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Abstract: 

Empirically, teenagers who use alcohol or marijuana in one period are more likely to use hard 

drugs in the future.  This pattern can be explained by a causal effect of soft drug consumption on 

future consumption of hard drugs (i.e., state dependence between drugs or stepping-stone effects) 

or by unobserved characteristics that make people more likely to use both soft and hard drugs 

(i.e., correlated unobserved heterogeneity). I estimate a dynamic discrete choice model of alcohol, 

marijuana and hard drug use over multiple years, and separately identify the contributions of 

state dependence and unobserved heterogeneity.  I find modest-sized but statistically significant 

“stepping-stone” effects from softer to harder drugs that are largest among the youngest 

individuals in my sample.  This study also suggests that alcohol, marijuana and hard drugs are 

complements in utility. 
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I.INTRODUCTION 

Heated debates have arisen as states such as Colorado and Washington have 

decriminalized marijuana at the same time as the federal government has continued enforcement 

of laws against the drug.  Given the limited evidence on the health impacts of marijuana (e.g., 

Prinz 1997), supporters of the federal position have often implicitly relied on the argument that 

use of marijuana leads to an increased use of harder and more socially disruptive drugs such as 

cocaine and amphetamines.  Casual observation suggests that most users of hard drugs start off 

using alcohol and/or marijuana. Whether the use of softer drugs actually causes the future use of 

hard drugs (or the continued use of soft drugs) is unclear.  The dynamic patterns could arise from 

a change in preferences that occurs among those who use softer drugs, i.e., a true “state 

dependence” effect (Heckman, 1981a).  Alternatively, they could simply reflect the fact that 

certain individuals are more likely to consume drugs at any point in time -- a heterogeneity effect.  

Disentangling the stepping-stone effect from unobserved heterogeneity is potentially 

important for policy. For instance, assume that a policy maker’s goal is to reduce long term 

cocaine use. If there is a stepping-stone effect from marijuana to cocaine, any small shock that 

leads some young people to use marijuana at some point in time will have a long-term effect on 

further use of harder drugs. Consequently, policies to prevent marijuana use can be an effective 

channel for preventing long term cocaine use. Similarly, if there is state dependence in cocaine 

use, policies that prevent cocaine consumption at younger ages may have a lasting benefit in 

reducing longer-term cocaine use  

Statistical models that separate state dependence from unobserved heterogeneity  have 

been widely used to model welfare participation (Plant, 1984; Engberg, Gottschalk and Wolf, 

1990; Card and Hyslop 2005), dynamic labor supply of married women  (Hyslop 1999), self-
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reported health (Halliday, 2008), sexual behavior among teenagers (Arcidiacono, Khwaja, 

Ouyang, 2009), charitable giving (Meer, forthcoming) and many other outcomes. These models 

are also used in marketing to separate tastes based on habit formation in brand purchases (e.g., 

Keane 1997).  In the marketing literature, the estimated parameters are often used to simulate the 

effects of a shock on consumption of a particular brand (e.g., caused by a promotion or sale) on 

the long term purchases of the brand. My goal in this paper is similar.  In particular, I use the 

estimated model of dynamic drug use to simulate whether an exogenous shock that reduces 

marijuana or alcohol consumption will have a long term effect on cocaine use. I develop a series 

of multiple-equation logit and probit style models with unobserved heterogeneity and state 

dependence that allow me to estimate “within-drug” state dependence (e.g., the effect of current 

alcohol use on future use) and “between-drug” state dependence or stepping stone effects2 (e.g., 

the effect of current alcohol use on future cocaine use).  I consider models with first order state 

dependence, as well as models with higher order dependence and with heterogeneous state 

dependence.  In addition, I consider “ordered” models that allow me to distinguish between 

different levels of intensity of drug use at each point in time.  Finally, I consider models that 

separate state dependence within and between drugs from complementarity. Throughout, I use 

mass-point mixing models to non-parametrically account for time-invariant multidimensional 

unobserved heterogeneity (Heckman and Singer, 1984).3   My models also include flexible 

                                                
2 Previous research uses the term “stepping-stone effect” from drug k to drug j to describe how initiation into drug k 
increases the likelihood of initiation into a harder drug j. For this paper, I refer to the stepping stone effect from drug 
k to drug j as the causal effect of current drug k consumption on future drug j consumption. State dependence 
between drug k and j comprises the stepping stone effect from drug k to drug j and the reverse stepping stone effect 
from drug j to k, where k is a softer drug than drug j (alcohol is softer than marijuana and marijuana is softer than 
cocaine). Stepping stone effects are analogous to state dependence between two drugs.  
3 That is, I let the data tell me whether individuals who have a high time-invariant preference for marijuana also 
have a high time-invariant preference for cocaine and alcohol. I treat the distribution of the unobserved component 
as discrete and drawn from the mixture distribution (Heckman, Singer, 1984). Each type m is assigned a vector 
(𝛼!!"#$% ,𝛼!!"# ,𝛼!!"! ,𝛼!

!"#$!!" ,𝛼!
!"!!" ,𝛼!

!"!!"). This specification allows correlation between these six random effects 
within type.  
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controls for the initial conditions problem caused by the fact that some individuals in my data 

source, the National Longitudinal Survey of Youth 1997 (NLSY97), are first interviewed after 

they have already initiated soft (or even hard) drug use (Heckman 1981b; Wooldridge 2005).4 

 Much of the existing drug-use literature has overlooked the role of individual preferences 

in drug consumption, and interpreted the fact that most young adults consume marijuana before 

consuming cocaine as evidence of a “gateway” effect (Mills and Noyes 1984, Newcomb and 

Bentler (1986), Kandel and Yamaguchi (1984) among many others). A notable exception is Van 

Ours (2003), who uses a mixed proportional hazards model to study the extent to which first-

time marijuana consumption affects first-time cocaine consumption.  Van Ours (2003) concludes 

that, while marijuana initiation has a significant stepping stone effect on the future initiation of 

cocaine, the main factor driving the initiation of both drugs is unobserved heterogeneity. 

Relative to the existing literature, I make two main contributions. First, I extend the 

consideration of state dependence and unobserved heterogeneity to a multiproduct setting, where 

the outcomes cannot be bundled into mutually exclusive classes.  Second, to the best of my 

knowledge, I am the first to consider stepping-stone effects in a general dynamic setting where 

past use of each of several drugs can affect the decision to use each drug today. Looking at the 

effect of each of the three drugs on future consumption patterns allows me to compare the 

relative size of the stepping-stone effects of marijuana and alcohol on cocaine use.  I can also test 

whether cocaine use causes increased future consumption of softer drugs (a “reverse” stepping-

stone effect).  

My empirical results suggest that softer drugs have a stepping-stone effect on harder drugs 

that is highly robust across specifications. That is, alcohol use has a positive stepping-stone 

effect on future use of marijuana and cocaine, and marijuana use has a positive stepping-stone 
                                                
4 NLSY97 started collecting data on cocaine use starting in 1998. 
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effect on future use of cocaine. The “reverse” stepping stone effect from harder to softer drugs is 

statistically insignificant in most of my specifications, and is uniformly smaller than the effect 

from softer to harder drugs, indicating that the primary stepping-stone effect operates from softer 

to harder drugs.  The estimated stepping-stone effect from alcohol to cocaine is comparable in 

size to the effect from marijuana to cocaine, suggesting that policy concerns about stepping stone 

effects should include both substances. 

I also find strong evidence that both the permanent and transitory unobservable components 

of tastes are correlated across drugs. In addition, I extend previous models that distinguish 

correlation in preferences from the role of drugs as complements or substitutes (Getzkow, 2007) 

to also include state dependence within and between drugs. I find that drugs are complements in 

utility. For instance, consuming alcohol and marijuana together leads to higher utility than the 

sum of the utility derived from consuming alcohol alone and marijuana alone. However, the state 

dependence (within and between drugs) parameters remain robust to the inclusion of 

complementarity. 

Furthermore, the stepping-stone effect is heterogeneous across people. In particular, the 

stepping-stone effect is largest among young people, indicating that early consumption of softer 

drugs may have an impact on consumption of harder drugs. On the other hand, state dependence 

for each of the three drugs increases with age, indicating that the habit of consuming a particular 

drug may be harder to break with age. The stepping-stone effect from softer to harder drugs is 

greater among those who use the relatively softer drug more heavily, and state dependence for 

each drug is also higher among heavy users. Most of the persistence of drug use for a particular 

drug is driven by state dependence, while the stepping-stone effect plays a minor role in 
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explaining why the probability of consuming harder drugs is higher among those who consumed 

softer drugs in the previous period.   

These results are robust to the inclusion of demographics (race, gender, single parent 

household) and time-varying variables (region of residence, enrollment in a two-year or four-

year college, employment status, and state-level current unemployment rate). Finally, these 

results also remain robust to the inclusion of drug and time specific covariates such as state-level 

share of drug treatment admissions that were attributed to alcohol, marijuana or hard drugs, as 

well as prices. 

A limitation of the models I develop in this paper is the assumption that unobserved 

heterogeneity in tastes for drug use can be decomposed into the sum of a purely permanent 

component and a purely transitory component.  To examine the extent to which this assumption 

causes misspecification, I present a variety of specification diagnostics, including a sample-

analogue of generalized residuals that allows me to test whether there is evidence of serial 

correlation in use patterns after accounting for permanent and transitory taste shocks. I also use 

sample-analogue generalized residuals to diagnose misspecifications arising from 

contemporaneous correlations in the transitory taste components driving consumption of the 

three drugs.   

This paper is organized as follows. The next section discusses the data, while section 3 

presents models with homogeneous state dependence and stepping-stone effects. Section 4 

discusses empirical results, evaluates goodness of fit and presents specifications diagnostics 

Section 5 presents models with heterogeneous state dependence and stepping-stone effects, 

models with time and drug specific exclusion restrictions, and models that separate 
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complementarity from correlation in preferences, and presents counterfactual experiments. 

Finally, section 6 summarizes and concludes.  

II.DATA 

I use restricted data from the National Longitudinal Survey of Youth 1997. The NLSY97 

survey collects longitudinal information for a sample of 8,984 adolescents who were between the 

ages of 12 and 18 in 1997 (and between 22 and 28 in 2007). 5 Given that the main goal of this 

study is to model dynamic patterns of drug consumption over the respondents’ life course, the 

NLSY97 is a nearly ideal data set.  In each wave, participants report consumption of alcohol, 

marijuana, and cocaine in the last year, as well as frequency and intensity of consumption.6  

Measures of alcohol and marijuana use are available starting in 1997, while measures of cocaine 

use are available from 1998 onwards.7 

I use data from the Treatment Episode Data Set-Admissions (TEDS-A) to compute drug- 

year and state specific share of drug treatment admissions that were attributed to alcohol, 

marijuana or hard drugs. The TEDS-A is an administrative dataset that provides information 

about the state-level flow of admissions to providers of substance abuse treatment8. The TEDS-A 

series provides individual level data for persons who were admitted to public and private 

substance abuse treatment programs receiving public funding. This data includes a variable on 

year and state in which the admission to treatment took place, as well as the substances for which 

                                                
5 The sample is based on a stratified design and includes an “oversample” of minorities.  In this paper I make use of 
the entire sample, and make no allowance for sample weights.  
6 The NLSY97 asks respondents “Excluding marijuana and alcohol, since the date of the last interview, have you 
used any drugs like cocaine or crack or heroin, or any other substance not prescribed by a doctor, in order to get high 
or to achieve an altered state?” While this measure of hard drug use includes cocaine and other hard drugs, I will 
refer to it as cocaine use for the remaining of the paper.  
7 The respondents were asked the following questions regarding cocaine in 1998: (1)”Have you ever used cocaine?” 
and (2) “Number of times the respondent used cocaine/hard drugs since the date of last interview.” I create an 
indicator for whether the respondent consumed cocaine in the last year, where I assign a 1 if the respondent reported 
having used cocaine at least once since the last interview and a 0 otherwise 
8 This dataset corresponds to ICPSR study 25221. I acknowledge that SAMHSA and ICPSR will bear no 
responsibility for my use of the data or for my interpretations or inferences based upon such use. 
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the individual was admitted into treatment. A limitation of this dataset is that TEDS-A includes 

only admissions to facilities that are licensed or certified by the state substance abuse agency or 

that are administratively tracked for other reasons. In addition, there may be variations in state 

reporting practices. However, “TEDS was estimated to include 83 percent of TEDS-eligible 

admissions and 67 percent of all known admissions” in 1997. 9  

To measure year and region specific prices of alcohol, I use the Average Price Index for 

malt (by region and month) provided by the Bureau of Labor Statistics (BLS).10 I compute a 

yearly average and convert this to 1980-1984 dollars.  

Finally, to measure drug and time specific prices of marijuana and hard drugs, I use data 

from the “Price and Purity of Illicit Drugs: 1981-2007” report. This report provides prices and 

measures of purity of selected drugs such as powder cocaine, crack cocaine, heroin, d-

methamphetamine, and marijuana. The estimates in this report are based on data from System to 

Retrieve Information from Drug Evidence (STRIDE) database maintained by the Drug 

Enforcement Administration (DEA).11 I convert these prices to 1980-1984 dollars.  

I will use drug-year and state specific share of drug treatment admissions, price per 

expected pure gram of hard drugs, and price per bulk gram of marijuana as exclusion restrictions. 

I will describe in more detail the limitations of each.  

                                                
9 Source: http://www.icpsr.umich.edu/icpsrweb/SAMHDA/series/56 
10 I use nominal malt prices by region (urban) and year for malt beverages of all types per 16 oz. or 473 ml. This 
data is reported by month, and I calculate the yearly average. The BLS sequences are as follows: Midwest 
APU0200720111, Northeast APU0100720111, South APU0300720111 and West APU0400720111. 
11 Office of National Drug Control Policy (2004). The Price and Purity of Illicit Drugs: 1981 Through the Second 
Quarter of 2003, Washington, D.C.: Executive Office of the President (Publication Number NCJ 207768), 
electronically accessible through the following World Wide Web address 
http://www.whitehousedrugpolicy.gov/publications/price_purity/. The accompanying Technical Report is available 
at http://www.whitehousedrugpolicy.gov/publications/price_purity_tech_rpt/. Sponsored by ONDCP, both reports 
were produced at RAND’s Drug Policy Research Center and Public Safety and Justice Division. 
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 Table 1 presents an overview of the characteristics of the sample from NLSY97. Column 

1 shows descriptive data for the entire sample. Column 2 summarizes my main analysis sample, 

which is restricted to individuals who were not lost due to attrition from 1997 to 2007, and who 

did not avoid answering those questions.  Columns 3, 4 and 5 show characteristics for subsets of 

respondents in the analysis sample who consumed alcohol, marijuana, or cocaine in at least one 

year during my sample period.  

 The difference across subsamples in Panel A can be summarized as follows. First, most 

of the demographic characteristics of the entire sample are statistically indistinguishable from 

those of the subsample that was not lost due to attrition after ten waves, though men are more 

prone to attrition than women.12  Second, alcohol use is nearly universal (95% have ever used 

alcohol) while marijuana is highly prevalent (57%) and cocaine13 use is less so (25%).  Third, as 

might be expected, the average starting age for alcohol is lower than the starting age for 

marijuana, which is lower than the starting age for cocaine.  Fourth, individuals who ever use 

marijuana have a very high rate of ever using alcohol (99%) and a lower starting age for alcohol.  

Likewise, 100% of ever-users of cocaine have consumed alcohol, and 93% have consumed 

marijuana, and this group has the lowest starting ages for alcohol and marijuana among the 

subgroups in the table.14  The data on the order of the first use of the three substances, shown in 

Panel B of Table 1, are consistent with these patterns. Among respondents who eventually 

consume all three drugs, most of them follow the sequence of first alcohol, second marijuana, 

and third cocaine.  Moreover, use of cocaine before either marijuana or alcohol is very rare. 

                                                
12 I control for gender in the empirical part of this paper.  
13 The NLSY97 asks respondents whether they have consumed “any drugs like cocaine or crack or heroin, or any 
other substance not prescribed by a doctor, in order to get high or to achieve an altered state.” For the remaining of 
this paper, I will refer to this category of hard drugs as cocaine.  
14 These percentages are higher among respondents who consumed other drugs. While 24.63% of the respondents 
who were not lost due to attrition consumed cocaine at least once, this percentage was 39.78 among those who 
consumed marijuana at least once.  
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 Appendix B discusses the extent to which misreporting, attrition, and avoidance of drug-

related questions affect the estimated parameters. Approximately, 94.59%, 92.78% and 94.47% 

of respondents who were not lost due to attrition reported non-missing answers to the alcohol, 

marijuana, and cocaine-related questions for all 10 waves, respectively. Furthermore, the 

NLSY97 collects answers to sensitive questions using audio computer-assisted self-interview 

(ACASI) which is associated with less underreporting of risky behaviors than other interview 

methods (Brener et al. 2003). Finally, appendix B discusses a simulation exercise to quantify the 

extent to which misclassification error, if present, affects the estimated parameters.  Appendix C 

compares the NLSY97 to two other major datasets on drug use: National Study of Drug Use and 

Health (NSDUH), and Monitoring the Future (MTF). 

 More information on the dynamic patterns of drug use in my sample is contained in 

Figures 1 and 2, which illustrate the two key stylized facts that motivate my analysis. First, 

Figure 1 shows that the probability of consuming a particular drug at any given period is higher 

among those who consumed that drug in the previous period. This pattern holds for alcohol, 

marijuana, and cocaine15. Second, Figure 2 illustrates that the probability of consuming cocaine 

is higher among those who consumed alcohol or marijuana in the previous period than among 

those who abstained from using these drugs. Similarly, the probability of consuming marijuana is 

higher among those who consumed alcohol in the previous period. These patterns are exhibited 

in Figure 1 and 2.The key econometric goal of this paper is to explain the degree to which these 

patterns occur because of  true state dependence within and between drugs (stepping-stone 

effects), instead of correlated preferences.  

 

                                                
15 For instance, the probability of consuming marijuana at any period among those who consumed it in the previous 
period is 66.99%. On the other hand, among those who abstained from using marijuana in the previous period, this 
probability is 9.09%.  A similar pattern holds for alcohol and cocaine.  
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III MODEL, IDENTIFICATION AND ESTIMATION 

First, I experiment with three models with the objective of disentangling true state 

dependence and stepping-stone effects from unobserved heterogeneity. To keep these models as 

simple as possible, I begin by assuming homogeneous first order state dependence and stepping-

stone effects.   I first consider a simple trivariate logit model with only first-order state 

dependence (Model A), then consider a trivariate probit model (Model B), which allows 

correlation across the transitory preference shocks in each period.  Then I consider a trivariate 

logit model with second-order state dependence (Model C). 

A. Model A: TRIVARIATE LOGIT MODEL with first-order State Dependence 

Consider an individual who maximizes his or her utility by choosing whether to consume 

three non-mutually exclusive drugs: alcohol, marijuana, and cocaine16. Let ijtU  denote the utility 

that individual i experiences from consuming drug j in year t, and let tkiY ,, represent an indicator 

that equals 1 if person i consumed drug k in period t. I assume that the utility of drug use in 

period t depends on drug-specific time trend17 𝛿!! + 𝛿!!(𝑡 − 𝑡!), on a set of observed 

characteristics (X) of the individual, 18 on lagged indicators for drug use in period t-1, and on a 

combination of a permanent unobserved taste component jiα  and a transitory component  𝜀!"#:     

𝑈!"# = 𝛿!! + 𝛿!! 𝑡 − 𝑡! + 𝑋!"𝛽! + 𝛾!"𝑌!,!,!!!
!
!!! + 𝛼!"

!!"#(!!")

+ 𝜀!"#                                             (1) 

                                                
16 In a previous version of the paper, I also estimate these models using tobacco, marijuana and cocaine. A logit 
model estimates that tobacco has a smaller effect than alcohol on future cocaine use, and that this effect becomes 
negligible when I allow for transitory shocks across drugs to be correlated (probit specification). Also, the NLSY97 
groups cocaine with other hard drugs. 
17 The variable t is the year that corresponds to 𝑈!"#, while 𝑡! is always 1998.  
18 The vector itX  represents time-invariant characteristics (gender and whether the individual comes from a single-
headed household) and time-varying observable characteristics (age)  of consumer i in time t. Appendix D discusses 
models with different sets of demographics (race, ethnicity, whether the individual was in an urban or rural area in 
the first wave, and region of residence in the first wave), and time-varying covariates (whether the respondent is 
currently enrolled in a two-year college, currently enrolled in a four-year college, or currently employed, and finally 
the state-level unemployment rate in year t). The results remain robust to the inclusion of these covariates.  
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I assume that the non-random part of the utility (𝑉!"#(𝛼!"))  derived from not using drug j 

in period t is zero. To complete the model, I need a specification for the outcomes of the “initial 

conditions,” which are drug use outcomes in the initial year of my sample (1998). 19  I assume 

that the initial choices are selected according to the utility: 

𝑈!"! = 𝜔!! + 𝑋!! !! + 𝛼!"!
!!"!(!!")

