. First, we give agents priorities based
on a lottery l, generating a random finite college admissions problem F (AP, l), where
agents correspond to students, and colleges to objects. Formally, given assignment
problem AP, randomly assign each agent θ a single lottery number lθ uniformly in
[0, 1], that gives her score in all colleges (that is, objects) of eθc = l. This induces a
random discrete economy F (AP, l) as in the previous section. That is, as l is a random
variable, F (AP, l) is a random finite economy, and for particular draws of l it is a finite
economy. For almost every draw of l the economy F (AP, l) has strict preferences. Each
agent’s allocation under RSD is then equal to her expected allocation, over all values
of l, in F (AP, l).

Consider now a sequence of finite assignment problems {AP k}k∈N, AP k = (k,mk, Sk)k∈N.
Assume (mk, Sk) converges to some (m,S) with S > 0,m > 0. Let each lk be a lottery
consisting of k draws, one for each agent, randomly distributed in [0, 1]k. For each k,
the assignment problem and the lottery induce a random economy F (AP k, lk).

Note that the finite economies F (AP k, lk) converge almost surely to a continuum
economy E with a vector S of quotas, a mass m� of agents with each preference
list �, and scores eθ uniformly distributed along the diagonal of [0, 1]C . This limit
economy has a unique market clearing cutoff P (m,S). By Proposition 3, cutoffs in
large finite economies are converging almost surely to P (m,S). We have the following
characterization of the limit of the RSD mechanism.

Proposition 5. Under the RSD mechanism the probability that an agent with prefer-
ences � will receive object c converges toˆ

l∈[0,1]

1(c=arg max
�

{c∈C|Pc(m,S)≤l})dl.

That is, the cutoffs of the limit economy describe the limit allocation of the RSD
mechanism. In the limit, agents are given a lottery number uniformly drawn between
0 and 1, and receive their favorite object out of the ones with cutoffs below the lottery
number. Inspection of the market clearing equations shows that cutoffs correspond to
1 minus the times where objects run out in the probabilistic serial mechanism. This
yields the Che and Kojima (2010) result on the asymptotic equivalence of RSD and the
probabilistic serial mechanism.

5.4.2. School Choice Mechanisms. The Che and Kojima (2010) result works exclusively
for random serial dictatorship, a mechanism where students are treated symmetrically,



AZEVEDO AND LESHNO 32

and do not have priorities for different objects. However, in mechanisms used in prac-
tice for the assignment of students to schools, agents do have priorities. This section
generalizes the results to this setting, yielding an asymptotic characterization of school
choice mechanisms used in actual school choice clearinghouses.

The school choice problem consists of assigning seats in public schools to students,
while observing priorities some students may have to certain schools. It differs from
the assignment problem because schools give priorities to subsets of students. It differs
from the classic college admissions problem in that often schools are indifferent between
large sets of students (Abdulkadiroglu and Sönmez 2003). For example, a school may
give priority to students living within its walking zone, but treat all students within a
priority class equally. In Boston and NYC, the clearinghouses that assign seats in public
schools to students were recently redesigned by academic economists (Abdulkadiroglu
et al. 2005a,b). The chosen mechanism was deferred acceptance with single tie-breaking
(DA-STB). DA-STB first orders all students using a single lottery, which is used to break
indifferences in the schools’ priorities, generating a college admissions problem with
strict preferences. It then runs the student-proposing deferred acceptance algorithm,
given those refined preferences (Abdulkadiroglu et al. 2009; Kesten and Ünver 2010).

We can use our framework to derive the asymptotics of the DA-STB mechanism. Fix
a set of schools C = 1, . . . , C, C+1 (which correspond to the colleges in our framework).
School C + 1 is the null school that corresponds to being unmatched, and is the least
preferred school of each student. Student types θ̄ = (�θ̄, eθ̄) are again given by a strict
preference list �θ̄ and a vector of scores eθ̄. However, to incorporate the idea that
schools only have very coarse priorities, corresponding to a small number of priority
classes, we assume that all eθ̄c are integers in {0, 1, 2, . . . , ē} for ē ≥ 0. Therefore, the set
of possible student types is finite. We denote by Θ̄ the set of possible types. A school
choice problem SC = (k,m, S) is given by a number of students k, and a measure mθ̄

of students of each of the finite types θ̄ ∈ Θ̄, and a vector of capacity per capita of each
school S.

We can describe the DA-STB mechanism as first breaking indifferences through a
lottery l, which generates a finite college admissions model F (SC, l), and then giving
each student the student-proposing deferred acceptance allocation. Assume each stu-
dent θ receives a lottery number lθ independently uniformly distributed in [0, 1]. The
student’s refined score in each school is given by her priority, given by her type, plus
lottery number, eθc = eθ̄c + l.28 Therefore, the lottery yields a randomly generated finite
economy F (SC, l), as defined in Corollary 3. The DA-STB mechanism then assigns
each student in F to her match in the unique student-optimal stable matching. For

28Note that in this finite economy scores are in the set [0, ē+ 1]C , and not [0, 1]C as we defined before.
It is straightforward to extend the model to this setting.
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each type θ̄ in the original problem, denote by xDA−STB(θ̄|SC) in ∆C the probability
distribution over schools she receives over all realizations of l.

Consider now a sequence of school choice problems SCk = (k,mk, Sk), each with
k → ∞ students. Problem k has a fraction mk

θ̄
of students of each type, and school c

has capacity Skc per student. The null school has capacity SC+1 =∞. Assume (mk, Sk)

converges to some (m,S) with S > 0,m > 0.
Analogously to the assignment problem, as the number of agents grows, the aggregate

randomness generated by the lottery disappears. The randomly generated economies
F (SCk, lk) are converging almost surely to a limit economy, given as follows. For each
of the possible types θ̄ ∈ Θ̄, let the measure ηθ̄ over Θ be uniformly distributed in the
line segment �θ̄ ×[eθ̄, eθ̄ + (1, 1, · · · , 1)], with total mass 1. Let η =

∑
θ̄∈Θ̄ mθ̄ · ηθ̄. The

limit continuum economy is given by E = [η, S]. We have the following generalization
of the result in the previous section.

Proposition 6. Assume the limit economy E has a unique market clearing cutoff
P (m,S). Then the probability that DA-STB assigns a student with type θ̄ ∈ Θ̄ to
school c converges to ˆ

l∈[0,1]

1(c=arg max
�

{c∈C |Pc(m,S)≤eθc+l})dl.

The Proposition says that the asymptotic limit of the DA-STB allocation can be
described using cutoffs. The intuition is that, after tie-breaks, a discrete economy with
a large number of students is very similar to a continuum economy where students have
lottery numbers uniformly distributed in [0, 1]. The main limitation of the Proposition
is that it requires the continuum economy to have a unique market clearing cutoff.
Although we know that this is valid for generic vectors of capacities S, example 1 below
shows that it is not always the case.

This result also suggests that the outcome of the DA-STB mechanism should display
small aggregate randomness, even though the mechanism is based on a lottery. The
Proposition suggests that, for almost every vector (m,S), the market clearing cutoffs of
large discrete economies approach the unique market clearing cutoff of the continuum
limit. Therefore, although the allocation a student receives depends on her lottery
number, she faces approximately the same cutoffs with very high probability. This
is consistent with simulations using data from the New York City match, reported
by Abdulkadiroglu et al. (2009). For example, they report that in multiple runs of
the algorithm, the average number of applicants who are assigned their first choice is
32,105.3, with a standard deviation of only 62.2.

Another important feature of the Proposition is that the asymptotic limit of DA-STB
given by cutoffs is analytically simpler than the allocation in a large discrete economy.
To compute the allocation of DA-STB in a discrete economy, it is in principle necessary
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to compute the outcome for all possible ordering of the students by a lottery. Therefore,
to compute the outcome with ten students, it is necessary to consider 10! ≈ 4 · 106

lottery outcomes, and for each one compute the outcome of the deferred acceptance
algorithm. For an economy with 100 students, the number of possible lottery outcomes
is 100! ≈ 10156.29 Consequently, the continuum model can be applied to derive analytic
results on the outcomes of DA-STB in large economies. Azevedo and Leshno (2010)
apply this model to compare the equilibrium properties of deferred acceptance with
student-optimal stable mechanisms.

In addition, the Proposition generalizes the result in the previous section, that de-
scribes the asymptotic limit of the RSD mechanism. RSD corresponds to DA-STB in
the case where all students have equal priorities. Therefore, the market clearing equa-
tions provide a unified way to understand asymptotics of RSD, the probabilistic serial
mechanism, and DA-STB. Moreover, one could easily consider other ways in which
the lottery l is drawn, and derive asymptotics of other mechanisms, such as deferred
acceptance with multiple tie-breaking discussed by Abdulkadiroglu et al. (2009).

5.5. Markets with Multiple Stable Matchings. Section 4 shows that generic con-
tinuum economies have a unique stable matching, and that there is a close connection
between the stable matchings of the continuum and discrete model in that case. The
reason why uniqueness is an important requirement is that, when the continuum econ-
omy admits more than one stable matching, these matchings may not be robust with
respect to small perturbations in the economy. The following example illustrates this
point.

