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Abstract

A buyer and seller have the opportunity to exchange an indivisible good at a

prespecified price. Each agent may be imperfectly informed, in an arbitrary way,

about both his own value for the good and the other agent’s value. An observer

knows the joint distribution of the two agents’ values, but does not know their in-

formation structure. We determine what lower bounds the observer can confidently

predict for the expected gains from trade that can be realized in equilibrium. In

particular, we show that the worst-case information structure — that minimizes the

realizable gains from trade — involves no information asymmetries.

Thanks to (in random order) Paul Milgrom, Alp Simsek, Stephan Lauermann, Alex

Wolitzky, Matthew Jackson, Anton Tsoy, Nathan Hendren, Daron Acemoglu, Jean

Tirole, and Richard Holden for helpful comments.

1 Introduction

Suppose that a buyer and seller meet to exchange a single, indivisible good at a known

price. In a classical economic model — say, an exchange economy — the parties’ values

for the good being traded are commonly known. If, for example, the good is worth 6 to

the buyer and 4 to the seller, and they are able to trade at a price of 5, then an observer

can confidently predict that the parties will be able to realize the gains from trade of 2.

All well and good. Now suppose that the values are not commonly known. Suppose

instead that they are distributed according to the following prior:
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• with probability 80% the world is in a “normal” state, in which the object has value

6 to the buyer and 4 to the seller, as before;

• there is also 10% chance of a “good” state, in which the parties’ values for the object

are 8 and 6 respectively;

• there is a 10% chance of a “bad” state, in which the parties’ values are 4 and 2.

Suppose, moreover, that the observer knows this distribution, but does not know what

information the trading parties have about the state. They may both be fully informed; or

there may be a lemons market as in Akerlof [1], where the seller knows the state while the

buyer is uninformed; or the buyer may know the state and the seller may be uninformed;

or both parties may receive independent signals of the state, with each signal having a

1/2 probability of being correct and a 1/2 probability of being uninformative noise; or

perhaps the information structure is something much more complicated. In general, it will

not be possible to realize all the gains from trade. Indeed, a long tradition in information

economics has pointed out how information asymmetries can lead to breakdown of trade,

starting with Akerlof [1] and continuing to more recent contributions that stress the

importance of higher-order beliefs [17, 2, 14].

But can the observer predict at least some probability of trade? Indeed she can. In

this example, even without knowing the information structure, the observer can predict

that the parties will be able to trade with probability at least 60%. More precisely, no

matter what the information structure is, as long as the buyer and seller share a common

prior over it, the resulting Bayesian game between them has an equilibrium in which at

least 60% of the gains from trade are realized (in expectation); and this 60% prediction

is sharp.

This paper will show, more generally, how the observer who knows only the distribution

of traders’ values can compute the sharpest possible prediction for attainable gains from

trade. We will also describe the information structure that makes this prediction sharp.

Perhaps surprisingly, this worst-case information structure does not involve asymmetric

information. Instead, both parties receive the same signal: either a “high-value” signal (in

which case the seller does not want to trade at the posted price, because his expected value

from keeping the good is higher); or a “low-value signal” (such that the buyer does not

want to trade); or a “normal” signal. (The result that the worst case involves symmetric

information is specific to the posted-price mechanism that we assume; this will be further

discussed in the conclusion.)
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On some level, our characterization of the worst case is unsurprising: if trade fails,

it should be either because the seller expects his value is too high or the buyer expects

his value is too low. But the result is not trivial because of contagion effects through the

interaction of the two parties’ information: as in any situation of adverse selection, in

equilibrium each trader should decide to trade not only based on his interim belief about

his value but based on the information content of the other party’s willingness to trade.

Consequently, for any particular information structure, describing equilibrium behavior

can be nontrivial.

Here is a simple example illustrating this point; one can readily cook up more com-

plicated examples. We stick with the 80–10–10 distribution of values described above.

Suppose that the information structure is as follows: The buyer’s signal ηB may take one

of three possible realizations, which we call A,B,C; the seller’s signal ηS may take on

realizations D,E, F . The following table shows the probability of each pair of signals, as

well as the buyer’s and seller’s values for the goods corresponding to each possible pair of

signals. (In this example, each possible pair of signals can occur for only one state of the

world, but our general model will not assume this.)

ηB\ηS D E F

A
0.36
6, 4

0.03
4, 2

0.40
6, 4

B
0.04
6, 4

0.05
4, 2

C
0.10
8, 6

0.02
4, 2

Table 1: Joint distribution of signals and values

The buyer and seller observe their respective signals, and then decide whether to agree

to trade; if both agree, they trade at the price of 5.

In this example, if the seller receives signal D or F , then for sure he benefits from

trading, so we may as well assume he agrees to trade. Then, if the buyer receives signal

A, his expected gain from agreeing to trade is positive (although its exact value depends

how the seller with signal E behaves), so the buyer with signal A agrees as well.

Does the seller with signal E agree to trade? If he does, then we can check that the

buyer with signal B prefers not to trade, while the buyer with signal C prefers to trade.

Given that the buyer trades under signals A and C but not B, then the seller with signal
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E earns negative gains from trade, so prefers not to trade.

On the other hand, if the seller does not trade under signal E, then the buyer prefers

to trade under signal B and not C. In this case, the seller’s best reply under signal E is

to trade.

So it must be in equilibrium that the seller mixes under signal E. With a little more

calculation, we can check that the equilibrium is as follows: the buyer agrees to trade with

probability 1/15 following signal B, and probability 1 for signal C; and the seller agrees

with probability 4/5 under signal B. The resulting probability of both parties agreeing

to trade is 341/375 ≈ 0.91.

Examples of this sort suggest that it might be possible to devise more complicated

information structures, perhaps using email-game-like constructions [17] to create ripple

effects across information sets, so that ultimately one party or the other is unwilling to

trade almost all the time. Indeed, one can easily give such constructions to make each

party sometimes unwilling to trade even in states where his ex-post gains are very high.

But our results show that such contagion cannot prevent trade all the time, and sharply

delineate just how bad it can be, from an ex-ante view.

Now that we have sketched out our results, it is tempting to discuss interpretations

and possible applications. However, it will be easiest to give this discussion clearly after

having given the full statement of the model and results, and indicating their limitations.