+ 𝜀!"#!"!#!$%              (2)
 

where again the non-random part of the utility (𝑉!"!(𝛼!")) of not consuming drug j in year 1998 

(period 0) is set to 0. In equation (1), the state dependence (within and between drugs) 

parameters are represented by the parameters kjγ . For k=j these are the effects of lagged 

consumption of drug k on current consumption of drug k (within drug state dependence). For k≠j 

these are the stepping stone effects from use of drug k in the past to taste for drug j in the current 

period (state dependence between drug k and j).  The parameters 𝛼!" represent the time-invariant 

unobserved tastes of person i for drug j, which I assume are distributed across the population 

with a discrete distribution with a relatively small number of points of support (up to 7).20  

Finally, ijtε  and 𝜀!"#!"!#!$%  represent transitory taste shocks, which in the logistic model are 

assumed to be drawn independently from an Extreme Value Type 1 distribution. 

At each time period t, individual i chooses to use drug j if the utility derived from doing 

so is higher than the utility attained from not consuming drug j.   With a logistic error assumption, 
                                                
19 A separate equation for initial conditions for each drug is required for two reasons. First, we do not observe data 
since the year in which the stochastic process started, and thus I cannot construct the likelihood function for all years 
in which the data generating process has been in operation (Keane 1997, Heckman 1981b, Wooldridge 2005). Given 
that there is serial correlation, ignoring the initial conditions problem leads to biased and inconsistent parameter 
estimates (Heckman, 1981b). Second, a separate equation is also needed because the initial period does not have 
lagged values and requires a different specification. Studies where the respondents have identical outcomes in the 
pre-sample periods do not face the initial conditions problem (Card and Hyslop 2005), while studies where the 
stochastic process of the relevant outcome started prior to the observed periods handle the initial conditions problem 
the same way I do in this study (Altonji et al 2010). 
20 For Model A, I experiment with 3,4,5,6, and 7 mass points, but I only report the estimates for the model with 
seven mass points, since allowing for a seventh mass point resulted in a significant improvement in the fit of the 
model, as measured by the log-likelihood, Pearson-Goodness-of –Fit, Akaike and Bayesian Information Criterion.  

λ
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the probability of an individual using or abstaining from using drug j at any given period has a 

closed form solution and can be written as equations (3a) and (3b) respectively:21  

𝑃 𝑌!"# = 1 𝑌!,!!!,𝛼!" = !"#  (!!,!!!!! !!!! !!!"!!! !!"!!,!,!!!!!!")
!
!!!

!!!"#  (!!,!!!!! !!!! !!!"!!! !!"!!,!,!!!!!!")
!
!!!

                                    (3a) 

𝑃 𝑌!"# = 0 𝑌!,!!!,𝛼!" = !
!!!"#  (!!,!!!!! !!!! !!!"!!! !!"!!,!,!!!!!!")

!
!!!

                                    (3b) 

Similarly, the probability of an individual using or abstaining from using drug j at the 

initial period (1998) can be written as in equation (4a) and (4b) respectively 

P Y!"# = 1 α!"# =
!"#  (!!!!!!! λ !!!!!"!)

!!!"#  (!!!!!!!λ !!!!!"!)
                                                                                             (4a)             

𝑃 𝑌!"! = 0 𝛼!"! = !

!!!"#  (!!!!!!! λ !!!!!"!)
                                                                                              (4b)                                                               

 

I compute the likelihood of a sequence of indicators of drug j consumption 𝐿!
!(𝑌!"!,…,𝑌!"#) 

by taking the weighted average of type-specific likelihood contributions, using the unconditional 

probabilities,  𝜋!, as weights.  

𝐿!
! 𝑌!"!, . .𝑌!"! = 𝜋!{𝑃(𝑌!"!|𝛼!"!) 𝑃(𝑌!"#|𝑌!,!!!,𝛼!"!!!""#

!!!"""
!
!!! )}                                (5) 

The individual contribution to the entire likelihood function can be written as 

𝐿! = 𝐿!!"#$!!"𝐿!
!"#$%&"'"𝐿!!"!#$%&                                                                                                (6) 

With 7 mass points there are 87 parameters to estimate: nine utility parameters for each 

drug j ( jjjjj 321432110 ,,,,,,,, γγγββββδδ ), 13 unobserved heterogeneity parameters for each drug 

                                                
21 𝑌!,!!! = (𝑌!,!!!!"#$% ,𝑌!,!!!!"# ,𝑌!,!!!!"! ), where 𝑌!,!!!!"#$% ,𝑌!,!!!!"# ,𝑌!,!!!!"!  represent the first-order lagged indicators of use 
(𝑌!,!,!!!)  of alcohol, marijuana and cocaine respectively. For the remainder of the paper, the following probabilities 
𝑃 𝑌!"# = 1 𝑌!,!!!,𝛼!" , 𝑃 𝑌!"# = 0 𝑌!,!!!,𝛼!" , P Y!"# = 1 α!"# , 𝑃 𝑌!"! = 0 𝛼!"!  also condition on 𝑋!" implicitly, to 
save on notation.  
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( ),...,,,..., 0,70,172
jjjj αααα 22, 5 initial conditions parameters for each drug ),,,,( 0

4
0
3

0
2

0
1

0 jjjjj λλλλω , 

and 6 type-associated probability parameters ).,...,( 72 φφ 23  

B. Model B: TRIVARIATE PROBIT WITH FIRST-ORDER STATE DEPENDENCE 

While Model A provides a guide to the potential stepping-stone effects, it is 

oversimplified, as it requires assuming that the transitory shocks are independent over time and 

across drugs.  More realistically, the transitory shocks to demand for one drug may be correlated 

with the transitory shocks in demand for the others (e.g., moving to a drug-friendly college town 

is associated with a positive shock in demand for alcohol, marijuana and cocaine). Model B 

relaxes the assumption of uncorrelated transitory shocks by allowing the 𝜀!"!"#$% , 𝜀!"!"# , 𝜀!"!"!  to 

be distributed as trivariate normals, with an arbitrary correlation structure.24  This model still 

imposes the restriction that there is no serial correlation in the transitory shocks either within or 

between drugs.  

In particular, for Model B I also assume that ijtε has the following multivariate normal 

distribution,  

 𝜀!"!"#$% , 𝜀!"!"# , 𝜀!"!"! ~𝑁
0
0
0

,
1 𝑝!" 𝑝!"
𝑝!" 1 𝑝!"
𝑝!" 𝑝!" 1

                                                          (7) 

                                                
22 I normalize the random effect for type m=1 for each drug j, j

1α , to zero. 
23 I also normalize 𝜙! to zero where 𝜙! enters the unconditional probability of being type m in a model with three 
types,  written as follows 

𝜋! =
exp  ( )mφ

1 + exp 𝜙! + exp  (𝜙!)
 

24 To establish complementarity or substitutability across products, in the sense that the utility of consuming both 
products together is higher than consuming them separately, I would need higher-frequency data. Because the 
NLSY97 reports yearly data, I can only observe whether individuals consumed a combination of drugs in the same 
year. Annual data only allows me to establish correlation of the time-varying unobservable component across drugs. 
While such correlation will partially capture whether those drugs are true complements or substitute (in the sense 
that the utility of consuming some drugs together may be higher than consuming them separately), I will not be able 
to disentangle true complementarity or substitutability from mere correlation between the time-varying unobservable 
components across drugs.  
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As opposed to the logistic model, the correlated normal model requires that I estimate the 

likelihood for the full set of indicators of drug use in each period,  𝐿!(𝑌!!,…,𝑌!") , where 

 𝑌!" = (𝑌!"!"#$% ,𝑌!"!"# ,𝑌!"!"!),  

𝐿! 𝑌!!,… .𝑌!" = 𝜋!{𝑃(𝑌!!|𝛼!,!) 𝑃(𝑌!"|𝑌!,!!!,𝛼!!!!""#
!!!"""

!
!!! )}                                  (8) 

 The probabilities of a particular consumption bundle 𝑌!", )|Y( it mP α  no longer have a 

closed form solution under the trivariate probit specification. In fact, it is the cumulative 

distribution function of a joint normal distribution, which is numerically approximated by a triple 

integral.25  In addition to the parameters estimated under the logistic distribution, the multivariate 

probit model also estimates the correlation coefficients 𝑝!" = 𝑐𝑜𝑣 𝜀!"!"#$% , 𝜀!"!"# ,   𝑝!" =

𝑐𝑜𝑣(𝜀!"!"#$% , 𝜀!"!"!), and 𝑝!" = 𝑐𝑜𝑣(𝜀!"!"# , 𝜀!"!"!). 

C.Model C: TRIVARIATE LOGIT WITH SECOND-ORDER STATE DEPENDENCE 

To improve upon the previous specifications, which only allowed lagged drug 

consumption from the previous year to affect current consumption, I estimate a multivariate logit 

model that includes second-order state dependence and an interacted term of first and second-

order state dependence. While a model with second-order state dependence still requires 

assuming that transitory shocks are independent over time, incorporating a second-order lagged 

outcome decreases the extent to which first and second-order serial correlations are problematic. 

I do not include second-order stepping-stone effects because section 6 indicates that correlation 

                                                
25 For instance, 

𝑃 𝑌!" = 1,1,0 𝑌!,!!!,𝛼! = 𝑃(−𝜀!"!"#$% < 𝑉!"!"#$% 𝛼! ,−𝜀!"!"# < 𝑉!"!"# 𝛼! , 𝜀!"!"! < −𝑉!"!"! 𝛼! )  

         =
  ɸ(𝑉!"!"#$% 𝛼! ,𝑉!"!"# 𝛼! ,−𝑉!"!"! 𝛼! ; 𝑝!",−𝑝!",−𝑝!") 

where  ɸ represents the trivariate normal cumulative distribution function of  (−𝜀!"!"#$% ,−𝜀!"!"# , 𝜀!"!"!). 
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of transitory shocks across drugs and periods (assumption 3 from Model A) is not a source of 

misspecification in the benchmark model A.  

An issue for a second order model is the specification of the initial conditions.  These 

consist of the drug use choices in the two initial years 1998 and 1999: for each drug there are 

four mutually exclusive potential outcomes  (0,0), (1,0),(0,1), and (1,1). The first component 

indicates drug consumption in 1998 and the second one indicates this for 1999.26 Each initial 

conditions equation has a separate location parameter.27 The latent utilities for each drug j are as 

follows: 

𝑈!"# = 𝛿!! + 𝛿!! 𝑡 − 𝑡! + 𝑋!"𝛽! + 𝛾!"𝑌!,!,!!!
!
!!! + λ !!𝑌!,!,!!! + λ !!𝑌!,!,!!!𝑌!,!,!!! + 𝛼!"

!!"#(!!")

+ 𝜀!"# (9)          

𝑈!"! 0,0 = 𝜀!"!
(!,!)                                                                                                                  (10) 

 𝑈!"! 0,1 = 𝑋!!𝜔!!
(!,!) + 𝛼!"!

(!,!)

!!"!
(!,!)

+ 𝜀!"!
(!,!)                                                                                (11)           

 𝑈!"! 1,0 = 𝑋!!𝜔!!
(!,!) + 𝛼!"!

(!,!)

!!"!
(!,!)

 +𝜀!"!
(!,!)                                   (12) 

 𝑈!"! 1,1 = 𝑋!!𝜔!!
(!,!) + 𝛼!"!

(!,!)

!!"!
(!,!)

+𝜀!"!
(!,!)                          (13) 

The multinomial logit specification assumes that 𝜀!"!
(!,!)

,
𝜀!"!
(!,!), 𝜀!"!

(!,!),𝑎𝑛𝑑  𝜀!"!
(!,!) are independent. 

This assumption is not as restrictive as it might first seem, given that I have modeled the initial 

conditions separately, allowing for a different random effect at each potential initial outcome.  
                                                
26 While I model the initial conditions with multinomial logit because there are four mutually exclusive outcomes for 
each drug, the entire model is still a multivariate or generalized logit model with three non-mutually exclusive 
binary outcomes.  
27 The model estimates the specified distribution of the unobserved heterogeneity with M discrete points of support, 
where each point of support m corresponds to the following vector of unobserved heterogeneity: 
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The likelihood of a sequence of drug j consumption indicators is written as in Model A, and is 

the same as equation 5. The individual contribution to the entire likelihood function is written as 

in equation 6.  

IV.EMPIRICAL RESULTS 

A. Parameter Estimates 

Columns 1, 2 and 3 of Table 2 report parameters estimated by Model A corresponding to the 

latent utility (equation 1) of alcohol, marijuana and cocaine respectively. Columns 4, 5, and 6 are 

estimated by Model B, while columns 7, 8 and 9 correspond to Model C.28  

Estimates for equation (1) yield a positive and statistically significant estimate for  𝛾!! 

(where k is alcohol, marijuana or cocaine), the coefficient associated with state dependence.   

The coefficients associated with the stepping-stone effects show an interesting pattern. The 

stepping-stone effects from softer to harder drugs are positive and statistically significant29 (e.g. 

alcohol has a stepping-stone effect on both marijuana and cocaine, while marijuana has a 

stepping-stone effect on cocaine). On the other hand, it remains inconclusive as to whether 

harder drugs reinforce the use of softer drugs.30 Models A, B and C present strong evidence that 

there is a positive stepping-stone effect that operates mainly from softer to harder drugs. 

Model C presents second-order terms that are statistically significant. A second-order 

specification allows the first-order state dependence to differ depending on whether that drug 

was also consumed in the previous periods.  

                                                
28 I do not report the parameter estimates of the initial conditions equation (equation 2). 
29 I define the order from softest to hardest, with alcohol a softer drug than marijuana, and marijuana a softer drug 
than cocaine.  
30 Model A reports statistically insignificant reverse stepping-stone effects, while Model C reports negative reverse-
stepping stone effects. Model B is the only model that estimates positive reverse stepping-stone effects that are 
positive but significantly smaller than the stepping-stone effects from softer to harder drugs. For instance, Model B 
estimates a stepping-stone parameter of 0.45 from alcohol to marijuana, while the stepping-stone effect from 
marijuana to alcohol is 0.18. While the magnitude of the reverse stepping-stone effects is unclear, there is strong 
evidence that the stepping-stone effects operate from softer to harder drugs. 
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Model B estimates positive structural correlation between drug-specific transitory shocks 

(𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"# = 0.58, 𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"! = 0.38, and  𝑐𝑜𝑣   𝜀!"!"# , 𝜀!"!"! = 0.46  ).  31 

Finally, time-invariant preferences across drugs are positively correlated as well. That is, 

individuals who have a high inherent propensity to use any particular drug also have a higher 

inherent propensity to use other drugs, and this pattern holds across specifications. Figure 3 

graphs the intercept of the latent utility for marijuana against the intercept of the latent utility for 

alcohol and cocaine, where Panels A, B and C of Figure 3 correspond to Models A, B and C 

respectively.32 

While the structural estimates reveal the sign of state dependence and stepping-stone effects, 

they are not directly useful in answering questions such as to what extent the probability of 

consuming cocaine increases if the respondent consumes marijuana in the previous period, 

holding preferences for all drugs constant. The marginal effects are more useful at answering 

these questions.  

The marginal effects33 of the state dependence parameter reveal the change in the probability 

 in response to an infinitesimal change in 𝑌!,!,!!!. Because 𝑌!,!,!!! is a discrete variable, the 

                                                
31I cannot interpret the positive correlation between the time-varying components across drugs as evidence that the 
drugs are complements, because that would require more frequent data than a yearly panel. While this positive 
correlation may absorb some of the true complementarity across drugs, I interpret it as merely a correlation between 
the transitory shocks across drugs. The probit model estimates parameters 𝜙!" = 1.311  (𝑆𝐸 = 0.077), 𝜙!" =
0.803  (𝑆𝐸 = 0.103) and 𝜙!" = 0.989  (𝑆𝐸 = 0.072) . The correlations 𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"# , 𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"! , 
and  𝑐𝑜𝑣   𝜀!"!"# , 𝜀!"!"!  are by construction between -1 and 1.  

𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"# = −1 + 2 ∗
exp  (𝜙!")

1 + exp  (𝜙!")
 

𝑐𝑜𝑣   𝜀!"!"#$!!" , 𝜀!"!"! = −1 + 2 ∗
exp  (𝜙!")

1 + exp  (𝜙!")
 

𝑐𝑜𝑣   𝜀!"!"# , 𝜀!"!"! = −1 + 2 ∗
exp  (𝜙!")

1 + exp  (𝜙!")
 

32 Figure 3 graphs the intercept for the latent utilities corresponding to equation (1). I do not show the graph with the 
intercepts for the latent utilities of the initial conditions equations; however, they are also positively correlated. 
33 For models A and C (Logit), I compute the marginal effects 

!!!"#
!!!

 for each individual i and period t, where 
!!!"#
!!!

= 𝑃!"# ∗ 1 − 𝑃!"# ∗ 𝛽!. I compute the average from year 1999 to 2007 for Model A. For Model C, I compute 
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average marginal effects (averaged over people and over time) reported in Table 3 should be 

interpreted as only an approximation. For instance, the logit model estimates that the probability 

of consuming alcohol, marijuana and cocaine in time t increases by 20, 15 and 7 percentage 

points as a result of consuming alcohol, marijuana and cocaine in the previous period, 

respectively. The marginal effects of the stepping stone effects are significantly smaller than the 

state dependence effects.   A more appropriate way to quantify the role of state dependence and 

stepping-stone effects is described in the next subsection.  

B. Quantifying the Effects of True State Dependence and Stepping-Stone Effects 

A key feature of my dynamic discrete choice models is that I can use them to estimate the 

fraction of serial persistence in drug use that is attributable to state dependence. Similarly, I can 

use the model to quantify the role of the stepping-stone effects in explaining why the probability 

of consuming harder drugs is higher among those who consumed softer drugs in the previous 

period. For example, the probability of consuming cocaine is higher among those who consumed 

alcohol or marijuana in the previous period. Similarly, the probability of consuming marijuana is 

higher among those who consumed alcohol in the previous period. 

To quantify the role of state dependence, I simulate the difference between the probability of 

consuming a particular drug among those who also consumed it in the previous period and those 

who did not,  

                                                                                                                                                       
!!!"#
!!!

 for years 2000 to 2007 and take the average. Because Model C includes an interacted term of first and second-

order state dependence, I compute the marginal effect of first-order state dependence separately for periods where 
the second-order lagged outcome was 0 and for periods where the second-order lagged outcome was 1. For Model B, 
I compute 

!!!"#
!!!

= 𝜙 𝑉!"# 𝛼! ∗ 𝛽! =
!
!!
exp  {− !

!
[𝑉!"# 𝛼! ]!} ∗ 𝛽! for years 1999 to 2007, and take the average. 

The marginal effects are computed using simulated data because a random effect needs to be assigned to compute 
𝑃!"#. I repeat the simulation process of computing 

!!!"#
!!!

 ten times and take the average.  
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𝑃[𝑌!"# = 1|𝑌!,!,!!! = 1] -  𝑃[𝑌!"# = 1|𝑌!,!,!!! = 0]    34,      (14) 

under the assumption that state dependence is non-existent. In the absence of alcohol state 

dependence, the measure of alcohol persistence drops from 54.55 to 23.57 percentage points, 

using the parameters estimated by Model A. Similarly, the measure of marijuana persistence 

drops from 57 to 24 percentage points, in the absence of marijuana state dependence. Finally, the 

measure of cocaine persistence drops from 38.84 to 10.81 percentage points, when cocaine state 

dependence is non-existent. These simulations suggest that state dependence explains more than 

half of the observed persistence in drug use, and this pattern is highly robust across specifications 

(Table 4, Panel A).  

To quantify the role of the stepping-stone effect from marijuana to cocaine, I simulate the 

difference between the probability of consuming cocaine between those who consumed 

marijuana in the previous period and those who did not, 

𝑃 𝑌!"!"! = 1 𝑌!,!!!!"# = 1 − 𝑃 𝑌!"!"! = 1 𝑌!,!!!!"# = 0         (15) 

under the assumption that the relevant stepping-stone effect is non-existent. In the absence of 

stepping-stone effects from marijuana to cocaine, this difference decreases from 15.4 to 11.37 

percentage points, using the parameters estimated by Model A.  

Similarly, turning “off” the stepping-stone effect from alcohol to cocaine decreases 

𝑃 𝑌!"!"! = 1 𝑌!,!!!!"# = 1 − 𝑃[𝑌!"!"! = 1|𝑌!,!!!!"# = 0]                                                                  (16) 

                                                
34 This difference is estimated separately for each year from 1999 to 2007. Next, I take the average over the nine 
periods after the initial period. If lagged consumption of drug j was randomly assigned, this difference would be 
interpreted as the causal effect of lagged consumption of drug j on current consumption of drug j. However, lagged 
drug use is not randomly assigned, and is highly driven by individual preferences. Let us focus on equation 14. The 
difference in probabilities provided by equation 14 is driven partially by individual preferences and partially by state 
dependence for drug j. I estimate the gap in equation 14 using real data. Then, I use the parameter estimates to see 
whether the model simulates the actual data closely. Finally, I also simulate this measure of persistence after I turn 
off the state dependence parameter (𝛾!! = 0), while holding all other estimated parameters constant. This simulation 
estimates a counterfactual measure of drug j persistence in the absence of state dependence of drug j. A limitation to 
this approach to quantifying the effects of state dependence within and between drugs is that it is an unlikely 
situation that the relevant parameter 𝛾!" would change while all other parameters remain constant.  
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from 6.78 to 4.66 percentage points, using parameters estimated by Model A.  