Example 1. (School Choice)
This example is based on a school choice mechanism similar to DA-STB, described

in Section 5.4. The preferences in the example are those that would arise in a school
district where some students are given priorities, and these are broken with a single
lottery.30

A city has two schools, c = 1, 2, with a quota of S1 = S2 = 1. Students have priorities
to schools according to the walk zones where they live in. A mass 1 of students lives in
the walk zone of each school. In this example, the grass is always greener on the other
side, so that students always prefer the school to which they don’t have priority. To

29The fact that the distribution over outcomes induced by these mechanisms is much more complex
in finite markets than in the continuum limit is also present in the particualr case of the assignment
problem, where the allocations induced by random serial dictatorship are very complex (Manea (2009);
Pycia and Liu (2011)).
30The example is a continuum version of an example used by Erdil and Ergin (2008) to show a
shortcoming of deferred acceptance with single tie-breaking: it may produce matchings which are ex
post inefficient with respect to the true preferences, before the tie-breaking. That is, the algorithm
often produces allocations which are Pareto dominated by other stable allocations.
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Figure 5. The distribution of student types in Example 1. The unit
mass of students is uniformly distributed over the solid lines. The left
square represents students in the walk zone of school 2, and the right
square students with priority to school 1. The dashed lines represents
one of an infinite number of possible vectors of market clearing cutoffs
P1 = P2.

break ties, the city gives each student a single lottery number l uniformly distributed
in [0, 1]. The student’s score is

l + I(θ is in c’s walk zone).

Figure 5 depicts the distribution of students in the economy.
Note that market clearing cutoffs must be in [0, 1], as the mass of students with

priority to each school is only large enough to exactly fill each school. Consequently,
the market clearing equations can be written

1 = S1 = (1− P1) + P2

1 = S2 = (1− P2) + P1.

The first equation describes demand for school 1. 1−S1 students in the walk zone of 2

are able to afford it, and that is the first term. Also, P2 students in the walk zone of 1

would rather go to 2, but don’t have high enough lottery number, so they have to stay
in school 1. The market clearing equation for school 2 is the same.

These equations are equivalent to

P1 = P2.

Hence any point in the line {P = (x, x)|x ∈ [0, 1]} is a market clearing cutoff - the
lattice of stable matchings has infinite points, ranging from a student-optimal stable
matching, P = (0, 0) to a school-optimal stable matching P = (1, 1).
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Now modify the economy by adding a small mass of agents that have no priority, so
that the new mass has eθ uniformly distributed in [(0, 0), (1, 1)]. It’s easy to see that in
that case the unique stable matching is P = (1, 1). Therefore, adding this small mass
undoes all stable matchings except for P = (1, 1). In addition, it is also possible to find
perturbations that undo the school-optimal stable matching P = (1, 1). If we add a
small amount ε of capacity to school 1, the unique stable matching is P = (0, 0). And
if we reduce the capacity of school 1 by ε, the unique stable matching is P = (1 + ε, 1),
which is close to P = (1, 1).

The following Proposition generalizes the example. It shows that, when the set of
stable matchings is large, then none of the stable matchings are robust to small per-
turbations. The statement uses the fact, proven in Appendix A, that for any economy
E there exists a smallest and a largest market clearing cutoff, in the sense of the usual
partial ordering of RC .

Proposition 7. (Non Robustness) Consider an economy E with more than one
stable matching and

∑
c Sc < 1. Let P be one of its market clearing cutoffs. Assume P

is either strictly larger than the smallest market clearing cutoff P−, or strictly smaller
than the largest P+. Let N be a sufficiently small neighborhood of P . Then there exists
a sequence of economies Ek converging to E without any market clearing cutoffs in N .

Proof. Suppose P > P−; the case P < P+ is analogous. Assume N is small enough
such that all points P ′ ∈ N satisfy P ′ > P−. Denote E = [η, S], and let Ek = [η, Sk],
where Skc = Sc + 1/Ck. Consider a sequence {P k}k∈N of market clearing cutoffs of Ek.
Then ∑

c∈C

Dc(P
k|η) =

1

k
+
∑

Sc.

However, for all points P ′ in N ,∑
c∈C

Dc(P
′|η) ≤

∑
c∈C

Dc(P
−|η) =

∑
Sc <

∑
Skc .

However, for large enough k,
∑
Skc < 1, which means that for any market clearing cutoff

P k of Ek we must haveD(P k|η) = Skc , and therefore there are no market clearing cutoffs
in N . �

5.6. Transferable Utility and Matching with Contracts. In many markets, agents
must negotiate not only who matches with whom, but also wages and other terms of
contracts. When hiring faculty most universities negotiate both in wages and teaching
load. Firms that supply or demand a given production input may negotiate, besides
the price, terms like quality or timeliness of the deliveries. This section extends the
continuum model to include these possibilities. Remarkably, it is still the case that
stable matchings have the simple cutoff structure as described above. The extension
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permits the comparison of outcomes under different market institutions, of personalized
versus uniform wages, a topic that is pursued in detail in Azevedo (2011).

5.6.1. The Setting. Formally, we now consider a set of doctors Θ distributed according
to a measure η, a finite set of hospitals H, with H also denoting the number of
hospitals, and a set of contracts X. η is assumed to be defined over a σ-algebra ΣΘ.
Each contract x in X specifies

x = (θ, h, w),

that is, a doctor, a hospital, and other terms of the contract w. A case of particular
interest, to which we return to later, is when w is a wage, and agents have quasilinear
preferences.

We assume that X contains a null contract ∅, that corresponds to being unmatched.
A matching is a function

µ : Θ ∪H → X ∪ 2X

that associates each doctor (hospital) to a (set of) contract(s) that contain it, or to
the empty contract. In addition, each doctor can be assigned to at most one hospital.
Moreover, hospitals must be matched to a set of doctors of measure at most equal to
its capacity Sh. Finally, a matching has to be measurable with respect to the product
σ-algebra given by ΣΘ in the set Θ and the σ-algebra 2H in the set of hospitals.

Models of matching with contracts have been proposed by Kelso and Crawford (1982);
Hatfield and Milgrom (2005).31 Those papers define stable matchings with respect to
preferences of firms over sets of contracts. We focus on a simpler model, where stability
is defined with respect to preferences of firms over single contracts. This corresponds to
the approach that focuses on responsive preferences in the college admissions problem.
This restriction considerably simplifies the exposition, as the same arguments used
in the previous sections may be applied. Henceforth we assume that hospitals have
preferences over single contracts that contain it, and the empty contract �h, and
agents have preferences over contracts that contain them and over being unmatched
�θ.

A single agent (doctor or hospital) blocks a matching µ if it is matched to a contract
that is worse than the empty contract. A matching is individually rational if no single
agent blocks it. A doctor-hospital pair θ, h is said to block a matching µ if they are
not matched, and there is a contract x = (θ, h, w) that θ prefers over µ(θ) and either (i)
hospital h did not fill its capacity η(µ(h)) < Sh and h prefers x to the empty contract,
or (ii) h is matched to a contract x′ ∈ µ(h) which it likes strictly less than contract x .

31See Sönmez and Switzer (2011); Sönmez (2011) for applications of these models to real-life market
design problems.
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Definition 4. A matching µ is stable if it is individually rational and has no blocking
pairs.

Assume that doctors’ preferences can be expressed by a utility function uθ(x), and
hospitals’ by a utility function πh(x). The utility of being unmatched is normalized to
0. To get an analogue of the Supply and Demand Lemma, we impose some additional
restrictions. Let Xθ

h be the set of contracts that contain both a hospital h and a doctor
θ. A doctor (hospital) is said to be unacceptable to a hospital (doctor) if for all x ∈ Xθ

h

we have πh(x) < 0 (uθ(x) < 0). Let M be a positive real number.

Assumption 2. (Regularity Conditions)

• (Boundedness) For any doctor-hospital pair θ, h, and x ∈ Xθ
µ: uθ(x) and πh(x)

are contained in [−M,M ].
• (Compactness) For any doctor-hospital pair θ, h the set of pairs

{(uθ(x), πh(x))|x ∈ Xθ
h}

is compact.
• (No Redundancy)Given θ, h, no contract in x ∈ Xθ

h weakly Pareto dominates,
nor has the same payoffs as another contract x′ ∈ Xθ

h.
• (Completeness) Given h and k ∈ [−M,M ], there exists an agent θ ∈ Θ whose
only acceptable hospital is h, and supx:uθ(x)≥0 πh(x) = supx:uθ(x)>0 πh(x) = k.
• (Measurability) Given any Lebesgue measurable set K in R2 and h ∈ H, the
σ-algebra ΣΘ contains all points and all sets of the form

{θ ∈ Θ|K = {(uθ(x), πh(x))|x ∈ Xθ
h}}.

5.6.2. Cutoffs. Within our matching with contracts framework, the allocation of doctors
to hospitals is determined by an H-dimensional vector of cutoffs. It is convenient to
think of cutoffs as the marginal value of capacity at each hospital - how much utility
the hospital would gain from a small increase in capacity. Cutoffs are just numbers
Ph ∈ [0,M ], and a vector of cutoffs P ∈ [0,M ]H .