So we leave the economic interpretations to the concluding Section 5 — with apologies

to any hurried readers — and instead devote the rest of this introduction to the paper’s

methodological contribution and its context.

The broader purpose of the analysis here is to advance exploration of what can be

predicted about agents’ behavior without knowing their information structure. In that

respect, the exercise we perform, and the motivation, are similar to the work of Bergemann

and Morris, who take a similar approach at an abstract level to general static games [5]

and apply it to games with a quadratic-normal structure [6], and to Bergemann, Brooks

and Morris, who perform a similar analysis in a monopoly pricing problem [4] and a

first-price auction [3]. Like the latter two papers in particular, we choose a relatively

simple and common form of economic interaction and explore the possible information-

free predictions.

One difference between our work and the others just mentioned is that the latter

explore all equilibria for a given information structure, whereas we focus on the best

equilibrium. Indeed, in our setup, it is always an equilibrium for both parties to never

agree to trade. Moreover, this equilibrium cannot always be eliminated with a simple
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refinement (see Subsection 4.2). Hence if we allowed all equilibria, the observer could

make no predictions about the realized gains from trade.

Because of this difference, it can be difficult to interpret our results as a positive

prediction for what trades will happen, unless one accepts some optimistic equilibrium

selection that is not modeled here. Otherwise, our contribution can be better thought of

as exploring how much difference information can make in determining what is possible —

showing limits to how much breakdown of trade can be blamed on information structure.

Another technical connection from our results is with the literature on ex-ante robust-

ness of equilibria of complete-information games, as in Kajii and Morris [9]. Indeed, one

way to look at our results is to focus on how they imply a continuity in the best equilib-

rium outcomes: In the classical economy outlined above, where there is probability 1 that

both parties benefit from trade, all the gains from trade can be realized; our results imply

that if additional states where one party or the other does not gain are introduced with

small probability, it remains possible to realize most of the gains from trade. This conti-

nuity actually already follows from the Kajii-Morris results; in our complete-information

game, the always-trade equilibrium is robust in their sense. But beyond the continuity

statement, we give a sharp quantitative result. Our quantitative conclusion can be seen

as complementary to that of Kajii and Morris in our setting: They show how to find a

sharp quantitative bound on how much the complete-information equilibrium can move

when new states can be introduced with arbitrary payoff structures; we restrict to a spe-

cific game and specific payoff structures, and give a corresponding bound by different

techniques.

2 Model

Let’s now flesh out the formal model. The buyer’s and seller’s values for the good, b and

s, are random variables whose joint distribution is given by a probability measure µ on

R
2, with compact support. This µ describes the prior belief, shared by the buyer, seller,

and the observer. We assume b ≥ s with probability 1: it is common knowledge that

there are (weak) gains from trade. (We will discuss later the consequences of relaxing this

assumption.)

We assume a very simple institution for trading. There is a known market price p,

which is constant. Each of the two agents can either agree to trade at that price or decline

to trade. If both agents agree, they trade, giving payoffs b− p and p− s to the buyer and

seller respectively. If either declines, then both receive payoff 0.
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We will assume that neither the buyer nor the seller is certain ex ante that trade is

beneficial for him: the events b− p < 0 and p− s < 0 both have positive probability. (If

either of these events has probability zero, the problem is much simpler; we will briefly

address this situation later.)

Both the buyer and seller may receive information prior to trading, via an information

structure which is unknown to the observer. We restrict to finite information structures,

to avoid complications with equilibrium existence. Thus, an information structure consists

of two finite sets of signals, IB and IS, and a joint probability measure ν on R
2×IB×IS,

such that the marginal of ν on the R
2 component coincides with µ. The signals received

by the two agents will be denoted by ηB ∈ IB and ηS ∈ IS.

Any information structure induces a Bayesian game, in which the two agents observe

their signals and then decide whether to agree to trade. The buyer’s possible (mixed)

strategies are functions σB : IB → [0, 1], denoting the probability of agreeing after each

signal, and the seller’s strategies are functions σS : IS → [0, 1]. The expected payoffs from

a strategy profile are

uB(σB, σS) =

∫
σB(ηB)σS(ηS)(b− p) dν, uS(σB, σS) =

∫
σB(ηB)σS(ηS)(p− s) dν.

(2.1)

A strategy profile (σB, σS) is a (Bayesian Nash) equilibrium if

uB(σB, σS) ≥ uB(σ
′
B, σS) and uS(σB, σS) ≥ uS(σB, σ

′
S)

for any alternative strategies σ′
B, σ

′
S.

The observer would like to make robust predictions about the best possible equilibrium,

as measured by some criterion, e.g. the highest expected surplus, or highest probability of

trade. (Expected surplus is perhaps the most natural criterion, but we may as well allow

for others, since it will require little extra work.) We assume the observer’s objective is

represented by some bounded, measurable function of b, s, call it w(b, s): the observer

gets w(b, s) when trade occurs and 0 otherwise. Thus, the observer’s criterion is

W (σB, σS) =

∫
σB(ηB)σS(ηS)w(b, s) dν.

For example, if we define w(b, s) = b − s then this captures the expected gains from

trade realized in equilibrium; if w(b, s) = 1 then we have the probability of trade. Other

criteria might express the observer’s placing more importance on trade in some states
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than in others. We do, however, need that the observer always prefers for trade to occur:

w(b, s) ≥ 0, for all (b, s) in the support of µ.

We then say that a value x for the observer’s criterion is a robust prediction if, for

every information structure (IB, IS, ν), there exists an equilibrium (σB, σS) satisfying

W (σB, σS) ≥ x.1 It is immediate that there is some maximum robust prediction. We

wish to characterize what this value is.

Our analysis will also lead us naturally to look at symmetric information structures,

where both agents have the same information. Explicitly, we say the information structure

is symmetric if IB = IS and ηB = ηS with probability 1 under ν. We say that a value

x is a robust prediction with symmetric information if, for every symmetric information

structure (IB, IS, ν), there exists an equilibrium (σB, σS) satisfying W (σB, σS) ≥ x.

3 Results

3.1 Event decomposition

Let’s jump to the punch line. To identify how bad an equilibrium outcome is (from the

observer’s point of view), it suffices to describe when the agents fail to trade. Our two

main results describe these possible no-trade events. The first main result says that for any

information structure, there exists an equilibrium in which the event of no trade is at most

the union of two other events, one on which the buyer has a negative expected gain from

trading at price p, and one on which the seller has a negative expected gain from trading.