Finally, after turning “off” the stepping-stone effects from alcohol to marijuana, simulating 

the difference between the probability of consuming marijuana among those who consumed 

alcohol in the previous period and those who did not decreases the following difference,  

𝑃 𝑌!"!"# = 1 𝑌!,!!!!"# = 1 − 𝑃[𝑌!"!"# = 1|𝑌!,!!!!"# = 0],      (17) 

from 21.87 to 17.89 percentage points, using the parameters estimated by Model A. These 

estimates are robust across specifications, suggesting that stepping-stone effects have only a 

modest role in explaining why individuals who use soft drugs are more likely to consume harder 

drugs in the next period (Table 4, Panel B). 

C. Evaluating the Model 

This section evaluates whether the model predicts the distribution of drug histories and the 

distribution of contemporaneous consumption bundles.  

 Table 5 compares the predicted and actual share of the sample that belongs to each of the 

mutually exclusive cells, defined by the number of periods in which each drug was used and the 

number of transitions from use to non-use and vice-versa.35  I collapse the 2!" possible drug 

histories that can arise for each drug j, some of which have a negligible sample size, into 22 cells 

for alcohol and marijuana, and 10 cells for cocaine. 

 Columns 3 and 4 report the correspondence between actual and predicted histories for 

alcohol (Panel A), marijuana (Panel B), and cocaine (Panel C) by Model A. Columns 5 and 6 

report such a correspondence for Model B, while columns 7 and 8  report this correspondence for 

Model C. 

                                                
35 For instance, an individual whose alcohol sequence for the entire 10 periods is (0001110000) belongs to the cell 
with 3 periods of use and 2 transitions. 
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 The estimated models reflect the following drug use patterns. First, the largest cell in alcohol 

use is composed of  individuals who used alcohol the entire 10 periods (cell of 8-10 periods of 

drug use, and zero transitions) while the largest cell in marijuana and cocaine use is composed of 

individuals who have never used it (cell of zero periods of drug use).  

To informally measure the goodness of fit, I construct the Pearson Goodness of Fit 

Statistic for each drug j 

𝑃𝐶𝐺𝐹! =
(!!"!!!")!

!!"

!!
!!!                                                                                                 (18) 

where kjO is the number of observations in cell k for drug j, kjE  is the number of predicted 

observations in cell k for drug j, and jK  is the number of cells for drug j.36 Table 2 reports the 

corresponding jPCGF  for alcohol, marijuana, and cocaine. 37    

The probit specification allows for correlated transitory shocks across drugs, which is 

advantageous when predicting contemporaneous consumption bundles. Table 6 provides an 

assessment of how well these models predict contemporaneous drug consumption bundles by 

year. Columns 3 and 4 report the correspondence between actual and predicted consumption 

bundles38 in each period using parameter estimates from Model A. Columns 5 and 6 correspond 

to Model B, and columns 7 and 8 correspond to Model C. 

                                                
36 The Pearson Goodness of Fit Statistic is an informal summary measure of fit, which is based on the deviation 
between actual and predicted observations per cell. Grouping participation sequences into mutually exclusive cells is 
a common approach when the researcher is faced with the challenge of predicting a very large number of sequences, 
where some of those sequences have almost negligible frequencies (Card and Hyslop, 2005; Hyslop, 1999; and 
others).  For multinomial outcomes, the PCGF can have a chi-square distribution and hence it is a formal statistic as 
opposed to an informal diagnostic (Moore 1977; Andrews 1988) 
37 The PCGF is calculated with cells different than those reported in Table 5 due to the small cell sizes of some 
combinations of periods of use and transitions. Tables with the cells that were used to calculate the PCGF to assure 
large enough sizes in each cell can be provided upon request. Models A and C combined cells to guarantee they had 
at least 40 observations, while Model B combined cells to guarantee they had at least 30 observations. Model A and 
Model C used the same cells to compute the PCGF, which makes their PCGF estimates comparable. 
38 To compare the actual and predicted bundles by year, I divide each period’s choices of alcohol, marijuana, and 
cocaine into 8 mutually exclusive cells: (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1), (1,1,1). The first 
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 Each bundle represents a possible combination of three binary variables at each period,

),,( ,,,
coc
ti

mar
ti

drink
ti YYY , where 𝑌!"#39 has a value of 1 if respondent i consumed drug j in time t and a 

value of 0 otherwise.  

  These three models reflect the following patterns in drug consumption bundles. First, the 

number of individuals consuming (0,0,0) decreases over time. Second, among bundles where 

only one drug was consumed at time t, the most popular drug to consume was alcohol, followed 

by marijuana, followed by cocaine. Third, among bundles where two drugs were consumed at 

time t, the most popular combination was alcohol-marijuana, followed by alcohol-cocaine, 

followed by marijuana-cocaine.  

 Simply by looking at table 6, one observes that, while the logit models predict 

contemporaneous drug consumption bundles fairly well (Model A and C), the probit 

specification (Model B) predicts contemporaneous consumption bundles just as well, with only 

three mass points, and with only first-order state dependence.  

D. SPECIFICATION DIAGNOSTICS 

A wide range of residuals have been proposed for non-linear models (Gourieroux et al 

1987; McCall 1994; Chesher and Irish 1987). Given that the generalized residuals in nonlinear 

models depend on unobservable latent variables, they are approximated by the difference 

between the actual and the expected value, normalized for heteroskedasticity.40 

                                                                                                                                                       
component of the vector is an indicator for alcohol use, the second component corresponds to marijuana, and the 
third corresponds to cocaine.  
39 𝑌!"# ,   𝜀!"# are written as 𝑌!"!"#$% ,𝑌!"!"# ,𝑌!"!"! , 𝑎𝑛𝑑  𝜀!"!"#$% , 𝜀!"!"# , 𝜀!"!"!   when j={drink, mar, coc} 
40 The generalized residuals are the difference between the actual binary variable 𝑌!"# and its expected value, 
normalized to correct for heteroskedasticity. Using the unconditional probabilities estimated by maximum likelihood 
(the share of the sample that belongs to each type without taking into account their observed sequence), I compute 
type-specific mean generalized residuals. Then, I estimate the generalized residuals using the posterior distributions 
of the random effects as weights for the generalized residual evaluated at each mass point. The posterior 
distributions of the random effects can be calculated using the Bayes rule, the observed outcome and the 
unconditional probabilities of being each type. Refer to Appendix A for a description of how these generalized 
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To examine the extent to which the identification assumptions required by Model A 

cause misspecification, I present estimated means, variances, and 1st-5th order autocorrelations of 

generalized residuals, as well as correlations across drugs.  Comparing whether the sample-

analogues of conditions 1 to 5  are close to their expected value under the null hypothesis of a 

correctly specified model allows me to choose a model with relatively little serial correlation and 

cross-drug contemporaneous correlation in the predicted errors.41 

𝐸 𝑟!,!
! 𝛼! = 0           (19) 

𝐸 𝑟!,!
! (𝛼!)! = 1           (20) 

  𝐸 𝑟!,!
! 𝛼! , 𝑟!,!!!

! 𝛼! = 0 for k=1,2,3,4,5       (21) 

  𝐸 𝑟!,!
! 𝛼! , 𝑟!,!

!! 𝛼! = 0          (22) 

 𝐸 𝑟!,!
! 𝛼! , 𝑟!,!!!

!! 𝛼! = 0 for k=1,2,3,4,5       (23) 

Table 7 shows that the mean 𝐸 𝑟!,!
! 𝛼!   and variance 𝐸 𝑟!,!

! (𝛼!)!  of the generalized 

residuals are zero and one respectively, even in the simplest logit model with only first-order 

state dependence. The predicted errors have small but statistically significant serial correlation in 

the predicted errors 𝐸 𝑟!"
! 𝛼! , 𝑟!,!!!

! 𝛼!   for k=1,2,3,4,5. For instance, Model A estimates 

𝐸 𝑟!"!"! 𝛼! , 𝑟!,!!!!"! 𝛼! = −0.0089  with SE 0.0034. 42 A model with second-order state 

                                                                                                                                                       
residuals were constructed, and refer to Gourieroux et al (1987) for a thorough description of generalized residuals 
for non-linear models. 
41 Card and Hyslop (2005) implemented the first three generalized residual sample-analogue diagnostics to diagnose 
serial correlation in the predicted errors. These three equations were enough to diagnose misspecification because 
they evaluated persistence of a single binary variable (to participate or not to participate in welfare). My study 
includes three binary variables (to use or not to use alcohol, marijuana, and cocaine), which requires extending these 
diagnostics to evaluate the last two sample-analogue generalized residuals. 
42 I report the 𝑆𝐸 = !"

!
  in Table 7, where SD is the standard deviation of the original random variables 𝑟!"

!(𝛼!), 

𝑟!"
!(𝛼!)! and [𝑟!,!

! 𝛼! , 𝑟!,!!!
! ] respectively and SE is the standard error of the following sample average (the 

generalized-residuals diagnostics) : 𝐸[𝑟!"
!(𝛼!)], 𝐸[𝑟!"

!(𝛼!)!], and 𝐸[𝑟!"
! 𝛼! , 𝑟!,!!!

! 𝛼! ], respectively. 
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dependence (Model C) reduces the extent to which first and second-order serial correlation for 

all drugs are a source of misspecification.  

Panel B of Table 7 shows evidence of correlated predicted errors “between” drugs, as 

𝐸[𝑟!"!"#$% 𝛼! , 𝑟!,!!"# 𝛼! ], 𝐸[𝑟!"!"#$% 𝛼! , 𝑟!,!!"! 𝛼! ], and 𝐸[𝑟!"!"# 𝛼! , 𝑟!,!!"! 𝛼! ] are significantly 

different from zero. This is clear evidence of misspecification for the logistic models, but not for 

the probit specification (Model B). 43
 

Finally, I show the cross-time, cross-drug correlation sample-analogue generalized 

residual 𝐸 𝑟!,!
! 𝛼! , 𝑟!,!!!

!! 𝛼!  where k=1,2,3,4,5 and j,j’={alcohol, marijuana, cocaine}.Table7  

Panel B shows evidence that the assumption of uncorrelated cross-time cross-drug errors does 

not pose a threat of misspecification and hence it is not necessary to relax that assumption by 

incorporating higher order stepping-stone effects.  

V. HETEROGENEOUS STATE DEPENDENCE AND STEPPING-STONE EFFECTS  

 To improve upon the previous specifications, which assume homogeneous state 

dependence and stepping-stone effects, I estimate trivariate logit models that permit the degree of 

state dependence and stepping-stone effects to vary by age (Model D), by gender (Model E), by 

inherent propensity to participate in drug use (Model F and G), by intensity of drug use (Model 

H), and by accumulation of addiction capital (Model I). 

A. Model D: Do Within and Between State Dependence Vary with Age? 

                                                
43 The correlation of the generalized residuals 𝐸 𝑟!"!"#$% 𝛼! , 𝑟!"!"# 𝛼! = 0.1759, and 𝐸 𝑟!"!"#$% 𝛼! , 𝑟!"!"! 𝛼! =
0.0744, and 𝐸 𝑟!"!"# 𝛼! , 𝑟!"!"! 𝛼! = 0.173, reported in Panel B on Table 7, do not match the correlation of the 
structural residuals reported in Table 2 correspondingly, where 𝑝!" = 𝑐𝑜𝑣 𝜀!"!"#$% , 𝜀!"!"# = 0.5754, 𝑝!" =
𝑐𝑜𝑣 𝜀!"!"#$% , 𝜀!"!"! = 0.3812, and 𝑝!" = 𝑐𝑜𝑣 𝜀!"!"# , 𝜀!"!"! = 0.4578. Simulated data shows that the correlation of 
generalized residuals is always lower than the correlation of structural residuals. While the computed correlation of 
generalized residuals is not relevant on its own, it is zero when the correlation of structural residuals is zero, and 
non-zero when the correlation of structural residuals is non-zero. Panel B of Table 2 indicates that the correlation of 
structural residuals is positive and statistically significant, which is in line with the correlation of generalized 
residuals reported in Table 7. 
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I consider a more general model that permits the state dependence and stepping-stone effects 

to vary by the age of the respondent. This specification relaxes the assumption of “linear in log 

odds” of Model A by replacing 𝛾!" in equation (1) with 

    𝛾!!!(𝛾!"!"#$ + 𝛾!"
!"#𝑎𝑔𝑒!")                          (24) 

Table 8 reports that state dependence increases with age for all three drugs, while 

stepping-stone effects decrease with age.44 In particular, the state dependence parameters for 

each drug are as follows: 

 𝛾!"#$%,!"#$%! (-0.50+0.12*𝑎𝑔𝑒!") 

𝛾!"#,!"#!                    (-0.32+0.11*𝑎𝑔𝑒!") 

𝛾!"!,!"!!                              (-0.25+0.10*𝑎𝑔𝑒!") 

On the other hand, the stepping-stone effects from softer to harder drugs decrease with 

age  

𝛾!"#$%,!"#!  (2.23-0.11*𝑎𝑔𝑒!") 

𝛾!"#$%,!"!!        (1.79-0.09*𝑎𝑔𝑒!") 

𝛾!"#,!"!!      (1.32-0.04*𝑎𝑔𝑒!") 

as do the “reverse” stepping stone-effects   

 𝛾!"#,!"#$%! (0.93-0.05*𝑎𝑔𝑒!") 

𝛾!"!,!"#$%!    (1.79-0.10*𝑎𝑔𝑒!") 

𝛾!"!,!"#!    (1.02-0.04*𝑎𝑔𝑒!") 

This model presents strong evidence that the habit of using a particular drug may be harder to 

break with age. On the other hand, the stepping-stone effect decreases with age, indicating that 

soft drugs are more likely to have a stepping-stone effect to harder drugs at early ages.  

                                                
44 This is reflected by a positive 𝛾!!

!"# and a negative 𝛾!"
!"# when k≠j. 
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While previous literature has evaluated the effect of consuming alcohol and marijuana at 

early ages on educational attainment (e.g., Van Ours and Williams 2009; Register et al. 2001; 

Yamada et al. 1996), only few studies analyze their effect on future use of hard drugs.  After 

separating environmental factors from the true effect of early marijuana consumption on cocaine, 

Lynskey et al. (2006) claim that individuals who consumed marijuana by age 18 are more likely 

to consume cocaine in the future than their same-sex twin who either consumed marijuana after 

age 18 or did not consume it at all. Furthermore, Yu and Williford (1992) claim that consuming 

alcohol at early ages, particularly between ages 13 and 15, increases the probability of 

progression to marijuana.  My study is in line with the previous literature and points out that the 

stepping-stone effects are higher at younger ages 

 

B. Models E: Do Within and Between State Dependence Vary by Gender? 

  First, I explore an alternative model where I include interaction terms within and between) 

state dependence and gender, 

  𝛾!" = (𝛾!"!"#$ + 𝛾!"!"#$𝑚𝑎𝑙𝑒)                                                                                                 (25) 

Columns 4,5 and 6 of Table 8 (Model E) report 𝛾!"!"#$ and 𝛾!"!"#$. While gender does not 

define a clear pattern, the state dependence parameter for alcohol and marijuana is higher for 

men than for women. On the other hand, there are no gender-differences in cocaine state 

dependence. Men have a higher stepping-stone effect from alcohol to cocaine, while women 

have a higher stepping-stone effect from cocaine to alcohol.  

C. Model F: Do Within and Between State Dependence Vary by 𝛼!? 

In this section, I allow the stepping-stone effect from drug k to j (𝛾!") to vary with the 

random effect associated with drug j ( 𝛼!). 
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This specification enables me to evaluate whether individuals with a high taste for a 

particular drug are more or less likely to be influenced by past consumption of other drugs. For 

instance, past marijuana use may not have much of an effect on future cocaine use among those 

with high preferences for cocaine, since they were going to consume cocaine regardless. 

Allowing the model to capture such behavior requires the following specification   

 𝛾!" = (𝛾!"!"#$ + 𝛾!"
!!𝛼!)                                                                                                           (26) 

 Columns 7, 8 and 9 of Table 8 report that the state dependence for alcohol is lower for 

those with higher time-invariant preference for alcohol, while cocaine state dependence is higher 

among those with high inherent propensity to consume cocaine.  State dependence for marijuana 

is unaffected by time-invariant preferences for marijuana. Regarding the stepping-stone effects, 

respondents with high preference for cocaine (𝛼!"!)  are more easily influenced to consume 

cocaine by past alcohol consumption (higher 𝛾!"#$%,!"!) but less influenced by past marijuana 

consumption (lower 𝛾!"#,!"!) than their counterparts with lower 𝛼!"!   . Respondents with high 

preferences for marijuana (𝛼!"#)  are more easily influenced to consume marijuana by past 

consumption of alcohol (higher 𝛾!"#$%,!"#) than respondents with low 𝛼!"#.  Finally, 

respondents with high preferences for alcohol (𝛼!"#$%)  are more easily influenced to drink 

alcohol by past marijuana and cocaine use than those with low 𝛼!"#$%. 

D. MODEL G: Do Within and Between State Dependence Vary by 𝛼!? 

 Finally, I explore a model where I include interaction terms between the stepping-stone 

effects from drug k to j  (𝛾!") and the random effects associated with drug k (𝛼!).   

Allowing the within and between state dependence  to vary with  𝛼! enables me to capture a 

plausible scenario where, for instance, consuming marijuana in the current period might make a 
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respondent with high inherent preference for marijuana less curious about consuming any other 

drug in the future.  

  𝛾!" = (𝛾!"!"#! + 𝛾!"
!!𝛼!)                                                                                                            (27) 

 Columns 10, 11 and 12 of Table 8 report the following patterns: (1) Respondents with 

higher preferences for alcohol (𝛼!"#!") have higher stepping-stone effects from alcohol to 

marijuana and from alcohol to cocaine, but a lower alcohol state dependence than their 

counterparts with lower 𝛼!"#$%.  (2) Respondents with high preferences for marijuana have 

higher stepping-stone effects from marijuana to alcohol and lower stepping-stone effects from 

marijuana to cocaine than their counterparts with lower 𝛼!"#. (3) Finally, individuals with high 

preference for cocaine 𝛼!"! have a higher stepping-stone effect from cocaine to alcohol and a 

higher cocaine state dependence than their counterparts who have lower 𝛼!"!. 

E. Model H: Does Within and Between State Vary with Intensity of Use? 

The preceding framework allowed for only one level of drug use, without distinguishing 

heavy users from non-heavy users. Orphanides and Zervos (2003) highlight the role of individual 

learning about drug-specific addiction levels and the individual’s own “addictive tendencies” on 

the individual’s resulting experimentation with drugs. According to their model, individuals who 

learn their “addictive tendencies” after a critical point will become drug addicts, while those who 

learn it before will avoid becoming addicted.  

In order to allow for experimentation with drugs to influence more intense use in the future, I 

allow for state dependence to vary with intensity of use. Furthermore, I analyze the extent to 

which experimentation or frequent use of a particular drug influences the use of other drugs – in 

other words, evaluating how the stepping-stone effects vary by intensity of use.  



30 
 

To improve upon the previous models, I estimate an ordered logit model with three potential 

outcomes for each drug in order of intensity by {0,1,2}, which correspond to not using drug j, 

using low levels of drug j, and using high levels of drug j in the last year.45 

The latent utilities for each drug now differentiate lagged low levels of use from lagged high 

levels of use.46 The latent utilities for each drug j are as follows 

𝑈!"# = 𝛿!! 𝑡 − 𝑡! + 𝑋!"𝛽! + 𝛾!"!"#𝑌!,!,!!!!"# + 𝛾!"
!"#!𝑌!,!,!!!

!"#! + 𝛼!"
!
!!!

!
!!!

!!"#(!!")

+ 𝜀!"#       (28)         

𝑈!"! = 𝑋!! λ !! + 𝛼!"! + 𝜀!"#
!"!#!$%                                                                                       (29) 

 I assume that the utility of not using drug j in period t is zero. At each period, 𝑌!"# has a 

value of 0, 1 or 2 if the following equations hold, respectively  

  𝑌!"# =
0,                  𝑈!"# ≤ 𝑐!  
1,     𝑐! ≤ 𝑈!"# ≤ 𝑐!
2,                               𝑈!"# ≥ 𝑐!    

                                                                                             (30) 

 

This model estimates the thresholds 𝑐! and 𝑐!, along with the parameters of the latent 

utilities 𝑉!"#(𝛼!). With a logistic error assumption, the probability of an individual using drug j in 

low or high levels or abstaining from using drug j has a closed form solution and can be written 

as follows: 

P Y!"# = 0 α!" = !"#  [!!!! !!" ]
!!!"#  [!!!! !!" ]

                                                                                         (31) 

P Y!"# = 1 α!" = !"#  [!!!! !!" ]
!!!"#  [!!!! !!" ]

− !"#  [!!!! !!" ]
!!!"#  [!!!! !!" ]

                                                              (32) 

                                                
45I define low levels of alcohol and marijuana use as consumption at least once in the last year but at most five 

days in the last month. Similarly, high levels of alcohol and marijuana use are defined as consumption more than 
five days in the last month. Because the NLSY97 does not include last month measures of cocaine use, I define low 
levels of cocaine use as consumption at most five times in the last year, and high levels of cocaine use as 
consumption more than five times in the last year. 
46 The latent utility for the ordered logit model does not include an intercept because the intercept would not be 
identified separately from the threshold. Also, the random effect affects the intercept, and allows the threshold to 
vary by type.  