We denote an agent’s maximum utility of working for a hospital h and providing the
hospital with utility of at least a cutoff Ph as

ūθh(P ) = supuθ(x)

s.t. x ∈ Xθ
h

πh(x) ≥ Ph.

We refer to this as the reservation utility that hospital h offers doctor θ. Note
that the reservation utility may be −∞ if the feasible set {x ∈ Xθ

h : πx(x) ≥ Ph} is
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empty. Moreover, whenever this sup is finite, it is attained by some contract x, due to
the compactness assumption. We will define ūθ∅(·) ≡ 0.

Now we define a doctor’s demand. Note that doctors demand hospitals, and not
contracts. The demand of a doctor θ given a vector of cutoffs P is

Dθ(P ) = arg max
H∪{∅}

ūθh(P ),

Demand may not be uniquely defined, as an agent may have the same reservation utility
in more than one hospital. Henceforth we assume that, given cutoffs, indifferences only
occur for a measure 0 set of doctors.

Assumption 3. (Strict Preferences) For any cutoff vector P ∈ R, and hospitals
h, h′, the set of agents with ūθh(P ) = ūθh′(P ) 6= −∞ has measure 0.

From now on, we fix a selection from the demand correspondence, so that it is a
function. The aggregate demand for a hospital is defined as

Dh(P ) = η({Dθ(P ) = h}).

Note thatDh(P ) does not depend on the demand of agents which are indifferent between
more than one hospital, by the strict preferences assumption.

A market clearing cutoff is defined exactly as in definition 2. Given a stable
matching µ, let P = Pµ be given by

Ph = inf{πh(x)|x ∈ µ(h)},

if η(µ(h)) = Sh and Ph = 0 otherwise. Given a market clearing cutoff P , we define
µ = MP as follows. Consider first a doctor θ. If Dθ(P ) = ∅, then θ is unmatched:
µ(θ) = ∅. If Dθ(P ) = h ∈ H, then µ(θ) is defined as the contract that gives the highest
payoff to h conditional on θ not having a better offer elsewhere. Formally,

µ(θ) = arg max
x∈Xθ

h

πh(x)

s.t. uθ(x) ≥ ūθh′(P ) for all h′ 6= h,(5.2)

Note that µ(θ) is uniquely defined, by the compactness and no redundancy assumptions.
Since we defined µ(θ) for all doctors, we can uniquely define it for each hospital as

µ(h) = {θ : µ(θ) = (θ, h, w) for some w}.

We have the following extension of the Supply and Demand Lemma.

Lemma 3. (Supply and Demand Lemma with Contracts) If µ is a stable match-
ing, then Pµ is a market clearing cutoff, and if P is a market clearing cutoff thenMP

is a stable matching. Moreover, PM is the identity.
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Note that, in the matching with contracts setting, there is no longer a bijection be-
tween market clearing cutoffs and stable matchings. This happens because the contract
terms w are not uniquely defined, and because we have not imposed continuity condi-
tions ruling out measure 0 multiplicities for doctors that are indifferent between two
hospitals given cutoffs.

5.6.3. Existence. To establish the existence of a stable matching, we must modify the
previous argument, which used the deferred acceptance algorithm. One simple modifica-
tion is using a version of the algorithm that Biró (2007) terms a “score limit algorithm”,
which calculates a stable matching by progressively increasing cutoffs to clear the mar-
ket. A straightforward application of Tarski’s fixed point Theorem gives us existence
in this case.

Proposition 8. A stable matching with contracts always exists.

Proof. Consider the operator T : [0,M ]H → [0,M ]H defined by P ′ = TP is the smallest
solution P ′ ∈ [0,M ]H to the system of inequalities

Dh(P
′
h, P−h) ≤ Sh.

T is weakly increasing in P . Moreover, it takes the cube [0,M ]H in itself. By Tarski’s
fixed point Theorem, it has a fixed point, which must be a market clearing cutoff. �

5.6.4. The Quasilinear Case. A particularly interesting case of the model is when con-
tracts only specify a wage w, and preferences are quasilinear. That is, the utility of a
contract x = (θ, h, w) is just

uθ(x) = uθh + w

πh(x) = πθh − w.

and contracts include all possible ws, such that these values are in [−M,M ]. Define
the surplus of a doctor-hospital pair as

sθh = uθh + πθh.

If we assume that M is large enough so that, for all θ in the support of η we have
0 ≤ sθi ≤M , then doctors and hospitals may freely divide the surplus of a relationship.
We will denote a model satisfying the above properties by a matching with contracts
model with quasilinear preferences. From the definition of reservation utility we get
that for all doctors in the support of η

ūθh(p) = sθh − Ph.

Therefore, in any stable matching, doctors are sorted into the hospitals where sθh−Ph
is the highest, subject to it being positive. One immediate consequence is that doctors
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Figure 6. A matching with transferable utility with two hospitals. The
square represents the set of possible surplus vectors sθ. Doctors in regions
H1 and H12 are matched to hospital 1, and doctors in regions H2 and H21

to hospital 2.

do not go necessarily to the hospital where they generate the largest surplus sθh. If
Ph 6= Ph′ , it may be the case that sθh > sθh′ , but doctor θ is assigned to h′. However,
the allocation of doctors to hospitals does maximize the total surplus generated in the
economy, in a sense made precise in Azevedo (2011) Appendix A.2. Figure 6 plots a
stable matching in an economy with two hospitals.

Let the distribution of surplus vectors sθ be ηs. We then have the following uniqueness
result.

Proposition 9. Consider a matching with contracts model with quasilinear preferences.
If ηS has full support over [0,M ] then there is a unique vector of market clearing cutoffs.

The Proposition guarantees that the allocation of doctors to hospital is unique, up
to a measure 0 set of doctors. However, the stable matching is not unique, as wages
are not uniquely determined by stability. The intuition is that in a stable matching a
hospital may offer a doctor any wage, as long as the doctor’s utility is above that in
her next best choice, and the hospital’s gain from the relationship above its reservation
value of capacity.

6. Conclusion

This paper proposes a new model of matching markets with a large number of agents
on one side. The model admits complex heterogeneous preferences, as in the Gale
and Shapley (1962) framework. However, it allows for straightforward derivation of
comparative statics, as stable matchings are the solution to a set of supply and demand
equations. We show that the model corresponds to the limit of large finite markets,
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that stable matchings are essentially unique in such economies, and apply the model to
derive asymptotics of mechanisms used in practical market design, and to understanding
incentives for schools to invest in quality when they compete for students. In these
closing remarks, we highlight three important points that were not addressed in the
analysis.

First, in recent years the matching literature has exploited more general frameworks
than the Gale and Shapley model, on which we focus. These include non-responsive
preferences, many-to-many matching, markets with more than two sides, and external-
ities between agents.32 In these models, the very existence of stable matchings depends
on complex restrictions on preferences, such as substitutability.33 It would be interesting
to understand to what extent the continuum of traders assumption obviates the need
for such restrictions.34,35 This is specially important given Aumann’s (1964) argument
that price taking is only justified in a continuum setting, where agents indeed cannot
affect prices. Analogously, stability is an inherently inconsistent solution concept in
small finite markets.36

Second, a number of recent papers have empirically estimated matching models with
heterogeneous preferences, using different methodologies. Bajari and Fox (2005) use the
inequalities from the stability condition to gauge the efficiency of FCC auctions. Ho
(2009) considers a strategic bargaining game as opposed to a frictionless stability notion
to study insurer-hospital networks. In an analysis of venture capital firms Sorensen
(2007) imposes restrictions on preferences so that the Gale and Shapley model has a
unique stable matching, and his structural model has a well defined likelihood function
which he uses for estimation. A natural extension of our model is to specify an empirical
model for preferences. Since stable matchings are unique in our framework, such a
model implies given parameters a distribution of colleges to which an agent is matched

32See respectively Kelso and Crawford (1982); Hatfield and Milgrom (2005) Echenique and Oviedo
(2006); Roth (1984), Ostrovsky (2008); Hatfield et al. (2011b), and Sasaki and Toda (1996); Epple and
Romano (1998).
33See Hatfield and Milgrom (2005); Hatfield and Kojima (2010) and Hatfield et al. (2011b).
34Starr (1969) demonstrates the existence of approximate competitive equilibria in large markets with-
out convex preferences. See also Azevedo et al. (2011), who show that, in general equilibrium with
indivisible commodities and quasilinear preferences, the continuum of traders assumption guarantees
existence without the usual assumption of gross substitutes preferences made in the literature (Gul
and Stacchetti 1999).
35See Ashlagi et al. (2011) and Kojima et al. (2010) for existence with stable matchings with comple-
mentarities in large markets.
36It is not the case, in general, that agents should report their preferences truthfully to a mechanism
that implements a stable matching. Roth (1982) shows that there is no strategyproof and stable
mechanism in the marriage problem. In large thick markets, Immorlica and Mahdian (2005); Kojima
and Pathak (2009); Lee (2011) show that stable mechanisms are approximately strategyproof, in a
sense precisely defined therein. Ehlers (2007) studies a far-sighted notion of stability, which may be
more compelling in small markets.
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conditional on her observable characteristics.37 Such an approach requires assuming
that the market is large enough to be well approximated by our continuum model. It
would be interesting in further work to examine conditions under which such models
are credibly identified and estimated. Moreover, it would be important to understand
the advantages and disadvantages of using such a model for empirical work, versus the
alternatives in the literature.