(It does not say, however, that the buyer declines trade on the first sub-event, and the seller

declines on the second.) The second main result is a sort of converse: for any event that has

such a decomposition into two sub-events, there is an information structure under which

no trade can occur there. Thus, together, these two results characterize the maximal

possible no-trade events. Moreover, the second result states that one can choose the

information structure to be symmetric — that is, both players have identical information.

We will give the results, and then, before proceeding to the proofs (Subsection 3.3), will

first lay out how they can be used to compute the maximum robust prediction (Subsection

3.2).

To state the results succinctly, we first need a little more notation. Consider any

1The term “prediction” is a bit of a misnomer since, as already pointed out, it depends on equilibrium
selection assumptions. “Attainable value” might be more descriptive, but we keep “prediction” for
simplicity.
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given information structure (IB, IS, ν) and any given equilibrium (σB, σS). Let ǫB ∼

U [0, 1] be the private random variable which the buyer uses to implement any mixing

that his strategy calls for — say, the buyer agrees to trade when ǫB ≤ σB(ηB) — and

similarly ǫS ∼ U [0, 1] for the seller. So outcomes are defined over the probability space

Ω = R
2 × IB × IS × [0, 1]2, with the probability measure ν̃ given by the product of ν

with the uniform measure on [0, 1]2. The event of no trade, NT ⊆ Ω, consists of those

realizations of (b, s, ηB, ηS, ǫB, ǫS) for which ǫB > σB(ηB) or ǫS > σS(ηS).

Proposition 3.1. Let (IB, IS, ν) be any information structure. There exists an equilib-

rium (σB, σS), and two disjoint events NTB, NTS defined on the corresponding probability

space Ω, such that

(i)
∫
NTB

(b− p) dν̃ < 0;

(ii)
∫
NTS

(p− s) dν̃ < 0;

(iii) NT ⊆ NTB ∪NTS.

For the converse proposition, we let L = {T,B, S} be a set of labels. The labels B

and S will represent the events NTB and NTS; the label T represents the complementary

event, on which trade occurs. The converse says that given any construction of the events

NTB and NTS — which we represent by a joint distribution of (b, s) and the label l ∈ L

— such that the buyer’s expected gain on NTB and seller’s on NTS are both negative,

there is some information structure for which NTB ∪ NTS is indeed a no-trade event in

any equilibrium.

Proposition 3.2. Let µ̃ be any probability distribution on R
2 × L, with marginal µ on

R
2. Suppose that

∫
l=B

(b − p) dµ̃ < 0 and
∫
l=S

(p − s) dµ̃ < 0. Then there exists a pair of

finite sets IB and IS, and a joint distribution ξ over R
2 × IB × IS × L, such that

(i) the marginal on R
2 × L is µ̃;

(ii) for any equilibrium of the information structure given by the marginal of ξ on R
2 ×

IB × IS, the event

l ∈ {B, S} and σB(ηB)σS(ηS) > 0

has probability 0.

Moreover, this existence holds even if we require the information structure to be sym-

metric.

8



Our next task is to show how the results can be used to compute the maximum ro-

bust prediction for the observer’s criterion, given the prior µ. In the process, we reach

the observation, already mentioned in the introduction, that the maximum robust pre-

diction is the same as the maximum robust prediction with symmetric information. This

observation emerges from the first step in the computation, recorded below:

Corollary 3.3. The following are equivalent, for a real number x:

(a) x is a robust prediction;

(b) x is a robust prediction with symmetric information;

(c) x ≤
∫
R2 w(b, s) dµ − supµ̃

∫
l∈{B,S}

w(b, s) dµ̃, where the supremum is over all distri-

butions µ̃ on R
2×L, having marginal µ on R

2 and satisfying
∫
l=B

(b−p) dµ̃ < 0 and∫
l=S

(p− s) dµ̃ < 0.

Proof: Clearly (a) implies (b): if a prediction of x is valid for any arbitrary informa-

tion structure, it is valid for any symmetric information structure.

For (b) implies (c), suppose that x >
∫
R2 w(b, s) dµ− supµ̃

∫
l∈{B,S}

w(b, s) dµ̃. So there

exists some µ̃ as in Proposition 3.2 such that x >
∫
l=T

w(b, s) dµ̃. Let ξ be given by that

proposition, and (IB, IS, ν) the corresponding symmetric information structure; then for

any equilibrium (σB, σS),

W (σB, σS) =

∫
σB(ηB)σS(ηS)w(b, s) dξ

=

∫

l=L

σB(ηB)σS(ηS)w(b, s) dξ

≤

∫

l=L

w(b, s) dξ

< x

with the second line coming from conclusion (ii) of Proposition 3.2. Thus, x is not a

robust prediction with symmetric information.

For (c) implies (a), suppose x satisfies the given condition. Let (IB, IS, ν) be any

information structure. Let (σB, σS) and Ω, NTB, NTS be as given by Proposition 3.1. Let

l ∈ L be a random variable on Ω, with value B on NTB, S on NTS, and T otherwise; and
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put µ̃ for the marginal distribution of (b, s, l). Then

W (σB, σS) =

∫

Ω\NT

w(b, s) dν̃

≥

∫

Ω\(NTB∪NTS)

w(b, s) dν̃

=

∫

R2

w(b, s) dµ−

∫

l∈{B,S}

w(b, s) dµ̃

≥ x.

Hence, x is a robust prediction. �

3.2 Maximal no-trade events

It remains, then, to calculate the supremum in (c) of Corollary 3.3 — essentially, the

worst possible total weight (by the observer’s criterion) of no-trade events.

We first intuitively describe the worst possible no-trade events in the benchmark case

where the observer is concerned with expected gains from trade, w(b, s) = b − s. In this

case, imagine that all possible value realizations are sorted by the ratio of gains from

trade that accrue to the buyer, (b − p)/(b − s). The buyer’s no-trade event NTB can

be formed by taking all the realizations with ratios below a cutoff, where the cutoff is

determined by the condition that the buyer’s expected value on this event should equal

the price p. Similarly, the seller’s no-trade event NTS consists of all realizations with high

ratios, where the cutoff is determined by the seller’s expected value equaling p. These

events are illustrated in Figure 1: the gray heat map represents the density of the prior

distribution of (b, s); the horizontally hatched region is NTB and the diagonally hatched

region is NTS. If the events were to overlap, then the worst-case prediction would be zero

trade.