31 
 

P Y!"# = 2 α! = 1− !"#  [!!!! !! ]
!!!"#  [!!!! !! ]

                                                                                       (33) 

The likelihood of a sequence of drug j consumption indicators is written as in Model A; it 

is the same as equation 5.The individual contribution to the entire likelihood function is written 

as in equation 6.47 

The last three columns of Table 8 present the parameter estimates of equation (28), which 

specifies the latent utilities for alcohol, marijuana and cocaine, respectively. State dependence is 

positive and statistically significant for all three drugs, with a slightly larger effect when the drug 

was consumed in “high levels” in the previous period.  

Similarly, the stepping-stone effects from softer to harder drugs are positive and 

statistically significant for all drugs, with a relatively larger effect when the source drug was 

consumed in “high levels” rather than “low levels.” For instance, the stepping-stone effect from 

marijuana to cocaine is higher among respondents who used “high levels” of marijuana in the 

previous period. 

 Regarding the stepping-stone effect from harder to softer drugs, lagged marijuana 

consumption does not affect current alcohol consumption, regardless of the intensity of past 

marijuana use. Interestingly, a high level of past cocaine use increases future alcohol use with no 

effect on future marijuana use. On the other hand, low levels of past cocaine use increases future 

consumption of marijuana but not alcohol in the future period. 

F. MODEL I: Do Within and Between State Dependence Vary with Years of Accumulation? 

In this subsection, I allow state dependence (within and between) from drug k to j (𝛾!") 

to vary with the number of years that have elapsed since the first time the respondent used drug k 

(𝑎𝑐𝑐!")48 

                                                
47 The only difference is that 𝑌!"# is no longer binary and now has three values: {0,1,2}.  
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𝛾!" = (𝛾!"!"#$ + 𝛾!"
!""! ∗ 𝑎𝑐𝑐!")                                                                                       (34) 

 Previous literature studied the role of cumulative measures of past drug consumption on 

current consumption of such drug (Becker, Grossman, and Murphy 1991; Becker and Murphy 

1988; Pollack 1970; Pollack 1976; Stigler and Becker 1977), while overlooking the effect of past 

drug accumulation of a particular drug on current consumption of other drugs. 

 Accumulation of addiction capital influences current substance consumption through two 

channels. On one hand, the longer an individual has consumed a particular drug, the more 

pleasure he or she derives from current consumption49. On the other hand, greater past 

consumption can lower current utility for a given amount for addictive goods50.  

 The state dependence (within and between) parameters reported in the last three columns 

of Table 8 show that state dependence increases with accumulation of addiction capital ( 𝛾!!
!""!>0 

for k=j and j,k={alcohol, marijuana, cocaine}), and these estimates are statistically significant. 

While accumulation of capital defines a clear pattern for within-drug state dependence, it does 

not for between-drug state dependence. The effect of accumulation of addiction capital on the 

stepping stone parameters is statistically significant at a conventional level only for the alcohol-

marijuana pair. The stepping stone effect from alcohol to marijuana decreases with the 

accumulation of alcohol capital and the stepping stone effect from marijuana to alcohol 

decreases with accumulation of marijuana capital.  

G. What about Drug and Year Specific Prices and Cost of Accessibility? 

                                                                                                                                                       
48 Accumulation (or stock) of addiction capital 𝑎𝑐𝑐!" measures years of exposure to drug k and is computed as the 
number of years that have elapsed between year t and the age of initiation to drug k. 
49 This can be driven by a variety of reasons such as habit formation or simply learning how to use a particular drug. 
For instance, individuals are more likely to cough the first times they use cigarettes than after being smokers for 
several months. 
50 Becker, Grossman and Murphy (1991) refer to these effects as reinforcement and tolerance. In their study, 
accumulation of addiction capital affects current utility for a given level (tolerance) and also current consumption 
level (reinforcement). 
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A limitation of the previous specifications is the lack of exclusion restrictions, that is a drug 

and year specific variable (𝑍!"#) that directly enters the utility of drug j at time t 𝑈!"#  but does 

not enter the utility for any other drug j’ or period t’. While time-varying drug prices seem to be 

the obvious answer, the full price of consuming drugs consists of the monetary price and the 

non-monetary component associated with ease of access to the drug.51 

Previous literature on substance use has documented the strong association between prices of 

drugs and their consumption level, especially among youth (Dhaval 2005; Saffer and Chaloupka 

1999; Grossman and Chaloupka 1998; Chaloupka, Grossman and Tauras 1999,  among others) 

and relies on this association to study the effects of hard drugs on risky and criminal behavior 

(Brown and Silverman 1974; Silverman and Spruill 1977; Dobkin and Nicosia 2009; Markowitz 

2000, among others).  

To measure the price of alcohol, I use the series of price of malt beverages per 16 oz. 

provided by the Bureau of Labor Statistics by region and month. I compute a yearly average and 

convert it to1980-1984 dollars.52  

I obtain year specific prices per expected pure gram for a variety of hard drugs such as 

powder cocaine, crack cocaine, heroin, methamphetamine, and price per bulk gram of marijuana 

from the 2008 ONDCP report entitled “The Price and Purity of Illicit Drugs: 1981-2007”53 

                                                
51 While price is a natural choice for an exclusion restriction, any time-varying drug specific variable fits the criteria 
to be an exclusion restriction. Gentzkow (2007) uses non-price variables (indicators for whether the individual has 
internet access at work, or uses the internet for work related or education related tasks, among other non-price 
variables) as exclusion restrictions for the utility of reading online papers, given the lack of variation in the price of 
reading newspapers online (price is zero and it does not vary over time). 
52 While most of the variation in prices of alcohol across states is driven by alcohol taxes, state level beer taxes do 
not exhibit much variation over time. The federal excise tax on beer has not changed since 1991. There is very 
limited within state variation in the beer tax level, which makes beer tax a problematic exclusion restriction 
(Carpenter et al 2007). Price is a more attractive choice for alcohol exclusion restriction.  
53 Office of National Drug Control Policy, 2008, The Price and Purity of Illicit Drugs: 1981-2007.  Institute for 
Defense Analysis (IDA) Paper P-4369, electronically accessible through the following World Wide Web address 
http://www.whitehouse.gov/sites/default/files/ondcp/policy-and-research/bullet_1.pdf . The accompanying 
Technical Report is available at http://www.whitehouse.gov/sites/default/files/ondcp/policy-and-
research/price_purity_tech_rpt07.pdf .   
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prepared by the Institute for Defense Analysis (DEA) for the Office of National Drug Control 

Policy (ONDCP). Estimates of price and purity presented in their report were obtained from 

records in the System to Retrieve Information from Drug Evidence (STRIDE) database.54 The 

prices reported in STRIDE are collected by undercover DEA, FBI and state and local police 

narcotics during undercover seizures in 139 cities and reflect actual street prices because 

inaccurate price offers would make drug dealers suspicious, threatening the safety of undercover 

agents (Taubman, 1991). 

 A problem of the STRIDE data is that the total cost of purchasing a particular amount is not 

proportional to weight. Price per gram and level of purity varies by purchased amount. To 

overcome this problem, the 2008 ONDCP reports national quarterly EPH (expected purity 

hypothesis55) estimates for each illicit drug for three or four quantity levels56. Due to the lack of 

purity data for marijuana, I only have access to price per bulk gram of marijuana by purchased 

amount (0.1 to 10 grams, 10-100 grams, more than 100 grams).57  

The full cost of using drugs is not only reflected by prices but also by ease of drug 

accessibility. The variable 𝑝𝑜𝑝!"# provides a proxy for drug prevalence, and measures the state 

level deviations from national trends in treatment admissions for substance abuse for a particular 

                                                
54 STRIDE is a dataset maintained by the DEA and provided to ONDCP and IDA  
55Office of National Drug Control Policy (2008) define the “Expected Purity Hypothesis” model as “The output of 
the EPH modeling can be viewed as regression-based estimates of the expected purity and expected price per pure 
gram for distinct combinations of illicit drugs, quantity levels, and geographical locations. National indices are 
constructed as population-based weighted averages of results across different cities and census regions. In the 
estimation of prices, each STRIDE transaction price is normalized by the local value of the expected purity, vice by 
the assayed purity of the specific transaction.”  
56 For instance, the reported price per expected pure gram of crack cocaine is reported separately for purchases 
between 0.1 to 1 gram, 1 to 15 grams, and more than 15 grams. 
57 An alternative dataset for marijuana prices is provided by the High Times magazine, which compiles prices 
voluntarily posted by individuals who recently purchased marijuana. While marijuana seizures only constitute 3% of 
the STRIDE database, these are enough observations to measure price variation over time (I do not need marijuana 
prices by state and year). The STRIDE marijuana prices must reflect market prices in order to not look suspicious 
during busts and seizures. 
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drug, for the state in which respondent i resided in year t58.  The numerator measures the share of 

admissions to a substance abuse treatment facility who reported abusing drug j in state s and year 

t (state s is the state of residence for individual i in year t), as indicated in the TEDS-A dataset. 

The denominator is the national share of admissions to a substance abuse treatment facility in 

year t that reported abuse of drug j. 

𝑝𝑜𝑝!"# =
#  !!"  !"#$   !,!,!

#  !!"  !"#$!,!
#  !!"  !"#$   !,!"#,!

#  !!"  !"#$!"#,!

                                                       (35) 

 Respondents with 𝑝𝑜𝑝!,!,!  greater than 1 live in a state that has a higher share of 

individuals admitted to a substance abuse treatment center for abusing drug j than the 

national share, and I interpret this as individual i having a lower cost of accessing drug j than 

average59.  

The model estimated in this section incorporates year and drug specific variables 𝑡𝑣!"# to the 

latent utilities (equation 1), as well as 𝑡𝑣!"! to the initial conditions equation (equation 2),  

𝑈!"# = 𝛿!! + 𝛿!! 𝑡 − 𝑡! + 𝑋!"𝛽! + 𝛾!"𝑌!,!,!!!
!
!!! +   𝑡𝑣!,!,! + 𝛼!" + 𝜀!"#                         (36) 

𝑈!"! = 𝜔!! + 𝑋!! !! +   𝑡𝑣!,!,! + 𝛼!"! + 𝜀!"#
!"!#!$%                  (37)

 

where   𝑡𝑣!,!"#$%,! = 𝜃! ∗ 𝐼[𝐴𝑔𝑒!"𝜃! ≥ 21]+ 𝜃! ∗ 𝑍!,!"#$%,!,   𝑡𝑣!,!"#,! = 𝜃! ∗ 𝑍!,!"#,!,   𝑡𝑣!,!"!,! =

𝜃! ∗ 𝑍!,!"!,!, and 𝑍!"# is the drug and time specific exclusion restriction. For the initial conditions 

                                                
58 There are other potential measures of drug prevalence such as the number of drug-related emergency room visits 
and the share of employers who request drug testing prior to employment, but the years for which those datasets 
were available did not overlap with my sample. 
59 Note that 𝑝𝑜𝑝!!">1 can also be interpreted as the individual living in a state that is very intolerant of drug j where 
users of drug j are more easily sent to substance abuse programs (in which case individual I faces a higher cost of 
accessing drug j). The sign of 𝑝𝑜𝑝!"# is irrelevant for this study. The variable 𝑝𝑜𝑝!"#  enters the utility of alcohol and 
cocaine positively, while it enters the utility for marijuana negatively. Regardless of how I interpret 𝑝𝑜𝑝!"#, STRIDE 
prices are negatively correlated to the share of TEDS treatment center admissions, at least for cocaine (ONDCP IDA 
Paper P-3219), and hence they provide additional information on drug and year specific prices. 

λ
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equations, I use   𝑡𝑣!,!,! = 𝜃!! ∗ 𝑍!,!,! because every individual is under age 21 in the initial period. 

I explore with three specifications for 𝑍!,!,!. 

The first three columns of Table 9 report state dependence (within and between) parameters 

(𝛾!") when 𝑍!" = 𝑝𝑜𝑝!"#. State dependence within drug and stepping-stone effects from softer to 

harder drugs are positive and statistically significant. On the other hand, reverse stepping-stone 

effects from harder to softer drugs are statistically insignificant. These results remain robust to 

alternative specifications of 𝑍!".  

Columns 4, 5, and 6 define 𝑍!" = (1/𝑝𝑜𝑝!"#) ∗ 𝑝𝑟𝑖𝑐𝑒!"! where price for alcohol is the 

price of 16 oz of a malt beverage in the region individual i resided in year t in 1980-84 

dollars. I use the price per gram of marijuana among purchases that were made in small 

volumes (0.1-10 grams) and the price of crack cocaine among purchases that were made in 

small volumes (0.1-1 gram). Finally, the last three columns use the same definition of   

𝑍!" = (1/𝑝𝑜𝑝!"#) ∗ 𝑝𝑟𝑖𝑐𝑒!"# but use the price per gram of marijuana among purchases that 

were made in large volumes (more than 100 grams) and the price per expected pure gram of 

crack cocaine that was purchased in large amounts (more than 15 grams). The results remain 

robust to my choice of price per gram of marijuana and cocaine60.  

Finally, I also included an indicator for whether the respondent is older than 21 years of 

age at the time of interview in   𝑡𝑣!,!"#$%,!, and this positively affected the latent utility for 

alcohol.  

H. Complements or Substitutes? 

                                                
60 I also tested models that include all possible combination of drug prices (price per gram of marijuana for 
purchases in low volumes-between 0.1-10 grams- and high volumes-more than 100 grams) and for hard drugs 
(powder cocaine, crack cocaine, heroin, and methamphetamine when purchased in small and large volumes). The 
results remained robust to these 16 specifications. 
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 An analogous problem to separating state dependence from unobserved heterogeneity, it 

is to separate complementarity in utility (i.e. the utility from consuming two different drugs is 

higher than the sum of the utilities of consuming each of those drugs separately) from correlation 

in consumer preference (individuals who have a high preference for any substance also have a 

high permanent preference for other substances).61  

 Gentzkow (2007) develops a model to separate these two competing factors to explain 

the correlation between contemporaneous purchases of print newspaper and consumption of 

online newspapers. My paper also contributes to the literature by extending the model developed 

by Getzkow (2007) to also allow for state dependence and stepping stone effects as well as 

complementarity in utilities62. 

 Previously, I estimated a multivariate probit model (Model B) where I allowed the 

permanent as well as the transitory unobserved components of the latent utilities to be correlated 

between drugs. A problem with the multivariate probit specification is that the utility from 

consuming two drugs together is assumed not to have any value in addition to consuming both 

drugs separately (Γ!" = 0). This section relaxes that assumption. 

 Ideally, I would estimate a model where I define the utility for consuming drug j by itself  

𝑈!"# = 𝑉!"# + 𝜀!"#, then define the utility for consuming two drugs j and j’ as 𝑈!""!! = 𝑉!"# +

                                                
61 Table 6 shows that individuals are more likely to consume drugs in bundles, and this occurs particularly with 
harder drugs. Only 0.06% of my NLSY97 sample in 2007 consumed cocaine by itself, only and 0.04% consumed 
cocaine and marijuana alone, while 3% consumed alcohol, marijuana and cocaine. Similarly, 0.7% consumed 
marijuana alone while 14% consumed alcohol and marijuana. On the other hand, 59% consumed alcohol alone 
(Table 6). 
62 Gentzkow (2007) models the utilities of consuming two non-mutually exclusive goods a and b as follows (𝑈!, 𝑈!, 
𝑈!, 𝑈!"correspond to the utilities for not consuming either a or b, consuming only a, only b, and consuming both a 
and b, respectively). The parameter Γ determines whether a and b are complements (Γ > 0) or substitutes 
(Γ < 0) in utility.  

𝑈! = 0 
𝑈! = 𝛿! − 𝛼𝑝! + 𝜐! 
𝑈! = 𝛿! − 𝛼𝑝! + 𝜐! 
𝑈!" = 𝑈! + 𝑈! + Γ 
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𝑉!!!! + Γ!!! + ℰ!"!!! and the utility from consuming all three drugs j, j’, and j’’ as 𝑈!!!!!!!! =

𝑉!"# + 𝑉!"!! + 𝑉!"!!! + Γ!,!!!!! + 𝜀!""!!!!! for all eight possible bundles of consumption of alcohol, 

marijuana and cocaine. However, this model is impossible to estimate because there are some 

bundles of consumption where the sample size is negligible.63  

 Because of that, I estimate these models separately in pairs, and establish whether they 

are complements or substitutes. First, I estimate these models using the same 𝑈!"# = 𝑉!"# + ℇ!"# 

as defined in equation 1 and 2 (Panel A Table 10). Second, I use latent utilities that incorporate 

drug and year specific exclusion restrictions as in equation 36 and 37 (Panel B Table 10). For 

both specifications, I estimate a separate Γ!
!!! for each pair at the initial conditions. 

 This second specification with exclusion restrictions is equivalent to the model developed 

by Gentzkow (2007) after having incorporated state dependence within and between drugs.  

 The state dependence and stepping stone parameters have the same interpretation as 

before. Alcohol and marijuana are complements. While alcohol has a stepping stone effect on 

marijuana, marijuana consumption has a negative stepping stone effect on alcohol.  

 The third and fourth columns report the relationship between alcohol and cocaine. 

Alcohol has a positive and statistically significant stepping stone effect on cocaine, while lagged 

cocaine use has no effect on current alcohol consumption. 

 Finally, the last two columns show the relationship between marijuana and cocaine. 

While marijuana and cocaine are complements in utility, marijuana does not have a stepping 

stone effect on cocaine. On the other hand, cocaine has a negative stepping stone effect on 

                                                
63 I estimate a similar model where the outcomes are (1) alcohol only, (2) marijuana only, (3) alcohol and marijuana, 
(4) cocaine alone, cocaine and alcohol, cocaine and marijuana, and (5) alcohol, marijuana and cocaine. While the 
state dependence and stepping stone parameters are not readily interpretable in that specification, that model 

estimates a positive and statistically significant Γ
!!′!′′

, which implies that there is added value to consuming all 
three drugs together. These estimates can be provided upon request.  
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marijuana. These results are robust to the inclusion of drug and time specific exclusion 

restrictions. The main purpose of this section was to separate complementarity in utility from 

correlation in preferences. Because I could not include lagged outcomes for all three drugs, I do 

not make these findings on the state dependence and stepping stone effects the preferred 

interpretation for such parameters.  

I. POLICY CONSEQUENCES OF EARLY DRUG USE 

In this section, I use the parameter estimates from the models to evaluate the effect of 

reducing the consumption of soft drugs on long term drug outcomes. Figure 4 compares the age 

profile of simulated cocaine consumption and four variants. These alternatives remove alcohol 

and marijuana consumption together until age 18, 20 and 22 respectively. I simply “turn off” 

consumption of alcohol and marijuana until the relevant ages. My simulations suggest that 

removing soft drugs until age 18 reduces long term cocaine use by large magnitudes, while 

removing cocaine for an additional two years, until age 20, has a milder impact. Finally, 

removing soft drugs until age 22 has almost negligible additional effects relative to removing 

them until age 20.64 This is in line with a finding that stepping-stone effects decrease with age65.  

While removing alcohol and marijuana use  

                                                
64 Table A5 reports that the decrease in simulated cocaine consumption that occurs if alcohol and marijuana were 
artificially removed until age 18 is drastic and statistically significant until age 22. However, artificially removing 
alcohol and marijuana for two additional years until age 20 leads to a further statistically significant  
decrease in simulated cocaine consumption for the age group 21-22. Finally, artificially removing alcohol and 
marijuana for additional two years until age 22 leaves simulated cocaine consumption statistically indistinguishable 
from the previous counterfactual scenario. 
65 Table A5 presents standard errors for the estimates of the share of respondents who consume cocaine by age 
category that are presented in Figure 4. First, I simulate drug outcomes using the parameters estimated in the model 
and the demographics of my entire sample. Second, I use those simulated drug outcomes to obtain an estimate for 
the share of individuals in the sample that my model predicts will be using drugs by each age category (𝜇!"#$   is the 
predicted share of individuals who consume drug j in age category a, and simulation repetition r for year t). Third, I 
repeat this process 100 times. Then, I compute a mean and standard deviation for (𝜇!"#!, 𝜇!"#!,…… , 𝜇!"#!"") and 
report those in Table A5. 
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entirely is not very realistic, it is more plausible to increase the cost of accessibility to 

encourage individuals who use the softer drugs to use them with moderation.66 Figure 5 

compares the share of respondents who consume cocaine and three variants. These alternatives 

assume that respondents who want to use alcohol or marijuana are somehow compelled to only 

use them in “low doses.”  Hence, I simply replace simulated high levels of consumption of 

alcohol and marijuana with low levels of consumption, instead of “turning them off.” 