Third, a large share of the industrial organization literature is concerned with the
strategic behavior of firms. Yet, through most of our analysis the characteristics of each
college are held fixed. Even in our analysis of the incentives to invest in school quality
we examined the effect of changes in quality, but did not consider the determination of
Nash equilibria in a game where schools choose quality. One of the advantages of the
continuum model is that it permits tractable analysis of this type of game. Azevedo
(2011) and Veiga and Weyl (2011) apply our model to study the equilibrium behavior
of firms, in two-stage games where firms first make strategic choices such as capacities
or the degree of specialization, and in the second stage a matching is determined by
stability. Such two-stage games are in the same spirit of the Cournot model, where in
the first stage firms strategically commit to capacities, and in the second stage prices
are given by market clearing. The industrial organization literature has several other
models in this fashion, where firms first make a decision - such as quantity, capacity
investments, quality, or product differentiation - and then prices and allocations are
given by market clearing. Examples include specifications of Hotteling competition,
and Klemperer and Meyer’s (1989) supply function equilibrium. In matching markets,
the concept of stability plays a role similar to market clearing. Since strategic behavior
in these markets is still considerably less understood, a promising avenue is to consider
such two-stage specifications, where firms make strategic choices and the allocation is
given by stability.

The common theme in our analysis is applying market clearing conditions, as is
standard in competitive equilibrium analysis, to matchings markets. This core idea
permeates our characterization of stable matchings in terms of supply and demand
equations, the decomposition of the effect of improving school quality in a direct and a
market power effect, and characterizing the asymptotics of school choice mechanisms in
terms of cutoffs. We hope this underlying idea will prove useful in the analysis of other
market design problems. Furthermore, that it will broaden the applicability of Gale and

37For example, let Zic be a vector of student i and college c observables. A simple model has a
continuum mass of students with some distribution over observables, and preferences given by uic =
f(Zic, εi, ξc, α), and colleges have preferences given by πic = g(Zic, εi, ξc, β), where εi and ξc are random
variables representing unobserved characteristics, and α and β parameters to be estimated. If it is
assumed for example that uicand πic have a non-atomic distribution with full support in [0, 1]2C for any
fixed ξ, αβ, then our model has a unique stable matching, and for each vector of observables Zic there
is a well-defined probability of being matched to each college c.
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Shapley’s (1962) notion of stability, yielding insights in specific markets where Becker’s
(1973) assumptions of vertical preferences and assortative matching do not hold.
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Appendix
This Appendix includes proofs of the results in the text, as well as additional results

which are necessary to derive the results in the text. The Appendix is organized as
follows. Appendix A extends some results of classic matching theory to the continuum
model. It proves convergence of the analogue of the Gale and Shapley deferred accep-
tance algorithm, existence of a stable matching, the Lattice Theorem, and the Rural
Hospitals Theorem. It also contains a proof of the continuum Supply and Demand
Lemma. Appendix B derives our main results. Appendix C collects other proofs that
have been omitted from the main text. Finally, Appendix D gives an example clarifying
the difference between our characterization of stable matchings and Adachi’s (2000).

Appendix A. Preliminary Results

We begin the analysis by deriving some basic properties of the set of stable matchings
in the continuum model. Besides being of independent interest, they will be useful in
the derivation of the main results. Throughout this section we fix a continuum economy
E = [η, S], and omit dependence on E, η, and S in the notation.

A.1. Existence of a stable matching. We begin by proving the existence of a stable
matching. Following the classic proof by Gale and Shapley (1962), we do so by defin-
ing the continuum analogue of the Gale and Shapley algorithm, and proving that it
converges to a stable matching.

The continuum version of the Gale and Shapley student proposing algorithm is de-
fined as follows. The state of the algorithm at round k is a (not necessarily stable)
matching µk, a list rk(θ) of colleges that have rejected each student θ so far, and a
vector xk of cutoffs. The algorithm starts with the matching µ0 where all students
unassigned, no rejections r0(·) ≡ ∅, and x0

c ≡ 0. In each round, the state is updated as
follows.

• Step 1: Each student that is unassigned at µk is tentatively assigned to her
favorite college that hasn’t rejected her yet, if there are any.
• Step 2: Each college rejects all students strictly below the minimum threshold
score xk+1

c ≥ xkc such that the measure of students assigned to it is smaller
or equal to Sc. µk+1 is defined by this matching, and rk+1 updated with the
corresponding rejections.

We have that, although the algorithm does not necessarily finish in a finite number of
steps, the tentative assignments converge to a stable matching.

Proposition A1. (Deferred Acceptance Convergence) The student-proposing de-
ferred acceptance algorithm converges pointwise to a stable matching.
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Proof. To see that the algorithm converges, note that each student can only be rejected
at most C times. Consequently, for every student there exists k high enough such that
in all rounds of the algorithm past k she is assigned the same college or matched to
herself, so the pointwise limit exists. Therefore, there exists a function µ : Θ→ C∪{Θ}
that is the pointwise limit µ(θ) = limk→∞ µ

k(θ). We may extend µ to C by setting
µ(c) = {θ ∈ Θ : µ(θ) = c}. To see that the limit µ is a matching, we have to prove
that the measure of students assigned to each college in the limit is not greater than its
capacity. At each round k of the algorithm, let Rk be the measure of rejected students.
Again, because no student can be rejected more than C times, we have Rk → 0.
Moreover, it must be the case that η(µ(c)) ≤ η(µk(c)) + Rk ≤ Sc + Rk for every k.
Therefore, η(µ(c)) ≤ Sc.

Note that µ satisfies the consistency conditions 1-3 for a stable matching. Condition
4 (right continuity) follows from the fact that sets of rejected students are always of the
form eθc < x. Therefore, µ is a matching.

The proof that the matching µ is stable follows Gale and Shapley (1962). Assume
by contradiction that (θ, c) is a blocking pair. If η(µ(c)) < Sc, then c does not reject
any students during the algorithm, which contradicts (θ, c) being a blocking pair. This
implies that there is θ′ in µ(c) with eθ′c < eθc . At some round k of the algorithm, both
agents are already matched to their final outcomes. But because θ was rejected by c in
an earlier round, it must be that xkc > eθc . Therefore eθ′c would have to be rejected at
round k, which is a contradiction. �

The Proposition shows that the traditional algorithm for finding stable matchings
works in the continuum model, although the algorithm converges without necessarily
finishing in a finite number of steps. An immediate corollary of this Proposition is that
stable matchings always exist.38

Corollary A1. (Existence) There exists at least one stable matching.

A.2. The Supply and Demand Lemma. We prove the continuum Supply and De-
mand Lemma 1.

Proof. (Lemma 1) Let µ be a stable matching, and P = Pµ. Consider a student θ
with µ(θ) = c. By definition, Pc ≤ eθc . Consider a college c′ that θ prefers over c. By
right continuity, there is a student θ+ = (�θ, eθ+) with slightly higher scores than θ

that is matched to c and prefers c′. By stability of µ all the students that are matched
to c′ have higher c′ scores than θ+, so Pc′ ≥ e

θ+
c′ > eθc′ . Following the argument for all

colleges that θ prefers to c, we see that there are no colleges that are better than c

38Although we chose to follow Gale and Shapley’s (1962) classic existence proof closely, it is possible
to give a shorter existence proof using Tarski’s fixed point Theorem. We follow these lines in the
extension to matching with contracts.
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and that θ can afford at cutoffs P . Therefore, c is better than any other college that
θ can afford, so Dθ(P ) = µ(θ). This implies that no school is over-demanded given
P , and that MPµ = µ. To conclude that P is a market clearing cutoff, note that if
η(µ(c)) < Sc stability implies that a student whose first choice is c and has score at c
of zero is matched to c. Therefore, Pc = 0.

To prove the other direction of the Lemma, let P be a market clearing cutoff, and
µ =MP . By the definition of Dθ(P ), µ is right-continuous and measurable. Because P
is a market clearing cutoff, µ respects capacity constraints. It respects the consistency
conditions to be a matching by definition. To show that µ is stable, consider any
potential blocking pair (θ, c) with µ(θ) ≺θ c. Since θ does not demand c (i.e. µ(θ) =

Dθ(P ) 6= c), it must be that Pc > eθc , so Pc > 0 and c has no empty seats. If θ′ ∈ µ(c)

we have eθ′c ≥ Pc > eθc , and therefore (θ, c) is not a blocking pair. Thus µ is stable. Let
P ′ = Pµ. If µ(θ) = c, then eθc ≥ Pc. Therefore, P ′c ≥ Pc. However, if θ is a student
with eθc = Pc whose favorite college is c, then µ(θ) = Dθ(P ) = c. Therefore P ′c ≤ Pc.
These two inequalities imply that P ′ = P , and therefore PMP = P . �

A.3. Lattice Theorem and Rural Hospitals Theorem. Consider the sup (∨) and
inf (∧) operators on Rn as lattice operators on cutoffs. That is, given two vectors of
cutoffs

(P ∨ P ′)c = sup{Pc, P ′c}.
More generally, given an arbitrary set of cutoffs X ⊆ 2([0,1]C), we define the sup and

inf operators analogously. That is

(∨X)c = sup
P∈X

Pc.