For more general criteria w, it will still hold that the worst-case no-trade events will

have NTB consist entirely of lower buyer-gains ratios than NTS. But in general, NTB

will consist of those realizations for which (b− p)/w is as low as possible (subject to the

buyer-gains ratio being below some cutoff), and NTS will consist of those realizations for

which (p − s)/w is as low as possible (subject to the buyer-gains ratio being above its

cutoff).

The rest of this subsection will formalize these ideas in full pedantic detail. We first

show that the worst-case no-trade events NTB and NTS can be separated in terms of
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s

(p,p)

Figure 1: Worst-case no-trade events (criterion = gains from trade)

their buyer-gains ratios. Explicitly, we show that there exists α ∈ (0,∞) such that NTB

consists only of realizations with (b− p) ≤ α(p− s), and NTS consists only of realizations

with (b − p) ≥ α(p − s). Moreover, if equality holds for a positive mass of realizations,

then all such realizations should be split in the same proportion between NTB and NTS

— we call this proportion β.

We will express this formally in the language of measures rather than events: The

supremum in Corollary 3.3(c) equals the supremum
∫
R2 w(b, s)d(µB + µS) over all pairs

of measures µB, µS such that
∫
R2(b − p) dµB < 0,

∫
R2(p − s) dµS < 0, and µB + µS ≤ µ.

Call such a pair of measures valid.

To state the separation lemma explicitly, given α, β ∈ [0, 1], we define the events

Eα
< = {(b, s) | (b− p) < α(b− s)},

Eα
= = {(b, s) | (b− p) = α(b− s)},

Eα
> = {(b, s) | (b− p) > α(b− s)},

and define two measures µα,β
B , µα,β

S by

µα,β
B (E) = µ(E ∩Eα

<)+βµ(E ∩Eα
=), µα,β

S (E) = µ(E ∩Eα
>)+ (1−β)µ(E ∩Eα

=) (3.1)

for any event E. Note that µα,β
B + µα,β

S = µ. (We will often write these without the

superscript α, β.)

We will then say that a pair of measures (µB, µS) is (α, β)-separated if µB ≤ µα,β
B and
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µS ≤ µα,β
S .

Lemma 3.4. Let (µB, µS) be a valid pair. Then there exists a valid pair (µ̂B, µ̂S) that is

(α, β)-separated, for some α, β, and such that µ̂B + µ̂S = µB + µS.

The proof is straightforward: With (µB, µS) given, any choice of parameters α, β

specifies a way of redividing the mass µB + µS into µ̂B and µ̂S. There is some range of

pairs (α, β) for which the needed inequality µ̂B ≤ µα,β
B is satisfied, and a corresponding

range for µ̂S; we just need to show that these two parameter ranges overlap. The details

are in Appendix A.

Lemma 3.4 shows that in our search for the supremum of
∫
w(b, s) d(µB + µS) over

valid pairs of measures, we can restrict ourselves to looking at valid pairs that are (α, β)-

separated for some α, β.

So, for any given α, β, define Y (α, β) to be the supremum of
∫
w(b, s) d(µB +µS) over

valid pairs that are (α, β)-separated. We just need a way to compute Y (α, β) for given α

and β, and then in a subsequent round we optimize over α, β.

It is evident that

Y (α, β) = sup
µB

∫
w(b, s) dµB + sup

µS

∫
w(b, s) dµS,

where the first supremum is over all measures µB ≤ µB satisfying
∫
(b− p) dµB < 0, and

the second is over all measures µS ≤ µS satisfying
∫
(p− s) dµS < 0. We denote these two

separate suprema by YB(α, β), YS(α, β).

These separate suprema can be calculated by the greedy algorithm that takes mass

that (for µB) minimizes the ratio (b− p)/w, up until the point where the total integral of

b− p is zero; or (for µS) minimizes (p− s)/w, up until the integral of p− s is zero.

Let us give a precise statement. For γ > 0 and δ ∈ [0, 1], define

F γ
< = {(b, s) | b− p < γw(b, s)}, F γ

= = {(b, s) | b− p = γw(b, s)}.

Then F γ
< is increasing in γ, and so

∫
F

γ
<
(b − p) dµB is also increasing in γ, since the pairs

that are in F γ
< but not in F γ′

< for γ′ < γ must satisfy b − p > 0. Let γ∗
B ∈ (0,∞] be the

supremum of values such that
∫
F

γ
<
(b − p) dµB < 0. (This integral is negative at γ = 0.)

If γ∗
B < ∞ then

∫
F

γ∗
B

<

(b − p) dµB + δ
∫
F

γ∗
B

=

(b − p) dµB is weakly increasing in δ ∈ [0, 1],

and is nonnegative at δ = 1; let δ∗B be the supremum of values for which it is < 0. The

expression must be equal to 0 at δ = δ∗B.

12



For the seller’s no-trade event, we perform a completely analogous computation, sub-

stituting p− s for b− p and µS for µB, and defining events

Gγ
< = {(b, s) | p− s < γw(b, s)}, Gγ

= = {(b, s) | p− s = γw(b, s)}.

This gives values γ∗
S and δ∗S.

Lemma 3.5. If γ∗
B = ∞ then YB(α, β) =

∫
R2 w(b, s) dµB. Otherwise,

YB(α, β) =

∫

F
γ∗
B

<

w(b, s) dµB + δ∗B

∫

F
γ∗
B

=

w(b, s) dµB.

Similarly, if γ∗
S = ∞ then YS(α, β) =

∫
R2 w(b, s) dµS, and otherwise

YS(α, β) =

∫

G
γ∗
S

<

w(b, s) dµS + δ∗S

∫

G
γ∗
S

=

w(b, s) dµS.

The proof is in Appendix A.

Finally, we can summarize our work in the following procedure to compute the ob-

server’s maximum robust prediction, given the prior distribution µ.