Assuming that this change has no effect on the other parameters of the model, my structural 

estimates imply that regulating intensity of alcohol decreases simulated cocaine consumption (at 

both high and low levels) from 5.35% to 4.69%,67 while regulating intensity of marijuana use 

decreases simulated cocaine consumption to 4.75%. These effects are comparable, but simulating 

policy changes to reduce intensity of alcohol consumption affects outcomes of more individuals 

than implementing policy changes to reduce intensity of marijuana consumption, because there 

are more heavy alcohol than heavy marijuana users.  

Figure 6 illustrates the role of marijuana consumption in low amounts by comparing the 

simulated share of respondents who consume cocaine with two variants: one where simulated 

frequent users of marijuana are somehow compelled to consume only low levels of marijuana, 

and one where simulated frequent marijuana users are somehow entirely deterred from 

consuming marijuana. Simulations suggest that, for potential heavy marijuana users, eliminating 

marijuana use has a modestly greater effect on reducing cocaine use, relative to the effect of 

merely reducing levels of marijuana consumption. This gap decreases over time and becomes 

                                                
66 Carpenter and Dobkin (2009), for instance, presents evidence that a higher cost of accessing alcohol (provided by 
the minimum legal drinking age) reduces binge drinking and heavy use of alcohol.  
67 The share of individuals who use cocaine in a year (in low or high amounts) is 5.35%, averaged over years 1998 
to 2007. When I simulate cocaine consumption (adding up low and high) under the counterfactual scenario where 
alcohol and marijuana in high amounts are replaced with low amounts, the share of cocaine users is 4.69%, averaged 
over years 1998 to 2007. 
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almost negligible as respondents become adults, which is in line with the finding that low 

amounts of marijuana have a stepping-stone effect that operates mainly at young ages.68  

These simulated scenarios highlight previously unappreciated benefits of policies aimed 

at preventing alcohol and marijuana consumption. Because marijuana is already illegal, most 

policies aimed at moderating consumption of soft drugs focus on alcohol regulation. I will 

briefly discuss how the Zero Tolerance (ZT) Laws, the current minimum legal drinking age 

(MLDA) of 21, and the MLDA increase in the 1980s are comparable to the simulated scenarios 

described above. 

Zero Tolerance Laws were implemented in all states by 1998, requiring suspension of the 

driver’s license of any driver under age 21 who has any amount of blood alcohol content; these 

laws did not directly target drinking by individuals 21 and older. To the best of my knowledge, 

there have been no studies directly evaluating the effect of ZT laws on marijuana and cocaine 

consumption, but Carpenter (2004a) finds that they decreased binge drinking by 13% among 

men younger than 21. My study suggests previously unappreciated benefits of policies that 

prevent use of soft drugs at early ages, such as ZT laws.  

                                                
68 Table A6 presents standard errors for the estimates of the share of respondents who consume cocaine by year that 
were plotted in Figure 5 and 6. These estimates were computed in a similar way to the estimates presented in Table 
A5. I use the ordered logit model to compute these estimates, and the reported share of respondents who consume 
cocaine in year t corresponds to the sum of the share of respondents who consume cocaine in low levels and high 
levels. As we can see from Figure 5, there is a decrease in simulated cocaine users when we regulate intensity of 
both alcohol and marijuana consumption, and this decrease is statistically significant (Panel B versus Panel E of 
Table A6). However, the effects of artificially regulating either high levels of alcohol or high levels of marijuana 
consumption are statistically indistinguishable (Panel C and D of Table A6). I am not saying that the stepping stone 
effects from high levels of alcohol are the same as the effects of high levels of cocaine since there are more 
individuals using high levels of alcohol than there are using high levels of marijuana. Finally, figure 6 compares 
simulated cocaine consumption under the counterfactual scenario where high levels of marijuana consumption are 
replaced with low levels (Panel D of Table A6) versus a scenario where simulated frequent marijuana users are 
entirely deterred from consuming marijuana (Panel F of Table A6). While the second scenario leads to a lower share 
of cocaine users, they are statistically indistinguishable. Finally, Panel G reports simulated share of cocaine users 
under the assumption that all simulated marijuana users (frequent and infrequent) are deterred from consuming it, as 
a reference point. 
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A second policy that decreases frequency and intensity of alcohol consumption among 

youth is the current minimum legal drinking age of 21. Using the NLSY97, Yoruk and Yoruk 

(2011) found that all measures of alcohol consumption increased at age 21, causing an increase 

in the number of marijuana users but a statistically insignificant decrease in the frequency of use 

of marijuana.  Because my model suggests that the stepping-stone parameters decrease with age, 

I would expect the increase in marijuana users associated with attaining the drinking age to be 

higher if the MLDA were lower.  

A change in the MLDA occurred in 1983, when President Reagan imposed penalties on 

states that failed to increase the minimum legal drinking age from 18 to 21; all states had 

implemented the change by 1988. However, the effect of this policy on marijuana69 is not 

comparable to my simulation exercise for two reasons. First, the increase in the MLDA took 

place in 1988 at the latest, and the NLSY97 interviews respondents were between 18 and 21 in 

2003. Because factors that affect drinking have changed between 1988 and 2003, these two time 

periods are not comparable. Second, the increase in the MLDA decreased alcohol consumption 

only very slightly among respondents between 18 and 21 years old (DiNardo, Lemieux 2001). 

Because my simulation exercises artificially remove alcohol use entirely at early ages, or 

regulate intensity of alcohol use for everyone in my sample, these policies are not directly 

comparable.  

Because of the illegal status of marijuana and cocaine, there are not many prevention policies 

targeted at particular age groups. Anderson et al. (2011) finds that legalization of medical 

marijuana increases marijuana consumption among adults but not minors.  My study suggests 

                                                
69 DiNardo and Lemieux (2001) found that marijuana use increased slightly among respondents 18-21 who were 
affected by the increase in the minimum legal drinking age. 
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that the stepping-stone effects from medical marijuana to other drugs should not be very large in 

magnitude because adults have lower stepping-stone effects. 

 

VI.  CONCLUSION 

This paper presents an explanation of two aspects of drug consumption. First, drug use 

exhibits persistence over time. That is, the probability of consuming a particular drug at any 

given period is higher among those who consumed that drug in the previous period. Second, the 

probability of consuming hard drugs is higher among those who consumed relatively softer drugs 

in the previous period. 

In this paper, I develop a series of multiple-equation models that allow me to disentangle 

state dependence and stepping-stone effects from correlated unobserved heterogeneity. I find 

strong evidence of state dependence in drug use, as well as modest-sized stepping-stone effects 

that operate from softer to harder drugs. I also show evidence that both the permanent and 

transitory unobservable components of tastes are positively correlated across drugs.  This 

positive correlation does not support an interpretation that drugs are complements to each other; 

such a finding would require more frequent data than the yearly NLSY97 survey. 

A related finding is that the stepping-stone effects decrease with age, while state 

dependence increases with age, indicating that the habit of using a particular drug is harder to 

break for older individuals, and that consumption of softer drugs has a greater influence on 

consumption of harder drugs at early ages.  I also consider an “ordered” model that allows me to 

distinguish between different levels of intensity of drug use at each point in time. An ordered 

logit model indicates that the stepping-stone effect from softer to harder drugs is stronger among 

those who consume high levels of the softer drug.  This study suggests that one should take into 
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consideration age and intensity of soft drug consumption in investigating the effects of alcohol 

and marijuana use on long-run consumption of hard drugs. 

This paper highlights the important role that individual preferences play in drug 

consumption. Most of drug persistence is explained by true state dependence within a drug type. 

On the other hand, only a small share of the gap between the conditional probabilities of 

consuming harder drugs among those who consumed softer drugs in the previous period versus 

those who abstained is explained by stepping-stone effects. While preventing alcohol and 

marijuana use has a modest impact on future cocaine use, these policies are constrained by the 

role of individual preferences.  

While this study is not the ideal field experiment where drugs are randomized among 

individuals whose future drug consumption is followed by a researcher, taken together these 

specifications are much more informative than the raw data in assessing the degree to which 

illegal drugs exert a stepping stone effect.  
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APPENDIX A : Generalized Residuals Specification Diagnostics 

In this section, I describe step-by-step how to build the generalized residuals that I use as 

specification diagnostics in section 4.  

If the model is correctly specified, the following conditions must hold at the true location 

parameter of the time-invariant unobservable component (random effect), where 𝑟!"
! is a 

generalized residual 

𝐸 𝑟!,!
! 𝛼! = 0                                                                                                                 

𝐸 𝑟!,!
! (𝛼!)! = 1                                                                                                               

  𝐸 𝑟!,!
! 𝛼! , 𝑟!,!!!

! 𝛼! = 0 for k=1,2,3,4,5                                                                      

  𝐸 𝑟!,!
! 𝛼! , 𝑟!,!

!! 𝛼! = 0                                                                                                   

 𝐸 𝑟!,!
! 𝛼! , 𝑟!,!!!

!! 𝛼! = 0 for k=1,2,3,4,5                                                                       

A challenge to compute a sample-analogue of these five equations is that the random effect is 

unknown to the econometrician. Card and Hyslop (2005) implemented sample analogues to the 

first three equations to test the null hypothesis of the model being correctly specified. Because 

my study has three binomial variables, I need to extend their diagnostics to diagnose whether the 

last two equations hold under the assumption of the model being correctly specified.  

 Following Card and Hyslop (2005), I develop the generalized residuals using the 

posterior distributions of the random effects as weights for the generalized residual evaluated at 

each mass point.  

Let 𝜋! be the unconditional probability. Those probabilities are estimated by maximum 

likelihood and can be interpreted as the share of the sample that is type k, without taking into 
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account their observed sequence. Observing the outcomes, I can estimate the conditional or 

posterior probabilities and the generalized residuals for the logit model as follows.70 

Step 1: Assign the predicted probability of the observed sequence given a type 

First, I write the likelihood for the observed outcome conditional on the estimated parameters 𝛽 

and conditional on the individual being type m. For logit, I write the likelihood as follows: 

𝐿! 𝛼! = 𝐿!!"#$% 𝛼! ∗ 𝐿!!"# 𝛼! ∗ 𝐿!!"!(𝛼!) 

where 

𝐿!
! 𝛼! = 𝑃 𝑌!"! 𝛼! 𝑃(𝑌!"#

!""#

!!!"""

|𝑌!,!!!,𝛼!) 

𝑌!" = (𝑌!"!"#$% ,𝑌!"!"# ,𝑌!"!"!)  

𝛼! = (𝛼!!"#$% ,𝛼!!"# ,𝛼!!"!) 

Step 2: Calculate the conditional or posterior probabilities of being each type 

The conditional probabilities of being type m, given the observed outcome, can be calculated 

using the Bayes rule, the observed outcome and the unconditional probabilities of being each 

type.  

𝑤!! = 𝑃 𝛼! 𝑌! =
𝐿!(𝛼!)
𝜋!𝐿!(𝛼!)!

!!!
 

Step 3: Build Generalized Residuals 

𝑟!"
! 𝛼! =

𝑌!"# − 𝑃!"#(𝛼!)

𝑃!"# 𝛼! [1− 𝑃!"# 𝛼! ]
 

                                                
70 The expected value is E[𝑌!"#]=P(𝑌!!"=1) for the logit and probit specifications. I have also computed generalized 
residuals for the ordered logit model, where Y={0,1,2},  
 E[𝑌!"#]=0*P(𝑌!"#!"!#) + 1 ∗ 𝑃 𝑌!"#!"# + 2 ∗ 𝑃(𝑌!"#

!!"!), and 
 𝑣𝑎𝑟 𝑌!"# = 𝑃 𝑌!"#!"!# ∗ (0 − 𝐸 𝑌!"# )! + 𝑃 𝑌!"#!"# ∗ (1 − 𝐸 𝑌!"# )! + 𝑃 𝑌!"#

!!"! ∗ (2 − 𝐸 𝑌!"# )!. I did not report in 
the paper the generalized residual diagnostics for models with heterogeneous state dependence but I can provide 
them upon request.  
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where 𝑌!"#  is the observed outcome for drug j and 𝑃!"#(𝛼!)  is the predicted probability of using 

drug j conditional on the estimated parameters, lagged drug outcomes, and the random effects 

corresponding to type m. For the logit model,  P!"#(α!)  corresponds to equation 3 for periods 

after 1998, and equation 4 for year 1998.  

Step 4: Diagnose 𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 ] = 𝟎 

The following are the individual type-specific mean generalized residuals for drug j by type 

𝑚0!" 𝛼! =
𝑟!"
!(𝛼!)!""#

!!!"""

10  

I estimate the mean generalized residual using the conditional probabilities as weights to 

calculate the weighted average 

𝑚0!" = 𝑤!!
!

!!!

∗𝑚0!"(𝛼!) 

Then I take the mean over people of these residuals and report them along with the standard error 

to test the null hypothesis that they are zero. 

Step 5: Diagnose 𝑬 𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊𝒕

𝒋! 𝜶𝒊 = 𝟎 

The type-specific correlation of generalized residuals is estimated as follows: 

𝑡0!
!,!! 𝛼! =

𝑟!"
! 𝛼! ∗ 𝑟!"

!!(𝛼!)!""#
!!!""#

10  

I use the conditional probabilities as weights to calculate the weighted average  

𝑡0!
!,!! = 𝑤!! ∗ 𝑡0!

!.!!
!

!!!

(𝛼!) 

Then I take the mean over people of these residuals and report them along with the standard error 

to test the null hypothesis that they are zero. In a similar way, I find 2nd-5th order autocorrelation 

and cross-product correlations. 
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Appendix B: Classification error 
 

My study was restricted to respondents from the NLSY97 who were not lost due to 

attrition for the entire 10 waves, and who answered questions related to past year alcohol, 

marijuana and cocaine consumption for all 10 waves as well. Three natural concerns arise from 

these restrictions: (1) Are respondents being lost due to attrition randomly? (2) Are respondents 

purposely avoiding responding to the drug-related questions? (3) Are respondents answering the 

questions truthfully, and, if not, to what extent does this misreporting affect the estimated 

parameters? This section will address these three concerns.  

Is attrition random? 

The first column of Table A1 reports mean summary statistics for the entire sample of 

8984 respondents while the second column reports mean summary statistics for the subsample of 

respondents who were not lost due to attrition between 1997 and 2007, regardless of whether 

they avoided the drug questions. The first wave on NLSY97 started with 8984 respondents, and 

62% (N=5623) of respondents completed all surveys from 1997 to 2007.  

Columns 1 and 2 of Table A1 report that the average age at first wave, the share of 

respondents who have a father present in the household at the first wave, and the age of 

substance initiation, as well as the probability of ever consuming alcohol, marijuana or cocaine, 

remain almost unchanged when I restrict the sample to respondents who were not lost due to 

attrition between 1997 and 2007.  

Did respondents purposely avoid drug-related questions? 
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The analysis reported in this paper is restricted to respondents for whom I have non-

missing answers to their alcohol, marijuana, and cocaine-related question for all 10 waves. That 

implies that they were not lost due to attrition and also did not purposely avoid the drug-related 

questions.  The mean summary statistics for this subsample of 5112 respondents is reported in 

column 3. After dropping observations with missing relevant covariates, I have 5108 respondents 

remaining. The entire paper is based on this subsample. 

After restricting the sample to those who were not lost due to attrition, 94.59%, 92.78% 

and 94.47% of those respondents answered the alcohol, marijuana, and cocaine-related questions 

for all 10 waves, respectively.71 This is evidence that respondents for whom I do not have the 

entire sequence of drug-related questions for all three drugs were lost mainly due to attrition 

instead of just avoiding the drug-related questions.  

Misclassification Error: 

Brener et al (2003) provides a detailed discussion of how the validity of self-reported 

risky behaviors data is affected by cognitive and situational factors. Because biochemical 

measures of substance use, such as breath tests to capture alcohol use or urinalysis to capture 

marijuana use, can only capture very recent substance use,72 researchers need to rely on self-

reported substance use data.  

 According to Brener et al. (2003), the most common sources of misreporting are: (1) 

Respondents have trouble remembering the exact time period in which a particular risky 

behavior occurred. In response to this concern, the main part of my analysis is based on reports 

                                                
71 Column 4, 5 and 6 report the mean summary statistics for respondents for whom I have non-missing alcohol, 
marijuana, or cocaine-related data for all 10 waves, respectively. Column 3 is restricted to those who reported non-
missing alcohol, marijuana, and cocaine outcomes for all waves.  
72The breath test captures alcohol use only within the 24 hours preceding the test; blood tests identify only heavy 
alcohol use; and urinalysis to detect recent marijuana use has a significant number of false negatives (Brener et. Al 
2003).  
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of substance use, regardless of the amount, in the last year; this is easier to remember and hence 

more reliable than frequency or intensity of use.  (2) The method of survey also affects the 

validity of self-reported measures of risky behaviors. For instance, CASI (or computer assisted 

self-interviewing) produces more accurate results than SAQ (pen-and-pencil self-administered 

questionnaire), and SAQ produces more measures of self-reported substance use than IAQ (in-

person interview or interviewer-administered questionnaire). While the NLSY97 interviews were 

conducted using a Computer-Assisted Personal Interview (CAPI73), answers to sensitive 

questions were collected using audio computer-assisted self-interview (ACASI). The ACASI 

interviewing system enabled the respondent either to listen to the questions directly using 

headphones, or to read the questions from the laptop screen. This allows greater privacy.  

Previous literature highlights the importance of accounting for classification error in 

dynamic discrete choice models for self-reported data on employment status (Keane and Sauer, 

2009), full-time versus part-time school attendance, wages (Keane and Wolpin 2001, 2006), job 

change (Hausman et al. 1998) and many other outcomes. 

Keane and Sauer (2010) and Hausman et al. (1998) provide a detailed discussion of how 

to incorporate, identify and estimate biased or unbiased classification error. Because the model is 

already computationally burdensome, and because misclassification can arise in alcohol, 

marijuana, and cocaine outcomes, incorporating misclassification error may be computationally 

infeasible, or at least extremely time consuming.  

If respondents are still misreporting data, the most likely underreported outcome would 

be cocaine use. While it is obvious that the cocaine state dependence parameter would be biased 

                                                
73 Interviews conducted using a CAPI system were administered in person by an interviewer with a laptop computer.  
For more information, see http://www.bls.gov/nls/97guide/rd5/nls97ug2.pdf. A computerized interviewing system 
had a clear advantage at preventing invalid answers or answers that conflict with answers provided in previous 
waves, reducing inconsistencies across waves.  
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downward if cocaine use was underreported, I quantify the extent to which the estimated 

parameters change in the presence of classification error, by conducting the following simulation 

exercise: 

(1) I estimate a logit model with seven mass points (Model A), and I call the vector of 

parameters {𝜃𝑚=7} . 

(2) I generate data using the parameters {𝜃𝑚=7} .This newly generated data would be the 

true data if {𝜃𝑚=7} were the true parameters in the underlying process. 

(3) I simulate a dataset where there is measurement error. I assume the dataset simulated 

in step 2 is the true data and {𝜃𝑚=7} are the true parameters. I create a new dataset 

where, every year, 20% of the respondents who truly consumed cocaine randomly 

report not having consumed any cocaine.  

(4) I re-estimate the parameters using the data I created with measurement error in step 3, 

and I call these parameters {𝜃!!!!""#" } 

(5) The new parameters {𝜃!!!!""#" } tells me how much the true parameters {𝜃𝑚=7} would 

change if, independently in every year, 20% of random respondents who consumed 

cocaine reported not having consumed cocaine. 

The estimated {𝜃𝑚=7} and {𝜃!!!!""#" } reported in Table A2 indicate that introducing 

classification error underestimates cocaine state dependence by a statistically significant 

magnitude.74 

Appendix C: Comparing data across datasets 
 

Comparing the NLSY97 with other datasets is challenging because different datasets are 

collected using different timeframes and survey respondents in different age groups.  
                                                
74 I also performed the same analysis using a model with only 3 mass points to see whether models with a different 
number of mass points are more sensitive to the introduction of classification error.  I get the same result; the only 
parameter that is affected is a statistically significant decrease in cocaine state dependence.  
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The 2010 report Results from the 2010 National Survey on Drug Use and Health: Summary 

of National Findings75  compares measures of lifetime and recent drug use patterns for the 

following datasets, separately for teenagers (12-17 years old) and for young adults (18-25 years 

old), for years 2002 to 2010. 

(1) National Survey on Drug Use and Health (NSDUH): Annual survey of civilians 12 

years old and older who are not institutionalized, conducted in their household. The 

dataset collection began in 1971 using face-to-face-interviews. The interview system 

switched to a computer assisted system (CA) in 1998, in which the sensitive questions 

were administered via audio computer-assisted self-interviewing (ACASI), and the 

less sensitive questions were administered using computer-assisted personal 

interviewing (CAPI).  

(2) Monitoring the Future (MTF): An ongoing annual survey of 8th, 10th and 12th graders, 

in which they complete a self-administered computerized interview in school, during 

a regular class period. A sample of each graduating class is selected to receive annual 

follow up questionnaires.  

Table A3 compares the percentage of young adults (18 to 25 years old) who reported having 

used alcohol, marijuana, cocaine or other drugs in their lifetime, in the last year and in the last 

month in 2002.  