We then have that the set of market clearing cutoffs forms a complete lattice with
respect to these operators.

Theorem A1. (Lattice Theorem) The set of market clearing cutoffs is a complete
lattice under ∨,∧.

Proof. First note that the set of market clearing cutoffs is nonempty. Now consider two
market clearing cutoffs P and P ′, and let P+ = P ∨ P ′. Take a college c, and assume
without loss of generality that Pc ≤ P ′c. By the definition of demand, we must have
that Dc(P

+) ≥ Dc(P
′), as P+

c = P ′c and the cutoffs of other colleges are higher under
P+. Also, if P ′c > 0, then Dc(P

+) ≥ qc ≥ Dc(P ). Moreover, if P ′c = 0, then Pc = P ′c,
and Dc(P

+) ≥ Dc(P ). Either way, we have that

Dc(P
+) ≥ max{Dc(P ), Dc(P

′)}.

Moreover, the demand for staying unmatched 1−∑
c∈C Dc(·) must at least as large

under P+ than under P or P ′. Because demand for staying unmatched plus for all
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colleges always sums to 1, we have that for all colleges Dc(P
+) = Dc(P ) = Dc(P

′) . In
particular P+ is a market clearing cutoff. The proof for the inf operator is analogous.
This establishes that the set of market clearing cutoffs is a lattice. �

This Theorem imposes a strict structure in the set of stable matchings. It differs
from the Conway lattice Theorem in the discrete setting (Knuth 1976), as the set of
stable matchings forms a lattice with respect to the operation of taking the sup of
the associated cutoff vectors. In the discrete model, where the sup of two matchings
is defined as the matching where each student gets her favorite college in each of the
matchings. Such a Proposition does not carry over to the continuum model.

As a direct corollary of the proof we have the following.

Theorem A2. (Rural Hospitals Theorem) The measure of students matched to
each college is the same in any stable matching. Furthermore, if a college does not fill
its capacity, it is matched to the same set of students in every stable matching, except
for a set of students with η measure 0.

Proof. The first part was proved in the proof of Theorem A1. To see the second part,
consider two stable matchings µ and µ′. Let P = Pµ, P ′ = Pµ′. Let P+ = P ∨ P ′
and µ+ = M(P+). Consider now a college c such that η(µ(c)) < Sc. Therefore
0 = Pc = P ′c = max{Pc, P ′c} = P+

c = 0. By the gross substitutes property of demand
we have that µ(c) ⊆ µ+(c) and µ′(c) ⊆ µ+(c). By the first part of the Theorem we know
that the measure of µ(c), µ′(c), and µ+(c) are the same. Therefore, η(µ+(c)\µ(c)) = 0.
Consequently, η(µ(c)\µ′(c)) ≤ η(µ+(c)\µ′(c)) = 0. Using a symmetric argument we get
that η(µ′(c)\µ(c)) = 0, completing the proof. �

This result implies that a hospital that does not fill its quota in one stable matching
does not fill its quota in any other stable matching. Moreover, the measure of unmatched
students is the same in every stable matching.

Appendix B. Main Results

B.1. Uniqueness. We can now prove Theorem 1.We denote the excess demand given
a vector of cutoffs P and an economy E = [η, S] by

z(P |E) = D(P |η)− S.

Proof. (Theorem 1)
Part (1):
By the lattice Theorem, E has smallest and greatest market clearing cutoffs P− ≤

P+, and corresponding stable matchings µ−, µ+. In the text, we prove that there is a
unique stable matching when P+ > 0. We now consider the general case, where it may
be that for some colleges P+

c = 0. Let C+ = {c ∈ C : P+
c > 0} and C0 = C\C+. If C+
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is empty, then P− = P+ = 0, and we are done. Note that, since for all colleges c ∈ C0

we have P+
c = P−c = 0, and for all colleges c in C+ we have P+

c ≥ P−c , we have that

{θ ∈ Θ : µ+(θ) ∈ C+} ⊆ {θ ∈ Θ : µ−(θ) ∈ C+}.

By the Rural Hospitals Theorem, the difference between these two sets must have
measure 0. That is

η({θ ∈ Θ : µ−(θ) ∈ C+}\{θ ∈ Θ : µ+(θ) ∈ C+}) = 0.

Let �+ be a fixed preference relation that ranks all colleges in C+ higher than those
in C0. Then the set in the above equation must contain all students with preference
�+ and scores P−c ≤ eθc < P+

c for all c ∈ C+. That is,

{(�+, eθ) ∈ Θ : P−c ≤ eθc < P+
c }

⊆ {θ ∈ Θ : µ−(θ) ∈ C+}\{θ ∈ Θ : µ+(θ) ∈ C+}.

Therefore, the measure of this set must be 0:

η({(�+, eθ) ∈ Θ : P−c ≤ eθc < P+
c }) = 0.

By the full support assumption, this can only be the case if P−c = P+
c for all c ∈ C+.

Since P−c = P+
c for c ∈ C0, we have that P− = P+, and therefore there exists a unique

vector of market clearing cutoffs.
Part (2):
The proof is based on Sard’s Theorem, from differential topology. Since we assume∑
Si < 1, we have that at all market clearing cutoffs z(P ) = 0.39 Then, by Sard’s

Theorem, for generic S, every market clearing cutoff is a regular point of z(·|E).40

That is, the derivative of z at every market clearing cutoff is invertible. This property
will be crucial to proving the Theorem. To take into account the cases where some
colleges have market clearing cutoffs of 0, and may be in excess supply, we have to
define the following auxiliary functions. We will reach a contradiction by showing that
if E has multiple market clearing cutoffs, then at least one of them has a singular
derivative matrix.

Formally, consider a capacity vector S such that market clearing cutoffs are regular
points of z. By Sard’s Theorem, this is the case for almost every S. To reach a

39See Guillemin and Pollack (1974); Milnor (1997). Consider a C1 function f : Rn → Rn. Sard’s
Theorem says that, for generic q, all the roots of f(x) = q have an invertible derivative. That is, if x0
is a root, then ∂xf(x0) is nonsingular.
40Here is a detailed argument. We have z(P |E) = D(P |η) − S. Consequently, the roots of z are the
points where D(P |η) = S. Denote by P̄0 the closure of the set of points P where D is not continuously
differentiable. By the regularity assumption, D(P̄0|η) has measure 0. Let P̄1 be the set of critical
points of D in [0, 1]n\P̄0. By Sard’s Theorem, its image D(P̄1|η) has measure 0. Therefore, almost
every S is not in the image of either P̄0 nor P̄1, and so it is a regular value of D(P |η). Because
z(P |E) = D(P |η)− S, 0 is a regular value of z for generic S.
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contradiction, assume that the economy [η, S] has more than one stable matching. Let
P− 6= P+ be the minimum and maximum market clearing cutoffs. We will show P− is
not a regular point of z, reaching a contradiction.

First we consider the case P−c < P+
c for all c = 1, . . . , n. Consider the cube {P ∈

[0, 1]C |P− ≤ P ≤ P+}. For any P in the cube, we have P− ≤ P ≤ P+. Therefore
0 =

∑
c zc(P

−) ≥ ∑
c zc(P ) ≥ ∑

c zc(P
+) = 0. This implies that the sum

∑
c zc(P ) is

constant on the cube. Therefore the derivative matrix of P− satisfies ∂P z(P−) · ~1 = 0,
and is singular. This implies that P− is not a regular point of z, reaching a contradiction.

We now turn to the case where some colleges have the same cutoffs at P− and
P+. Assume without loss of generality that P−c < P+

c for colleges c = 1, . . . , l and
P−c = P+

c for colleges c = l + 1, . . . , C. Let P be a cutoff vector in the l-dimensional
cube X = {P ∈ [0, 1]C |P− ≤ P ≤ P+}. For any school c ∈ {l + 1, · · · , C}, since
P+
c = P−c = Pc, we must have zc(P−) ≥ zc(P ) ≥ zc(P ). However, by the Rural

Hospitals Theorem, we have zc(P−) = zc(P
+), and therefore zc(P ) = zc(P

−) = zc(P
+).

This means that zc(·) is constant on the cube. In particular, for any c ∈ {1, 2, · · · , l}
and c′ ∈ {l + 1, l + 2, · · · , C} and P ∈ X in the cube must be the case that

(B.1) ∂czc′(P ) = 0.