1. For each choice of α, β ∈ [0, 1], split µ into µB and µS by (3.1).

2. Use the greedy algorithm on this µB and µS — taking the mass with the lowest

ratio (b− p)/w and (p− s)/w, respectively — to compute YB(α, β) and YS(α, β), as

described in Lemma 3.5. This determines Y (α, β) = YB(α, β) + YS(α, β), the worst

possible total weight of no-trade events subject to the given values of α and β.

3. Finally, as given by Corollary 3.3, the maximum robust prediction equals
∫
R2 w(b, s) dµ−

supα,β Y (α, β).

We note that the brief description given earlier for the benchmark case w(b, s) = b− s

— where the no-trade event NTB is formed by taking the realizations with the lowest

ratio (b− p)/(b− s), and NTS is formed by taking the realizations with the highest ratio

— immediately follows as a special case.

3.3 Proofs of main results

We now give the proofs of the main results, which have so far been cruelly withheld.
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The proof of Proposition 3.1 — existence of a “good” equilibrium for any information

structure — is nonconstructive. We consider a sequence of constrained games, where the

players are not always permitted to choose freely to accept or reject trade; instead, for

some realizations of the signals, we force them to accept trade. Initially, we force both

players to trade for all realizations of their signals. We then gradually unconstrain the

signal realizations, one by one, and apply the Nash existence theorem to each constrained

game. As long as the equilibrium of the constrained game is not also an equilibrium of

the unconstrained game, we can express one player’s desire to deviate as an inequality;

combining these inequalities leads to the desired event decomposition.

Proof of Proposition 3.1: We successively define sequences of signal sets J k
B ⊆

IB,J
k
S ⊆ IS and functions λk

B, λ
k
S : IB × IS → [0, 1], for k = 0, 1, . . .. These sets and

functions will be made to satisfy the following conditions:

(a) λk
B(ηB, ηS) = 0 whenever ηB ∈ J k

B;

(b) λk
S(ηB, ηS) = 0 whenever ηS ∈ J k

S ;

(c) if (ηB, ηS) /∈ J k
B × J k

S , then λk
B(ηB, ηS) + λk

S(ηB, ηS) ≥ 1;

(d) if J k
B 6= Ik

B, then
∫
λk
B(ηB, ηS) · (b− p) dν < 0;

(e) if J k
S 6= Ik

S, then
∫
λk
S(ηB, ηS) · (p− s) dν < 0.

J k
B will be the set of signal realizations in which the buyer is forced to accept trade

in the kth constrained game; similarly for the seller and J k
S . λk

B and λk
S will be weights

derived from the deviation inequalities along the way.

For the base case, we take J 0
B = IB, J

0
S = IS, and λ0

B, λ
0
S identically zero. It is clear

that (a) and (b) hold, and (c)–(e) are vacuous.

Now suppose these sets and functions have been defined for some k. Consider the

Bayesian game where each player learns his signal according to ν, and agrees or declines

to trade, with the constraint that the buyer must agree to trade whenever ηB ∈ J k
B, and

likewise the seller must agree whenever ηS ∈ J k
S . That is, the (mixed) strategy space of

the buyer is the set of σB : IB → [0, 1] such that σB(ηB) = 1 whenever ηB ∈ J k
B, and

likewise for the seller; and the payoffs are given by (2.1). This game has a Bayesian Nash

equilibrium, call it (σB, σS).

Suppose that (σB, σS) is not an equilibrium of the original, unconstrained game. In this

case we will define J k+1
B ,J k+1

S , λk+1
B , λk+1

S . One of the players has a profitable deviation,

say the buyer (the argument if it is the seller is totally analogous). In particular, there
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is at least one signal η∗B on which the buyer benefits from deviating. That is, there is σ′
B

that agrees with σB for all signals except η∗B, and such that

uB(σ
′
B, σS) > uB(σB, σS). (3.2)

We must have η∗B ∈ J k
B, because otherwise the deviation σ′

B would be allowed in the

constrained game, and (3.2) contradicts the assumption that (σB, σS) was an equilibrium

of the constrained game. Therefore, σB(η
∗
B) = 1, and σ′

B(η
∗
B) < 1. So (3.2) implies

∫

ηB=η∗
B

σS(ηS)(b− p) dν < 0. (3.3)

Define J k+1
B = J k

B \ {η∗B}, and define

λk+1
B (ηB, ηS) =

{
σS(ηS) if ηB = η∗B,

λk
B(ηB, ηS) otherwise.

Also define J k+1
S = J k

S and λk+1
S = λk

S.

We check that (a)-(e) are satisfied for step k + 1. It is straightforward to see that (a)

for k + 1 follows from (a) for k. For (c), we only need to check the cases where ηB = η∗B.

There are two possibilities. If ηS /∈ J k
S , then

λk+1
B (ηB, ηS) + λk+1

S (ηB, ηS) ≥ λk
B(ηB, ηS) + λk+1

S (ηB, ηS)

= λk
B(ηB, ηS) + λk

S(ηB, ηS)

≥ 1.

Here the first line is because λk
B(ηB, ηS) = 0 (by (a) for k); the second is because λk+1

S = λk
S;

the third is by (c) for k. If on the other hand ηS ∈ J k
S , then λk

B(ηB, ηS) = σS(ηS) = 1

already. So (c) holds. For (d), we already know
∫
λk
B(ηB, ηS)(b− p) dν ≤ 0. And

∫
λk+1
B (ηB, ηS)(b− p) dν −

∫
λk
B(ηB, ηS)(b− p) dν

=

∫

ηB=η∗
B

(λk+1
B (ηB, ηS)− λk

B(ηB, ηS))(b− p) dν

=

∫

ηB=η∗
B

σS(ηS)(b− p) dν

< 0
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by (3.3). Finally, (b) and (e) hold since J k+1
S = J k

S and λk+1
S = λk

S.

Now, at each step k of this construction, the sets J k
B,J

k
S become weakly smaller, and

one of them becomes strictly smaller. By finiteness, the process must stop at some k.

This can only happen when the constrained equilibrium (σB, σS) is an equilibrium of the

unconstrained game. This will be the equilibrium claimed in the proposition. It remains

to define events NTB, NTS.