For this comparison exercise, I focus on young adults as opposed to teenagers. If I had to 

compare teenagers 12 to 17, the best I could do would be comparing teenagers who were 12-17 

in 1997 (NLSY97) with teenagers from the NSDUH in 2002. On the other hand, young adults 

                                                
75 Substance Abuse and Mental Health Services Administration, Results from the 2010 National 
Survey on Drug Use and Health: Summary of National Findings, NSDUH Series H-41, HHS 
Publication	  No.	  (SMA)	  11-‐4658.	  Rockville,	  MD:	  Substance	  Abuse	  and	  Mental	  Health	  Services	  
Administration,	  2011. 
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(18-23) at the NLSY97 in 2002 can be compared with young adults (18-25) in NSDUH and MTF 

(18-24) for the same year76.  

Measures of cocaine use from the NLSY97 are not directly comparable with measures of the 

NSDUH or MTF, because the NLSY97 groups cocaine with other hard drugs. The measures of 

lifetime alcohol and marijuana use are similar between the NLSY97 and the NSDUH, while the 

MTF reports slightly higher measures. A reverse pattern holds for measures of lifetime cocaine 

use, where the MTF reports lower prevalence than the NSDUH. These differences between the 

NSDUH and the MTF can be reconciled if respondents report higher prevalence of alcohol and 

marijuana when the interview is conducted at school (MTF) than at home (NSDUH) due to 

perceived differences in privacy. On the other hand, the share of lifetime cocaine consumption 

reported by the MTF would have probably been higher if it had included students who were 

absent from school the day of the interview or had dropped out. 

 Measures of past year alcohol and marijuana consumption also followed a similar pattern 

where the NLSY97 lead to a lower estimate than the NSDUH, and the NSDUH had a lower 

estimate than the MTF. This can be reconciled by the NSDUH and MTF containing a higher 

mean average age in 2002 than the NLSY97, and by the fact that students may have more 

privacy in school than in the household. Measures of cocaine consumption in the last year are 

similar between NSDUH and MTF, while I cannot compare that reported by the NLSY97, 

because it includes other hard drugs.  

 Measures of alcohol use in the last month follow a similar pattern as measures of alcohol 

use in the last year. The NLSY97 does not include a measure of cocaine use in the last month, as 

                                                
76 During years 2002 and after, the sensitive questions in the NLSY97 and NSDUH were asked using the same 

ACASI system, which makes these reports directly comparable.  
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the NLSY97 only reports whether the respondent consumed cocaine at all in the last year and 

how many times he or she used it in the last year.  

Appendix D: Inclusion of Time-Invariant and Time-Varying Covariates 

Model A includes a very limited list of time-invariant covariates, which is not 

problematic under the assumption that the unobserved heterogeneity will capture most of the 

permanent characteristics that affect individual preferences for a particular drug. In this section, I 

estimate Model A with only 3 mass points77 using equations 1 as the utility of consuming drug j 

in year t and equation 2 as the initial conditions equation. For this section, I leave the initial 

conditions equation unchanged, and explore the model with additional covariates in equation 1.  

Columns 1,4 and 7 report parameter estimates corresponding to the latent utility 

(equation 1) for alcohol. Columns 2,5, and 8 correspond to marijuana, and finally columns 3,6, 

and 9 correspond to cocaine.  

Panel A of Table A4 shows that the results remain robust to the inclusion of time-

invariant characteristics. The first three columns show the state dependence and stepping stone 

parameters for Model A with only 3 mass points with no additional covariates.78 Columns 4, 5 

and 6 show that the results remain robust to the inclusion of indicators for race in the latent 

utilities (an indicator for black and one for Hispanic). Finally, columns 7, 8 and 9 show that the 

results are also robust to the inclusion of an indicator for whether the respondent was originally 

from an urban area. In comparing models that include different time-invariant covariates, I 

                                                
77 The benchmark model (Model A) was estimated with seven mass points. The model I present for this section only 
has three mass points. While this model is not the preferred specification, the point of this section is to show that 
these models are robust to the inclusion of time-invariant and time-varying demographics.  
78 The benchmark model (Model A) included two time-invariant characteristics (male and an indicator for whether 
the respondent lived in a single parent household in the first wave) and one time-varying characteristic (indicators 
for different age categories). While the benchmark model includes seven mass points, I estimate this model with 
only three mass points for simplicity.  
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observe that once I include geographic information,79 one of the mass points for hard drugs tends 

to negative infinity (logit parameters of -13, -17 for marijuana and cocaine). This means that 

there is a group of individuals who never consume hard drugs. While the mass points change to 

the inclusion of time-invariant characteristics, the state dependence and stepping stone 

parameters remain robust.  

Panel B of Table A4 reports the state dependence and stepping stone parameters after the 

inclusion of time-varying covariates. Because college attendance may create a more drug 

friendly environment, I expect college attendance to influence the latent preference for 

consuming alcohol, marijuana, and hard drugs. For instance, if college attendance in time t 

increases the propensity to consume alcohol in time t with no direct effect on alcohol 

consumption at t+1, omitting college attendance could bias the state dependence and stepping 

stone parameters. The first three columns report that the state dependence and stepping stone 

parameters remain robust after the inclusion of time-varying indicators for enrollment in a two-

year college, enrollment in a four-year college, and employment. Similarly, columns 4, 5 and 6 

report that the estimates are robust to time-varying region of residence.80 Finally, the last three 

columns indicate that the estimates are also robust to the inclusion of state and year specific 

unemployment rate.  

I allowed all these time-invariant and time-varying coefficients to be drug specific.81 

 

                                                
79 I also estimated this model with the inclusion of indicators for the original region of residence for the respondent 
instead of an indicator for whether the respondent lived originally in an urban area. The results were very similar.  
80 Among 4998 respondents with non-missing regions for all 10 years, 4261 of them never changed regions in the 
entire ten waves. 
81 Being currently enrolled in college (whether it is a two-year or four-year college) and being currently employed 
increase the preference for alcohol and decrease the preference for hard drugs. The effects of college enrollment on 
marijuana are heterogeneous. The preference for marijuana is lower when the respondent is enrolled in a two-year 
college, increases when enrolled in a four-year college, and decreases when the respondent is employed. These 
tables can be provided upon request.  
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Figure	  1:	  Drug	  Persistence	  

Note:	  I	  compute	  these	  probabilities	  at	  the	  yearly	  level,	  starting	  in	  1999,	  and	  then	  took	  the	  average	  

	  

	  

	  

	  

	  

	  

	  



	  

	  

Figure	  2:	  “Transitions”	  from	  Softer	  to	  Harder	  Drugs	  

Note:	  I	  computed	  these	  probabilities	  for	  every	  year	  starting	  in	  1999,	  and	  then	  took	  the	  average.	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

Figure	  3A:	  Arbitrarily	  correlated	  unobserved	  heterogeneity	  (Model	  A)	  

Note:	  This	  figure	  plots	  the	  intercept	  corresponding	  to	  the	  marijuana	  latent	  utility	  against	  the	  one	  
corresponding	  to	  the	  alcohol	  and	  cocaine	  latent	  utility.	  	  
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Figure	  3B:	  Arbitrarily	  correlated	  unobserved	  heterogeneity	  (Model	  B)	  

Note:	  This	  figure	  plots	  the	  intercept	  corresponding	  to	  the	  marijuana	  latent	  utility	  against	  the	  one	  
corresponding	  to	  the	  alcohol	  and	  cocaine	  latent	  utility.	  	  
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Figure	  3C:	  Arbitrarily	  correlated	  unobserved	  heterogeneity	  (Model	  C)	  

Note:	  This	  figure	  plots	  the	  intercept	  corresponding	  to	  the	  marijuana	  latent	  utility	  against	  the	  one	  
corresponding	  to	  the	  alcohol	  and	  cocaine	  latent	  utility.	  	  
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Figure	  4:	  Simulated	  impacts	  of	  preventing	  drug	  use	  at	  early	  ages	  

Note:	  Age	  profile	  of	  cocaine	  consumption,	  and	  the	  simulated	  age	  profile	  under	  the	  assumption	  that	  
alcohol	  and	  marijuana	  are	  completely	  removed	  at	  early	  ages.	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

Figure	  5:	  Simulated	  impacts	  of	  regulating	  intensity	  of	  drug	  use	  

Share	  of	  cocaine	  users	  by	  year	  and	  the	  simulated	  share	  after	  I	  replace	  simulated	  high	  levels	  of	  
consumption	  of	  alcohol	  and	  marijuana	  with	  low	  levels	  of	  consumption.	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

Figure	  6:	  Simulated	  impacts	  of	  restrictions	  on	  marijuana	  intensity	  of	  use	  

Note:	  Share	  of	  cocaine	  users	  by	  year	  and	  the	  simulated	  share	  after	  I	  replace	  simulated	  high	  levels	  of	  
consumption	  of	  marijuana	  with	  low	  levels	  of	  consumption,	  or	  not	  consumption	  at	  all.	  	  

	  

	  

	  



	  

Table 1: Summary Statistics 

  
Non-missing Drug Questions for all 10 waves 

   
Ever Used 

 
Full Sample   Alcohol Mar Cocaine 

 
Panel A: Sample Mean 
Age(1997) 14.35 14.23 14.24 14.24 14.21 

 
(1.49) (1.47) (1.47) (1.48) (1.49) 

Male 0.51 0.47 0.47 0.50 0.50 

 
(0.50) (0.50) (0.50) (0.50) (0.50) 

Father in household 0.72 0.73 0.73 0.72 0.72 

 
(0.45) (0.44) (0.44) (0.45) (0.45) 

Age First Drink 14.99 15.03 15.03 14.04 13.68 

 
(3.42) (3.41) (3.42) (2.92) (2.80) 

Age First Marijuana 16.16 16.17 16.17 16.17 15.30 

 
(3.02) (3.01) (3.01) (3.02) (2.52) 

Age First Cocaine 17.59 17.58 17.59 17.49 17.58 

 
(3.32) (3.32) (3.32) (3.32) (3.32) 

Percentage of respondents with non-missing answers for drug-related 
questions(a)   

 
  

P(non-missing alcohol) 59.21 100.00 100.00 100.00 100.00 

P(non-missing marijuana) 58.07 100.00 100.00 100.00 100.00 

P(non-missing cocaine) 59.13 100.00 100.00 100.00 100.00 
Percentage of respondents who reported having consumed drugs at least 
once (b)   

 
  

P(ever alcohol) 92.39 94.58 100.00 99.39 99.52 

P(ever marijuana) 57.66 57.34 60.25 100.00 92.61 

P(ever cocaine) 23.12 24.63 25.92 39.78 100.00 

N 8984 5112 4835 2931 1259 

Panel B: Order of Use Among Individuals that Used all Three Substances Eventually 

  
N Percent     

Alcohol<Marijuana<Cocaine 
 

473 40.78 
  Alcohol<Cocaine<Marijuana 

 
71 6.12 

  Marijuana<Cocaine<Alcohol 
 

3 0.26 
  Marijuana<Alcohol<Cocaine 

 
80 6.90 

  Cocaine<Alcohol<Marijuana 
 

16 1.38 
  Cocaine<Marijuana<Alcohol 

 
9 0.78 

  Alcohol<=Marijuana<=Cocaine 891 76.81 
  

N   1160       
Note: Standard errors are in parenthesis. These summary statistics are unweighted. 
Column (1) reports demographics for the entire survey. 
Column (2) reports demographics for the subsample for whom we have non-missing answers to the drug-related questions from 1997 to 2007.  
Column (3)-(4)-(5) corresponds to the subsample of column 2 that consumed alcohol, marijuana, and cocaine, respectively.  
P(non-missing drug j)=percentage of the sample for whom we have non-missing answers to questions related to drug j from 1997 to 2007.  
P(Ever drug j)=percentage of the sample who consumed drug j at least once by 2007. 
In Panel B,  the row corresponding to “Alcohol<Marijuana<Cocaine”  corresponds to the share of respondents who eventually consumed all three 
drugs but consumed alcohol before marijuana, and marijuana before cocaine. The symbol ≤ means “before or during the same year.” 
	   	  



	  

Table 2: Parameter Estimates for the Models with Homogeneous State Dependence and Stepping-Stone 

 
Model A: Logit (1st Order) Model B: Probit (1st Order) Model	  C:	  Logit	  (2nd	  Order)	  

  Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine 
Lag alcohol 1.74 0.28 0.33 1.19	   0.45	   0.34	   1.89	   0.19	   0.22	  

 
(0.03) (0.05) (0.09) (0.04) (0.06) (0.09) (0.04)	   (0.05)	   (0.10)	  

Lag mar 0.07 1.66 0.30 0.18	   0.99	   0.24	   -‐0.15	   1.58	   0.35	  

 
(0.05) (0.04) (0.06) (0.06) (0.05) (0.06) (0.06)	   (0.06)	   (0.06)	  

Lag coc -0.08 -0.04 1.58 0.10	   0.07	   0.99	   -‐0.50	   -‐0.10	   1.71	  

 
(0.09) (0.06) (0.06) (0.09) (0.07) (0.07) (0.10)	   (0.06)	   (0.08)	  

𝒄𝒐𝒗(𝜺𝒊𝒕𝒅𝒓𝒊𝒏𝒌, 𝜺𝒊𝒕𝒎𝒂𝒓) 
   

0.58 
	    	  𝒄𝒐𝒗(𝜺𝒊𝒕𝒅𝒓𝒊𝒏𝒌, 𝜺𝒊𝒕𝒄𝒐𝒄) 

   
0.38 

	    	  𝒄𝒐𝒗(𝜺𝒊𝒕𝒎𝒂𝒓, 𝜺𝒊𝒕𝒄𝒐𝒄) 
   

0.46 
	    	  𝒀𝒕!𝟐  

    	   	  
0.99	   0.68	   1.01	  

     	   	  
(0.05)	   (0.06)	   (0.09)	  

𝒀𝒕!𝟏 ∗ 𝒀𝒕!𝟐  
    	   	  

0.13	   -‐0.04	   -‐0.56	  
  

    	   	  
(0.06)	   (0.08)	   (0.12)	  

N. obs 5108 1000 5108	  
LL 48024 9369 48133	  
N params 87 62 107	  
N. mass points 7 3 3	  
AIC 96222 18862 96479	  
BIC 96791 19166 97178	  
PCGF 417 123 43 76 64 18 212	   66 22 

Note: Parameter estimates corresponding to the latent utility for drug j in period t, where j={alcohol, marijuana, cocaine}. See section 
3 for a discussion of Model A, B, and C. The probit model estimates the following parameters 𝜙!" = 1.311  (𝑆𝐸 = 0.077), 
𝜙!" = 0.803  (𝑆𝐸 = 0.103) and 𝜙!" = 0.989  (𝑆𝐸 = 0.072). The following correlations are by construction between -1 and 1. 
𝒄ov(ε!"!"#$%, ε!"!"#) = −1 + 2 ∗ !"#  (!!")

!!!"#  (!!")
, cov(ε!"!"#$%, ε!"!"!) = −1 + 2 ∗ !"#  (!!")

!!!"#  (!!")
, and cov(ε!"!"#, ε!"!"!) = −1 + 2 ∗ !"#  (!!")

!!!!"  (!!")
 

 

  



Model&A Model&B
Second&Lag=0 Second&Lag=1

Panel&A:&State&Dependence
Alcohol 0.203 0.240 0.361 0.149
Marijuana 0.153 0.182 0.098 0.237
Cocaine 0.065 0.097 0.052 0.377

From<alcohol<to<marijuana 0.026 0.084
From<alcohol<to<cocaine 0.014 0.033
From<marijuana<to<cocaine 0.012 0.024 0.013

Table&3&:&Marginal&Effects

Panel&B:&Stepping&Stone&Effect

Model&C

0.016
0.008

 

Note: For models A and C (Logit), I compute 
!!!"#
!!!

 for each individual i and period t, where 
!!!"#
!!!

= 𝑃!"# ∗ 1 − 𝑃!"# ∗ 𝛽!. I compute the average from year 1999 to 2007 for Model 

A. For Model C, I compute 
!!!"#
!!!

 for years 2000 to 2007 and take the average. Since Model C includes an interacted term of first and second-order state dependence, I compute the 

marginal effect of first-order state dependence separately for periods where the second-order lagged outcome was 0 and for periods where the second-order lagged outcome was 1. 
For Model B, I compute 

!!!"#
!!!

= 𝜙 𝑉!"# 𝛼! ∗ 𝛽! =
!
!!
exp  {− !

!
[𝑉!"# 𝛼! ]!} ∗ 𝛽! for years 1999 to 2007, and take the average. The marginal effects are computed using simulated 

data because a random effect needs to be assigned to compute 𝑃!"#. I repeat the process of computing 
!!!"#
!!!

 ten times and take the average.  

 
 
 

 

 

	  

	   	  



Table	  4:	  Discrete	  Effect	  of	  Lagged	  Consumption	  on	  Current	  Consumption	  

	  
Model	  A:	  Logit	  	  (1st	  Order)	   Model	  B:	  Probit	  (1st	  Order)	   Model	  C:	  Logit	  (2nd	  Order)	  

	  
Actual	   Sim	   Sim(𝛾!"=0)	   Actual	   Sim	   Sim(𝛾!"=0)	   Actual	   Sim	   Sim(𝛾!"=0)	  

Panel	  A:	  Persistence	  of	  Use	  Within	  Drug	  (State	  Dependence)	  
P(𝑌!"!"#$%=1|𝑌!,!!!!"#$%=1)	   87.75	   87.77	   64.67	   90.13	   89.36	   57.09	   87.75	   87.94	   59.33	  
P(𝑌!"!"#$%=1|𝑌!,!!!!"#$%=0)	   31.73	   33.22	   41.10	   33.12	   35.04	   43.75	   31.73	   31.92	   36.88	  
P(𝑌!"!"#$%=1|𝑌!,!!!!"#$%=1)-‐P(𝑌!"!"#$%=1|𝑌!,!!!!"#$%=0)	   56.01	   54.55	   23.57	   57.01	   54.32	   13.34	   56.01	   56.02	   22.45	  
P(𝑌!"!"#=1|𝑌!,!!!!"#=1)	   66.99	   66.48	   35.63	   69.06	   68.21	   34.92	   66.99	   66.30	   36.85	  
P(𝑌!"!"#=1|𝑌!,!!!!"#=0)	   9.09	   9.26	   11.12	   10.45	   10.72	   12.76	   9.09	   8.80	   10.41	  
P(𝑌!"!"#=1|𝑌!,!!!!"#=1)-‐P(𝑌!"!"#=1|𝑌!,!!!!"#=0)	   57.90	   57.22	   24.51	   58.61	   57.49	   22.16	   57.90	   57.50	   26.44	  
P(𝑌!"!"!=1|𝑌!,!!!!"! =1)	   43.40	   42.42	   14.63	   43.84	   43.73	   14.81	   43.40	   41.54	   14.20	  
P(𝑌!"!"!=1|𝑌!,!!!!"! =0)	   3.48	   3.58	   3.82	   4.26	   4.32	   4.70	   3.48	   3.39	   3.60	  
P(𝑌!"!"!=1|𝑌!,!!!!"! =1)-‐P(𝑌!"!"!=1|𝑌!,!!!!"! =0)	   39.92	   38.84	   10.81	   39.58	   39.41	   10.10	   39.92	   38.15	   10.60	  

Panel	  B:	  First	  Order	  Transitions	  from	  Softer	  to	  Harder	  Drugs	  (Stepping	  Stone)	  	  
P(𝑌!"!"#=1|𝑌!,!!!!"#$%=1)	   30.35	   29.69	   25.47	   34.06	   33.50	   21.01	   30.35	   28.42	   25.72	  
P(𝑌!"!"#=1|𝑌!,!!!!"#$%=0)	   6.57	   7.81	   7.59	   6.43	   7.36	   7.01	   6.57	   8.00	   7.83	  
P(𝑌!"!"#=1|𝑌!,!!!!"#$%=1)-‐P(𝑌!"!"#=1|𝑌!,!!!!"#$%=0)	   23.79	   21.87	   17.89	   27.63	   26.14	   13.99	   23.79	   20.43	   17.89	  
P(𝑌!"!"!=1|𝑌!,!!!!"#=1)	   18.95	   17.86	   13.78	   20.51	   20.65	   14.24	   18.95	   16.44	   12.15	  
P(𝑌!"!"!=1|𝑌!,!!!!"#=0)	   2.14	   2.46	   2.41	   2.52	   2.59	   2.48	   2.14	   2.58	   2.50	  
P(𝑌!"!"!=1|𝑌!,!!!!"#=1)-‐P(𝑌!"!"!=1|𝑌!,!!!!"#=0)	   16.80	   15.40	   11.37	   17.99	   18.06	   11.76	   16.80	   13.85	   9.65	  
P(𝑌!"!"!=1|𝑌!,!!!!"#$%=1)	   8.49	   8.35	   6.18	   9.87	   9.84	   5.44	   8.49	   7.89	   6.55	  
P(𝑌!"!"!=1|𝑌!,!!!!"#$%=0)	   1.28	   1.57	   1.53	   1.54	   1.67	   1.72	   1.28	   1.49	   1.45	  
P(𝑌!"!"!=1|𝑌!,!!!!"#$%=1)-‐P(𝑌!"!"!=1|𝑌!,!!!!"#$%=0)	   7.21	   6.78	   4.66	   8.33	   8.17	   3.72	   7.21	   6.39	   5.10	  
Note: Model A, B, and C are described in section 3.  
The column labeled Sim(𝛾!" = 0) presents probabilities that were estimated “turning off” the relevant  𝛾!", and holding all other parameters constant. 