This implies that the derivative matrix ∂P z(P ) takes the subspace F = {v ∈ RC :

vl+1 = vl+2 = · · · = vC = 0} in itself. We now consider how ∂P z operates within F .
By the gross substitutes property, we have that. for all P ∈ X in the cube,∑

c=1,··· ,l

zc(P
−) ≥

∑
c=1,··· ,l

zc(P ) ≥
∑

c=1,··· ,l

zc(P
+).

However, for any college c ∈ {1, · · · , l}, since P+
c > 0, by the market clearing condi-

tion and the Rural Hospitals Theorem we have that zc(P−) = zc(P
+) = 0. Therefore

for any P ∈ X we have∑
c=1,··· ,l

zc(P
−) =

∑
c=1,··· ,l

zc(P ) =
∑

c=1,··· ,l

zc(P
+).

Therefore, the sum
∑

c=1,··· ,l zc(P ) is constant in the cubeX. In particular, ∂c′
∑

c=1,··· ,l
zc(P ) = 0, for all c′ ∈ {1, · · · , l}. Therefore, the matrix ∂P z(P ) restricted to the sub-
space F is not invertible. Since ∂P z(P ) takes F into itself, then ∂P z(P ) is not invertible.
In particular, ∂P z(P−) is not invertible, reaching a contradiction. �

B.2. Continuity and convergence.

B.2.1. Continuity Within E. This Section establishes that the stable matching corre-
spondence is continuous around an economy E ∈ E with a unique stable matching. That
is, that if a continuum economy has a unique stable matching, it varies continuously
with the fundamentals.
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Note that, by our definition of convergence, we have that if the sequence of continuum
economies {Ek}k∈N converges to a continuum economy E, then the functions z(·|Ek)

converge pointwise to z(·|E). Moreover, using the assumption that firms’ indifference
curves have measure 0 at E, we have the following Lemma.

Lemma B1. Consider a continuum economy E = [η, S], a vector of cutoffs P and a
sequence of cutoffs {P k}k∈N converging to P . If {ηk}k∈N converges to η in the weak-*
sense and Sk converges to S then

z(P k|[ηk, Sk]) = D(P k|ηk)− Sk

converges to z(P |E).

Proof. Let Gk be the set

∪c{θ ∈ Θ : |eθc − Pc| ≤ sup
k′≥k
|P k′

c − Pc|}.

The set
∩kGk = ∪c{θ ∈ Θ : eθc = Pc},

has η-measure 0 by the strict preferences assumption 1. Since the Gk are nested, we
have that η(Gk) converges to 0 as k →∞.

Now take ε > 0. There exists k0 such that for all k ≥ k0 we have η(Gk) < ε/4. Since
the measures ηk converge to η in the weak sense, we may assume also that ηk(Gk0) < ε/2.
Since the Gk are nested, this implies ηk(Gk) < ε/2 for all k ≥ k0. Note that Dθ(P ) and
Dθ(P k) may only differ for θ ∈ Gk. We have that

|D(P |η)−D(P k|ηk)| = |D(P |η)−D(P |ηk)|+ |D(P |ηk)−D(P k|ηk)|.

As ηk converges to η, we may take k0 large enough so that the first term is less than
ε/2. Moreover, since the measure η(Gk) < ε/2, we have that for all k > k0 the second
term is less than ε/2. Therefore, the above difference is less than ε, completing the
proof. �

Note that this Lemma immediately implies the following:

Lemma B2. Consider a continuum economy E = [η, S], a vector of cutoffs P a se-
quence of cutoffs {P k}k∈N converging to P , and a sequence of continuum economies
{Ek}k∈N converging to E. We have that z(P k|Ek) converges to z(P |E).

Using the Lemma, we show that the stable matching correspondence is upper hemi-
continuous.

Proposition B1. (Upper Hemicontinuity) The stable matching correspondence is
upper hemicontinuous
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Proof. Consider a sequence {Ek, P k}k∈N of continuum economies and associated market
clearing cutoffs, with Ek → E and P k → P , for some continuum economy E and vector
of cutoffs P . We have z(P |E) = limk→∞ z(P k, Ek) ≤ 0. If Pc > 0, for high enough k
we must have P k

c > 0 so that zc(P |E) = limk→∞ zc(P
k, Ek) = 0. �

With uniqueness, continuity also follows easily.

Lemma B3. (Continuity) Let E be a continuum economy with a unique stable match-
ing. Then the stable matching correspondence is continuous at E.

Proof. Let P be the unique market clearing cutoff of E. Consider a sequence {Ek, P k}k∈N
of economies and associated market clearing cutoffs, with Ek → E. Assume, by contra-
diction that P k does not converge to P . Then P k has a convergent subsequence that
converges to another point P ′ ∈ [0, 1]C , with P ′ 6= P . By the previous Proposition,
P ′ must be a market clearing cutoff of E, contradicting the fact that P is the unique
market clearing cutoff of E. �

B.2.2. Convergence of Finite Economics. We now consider the relationships between
the stable matchings of a continuum economy, and stable matchings of a sequence of
discrete economies that converge to it.

For finite economies F , we define the excess demand function as in the continuous
case:

z(P |F ) = D(P |F )− S.
Note that, with this definition, P is a market clearing cutoff for finite economy F iff

z(P |F ) ≤ 0, with zc(P |F ) = 0 for all colleges c such that Pc > 0.
From Lemma B1 we immediately obtain the following result.

Lemma B4. Consider a limit economy E, a sequence of cutoffs {P k}k∈N converging
to P , and a sequence of finite economies {F k}k∈N converging to E. We then have that
z(P k|F k) converges to z(P |E).

This Lemma then implies the following upper hemicontinuity property.

Proposition B2. (Convergence) Let E be a continuum economy, and {F k, P k}k∈N
a sequence of discrete economies and associated market clearing cutoffs, with F k → E

and P k → P . Then P is a market clearing cutoff of E.

Proof. (Proposition B2) We have z(P |E) = limk→∞ z(P k|F k) ≤ 0. If Pc > 0, then
P k
c > 0 for large enough k, and we have zc(P |E) = limk→∞ zc(P

k|F k) = 0. �

When the continuum economy has a unique stable matching, we can prove the
stronger result below.
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Lemma B5. (Convergence with uniqueness) Let E be a continuum economy with
a unique market clearing cutoff P , and {F k, P k}k∈N a sequence of discrete economies
and associated market clearing cutoffs, with F k → E. Then P k → P .

Proof. (Lemma B5) To reach a contradiction, assume that P k does not converge to
P . Then P k has a convergent subsequence that converges to another point P ′ ∈ [0, 1]C .
Then z(P ′|E) = limk→∞ z(P k, F k) ≤ 0. If P ′c > 0, we must have that P k

c > 0 for all
large enough k, and so zc(P ′|E) = 0. Therefore, P ′ 6= P is a market clearing cutoff, a
contradiction. �

B.2.3. Proof of Theorem 2. Theorem 2 follows from the previous results.

Proof. (Theorem 2) Part (3) follows from Lemma B3 and Part (1) follows from Lemma
B2. As for Part (2), note first that given an economy F k the set of market clearing
cutoffs is compact, which follows easily from the definition of market clearing cutoffs.
Therefore, there exist market clearing cutoffs P k and P ′k of F k such that the diameter
of F k is ‖P k−P ′k‖∞. However, by Part (1), both sequences {P k}k∈N and {P ′k}k∈N are
converging to P , and therefore the diameter of F k is converging to 0. �

Appendix C. Additional Proofs

Proof. (Proposition 1)
First note that by our assumption that fδ > 0 varies smoothly with δ and θ we have

that Yc(P, e, δ) is smooth. Aggregate quality is defined as

Qc(δ) =

ˆ
µδ(c)

eθcdηδ(θ)

=

ˆ
{θ:Dθ(P ∗(δ))=c}

eθc · fδ(θ)dθ.

By Leibniz’s rule, Qc is differentiable in δc, and the derivative is given by

dQc(δ)

dδc
=
´
{θ:Dθ(P ∗(δ))=c} e

θ
c · d

dδc
fδ(θ)dθ(C.1)

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c · P̄c′c

− dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ] · P ∗c .

The first term is the integral of the derivative of the integrand, and the last two terms
the change in the integral due to the integration region {θ : Dθ(P ∗(δ)) = c} changing
with δc. The terms in the second line are the changes due to changes in the cutoffs
P ∗c′ , the students that school c gains (or loses) because school c′ becomes more (less)
selective. The quantity of these students is dP ∗

c′
dδc
·Mc′c, and their average quality P̄c′c.

The last line is the term representing the students lost due to school c raising its cutoff
Pc. These students number [Mc∅+

∑
c′ 6=cMc′c], and have average quality P ∗c . Note that,
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since the total number of students admited at school c is constant and equal to Sc, we
have

0 =
´
{θ:Dθ(P ∗(δ))=c}

d
dδc
fδ(θ)dθ

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c

− dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ].

Therefore, if we substitute dP ∗c
dδc
· [Mc∅ +

∑
c′ 6=cMcc′ ] in Equation (C.1) we have

dQc(δ)

dδc
=
´
{θ:Dθ(P ∗(δ))=c}[e

θ
c − P ∗c ] · d

dδc
fδ(θ)dθ

+
∑

c′ 6=c
dP ∗
c′

dδc
·Mc′c · [P̄c′c − P ∗c ].