First, we can change λk
B and λk

S if necessary so that the inequality in condition (c)

becomes an equality. To see this, consider any (η∗B, η
∗
S) /∈ J k

B × J k
S . At least one of

∫

(ηB ,ηS)=(η∗
B
,η∗

S
)

(b− p) dν,

∫

(ηB ,ηS)=(η∗
B
,η∗

S
)

(p− s) dν

is nonnegative, since their sum is nonnegative. If the former, we can replace λk
B(η

∗
B, η

∗
S)

by the lower value 1 − λk
S(η

∗
B, η

∗
S) (keeping all other values of λk

B the same); this will

make (c) hold with equality at this pair and will preserve (d) since the left side of the

inequality there becomes weakly smaller. Likewise, in the latter case we replace λk
S(η

∗
B, η

∗
S)

by 1 − λk
B(η

∗
B, η

∗
S). Doing this for each signal pair, we ensure that (c) is an equality for

each signal pair where it applies.

Now suppose momentarily that J k
B 6= IB and J k

S 6= IS. Let

NTB be the event ((ηB, ηS) /∈ J k
B × J k

S and ǫB ≤ λk
B(ηB, ηS));

NTS be the event ((ηB, ηS) /∈ J k
B × J k

S and ǫB > λk
B(ηB, ηS)).

We check that conditions (i)-(iii) in the proposition statement hold. For (i), conditional

on any realizations of (b, s, ηB, ηS), the probability of NTB is λk
B(ηB, ηS) (this is true also

when (ηB, ηS) ∈ JB × JS since then λk
B(ηB, ηS) = 0). So

∫

NTB

(b− p) dν̃ =

∫
λk
B(ηB, ηS)(b− p) dν̃ < 0.

Likewise for (ii), conditional on (b, s, ηB, ηS), the probability of NTS is λk
S(ηB, ηS) — this

holds for (ηB, ηS) /∈ J k
B ×J k

S by equality in (c), and otherwise both sides are zero. Hence

∫

NTS

(p− s) dν̃ =

∫
λk
S(ηB, ηS)(p− s) dν̃ < 0.

And for (iii), NTB ∪ NTS is the event (ηB, ηS) /∈ J k
B × J k

S . But NT only occurs when

σB(ηB) < 1 or σS(ηS) < 1, which (by construction of the constrained game) requires
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(ηB, ηS) /∈ J k
B × J k

S .

Finally, if J k
B is all of IB or J k

S is all of IS, then we use the same construction except

that we will have equality in (i) or (ii), respectively. We can use small adjustments to turn

these into strict inequalities: If only (i) is an equality, we can consider a small amount

of probability mass on which b− p < 0, and add it to NTB (if this mass already belongs

to NTS then remove it from NTS in order to preserve disjointness); this makes (i) hold

strictly and preserves (ii) and (iii). If only (ii) is an equality, proceed similarly. If both are

equalities, then NTB and NTS as defined above are empty; we can obtain strict inequality

by instead letting NTB be any positive-probability sub-event of b − p < 0 and NTS be

any (disjoint) sub-event of p− s < 0. �

In contrast to the preceding proof, Proposition 3.2 — existence of an information

structure forcing no trade on certain events — will be proved by a very simple construction:

Both players simply observe the label l as their signal.

Proof of Proposition 3.2: Let IB = IS = L. Let (b, s, l) be distributed according

to µ̃, and put ηB = ηS = l. This generates a distribution ξ, and the information structure is

symmetric. Clearly (i) is satisfied. For (ii), we need to show that any equilibrium (σB, σS)

satisfies σB(B)σS(B) = σB(S)σS(S) = 0. If σS(B) > 0, then the buyer will not want to

trade when he receives signal B, since his gains from trading are
∫
l=B

(σS(B))(b−p) dµ̃ < 0.

Thus σB(B)σS(B) = 0. The proof that σB(S)σS(S) = 0 is analogous. �

3.4 Comments on sign criteria

Now that we’ve got those proofs behind us, let’s briefly discuss the consequences of relaxing

some of the assumptions on signs, as was promised some while ago.

Both parties uncertain about gains. We have assumed that the events b− p < 0

and p − s < 0 both have positive probability. What happens when one has probability

zero? If, say, p − s ≥ 0 for certain, then the seller is always willing to accept trade. On

any information structure, constraining the seller to always accept, and having the buyer

choose a best response, gives an equilibrium. So Proposition 3.1 becomes simpler: there

exists an event NTB over which the integral of b − p is negative, and NT = NTB. The

converse, analogous to Proposition 3.2, says now that for any event on which the integral

of b− p is negative, there is a (symmetric) information structure for which trade cannot

occur there. Hence, to compute the maximum robust prediction, we just need to compute

the supremum of
∫
w(b, s) dµB over measures with

∫
(b − p) dµB < 0 — which we do by

the greedy algorithm — and then subtract it from
∫
w(b, s) dµ.

17



Of course, if both b− p ≥ 0 and p− s ≥ 0 for certain, then it is always an equilibrium

for both agents always to trade.

Observer prefers trade. We have required the observer’s criterion w to be nonneg-

ative. What if w could be negative — for example, the observer is concerned with the

buyer’s (best) expected payoff in equilibrium? Then Corollary 3.3 no longer determines

exactly the maximum robust prediction, because of a gap between Propositions 3.1 and

3.2. Proposition 3.1 says that the event of no trade is contained in the union of two

events, NTB (where the integral of b−p is negative) and NTS (where the integral of p− s

is negative). If w is nonnegative, then the worst case is to have the no-trade event be all

of NTB and NTS, and Proposition 3.2 says this can indeed happen for some information

structure. However if w can have negative values on part of NTB and NTS, then the

worst case may be even worse, having trade occur only on the parts of NTB and NTS

where w takes on negative values.

It is still possible to use Proposition 3.1 to give a nontrivial robust prediction for the

observer’s payoff, in many cases, since trade must always occur everywhere outside of

NTB ∪NTS, but this robust prediction may not be best possible.

Aggregate gains from trade. We have also assumed common knowledge of gains

from trade — b−s ≥ 0 for sure. Nothing changes as long as we have the weaker assumption

that max{b−p, p−s} ≥ 0 for sure (and continue to require w(b, s) ≥ 0 everywhere, which

may require the observer’s criterion to be something other than gains from trade).