	  

	  

	   	  



Table	  5:	  Comparison	  of	  Predicted	  and	  Observed	  Drug-‐Use	  Participation	  Sequences	  
Sum	  	   Transitions	  	   Model	  A	   Model	  B	   Model	  C	  
	  	   	  	   Obs	   Pred	   Obs	   Pred	   Obs	   Pred	  
Panel	  A:	  Alcohol	  Use	  Participation	  Sequences 

0	  
	  

6.07	   4.34	   5.40	   3.61	   6.07 4.15 
1	   1	   1.43	   1.71	   1.20	   1.29	   1.43 1.67 
1	   2	   2.56	   2.94	   2.00	   2.25	   2.56 2.84 
2,3	   1	   2.11	   1.88	   2.40	   1.64	   2.11 3.03 
2,3	   2	   1.66	   2.89	   0.80	   2.20	   1.66 2.13 
2,3	   3	   2.33	   2.52	   1.70	   1.98	   2.33 2.72 
2,3	   4,6	   2.60	   1.82	   1.50	   1.16	   2.60 2.47 
4,5	   1	   3.58	   2.20	   4.50	   2.78	   3.58 4.43 
4,5	   2	   0.90	   1.90	   0.40	   1.91	   0.90 2.60 
4,5	   3	   3.15	   3.51	   2.70	   3.25	   3.15 3.74 
4,5	   4,6	   4.27	   3.08	   3.20	   2.00	   4.27 3.11 
4,5	   7,9	   0.20	   0.08	   0.10	   0.04	   0.20 0.26 
6,7	   1	   6.03	   5.31	   5.70	   6.59	   6.03 5.89 
6,7	   2	   1.98	   3.43	   2.40	   4.17	   1.98 3.27 
6,7	   3	   5.25	   6.25	   5.00	   5.69	   5.25 4.62 
6,7	   4,6	   5.11	   4.39	   4.30	   3.53	   5.11 4.21 
6,7	   7,9	   0.27	   0.05	   0.10	   0.00	   0.27 0.11 
8,10	   0	   24.39	   21.24	   28.90	   22.92	   24.39 22.87 
8,10	   1	   10.85	   11.98	   11.00	   12.71	   10.85 10.27 
8,10	   2	   10.30	   13.19	   11.20	   15.49	   10.30 10.67 
8,10	   3	   2.88	   3.51	   3.20	   2.97	   2.88 3.04 
8,10	   4,6	   2.08	   1.79	   2.30	   1.82	   2.08 1.91 
Total	  

	  
100.00	   100.00	   100.00	   100.00	   100.00	   100.00	  

	   	  



Table	  5:	  Comparison	  of	  Predicted	  and	  Observed	  Drug-‐Use	  Participation	  Sequences	  (Continued)	  
Panel	  B:	  Marijuana	  Use	  Participation	  Sequences	  

	   	    0	  
	  

45.54	   44.38	   41.90	   38.30	   45.54 46.93 
1	   1	   3.86	   4.16	   4.00	   4.80	   3.86 3.62 
1	   2	   10.10	   11.06	   9.10	   11.30	   10.10 10.36	  
2,3	   1	   2.55	   2.22	   2.40	   2.70	   2.55 2.15 
2,3	   2	   4.46	   4.63	   3.70	   5.90	   4.46 4.45 
2,3	   3	   3.33	   3.51	   2.90	   3.30	   3.33 3.61 
2,3	   4,6	   4.80	   3.46	   4.70	   2.90	   4.80 4.30 
4,5	   1	   1.45	   1.07	   1.20	   1.30	   1.45 1.21 
4,5	   2	   1.41	   2.14	   1.10	   2.00	   1.41 2.05 
4,5	   3	   2.56	   3.13	   3.60	   3.30	   2.56 2.32 
4,5	   4,6	   3.70	   4.07	   5.10	   3.00	   3.70 3.35 
4,5	   7,9	   0.27	   0.11	   0.40	   0.10	   0.27 0.19 
6,7	   1	   1.70	   1.14	   2.80	   1.60	   1.70 1.46 
6,7	   2	   0.98	   1.64	   1.10	   2.70	   0.98 1.42 
6,7	   3	   2.53	   2.62	   2.90	   3.40	   2.53 2.19 
6,7	   4,6	   2.25	   2.44	   2.90	   3.30	   2.25 2.10 
6,7	   7,9	   0.00	   0.04	   0.00	   0.00	   0.00 0.07 
8,10	   0	   2.72	   2.29	   3.20	   1.70	   2.72 2.04 
8,10	   1	   2.66	   2.18	   2.90	   3.00	   2.66 2.48 
8,10	   2	   1.68	   2.31	   1.70	   3.40	   1.68 2.17 
8,10	   3	   0.94	   0.99	   1.40	   1.40	   0.94 0.96 
8,10	   4,6	   0.51	   0.41	   1.00	   0.60	   0.51 0.57 
Total	  

	  
100.00	   100.00	   100.00	   100.00	   100.00	   100.00	  

Panel	  C:	  	  Cocaine	  Use	  Participation	  Sequences	  
	   	   	   	  0	  

	  
75.86	   73.83	   72.40	   68.50	   75.86 75.55	  

1	   1	   2.47	   2.80	   3.00	   2.96	   2.47 2.83	  
1	   2	   8.40	   9.88	   8.20	   9.77	   8.40 9.19	  
2,3	   1	   1.04	   1.03	   1.00	   1.42	   1.04 0.96 
2,3	   2	   2.74	   3.47	   3.00	   5.30	   2.74 2.67 
2,3	   3	   1.59	   1.69	   2.40	   1.92	   1.59 1.44 
2,3	   4,6	   2.82	   2.55	   3.70	   3.33	   2.82 2.60 
4,5	  

	  
3.09	   2.93	   3.70	   5.32	   3.09	   3.05	  

6,7	  
	  

1.41	   1.44	   1.90	   1.34	   1.41	   1.36	  
8,10	  

	  
0.59	   0.39	   0.70	   0.14	   0.59	   0.34	  

Total	   	  	   100.00	   100.00	   100.00	   100.00	   100.00	   100.00	  
Note: I divided the potential drug sequences into cells that can be described by their “sum” (number of periods in which the drug was 
used) and “transitions” (the number of times the sequences transitioned from 0 to 1 or from 1 to 0. Section 3 describes models A, B, 
and C. This table reports the observed and predicted share of the sample that corresponds to each cell for alcohol, marijuana, and 
cocaine.  

 

	  

	   	  



Table	  6:	  	  Comparison	  of	  Predicted	  and	  Observed	  Combinations	  of	  Drug	  Use	  by	  Year	  

	   	  
Model	  A	   Model	  B	   Model	  C	  

	   	  
Obs	   Pred	   Obs	   Pred	   Obs	   Pred	  

Bundle	   year	   	  	   	  	   	  	   	  	   	  	   	  	  
(0,0,0) 1998	   49.10	   47.02	   45.80	   44.10	   49.10	   44.95	  
(1,0,0) 1998	   29.97	   31.34	   30.00	   30.80	   29.97	   32.51	  
(0,1,0) 1998	   1.62	   2.51	   2.10	   2.60	   1.62	   5.24	  
(0,0,1) 1998	   0.12	   0.23	   0.20	   0.40	   0.12	   0.78	  
(1,1,0) 1998	   14.35	   14.13	   16.40	   17.40	   14.35	   12.33	  
(0,1,1) 1998	   0.10	   0.16	   0.20	   0.20	   0.10	   0.39	  
(1,0,1) 1998	   0.80	   0.94	   1.00	   1.30	   0.80	   2.07	  
(1,1,1) 1998	   3.94	   3.68	   4.30	   3.10	   3.94	   1.74	  
(0,0,0) 1999	   44.54	   40.31	   40.40	   40.60	   44.54	   41.39	  
(1,0,0) 1999	   33.03	   34.55	   34.60	   32.20	   33.03	   34.75	  
(0,1,0) 1999	   1.55	   4.35	   1.10	   2.80	   1.55	   4.52	  
(0,0,1) 1999	   0.27	   0.65	   0.00	   0.50	   0.27	   0.78	  
(1,1,0) 1999	   14.84	   14.55	   17.40	   17.10	   14.84	   13.42	  
(0,1,1) 1999	   0.23	   0.41	   0.50	   0.40	   0.23	   0.42	  
(1,0,1) 1999	   0.80	   1.64	   0.80	   1.10	   0.80	   2.44	  
(1,1,1) 1999	   4.74	   3.50	   5.20	   5.40	   4.74	   2.28	  
(0,0,0) 2000	   39.17	   36.22	   36.90	   36.30	   39.17	   37.03	  
(1,0,0) 2000	   35.22	   37.20	   35.70	   35.70	   35.22	   36.96	  
(0,1,0) 2000	   1.64	   4.07	   1.30	   2.10	   1.64	   4.16	  
(0,0,1) 2000	   0.20	   0.53	   0.20	   0.30	   0.20	   0.57	  
(1,1,0) 2000	   17.27	   15.78	   18.00	   17.40	   17.27	   15.68	  
(0,1,1) 2000	   0.27	   0.37	   0.40	   0.30	   0.27	   0.37	  
(1,0,1) 2000	   0.76	   1.68	   1.00	   1.00	   0.76	   1.86	  
(1,1,1) 2000	   5.46	   4.17	   6.50	   6.90	   5.46	   3.38	  
(0,0,0) 2001	   34.32	   31.52	   31.80	   30.80	   34.32	   32.92	  
(1,0,0) 2001	   39.51	   41.60	   38.80	   40.50	   39.51	   40.80	  
(0,1,0) 2001	   1.74	   3.21	   0.60	   1.50	   1.74	   3.47	  
(0,0,1) 2001	   0.12	   0.47	   0.00	   0.30	   0.12	   0.40	  
(1,1,0) 2001	   17.42	   16.72	   19.60	   18.30	   17.42	   16.40	  
(0,1,1) 2001	   0.14	   0.31	   0.00	   0.30	   0.14	   0.31	  
(1,0,1) 2001	   0.80	   1.82	   0.90	   1.10	   0.80	   1.88	  
(1,1,1) 2001	   5.95	   4.39	   8.30	   7.40	   5.95	   3.84	  
(0,0,0) 2002	   29.80	   27.56	   27.90	   26.40	   29.80	   28.89	  
(1,0,0) 2002	   45.11	   45.73	   43.40	   45.20	   45.11	   45.52	  
(0,1,0) 2002	   1.06	   2.60	   1.00	   1.10	   1.06	   2.83	  
(0,0,1) 2002	   0.14	   0.35	   0.10	   0.10	   0.14	   0.29	  
(1,1,0) 2002	   17.62	   17.25	   19.40	   18.50	   17.62	   16.57	  
(0,1,1) 2002	   0.14	   0.25	   0.10	   0.10	   0.14	   0.23	  
(1,0,1) 2002	   1.06	   1.78	   1.40	   1.10	   1.06	   1.72	  
(1,1,1) 2002	   5.09	   4.46	   6.70	   7.40	   5.09	   3.94	  

	   	  



Table	  6:	  	  Comparison	  of	  Predicted	  and	  Observed	  Combinations	  of	  Drug	  Use	  by	  Year	  (Continued)	  

(0,0,0) 2003	   27.62	   24.94	   23.10	   22.10	   27.62	   26.23	  
(1,0,0) 2003	   48.63	   49.47	   47.50	   50.00	   48.63	   49.38	  
(0,1,0) 2003	   1.12	   2.08	   0.60	   0.80	   1.12	   2.30	  
(0,0,1) 2003	   0.06	   0.29	   0.10	   0.20	   0.06	   0.27	  
(1,1,0) 2003	   16.48	   17.05	   20.80	   19.00	   16.48	   16.19	  
(0,1,1) 2003	   0.12	   0.18	   0.20	   0.10	   0.12	   0.17	  
(1,0,1) 2003	   1.14	   1.82	   1.50	   1.00	   1.14	   1.78	  
(1,1,1) 2003	   4.84	   4.17	   6.20	   0.70	   4.84	   3.68	  
(0,0,0) 2004	   25.80	   23.02	   21.50	   20.10	   25.80	   24.15	  
(1,0,0) 2004	   51.70	   53.41	   52.10	   52.40	   51.70	   53.29	  
(0,1,0) 2004	   0.86	   1.49	   0.50	   0.50	   0.86	   1.76	  
(0,0,1) 2004	   0.20	   0.27	   0.30	   0.10	   0.20	   0.14	  
(1,1,0) 2004	   15.84	   16.33	   18.80	   19.30	   15.84	   15.36	  
(0,1,1) 2004	   0.08	   0.14	   0.00	   0.10	   0.08	   0.14	  
(1,0,1) 2004	   1.10	   1.70	   1.50	   1.10	   1.10	   1.63	  
(1,1,1) 2004	   4.42	   3.64	   5.30	   6.50	   4.42	   3.53	  
(0,0,0) 2005	   22.28	   21.87	   19.20	   19.30	   22.28	   22.71	  
(1,0,0) 2005	   55.81	   55.58	   56.10	   54.80	   55.81	   55.90	  
(0,1,0) 2005	   0.61	   1.27	   0.40	   0.50	   0.61	   1.41	  
(0,0,1) 2005	   0.14	   0.25	   0.10	   0.00	   0.14	   0.15	  
(1,1,0) 2005	   15.58	   16.01	   18.50	   18.50	   15.58	   15.06	  
(0,1,1) 2005	   0.08	   0.10	   0.00	   0.00	   0.08	   0.11	  
(1,0,1) 2005	   0.94	   1.78	   0.70	   1.10	   0.94	   1.60	  
(1,1,1) 2005	   4.56	   3.17	   5.00	   5.90	   4.56	   3.07	  
(0,0,0) 2006	   21.73	   21.06	   17.10	   18.30	   21.73	   21.64	  
(1,0,0) 2006	   58.07	   58.10	   57.80	   56.90	   58.07	   58.30	  
(0,1,0) 2006	   0.70	   1.16	   0.50	   0.30	   0.70	   1.23	  
(0,0,1) 2006	   0.06	   0.20	   0.00	   0.10	   0.06	   0.14	  
(1,1,0) 2006	   14.62	   14.92	   19.10	   17.80	   14.62	   14.29	  
(0,1,1) 2006	   0.02	   0.08	   0.00	   0.00	   0.02	   0.10	  
(1,0,1) 2006	   1.06	   1.64	   1.00	   1.10	   1.06	   1.69	  
(1,1,1) 2006	   3.74	   2.86	   4.50	   5.60	   3.74	   2.61	  
(0,0,0) 2007	   21.97	   20.50	   16.00	   17.10	   21.97	   20.90	  
(1,0,0) 2007	   59.14	   59.67	   60.60	   59.20	   59.14	   60.18	  
(0,1,0) 2007	   0.70	   0.96	   0.40	   0.30	   0.70	   1.19	  
(0,0,1) 2007	   0.06	   0.18	   0.00	   0.00	   0.06	   0.13	  
(1,1,0) 2007	   14.06	   14.51	   17.30	   17.70	   14.06	   13.56	  
(0,1,1) 2007	   0.04	   0.06	   0.00	   0.00	   0.04	   0.07	  
(1,0,1) 2007	   1.02	   1.66	   1.50	   1.00	   1.02	   1.62	  
(1,1,1) 2007	   3.01	   2.47	   4.20	   4.70	   3.01	   2.35	  

Note: The row corresponding to  (𝑌!"!"#$% ,𝑌!"!"# ,𝑌!"!"!) indicates the actual and predicted share of the sample who 
consumed that particular bundle in year t. For instance, the second to last row (1,0,1) corresponds to the bundle where a 
respondent consumed alcohol, did not consume marijuana, and consumed cocaine in the same period. 

 

	  



Table	  7:	  Sample	  Analogue	  of	  Generalized	  Residuals	  

	  
Model	  A:	  Logit	  M=7	  (1st	  Order)	   Model B: Probit M=3 Model	  C:	  Logit	  (2nd	  Order)	  

Panel A: Mean, Variance, and Serial Correlation of Generalized Residuals 	  

 
drink	   mar	   coc	   drink	   mar	   coc	   drink	   mar	   coc	  

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 ]	   0.00	   0.00	   0.00	   0.00 0.00 0.00 0.00 0.00 0.00 

	  
(0.00)	   (0.00)	   (0.00)	   (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 (𝜶𝒊)𝟐]	   0.99	   0.97	   0.98	   1.00 0.95 1.05 1.00 0.97 1.01 

	  
(0.01)	   (0.02)	   (0.05)	   (0.04) (0.04) (0.14) (.01) (.02) (.06) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟏

𝒋 𝜶𝒊 ]	   -‐0.03	   -‐0.02	   -‐0.01	   -0.04 -0.02 -0.02 0.03 0.03 0.01 

	  
(0.00)	   (0.00)	   (0.00)	   (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟐

𝒋 𝜶𝒊 ]	   0.08	   0.05	   0.04	   0.08 0.05 0.11 -0.04 0.00 0.00 

	  
(0.01)	   (0.01)	   (0.01)	   (0.01) (0.01) (0.07) (.01) (0.00) (.01) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟑

𝒋 𝜶𝒊 ]	   0.05	   0.03	   0.02	   0.08 0.05 0.05 0.06 0.02 0.02 

	  
(0.01)	   (0.01)	   (0.00)	   (0.02) (0.01) (0.02) (.01) (0.00) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟒

𝒋 𝜶𝒊 ]	   0.03	   0.02	   0.02	   0.06 0.06 0.09 0.05 0.02 0.02 

	  
(0.01)	   (0.01)	   (0.01)	   (0.02) (0.01) (0.03) (.01) (.01) (.01) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟓

𝒋 𝜶𝒊 ]	   0.01	   0.01	   0.01	   0.04 0.00 0.04 0.05 0.01 0.01 

	  
(0.01)	   (0.01)	   (0.00)	   (0.02) (0.01) (0.01) (.01) (.01) (0.00) 

Panel	  B:	  Correlation	  of	  Generalized	  Residuals	  Across	  Drugs	  and	  Time	  

 
coc-‐drink	   mar-‐drink	   coc-‐mar	   coc-‐drink	   mar-‐drink	   coc-‐mar	   coc-‐drink	   mar-‐drink	   coc-‐mar	  

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕

𝒋! 𝜶𝒊 ]	   0.04	   0.11	   0.10	   0.07 0.18 0.17 0.05 0.13 0.12 

	  
(0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.00) (0.00) (0.01) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟏

𝒋! 𝜶𝒊 ]	   0.00	   -‐0.01	   0.00	   -0.02 -0.02 -0.01 0.00 0.02 0.01 

	  
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟐

𝒋! 𝜶𝒊 ]	   0.00	   0.01	   0.00	   0.03 0.03 0.01 -0.01 0.01 0.00 

	  
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.00) (0.00) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟑

𝒋! 𝜶𝒊 ]	   0.01	   0.00	   0.00	   0.00 0.04 0.01 0.01 0.00 0.00 

	  
(0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟒

𝒋! 𝜶𝒊 ]	   0.00	   -‐0.01	   -‐0.01	   0.00 0.04 0.03 0.00 -0.01 0.00 

	  
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00) 

𝑬[𝒓𝒊𝒕
𝒋 𝜶𝒊 , 𝒓𝒊,𝒕!𝟓

𝒋! 𝜶𝒊 ]	   0.00	   -‐0.01	   -‐0.01	   0.03 0.02 0.00 0.00 -0.01 0.00 
  (0.01) (0.01) (0.00) (0.02) (0.01) (0.01) (0.01) (0.01) (0.00) 
Note: See section 4D for a description of generalized residuals diagnostics. Panel A corresponds to the mean, variance and 1st-5th order autocorrelation of sample-analogue generalized residuals for alcohol, marijuana, and 
cocaine. Panel B corresponds to the sample-analogue of generalized residuals across drugs.  

 
	  



	  
The stepping-stone effect from drug k to drug j is  𝛾!" = 𝛾!"!"#$ + 𝛾!"∗ ∗ , where (*) corresponds to age at time t for model D, gender for model E, 𝛼!  for Model F,  𝛼!  for model G, and the number of 
years that have elapsed since first use of drug j as a measure of addiction capital accumulation for Model I. The stepping-stone effect for model H varies by intensity of consumption in the last period, 
where Ldrink(low dose) and Ldrink(high dose) is the stepping-stone effect from low and high levels of alcohol in the past period, respectively. 