The term in the second line is the market power effect as defined in the text. To see
that the term in the first line is equal to the direct effect as defined in the text note
that by definition of the function Y (·), we have

´
{θ:Dθ(P ∗(δ))=c}[e

θ
c − P ∗c ] · d

dδc
fδ(θ)dθ

=
´
e:ec≥P ∗c

[ec − P ∗c ] · dYc
dδc

(P ∗, δ, e)dG(e).

To see that the direct effect is increasing, note that uic(δ) is increasing in δc by
assumption. Therefore, dYc

dδc
≥ 0. �

Additional details on Section 5.1.
In Section 5.1 we gave a formula for the market power effect when the function fδ(θ)

is symmetric over all schools, and schools choose the same level of quality. This formula
follows from substituting an expression for dP ∗/dδc in the formula for the market power
term. To obtain the formula for dP ∗/dδc, we start from the point δ where all δc = δc′ .
In this case, all P ∗c (δ) = P ∗c′(δ). If school c changes δc, the the cutoff P ∗c (δ) of school c
will change. The cutoffs of the other schools will change, but all other schools will have
the same cutoff, which we term P ∗−c(δ). We denote Dc(Pc, P−c|δ) for the demand for
school c, and D−c(Pc, P−c|δ) for the demand for each other school under these cutoffs.
Applying the implicit function theorem to the system of two equations

Dc(Pc, P−c|δ) = Sc

D−c(Pc, P−c|δ) = Sc.

we get
d

dPc
Dc ·

dPc
dδc

+
d

dP−c
Dc ·

dPc′

dδc
+

d

dδc
Dc = 0

d

dPc
Dc′ ·

dPc
dδc

+
d

dP−c
Dc′ ·

dPc′

dδc
+

d

dδc
Dc′ = 0.
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Substituting the derivative of the demand function as a function of the mass of agents
on the margins M̃cc′ , the system becomes

−[Mc∅ + (C − 1)Mcc′ ] ·
dPc
dδc

+ [(C − 1)Mc′c] ·
dPc′

dδc
+

d

dδc
Dc = 0

[Mcc′ ] ·
dPc
dδc
− [Mc′∅ +Mc′c] ·

dPc′

dδc
+

d

dδc
Dc′ = 0.

Due to the symmetry of the problem, Mcc′ = Mc′c, Mc∅ = Mc′∅, and d
dδc
Dc = (C −

1) d
dδc
Dc′ . The formula in the text then follows from solving the system.

Proof. (Proposition 2) Note that since
∑

c Sc < 1, market clearing cutoffs satisfy
z(P |E) = 0 In what follows we always take α to be large enough such that for any
finite economy F such that the bound in the Proposition has any content (that is, the
right side is less than one),

∑
c S

F
c < 1. This guarantees that market clearing cutoffs in

such an economy must satisfy z(P |F ) = 0.
The proof begins by showing that at economy E, cutoffs P that are far from the

market clearing cutoff P ∗ have large excess demands, in the sense that their norm is
bounded below by a multiple of the distance to the market clearing cutoff P ∗. Formally,
let Bε = {P ∈ [0, 1]C : |P − P ∗| < ε}. Let

P ε = arg min
P 6/∈Bε

|z(P |E)| and

M ε = min
P /∈Bε

|z(P |E)|.

Note that, due to the continuity of the demand function, both P ε and M ε are well
defined. Moreover, P ε may be a set of values, in the case of multiple minima. In what
follows, we will take a single-valued selection from this set, so that P ε represents one of
the minima. With this convention M ε = |z(P ε|E)|. We will now show that there exists
α > 0 such that for all 0 < ε ≤ 1

M ε ≥ 1

α
· ε.

To see this, note that since D(·|E) is C1, we have that

(C.2) z(P |E) = D(P |E)− S = ∂D(P ∗|E) · (P − P ∗) + o(P − P ∗),

where the continuous function o(·) satisfies that for any ε > 0 there exists δ > 0 such
that for all P ∈ Bδ

|o(P − P ∗)|
|P − P ∗| < ε.

Since ∂PD(P ∗|E) is nonsingular, we may take A > 0 such that

(C.3) |∂PD(P ∗|E) · v| ≥ 2A · |v|,

for any vector v ∈ RC .
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By the continuity condition, we may take 0 < ε0 ≤ 1 such that

(C.4)
o(P − P ∗)
|P − P ∗| < A

for all P ∈ Bε0 . Therefore, for all P ∈ Bε0 we have

|z(P |E)| = |∂D(P ∗|E) · (P − P ∗) + o(P − P ∗)|
≥ |∂D(P ∗|E) · (P − P ∗)| − |o(P − P ∗)|

≥ 2A · |P − P ∗| − |o(P − P
∗)

|P − P ∗| | · |P − P
∗|

≥ 2A · |P − P ∗| − A · |P − P ∗|
= A · |P − P ∗|.

The first equality follows from the derivative formula for excess demand in Equation
(C.2). The inequality in the second line follows from the triangle inequality. The
inequality in the third line follows from the bound in Inequality (C.3) for the left term,
and algebra for the right term. The inequality in the fourth line is a consequence of
applying the continuity bound in Inequality (C.4) to the right term. Finally, the last
line is straightforward algebra. The above reasoning establishes that for all P ∈ Bε0

excess demand is bounded from below by

|z(P |E)| ≥ A · |P − P ∗|,

which is linear on the norm |P − P ∗|. In particular this implies that for all 0 < ε < ε0
we have

(C.5) M ε ≥ A · ε.

We will now use this bound to obtain a bound that is valid for all 0 < ε ≤ 1. Take
α > 0 such that

1

α
= min{A,M ε0}.

Therefore, if 0 < ε < ε0 we have M ε ≥ A · ε ≥ 1
α
· ε. If ε0 ≤ ε ≤ 1, then M ε ≥ M ε0 ≥

1
α
≥ 1

α
ε. Either way, we have the desired bound

(C.6) M ε ≥ 1

α
· ε

for all 0 < ε ≤ 1.
We now prove the Proposition. If P F is a market clearing vector of the finite economy

F then
|z(P F |E)− z(P F |F )| = |z(P F |E)| ≥ 1

α
· |P F − P ∗|.

The first equality follows from the definition of a market clearing cutoff, and the second
by the bound for M ε in Inequality (C.6). Moreover, by the triangle inequality we have
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that

|z(P F |E)− z(P F |F )| ≤ |D(P F |η)−D(P F |ηF )|+ |S − SF |
sup

P∈[0,1]C
|D(P |η)−D(P |ηF )|+ |S − SF |.

Combining these two inequalities we obtain the desired bound

|P F − P ∗| ≤ α · ( sup
P∈[0,1]C

|D(P |η)−D(P |ηF )|+ |S − SF |).

�

Proof. (Proposition 3)
Part (1): Almost sure convergence.
First we show that that the sequence of random economies {F k}k∈N converges to

E almost surely. It is true by assumption that Sk converges to S. Moreover, by
the Glivenko-Cantelli Theorem, the realized measure ηK converges to η in the weak-
* topology almost surely. Therefore, by definition of convergence, we have that F k

converges to E almost surely. This implies, by Theorem 2, that µk converges to µ.
Part (2): Bound on |P ∗ − P k|.
We begin the proof by taking α0 as in Proposition 2.
Let the agents in finite economy F k be θ1,k, θ2,k, · · · , θk,k. The demand function at

economy F k is the random variable

Dc(P |ηk) =
∑

i=1,··· ,k

1θi,k∈{θ∈Θ:Dθ(P )=c}/k.

That is, Dc are very similar to empirical distribution functions, measuring the fraction of
agents θi,k whose types are in the set {θ ∈ Θ : Dθ(P ) = c}. By the Vapnik-Chervonenkis
Theorem,41 there exists exists α such that the probability that

Pr{|D(P |ηk)−D(P |η)| > ε/2α0} ≤ α1 · exp(−k
8

(
ε

2α0

)2).

Crucially, the Vapnik-Chervonenkis Theorem guarantees that this bound is uniform in
P .

41See Theorem 12.5 in Devroye et al. (1996) pp. 197. As remarked in pp. 198, the bound given in
pp. 197 is looser than the bound originally established by Vapnik and Chervonenkis (1971), which we
use. The simple proof given in Devroye et al. (1996) follows the lines of Pollard (1984). The Theorem
can be proven using Hoeffding’s Inequality, and generalizes the Dvoretzky et al. (1956) inequality
to the multidimensional case, and to arbitrary classes of measurable sets, not only sets of the form
{x ∈ Rn : x ≤ x̄}. The important requirement for the Theorem to apply in our setting is that the
Vapnik-Chervonenkis dimension of the class of sets {θ ∈ Θ : Dθ(P ) = c} is finite.
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If this is the case, by Proposition 2, the distance of all market clearing cutoffs P k of
F k is bounded by

|P k − P ∗| ≤ α0ε/2α0 + |S − Sk|
≤ ε/2 + 1/k.