However, if it is possible that both b− p and p− s are negative, then we can no longer

ensure disjointness of the events NTB, NTS in Proposition 3.1. This is because condition

(c) in the proof may be satisfied with strict inequality, and unlike before, we can no longer

decrease one of the λ’s to make it become an equality. This again gives us a gap between

Propositions 3.1 and 3.2, since in the latter the events l = B and l = S are clearly disjoint.

So again, Proposition 3.1 may give us a nontrivial robust prediction, but Proposition 3.2

no longer ensures that this prediction is optimal.

4 Examples

Here we give an example showing an application of the results of Section 3, as well as a

couple of examples exploring some interpretive issues.
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4.1 Computing the Maximum Robust Prediction

We give a simple (perhaps too simple) application of our results, showing how to compute

the maximum robust prediction, in an example adapted from Morris and Shin [14]. It

is common knowledge that the the good is worth 2c more to the buyer than it is to the

seller. Most likely, it is worth p + c to the buyer and p − c to the seller. However, there

is a small probability δ that the good is a lemon, with low value to both parties, and

probability δ that it is a peach, with high value to both parties. Specifically, the common

prior distribution µ is that

(b, s) =





(p−M + c, p−M − c) with probability δ,

(p+ c, p− c) with probability 1− 2δ,

(p+M + c, p+M − c) with probability δ.

(Here M > c > 0.) We take w(b, s) = 1 everywhere, so we are interested in robustly

predicting the probability of trade; predicted gains from trade are just 2c times this

probability. Note that the numerical illustration at the beginning of the introduction is

an instance of this setup.

Since the criterion w(b, s) = 1 and the criterion w(b, s) = 2c are equivalent in this

example, the shortcut at the beginning of Subsection 3.2 applies: we form the no-trade

event NTB by carving out probability mass with the lowest possible buyer-gains ratios,

up until the point where the buyer’s conditional expected value equals the price p; and we

form the no-trade event NTS by carving out probability mass with the highest possible

buyer-gains ratios, until the seller’s expected value equals p. If these two events end up

overlapping, then the best robust prediction is zero trade.

More precisely, there are two cases depending on parameters:

• If δM/c ≤ 1/2, then the maximal amount of probability mass that can belong to

NTB is δM/c — consisting of the δ probability of lemon realizations, together with

a δ(M − c)/c probability mass of normal realizations. Likewise the maximal NTS

consists of the δ probability of peach realizations and a δ(M− c)/c probability mass

of normal realizations. Therefore, by Corollary 3.3, the maximum robust prediction

is 1− 2δM/c. That is, for any information structure, there is an equilibrium where

trade occurs with probability at least 1−2δM/c; and this bound is sharp, even with

the restriction to symmetric information.

To be even more explicit, we describe an information structure approaching the
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bound: Both parties receive the same signal, ηB = ηS = η ∈ {T,B, S}. The joint

distribution of values and signals is as shown in Table 4.1. (Note that the formatting

of this table is different from Table 1; here rows are values and columns are signals.)

Here ǫ > 0 is arbitrarily small. Thus, under the signal B — which is a noisy signal

of the lemon state — trade cannot occur because the buyer’s expected value is less

than p. Under the peach signal S, trade cannot occur because the seller’s expected

value is greater than p. So trade occurs with probability at most 1− 2δM/c+ 2ǫ.

Values η = B η = T η = S
(p−M + c, p−M − c) δ 0 0

(p+ c, p− c) δM−c
c

− ǫ 1− 2δM
c
+ 2ǫ δM−c

c
− ǫ

(p+M + c, p+M − c) 0 0 δ

Table 2: Distribution of values and (symmetric) signals

• If δM/c > 1/2, then the best possible robust prediction is 0: the information may

be structured so that no trade can occur in equilibrium.

One possible information structure that yields no trade (not the only one) is to have

a shared signal η ∈ {B, S}, jointly distributed with the values as shown in Table

4.1. Under signal B, the buyer’s expected value is less than p; under signal S, the

seller’s expected value is more than p.

Values η = B η = S
(p−M + c, p−M − c) δ 0

(p+ c, p− c) 1
2
− δ 1

2
− δ

(p+M + c, p+M − c) 0 δ

Table 3: Distribution of values and (symmetric) signals

4.2 No-Trade Equilibria

As mentioned in the introduction, the interpretation of our results as a positive prediction

about the amount of trade depends on an implicit assumption about equilibrium selection,

since there is also an equilibrium in which neither agent ever accepts trade, for any

information structure. In some cases, one can brush aside such a bad equilibrium using a
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standard refinement such as elimination of weakly dominated strategies, or more generally

trembling-hand perfection. For example, under any symmetric information structure,

undominated strategies will imply that each agent agrees to trade when his expected

payoff from successfully trading is strictly positive; hence the prediction from Corollary

3.3 applies to any equilibrium in undominated strategies, not just the best equilibrium.

However, this kind of refinement does not always get around the issue. We now show

an example, building on the previous subsection, in which there can be trembling-hand

perfect equilibria with no trade, even though the good equilibrium outcome involves trade

most of the time.

Let µ be as given in Subsection 4.1, for some parameter values with δM/c small, so that

for any information structure there is an equilibrium with a high probability of trade. Now

consider the following information structure. The signal sets are IB = IS = {L,N, P}.

The letters stand for “lemon, normal, peach,” and the first and last signals are perfectly

informative while the middle signal is imperfectly informative. Specifically, conditional

on the realized values (b, s), both players’ signals are independently drawn from the same

distribution, which is given by Table 4.2.

Values Pr(L) Pr(N) Pr(P )
(p−M + c, p−M − c) 1/2 1/2 0

(p+ c, p− c) 0 1 0
(p+M + c, p+M − c) 0 1/2 1/2

Table 4: Distribution of signals, conditional on values

There are some signal realizations for which the players have (weakly) dominant ac-

tions: If the buyer receives L, he knows the values are (p −M + c, p −M − c) for sure,

so he does not accept trade, in any trembling-hand perfect equilibrium. Similarly, if the

seller receives L, he does accept. If the buyer receives P , he accepts; if the seller receives

P , he does not accept.