	  

Alcohol Mar Coc Alcohol Mar Coc Alcohol Mar Coc Alcohol Mar Coc Alcohol Mar Coc Alcohol Mar Coc
Ldrink/cons !0.50 2.23 1.79 1.80 0.23 0.17 1.68 0.39 0.52 1.68 0.34 0.49 1.756 0.406 0.366

(0.20) (0.26) (0.44) (0.04) (0.07) (0.12) (0.08) (0.09) (0.13) (0.08) (0.09) (0.13) (0.044) (0.059) (0.100)
Lmarcons 0.93 !0.32 1.32 0.02 1.77 0.61 0.45 1.83 0.48 0.48 1.84 0.48 0.179 1.591 0.463

(0.31) (0.25) (0.37) (0.07) (0.05) (0.08) (0.10) (0.06) (0.07) (0.10) (0.06) (0.07) (0.071) (0.058) (0.084)
Lcoc/cons 1.79 1.02 !0.25 0.11 0.22 1.80 0.17 0.16 1.83 0.18 0.17 1.83 !0.191 0.027 1.604

(0.56) (0.41) (0.40) (0.12) (0.08) (0.08) (0.14) (0.07) (0.06) (0.14) (0.07) (0.06) (0.119) (0.084) (0.078)
Ldrink/by/(*) 0.12 !0.11 !0.09 0.17 0.06 0.29 !0.17 0.16 0.33 !0.17 0.22 0.52 0.025 !0.029 !0.011

(0.01) (0.01) (0.02) (0.06) (0.09) (0.16) (0.05) (0.07) (0.14) (0.05) (0.12) (0.22) (0.007) (0.007) (0.010)
Lmar/by/(*) !0.05 0.11 !0.04 !0.07 0.10 !0.14 0.68 0.01 !0.22 0.38 0.01 !0.18 !0.058 0.058 0.021

(0.02) (0.01) (0.02) (0.09) (0.07) (0.11) (0.17) (0.05) (0.11) (0.07) (0.05) (0.09) (0.014) (0.010) (0.013)
Lcoc/by/demog(*) !0.10 !0.04 0.10 !0.37 !0.17 0.00 0.69 0.10 0.27 0.43 0.11 0.26 0.046 0.034 0.058

(0.03) (0.02) (0.02) (0.16) (0.11) (0.11) (0.20) (0.09) (0.15) (0.13) (0.10) (0.15) (0.033) (0.019) (0.016)
Ldrink/(low/dose) 1.62 0.26 0.29

(0.03) (0.05) (0.09)
Lmar/(low/dose) !0.02 1.43 0.42

(0.04) (0.04) (0.07)
Lcoc/(low/dose) 0.06 0.14 1.54

(0.06) (0.06) (0.07)
Ldrink/(high/dose) 2.97 0.31 0.63

(0.04) (0.06) (0.10)
Lmar/(high/dose) !0.06 3.14 0.77

(0.05) (0.05) (0.07)
Lcoc/(high/dose) 0.14 !0.02 2.11

(0.07) (0.07) (0.07)
c1 !0.51 1.13 2.78

(0.08) (0.11) (0.17)
c2 2.85 3.14 3.91

(0.08) (0.11) (0.17)
LL
Nparams
N

Table 8:Parameter Estimates for Models with Heterogeneous Stepping-Stone

!48652

Model/D://By/Age Model/E:/By/Gender Model/F://By/RE/of/Y Model/G:/by/RE/of/X Model/H:/by/Intensity/ Model/I:/by/Accumulation

!48650 !48792 !48766 !48765 !69395

5100
68 68 68 68 74 68
5108 5108 5108 5108 4847



	  
Note: I estimate these parameters in a model with drug and time specific variables. For the first three columns, I use state and year level deviations from national 
trends in treatment admissions for substance abuse for a particular drug (for the state in which respondent i resided in year t) as exclusion restrictions for alcohol, 
marijuana and cocaine. For columns 4 to 9 I interact this time and drug specific measure of substance abuse with time-varying prices for each drug as the 
exclusion restriction. For columns 4, 5 and 6 I use price per gram of marijuana and crack cocaine when purchased in low volumes. For columns 7, 8 and 9, I use 
price per gram of marijuana and crack cocaine when purchased in high volumes. The latent utility for alcohol in every specification also included a time-varying 
indicator for whether the respondent was at least 21 years old at the time of the interview. 

Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine
Lag alcohol 1.885 0.316 0.413 1.885 0.316 0.414 1.885 0.317 0.414

(0.035) (0.058) (0.100) (0.035) (0.058) (0.100) (0.035) (0.058) (0.100)
Lag mar ,0.006 1.838 0.489 ,0.006 1.838 0.489 ,0.006 1.839 0.489

(0.059) (0.043) (0.063) (0.059) (0.043) (0.063) (0.059) (0.043) (0.063)
Lag coc ,0.039 0.090 1.799 ,0.038 0.090 1.799 ,0.038 0.090 1.799

(0.093) (0.061) (0.059) (0.093) (0.061) (0.059) (0.093) (0.061) (0.059)
LL 42256.7 42257.4 42258.1

Table'9:Parameter'Estimates'for'Models'with'Time'and'Drug'Specific'Covariates
Treatment Admissions Prices (Low Mar, Low Crack Cocaine) Prices'(High'Mar,'High'Crack'Cocaine)



	  
Note: I extend the model of complementarity first developed by Gentzkow (2007) to allow for state 
dependence within and between drugs for all possible pairs. The two drugs are complements if T>0 and 
they are substitutes if T<0. Panel B includes time and drug specific covariates. 

Alcohol Marijuana Alcohol Cocaine Marijuana Cocaine
Panel0A:0Without0Prices
Lag0alcohol 1.802 0.202 1.804 0.497 ) )

(0.033) (0.050) (0.032) (0.093)
Lag0mar )0.109 1.778 ) ) 1.598 0.057

(0.051) (0.039) (0.042) (0.064)
Lag0cocaine ) ) 0.045 1.509 )0.219 1.917

(0.093) (0.066) (0.067) (0.057)
T

LL
Panel0B:0With0Prices
Lag0alcohol 1.813 0.235 1.820 0.545 ) )

(0.035) (0.054) (0.034) (0.100)
Lag0mar )0.119 1.776 ) ) 1.607 0.007

(0.055) (0.041) (0.045) (0.067)
Lag0cocaine ) ) 0.049 1.495 )0.271 1.929

(0.100) (0.068) (0.070) (0.061)
T

LL
(0.074)
22862.9

39965.6

1.522
(0.116)
31179.7

1.571
(0.070)
26111.9

1.761
(0.058)

(0.062)
34440.8

1.419
(0.122)
26868.1

Table 10:Parameter Estimates for Models that Allow Complementarity

1.767 1.546

Mar+CocAlc+Mar Alc+Coc



Table A1: Summary Statistics Among Subsamples 

 
Full Sample Sample not lost due to attrition 1997-2007 

   

Answered Drug Questions for all 10 
waves 

   
All Alcohol Mar  Coc 

 
(1) (2) (3) (4) (5) (6) 

Age(1997) 14.35 14.23 14.23 14.24 14.23 14.23 

 
(1.49) (1.47) (1.47) (1.47) (1.47) (1.47) 

Male 0.51 0.48 0.47 0.47 0.47 0.47 

 
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) 

Father in household 0.72 0.72 0.73 0.73 0.73 0.73 

 
(0.45) (0.45) (0.44) (0.45) (0.44) (0.44) 

Age First Drink 14.68 14.95 15.03 14.99 15.01 14.99 

 
(3.42) (3.40) (3.41) (3.41) (3.41) (3.42) 

Age First Marijuana 15.69 16.08 16.17 16.15 16.16 16.15 

 
(3.02) (3.03) (3.01) (3.01) (3.02) (3.01) 

Age First Cocaine 17.07 17.48 17.58 17.56 17.56 17.59 

 
(3.32) (3.42) (3.32) (3.34) (3.34) (3.32) 

       Percentage of respondents with non-missing answers for drug-related questions(a) 
P(non-missing alcohol) 59.21 94.59 100.00 100.00 98.77 98.14 
P(non-missing marijuana) 58.07 92.78 100.00 96.88 100.00 97.29 
P(non-missing cocaine) 59.13 94.47 100.00 98.01 99.06 100.00 

       Percentage of respondents who reported having consumed drugs at least once (b) 
P(ever alcohol) 92.39 94.59 94.58 94.75 94.58 94.65 
P(ever marijuana) 57.66 58.69 57.34 58.32 57.41 57.79 
P(ever cocaine) 23.12 25.29 24.63 25.02 24.80 24.60 

       N 8984 5623 5112 5319 5217 5312 
Note: Standard errors are in parenthesis.  
Column (1) corresponds to the full sample. Column (2) corresponds to the subsample that was not lost due to attrition, whether or not 
they had non-missing answers to the drug-related questions. Columns (4)-(5)-(6) are restricted to respondents who are not lost due to 
attrition and had non-missing answers to alcohol, marijuana, and cocaine, respectively. Column (3) corresponds to the intersection of (4)-
(5)-(6). 
	  

	  

	  

	  



Table A2: Comparison Between Estimated With and Without Classification Error 

 
No Measurement Error Measurement Error 

  Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine 
Lag alcohol 1.74 0.28 0.33 1.70 0.23 0.30 

 
(0.03) (0.05) (0.09) (0.03) (0.05) (0.09) 

Lag marijuana 0.07 1.66 0.30 -0.07 1.75 0.30 

 
(0.05) (0.04) (0.06) (0.05) (0.04) (0.06) 

Lag cocaine -0.08 -0.04 1.58 -0.11 -0.05 1.24 
  (0.09) (0.06) (0.06) (0.09) (0.06) (0.06) 
Note:	  The	  first	  three	  columns	  correspond	  to	  the	  stepping-‐stone	  parameters	  estimated	  by	  Model	  A	  {𝜃!!!}	  under	  the	  assumption	  
of	  no	  misclassification	  error.	  The	  last	  three	  columns	  correspond	  to	  the	  stepping-‐stone	  parameters	  estimated	  under	  the	  
assumption	  that	  	  {𝜃!!!}	  are	  true,	  	  but	  every	  year,	  20%	  of	  cocaine	  users,	  chosen	  at	  random,	  report	  not	  having	  used	  cocaine	  in	  the	  
last	  year.	  	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



Table A3: Comparing the NLSY97 with Other Sources of 
Data Among Young Adults (18-25) in 2002 

  𝑁𝐿𝑆𝑌97(!) 𝑁𝑆𝐷𝑈𝐻(!) 𝑀𝑇𝐹(!) 
Min Age in 2002 18 18 19 
Max Age in 2002 23 25 24 
Lifetime Drug Use 

   Lifetime Alcohol 86.23 86.70 88.40 
Lifetime Marijuana 52.52 53.80 56.10 
Lifetime Cocaine (*) 18.67 15.40 12.90 
Past Year Drug Use 

   Alcohol 67.65 77.90 83.90 
Marijuana  24.51 29.80 34.20 
Cocaine (*) 6.03 6.70 6.50 
Past Month Drug Use 

   Alcohol 56.98 60.50 67.70 
Marijuana  18.57 17.30 19.80 
Cocaine (*) - 2.00 2.50 
Source: 
(a)National Longitudinal Study of Youth 1997 (NLSY97)  
(b)National Survey of Drug Use and Health (NSDUH) 
(c)Monitoring the Future (MTF) 
Data for the NSDUH and MTF correspond to year 2002 in Table 8.2 from Substance Abuse and 
Mental Health Services Administration, Results from the 2010 National Survey on Drug Use and 
Health: Summary of National Findings, NSDUH Series H-41, HHS Publication No. (SMA) 11-
4658. Rockville, MD: Substance Abuse and Mental Health Services Administration, 2011. 
(*)Cocaine	  in	  the	  NLSY97	  is	  grouped	  with	  other	  hard	  drugs.	  	  

 
	  

	  

	  

	  

	  

	  

	  

	  



	  
Note: These parameters are estimated using a multivariate logit with three mass points (includes all features of 
the benchmark model but it only uses three mass points). Panel A corresponds to a model with time-invariant 
covariates. The first three columns have the same specification as the benchmark model. Columns 4, 5 and 6 
include an indicator for whether the respondent is black or Hispanic. Finally, the last three columns also include 
an indicator for whether the respondent lived in an urban area in the first wave. Panel B corresponds to a model 
with time-varying covariates. The first three columns include indicators for whether the individual is enrolled in 
a 2-year or 4-year college and whether the individual is employed. Columns 4, 5, and 6 include a time-varying 
indicator of region, but most individuals do not change region of residence during the survey. The last three 
columns control for the year specific unemployment rate that corresponds to the individual state of residence at 
the time of interview. 

 

Panel&A:&Time,Invariant&Covariates
Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine

Lag$alcohol 1.878 0.258 0.316 1.868 0.280 0.253 1.922 0.293 0.247
(0.032) (0.052) (0.089) (0.034) (0.052) (0.092) (0.033) (0.050) (0.090)

Lag$mar 80.017 1.826 0.543 80.043 1.788 0.512 80.055 1.773 0.520
(0.053) (0.040) (0.059) (0.054) (0.040) (0.061) (0.052) (0.039) (0.061)

Lag$Coc 80.085 0.136 1.800 80.149 0.119 1.739 80.164 0.129 1.745
(0.084) (0.057) (0.055) (0.087) (0.060) (0.057) (0.085) (0.059) (0.057)

black$ N Y Y
hispanic N Y Y
Urban$in$R1$ N N Y
Panel&B:&Time,Varying&Covariates

Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine Alcohol Marijuana Cocaine
Lag$alcohol 1.886 0.208 0.338 1.896 0.239 0.335 1.881 0.265 0.350

(0.034) (0.055) (0.093) (0.034) (0.054) (0.093) (0.034) (0.056) (0.095)
Lag$mar 80.063 1.841 0.494 80.073 1.830 0.505 80.036 1.839 0.506

(0.055) (0.042) (0.061) (0.055) (0.041) (0.062) (0.057) (0.042) (0.062)
Lag$Coc 80.073 0.106 1.800 80.094 0.105 1.792 80.066 0.113 1.830

(0.089) (0.060) (0.057) (0.088) (0.060) (0.057) (0.089) (0.060) (0.057)
enr.$2yr$coll Y N N
enr4yrcoll Y N N
curr$emp Y N N
unemp$rate N N Y
region$in$t N Y N

Table&A4:&Parameter&Estimates&for&the&Benchmark&Model&&(Model&A)&with&more&Covariates



	  
Note: This table presents the simulated share of cocaine users by age group and the corresponding standard 
errors if alcohol and marijuana were artificially removed until age 18 (Panel C), age 20 (Panel D) and age 
22 (Panel E). These estimates correspond to Figure 4. I calculate the standard errors as follows. First, I 
simulate drug outcomes using the parameters estimated in the model and the demographics of my entire 
sample. Second, I use those simulated drug outcomes to obtain an estimate for the share of individuals in 
the sample that my model predicts will be using drugs by each age category (𝜇!"#$   is the predicted share of 
individuals that consume drug j in age category a, and simulation repetition r for year t). Third, I repeat this 
process 100 times. Then, I compute a mean and standard deviation for (𝜇!"#!, 𝜇!"#!,…… , 𝜇!"#!"") and 
report those as my standard errors. 
 

13#14 15#16 17#18 19#20 21#22 23#24 25+
Panel2A:2Observed
Alcohol 43.23 59.88 72.47 80.19 83.46 81.58 81.12
Mar 16.29 28.16 34.04 32.30 27.64 22.64 18.07
Coc 4.70 8.13 11.15 10.06 8.73 6.77 4.94
Panel2B:2Simulated
Alcohol 42.97 58.94 71.58 79.88 82.24 80.70 81.54

(1.02) (0.64) (0.52) (0.41) (0.40) (0.46) (0.75)
Mar 17.50 27.61 32.79 30.51 27.35 21.92 19.23

(0.75) (0.54) (0.59) (0.48) (0.48) (0.50) (0.76)
Coc 4.56 8.12 10.63 9.83 8.32 6.22 4.92

(0.47) (0.39) (0.35) (0.36) (0.35) (0.33) (0.48)
Panel2C:2Conterfactual2Scenario2where2Alcohol2and2Marijuana2are2Removed2Until2Age218
Alcohol 0.00 0.00 0.00 72.67 81.27 80.50 81.49

(0.00) (0.00) (0.00) (0.48) (0.42) (0.46) (0.75)
Mar 0.00 0.00 0.00 23.62 26.22 21.69 19.17

(0.00) (0.00) (0.00) (0.48) (0.50) (0.51) (0.76)
Coc 3.82 5.81 6.91 6.97 7.63 6.07 4.89

(0.44) (0.32) (0.32) (0.34) (0.36) (0.33) (0.47)
Panel2D:2Conterfactual2Scenario2Where2Alcohol2an2dMarijuana2are2Removed2Until2Age220
Alcohol 0.00 0.00 0.00 0.00 71.97 78.72 81.08

(0.00) (0.00) (0.00) (0.00) (0.53) (0.50) (0.76)
Mar 0.00 0.00 0.00 0.00 21.24 20.85 18.99

(0.00) (0.00) (0.00) (0.00) (0.55) (0.51) (0.78)
Coc 3.82 5.81 6.91 6.27 6.41 5.75 4.82

(0.44) (0.32) (0.32) (0.31) (0.33) (0.32) (0.47)
Panel2E:22Conterfactual2Scenario2Where2Alcohol2an2dMarijuana2are2Removed2Until2Age222
Alcohol 0.00 0.00 0.00 0.00 0.00 65.95 78.69

(0.00) (0.00) (0.00) (0.00) (0.00) (0.62) (0.77)
Mar 0.00 0.00 0.00 0.00 0.00 17.12 18.52

(0.00) (0.00) (0.00) (0.00) (0.00) (0.46) (0.74)
Coc 3.82 5.81 6.91 6.27 6.16 5.45 4.73

(0.44) (0.32) (0.32) (0.31) (0.33) (0.32) (0.44)

Table2A5:22Actual2and2Conterfactual2Share2of2Respondents2Who2Consume2Each2Drug2by2Age2Group



	  
Note: This table presents the simulated share of cocaine users by year and the corresponding standard errors under the counterfactual scenario where high levels 
of alcohol were replaced with low levels (Panel C), high levels of marijuana were replaced with low levels (Panel D), both high levels of alcohol and marijuana 
were replaced with low levels (Panel E), high levels of marijuana are replace with no marijuana use (Panel F) and finally a scenario where marijuana is removed 
completely (Panel G). These estimates correspond to Figure 5 and 6. I calculate the standard errors as follows. First, I simulate drug outcomes using the 
parameters estimated in the model and the demographics of my entire sample. Second, I use those simulated drug outcomes to obtain an estimate for the share of 
individuals in the sample that my model predicts will be using drugs by year (𝜇!,!,!   is the predicted share of individuals that consume drug j in year t, and 
simulation repetition r). Third, I repeat this process 100 times. Then, I compute a mean and standard deviation for (𝜇!,!,!, 𝜇!,!,!,…… , 𝜇!,!,!"") and report those as 
my standard errors. 
	  

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Panel0A:0Observed0Data
Coc$None 95.23 94.18 93.54 93.05 93.71 94.08 94.41 94.66 95.42 96.12
Coc$Low 1.57 3.59 4.00 4.00 3.88 3.49 3.05 3.07 2.43 2.23
Coc$High 3.20 2.23 2.46 2.95 2.41 2.43 2.54 2.27 2.15 1.65
Cocaine$Total 4.77 5.82 6.46 6.95 6.29 5.92 5.59 5.34 4.58 3.88
Panel0B:0Simulated0Data
Cocaine$Total$ 4.78 5.68 6.15 6.34 6.26 5.92 5.34 4.82 4.29 3.85

(0.26) (0.30) (0.34) (0.30) (0.34) (0.31) (0.32) (0.29) (0.27) (0.25)
Panel0C:Conterfactual0Scenario0where0Alcohol0Consumption0in0High0Amounts0is0Replaced0with0Low0Amounts
Cocaine$Total$ 4.78 5.45 5.73 5.75 5.54 5.10 4.48 3.96 3.49 3.10

(0.26) (0.29) (0.32) (0.32) (0.32) (0.30) (0.29) (0.27) (0.23) (0.24)
Panel0D:Conterfactual0Scenario0where0Marijuana0Consumption0in0High0Amounts0is0Replaced0with0Low0Amounts
Cocaine$Total$ 4.78 5.51 5.73 5.69 5.46 5.06 4.49 4.05 3.62 3.26

(0.26) (0.30) (0.31) (0.31) (0.32) (0.30) (0.31) (0.29) (0.25) (0.24)
Panel0E:Conterfactual0Scenario0where0Alcohol0and0Marijuana0Consumption0in0High0Amounts0is0Replaced0with0Low0Amounts
Cocaine$Total 4.78 5.28 5.32 5.13 4.81 4.36 3.76 3.34 2.97 2.64

(0.26) (0.29) (0.31) (0.31) (0.29) (0.29) (0.28) (0.26) (0.22) (0.21)
Panel0F:0Conterfactual0Scenario0Where0High0Levels0of0Marijuana0are0Replaced0with0No0consumption0at0all0
Cocaine$Total$ 4.78 5.34 5.39 5.24 5.00 4.63 4.11 3.73 3.36 3.04

(0.26) (0.28) (0.31) (0.30) (0.31) (0.28) (0.29) (0.27) (0.24) (0.23)
Panel0G:0Conterfactual0Scenario0where0Marijuana0(Low0and0High0Amounts)0is0Removed0Completely
Cocaine$Total$ 4.78 4.79 4.66 4.44 4.24 3.92 3.49 3.17 2.90 2.62

(0.26) (0.27) (0.30) (0.30) (0.29) (0.28) (0.26) (0.25) (0.22) (0.20)

Table0A6:0Actual0and0Conterfactual0Share0of0Respondents0who0consumed0Cocaine0by0Intensity0of0Use