Therefore, for k ≥ k0 = d2/εe,
|P k − P ∗| ≤ ε.

Therefore, if we take

β =
1

32α2
0

and α ≥ α1 such that
αβk0 ≥ 1,

we have that the probability that F k has any market clearing cutoffs with |P k−P ∗| ≥ ε

is lower than αβk, as desired.
Part (3): Bound on Gk.
Let the set of agents with scores which have at least one coordinate close to P ∗c be

Θ̄ = {θ ∈ Θ : ∃c ∈ C : |eθc − P ∗c | ≤ ε/4Cf̄}.

Let f̄ be the supremum of the density of η. The η measure of the set Θ̄ is bounded by

η(Θ̄) ≤ 2Cf̄ · (ε/4Cf̄) = ε/2.

Let the agents in finite economy F k be θ1,k, θ2,k, · · · , θk,k. The fraction of agents in
economy F k that have types in Θ̄ is given by the random variable

Gk =
∑

i=1,··· ,k

1θi,k∈Θ̄/k.

By the Vapnik-Chervonenkis Theorem, in the argument of Part (2), we could have
taken the constants α, β in a way that the probability that both the fraction of agents
with types in Θ̄ differs from the expected number η(Θ̄) ≤ ε/2 by more than ε/2 is lower
than αβk/2, and the probability

Pr{|D(P |ηk)−D(P |η)| > ε/2α0} ≤ αβk/2.

If both events happen, then Gk < ε/2 + ε/2 = ε. The probability that both events
happen is at most αβk/2 + αβk/2 = αβk. �

Proof. (Proposition 4) Consider the case where Pc > P ′c, the other case is analogous.
Let ε = |Pc − P ′c|. By Theorem 2 Part (3) the diameters of the set of stable matchings
of economies in the sequences F k and F ′k converge to 0. Therefore, we may take k0
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large enough such that for any market clearing cutoffs P k, P ′k of F k, F ′k we have

|P k − P | < ε/2

|P ′k − P | < ε/2.

By the triangle inequality we then have

P k
c > Pc − ε/2 ≥ P ′c + ε/2 > P ′kc .

�

Proof. (Lemma 3) Let µ be a stable matching, and P = Pµ. Consider a doctor θ. Let
h0 ∈ H ∪ {∅} be the hospital to which she is matched to, or the empty set if she is
unmatched. By definition of P we have that uθ(µ(θ)) ≤ ūθh0(P ). Let x be any contract
she strictly prefers to µ(θ), in any hospital h different than the one to which she is
matched. By definition of stability, that hospital h must be filling its quota, and for all
contracts x′ ∈ µ(h) we must have πh(x) ≤ πh(x

′). Therefore, πh(x) ≤ Ph. Because this
is true for any such contract x, ūθh(P ) ≤ uθ(µ(θ)) ≤ ūθh0(P ). By the strict preferences
assumption, except for a measure 0 set we have ūθh(P ) < ūθh0(P ) for all agents θ. Hence,
for almost every agent,

Dθ(P ) = µ(θ),

and so aggregate demand satisfies D(P ) ≤ S. By the completeness assumption and
stability, we must have that if Dh(P ) < Sh, then for all k > 0 hospital h must be
matched to the doctors in the definition of completeness. Therefore, Ph = 0.

Now consider a market clearing cutoff P , and let µ = MP . µ is measurable by
the measurability assumption. It is immediate that µ respects capacity constraints. It
is also individually rational. Hence, we only have to show it has no blocking pairs.
Assume, by contradiction, that (θ, h) is a blocking pair. Note that h is only matched to
contracts that give utility of at least Ph, by definition of µ. If θ is matched to a hospital
h′ with a contract x′ = µ(θ), then there exists a contract x ∈ Xθ

h such that

uθ(x) > uθ(x′)

πh(x) ≥ Ph.

In particular,
ūθh(P ) > uθ(x′).

However, this contradicts the definition of M in Equation (5.2). The case where θ is
unmatched is analogous. �

Proof. (Proposition 9) We begin by showing that the set of market clearing cutoffs is
a lattice. To that end, define the operator T : [0,M ]H → [0,M ]H defined by P ′ = TP



AZEVEDO AND LESHNO 66

with Ph being the solution to
Dh(P

′
h, P−h) = Sh

if such a solution exists in [0,M ], and 0 otherwise. Note that, if the solution to this
equation exists, it is unique, as the full support assumption implies that the left side
is strictly decreasing in P ′h. Also, because Dh(M,P−h) = 0, if the solution does not
exist then D(P ′h, P−h) < Sh for all P ′h ∈ [0,M ]. Therefore, the set of market clearing
cutoffs is identical to the set of fixed points of T . Note that T is weakly increasing in
P , and takes [0,M ] in itself. Therefore, by Tarski’s Theorem, the set of fixed points is
a non-empty lattice.

Let P− and P+ be the smallest and largest market clearing cutoffs. Let H+ be the
subset of hospitals for which P+

h > 0, that is

H+ = {h ∈ H : Ph > 0}.

If H+ is empty, then P− = P+ = 0, and we are done. Assume henceforth that H+ is
nonempty. Then by the definition of a market clearing cutoff it must be the case that∑

h∈H+

Dh(P
−) ≤

∑
h∈H+

Sh =
∑
h∈H+

Dh(P
+).

However, since P−h = P+
h for h /∈ H+, and P−h < P+

h for all h ∈ H+ we have that∑
h∈H+

Dh(P
−) ≥

∑
h∈H+

Dh(P
+).

Therefore, ∑
h∈H+

Dh(P
−) =

∑
h∈H+

Dh(P
+).

Under the assumption that the support of ηs is the set [0,M ]H , this can only be true
if P− = P+, completing the proof. �

Appendix D. Pre-Matchings

This Appendix clarifies the difference between our characterization of stable match-
ings and that of Adachi (2000); Echenique and Oviedo (2004) using pre-matchings. We
give a simple example where the Adachi map takes a pre-matching that has a cutoff
structure, and produces a pre-matching that does not have a cutoff structure. This clar-
ifies how the Adachi operator approach requires keeping track of much more detailed
information than simply cutoffs at each college.

Return to the discrete Gale and Shapley model of Section . Following Echenique and
Oviedo (2004), we define a pre-matching as a map

v : Θ̃ ∪ C → 2Θ̃ ∪ C

such that
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(1) Each college is matched to a subset of students: ∀c ∈ C: v(c) ∈ 2Θ̃.
(2) Each student is matched to a college or to itself: ∀θ ∈ Θ̃: v(θ) ∈ C ∪ {θ}.

Note that in a pre-matching a college may be matched to a set of students with more
students than its capacity. Let V be the set of all stable matchings. The Adachi
operator T : V → V is defined as follows. Given a pre-matching v, v′ = Tv is given by

(1) For each college c, v′(c) is its favorite entering class out of the students who are
matched to a worse college under v:

{θ : c �θ v(c)}

That is, v′(c) is the set of (at most) Sc ·#Θ̃ highest ranked students in this set.
(2) For each student, v′(c) is her favorite college out of those who would prefer to

match with it given v. That is, he favorite college in the set

{c : #v(c) < Sc ·#Θ̃, or c prefers θ to the Sc ·#Θ̃th ranked student in v(c)}.

Consider now the following example. There are two colleges C = {1, 2}, S1 = S2 = 1/3

(meaning they have one position each, by our convention of using supply per student)
and three students Θ̃ = {θ1, θ2, θ3}. Preferences are given by

�θ1 = �θ2= 1, 2

�θ3 = 2, 1

eθ
1

= (1, 1)

eθ
2

= (1/2, 1/2)

eθ
3

= (0, 0).

Consider the cutoffs P = (0, 0). v =MP is a pre-matching, given by

v(θ1) = v(θ2) = 1

v(θ3) = 2

v(1) = {θ1, θ2}, v(2) = {θ3}.

Although v has more students assigned to college 1 than its capacity, it at least
satisfies the consistency requirement (3) in the definition of a stable matching in the
discrete model. Moreover, it has a cutoff structure, in the sense the v =MP . We will
now see that both these properties are lost if we apply the Adachi operator to v.

Let v′ = Tv. We have

v′(θ1) = 1, v′(θ2) = 2, v′(θ3) = θ3

v′(1) = {θ1}, v′(2) = {θ3}.
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Note that this new pre-matching v′ no longer satisfies the consistency requirement
(3), as student 2 is pre-matched to college 2, but college 2 is not pre-matched to student
2. Moreover, even if one tries to look at a consistent match as described by the pre
matchings for one side, (v′(c))c∈C , it does not have a cutoff structure. Given (v′(c))c∈C ,
θ3 is matched to college 2. If there were cutoffs that described this allocation, this
would mean P2 = 0. However, θ2 is unmatched, which implies P2 > 1/2.

The simple takeaway from this example is that the Adachi map T does not preserve
the cutoff structure. Therefore, in applying Adachi’s algorithm one cannot simply keep
track of a small number of cutoffs Pc one for each college. This highlights the distinction
between our and Adachi’s approach, above the fact that we consider clearing supply
and demand and Adachi considers fixed points of T .
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