Let (σB, σS) be the following strategy profile: the buyer accepts only when his signal is

P , and the seller accepts only when his signal is L. To check that this is a trembling-hand

perfect equilibrium, it suffices to check that each player is playing a strict best reply to

the other’s strategy when his own signal is N , since it follows that each player’s strategy

is a best reply to any sufficiently small tremble. Consider the buyer’s strategy when his

signal is N . From his point of view, any of the three value pairs — and any of the seller’s

signals — can occur with positive probability. But if he accepts trade, the trade will only
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occur if the seller’s signal is L, in which case trade is definitely bad for him. So the buyer

strictly loses by agreeing to trade on signal N . Similarly for the seller.

In this equilibrium, trade only occurs if the buyer receives signal P and the seller

receives L; but this can never happen.

4.3 Alternative Mechanisms

As mentioned in the introduction, one interpretation of our results is that breakdown

of trade is not intrinsically due to asymmetric information. However, it is important to

qualify this interpretation by pointing out that we have assumed a particular mechanism

for trade, namely the posted price p, which is fixed independent of the information received

by the buyer and seller. With other mechanisms, it may no longer be true that the

maximum robust prediction with symmetric information is the same as the maximum

robust prediction without symmetric information.

For example, consider instead a double auction mechanism: the buyer names a price

pB, and the seller names a price pS; if pB < pS then no trade takes place, and if pB ≥ pS

then trade happens at price (pB + pS)/2. For any µ, and any symmetric information

structure, there is an equilibrium in which the parties always trade: For each realization

of the signal η, pick any price p(η) lying in between the buyer’s and seller’s expected

values conditional on η; then it is an equilibrium for both parties, after observing η, to

name the price p(η). This mechanism realizes all gains from trade.

In view of this observation, one might ask: is it possible that, no matter what the

information structure is, the buyer and seller can always come up with some suitable

mechanism that realizes all (or at least most) of the gains from trade? After all, we have

assumed it is common knowledge that b ≥ s, so a classic impossibility result such as

Myerson and Satterthwaite [15] does not apply. However, the answer is no: One can give

examples of asymmetric information structures where no mechanism guarantees efficient

trade — indeed, where it may not be possible to achieve any trade in equilibrium, even

though there is common knowledge of gains from trade.

There does not seem to be a canonical reference for this fact in the literature, so we

will digress briefly to develop an example in detail. The example is actually adopted from

Akerlof [1], though his original analysis only considered posted-price mechanisms; our

analysis is similar in spirit to Hendren’s [8] result on impossibility of trade in insurance

markets, though simpler.

Let s be uniformly distributed on [0, 1], and b = λs, where λ ∈ (1, 2) is a constant. This
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gives the common-prior distribution µ. Now consider the information structure where the

seller knows s (and so also b) perfectly, and the buyer is completely uninformed. (This

admittedly does not fit perfectly into our model, since we have previously considered only

finite information structures, but arbitrarily close discrete approximations should give the

same qualitative conclusion.) We will sketch a proof that there is no incentive-compatible,

individually rational mechanism that achieves positive gains from trade.

Suppose such a mechanism exists. Let p(s) be the probability of sale, and t(s) the ex-

pected payment to the seller, when his value is s. Then his net utility from the mechanism

is US(s) = t(s)− sp(s). We have the usual incentive-compatibility condition

t(s)− sp(s) ≥ t(s′)− sp(s′) for all s, s′

and individual rationality

t(s)− sp(s) ≥ 0.

Standard revealed-preference arguments imply that US(s) is weakly decreasing, hence

differentiable almost everywhere; p(s) is weakly decreasing; and the envelope argument

gives U ′
S(s) = −p(s) from which

US(s) = US(1) +

∫ 1

s

p(ŝ) dŝ

and so

t(s) = US(1) +

∫ 1

s

p(ŝ) dŝ+ sp(s).

Now, when the seller’s value is s, the buyer’s utility from participating in the mech-

anism is λsp(s) − t(s). For the buyer to be willing to participate, the expected value of

this utility should be nonnegative:

∫ 1

0

λsp(s)− t(s) ds ≥ 0.

Plugging in for t(s), we have

∫ 1

0

(
λsp(s)− US(1)−

∫ 1

s

p(ŝ) dŝ− sp(s)

)
ds ≥ 0. (4.1)

But by a change of variables, we have
∫ 1

0
(
∫ 1

s
p(ŝ) dŝ) ds =

∫ 1

0
sp(s) ds. So (4.1) simplifies

23



to ∫ 1

0

((λ− 2)sp(s)− US(1)) ds ≥ 0.

The left-hand side is nonpositive. So the equality can hold only if US(1) = 0 and p(s) = 0

everywhere — which means that trade never occurs.

The upshot of this discussion is that our sharp prediction on attainable gains from

trade is sensitive to the choice of mechanism. In important cases (e.g. symmetric infor-

mation structures) an easy change to the mechanism could realize more gains from trade

than our posted-price mechanism. However, it may happen that even with the best mech-

anism, not all gains from trade can be realized. A natural question to ask in future work

is to obtain robust predictions for equilibrium gains from trade when the parties use the

best mechanism, instead of imposing the posted-price mechanism as we have here (or any

other) — and to identify the information structure that makes trading most difficult even

when the parties can choose the mechanism. However, this problem seems substantially

more difficult.

5 Words at the End

5.1 Interpretation

Now it’s time to fulfill the promise in the introduction, to discuss possible economic

interpretations of our main results. We stress, however, that the question of economic

interpretation is basically separate from the methodological purpose of the paper, which

has already been discussed.

A key assumption is that the observer knows the distribution of buyer’s and seller’s

values for the good, but does not know the information structure and does not directly

observe the trading outcomes. Thus, it makes sense to think of the observer not as an

econometrician who has past trading data, but perhaps as a planner trying to orchestrate

future trades, with limited foresight of the relevant environment.

For example, one might imagine that a buyer and seller are considering contracting

on a specialized widget, which they may or may not actually wish to trade in the future,

but which requires investment in technology today in order to be able to trade later.

Our model applies if they can currently foresee the physical circumstances that affect

each party’s value for the widget, but cannot anticipate how informed each party will be

when the time comes to trade. A lower bound for the attainable gains from trade can
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potentially provide an immediate guarantee that the investment is worthwhile.2

A related application might be to a regulator designing a financial market, in which

agents might be able to trade some security whose value depends on future events. If the

regulator can anticipate how the events will affect the security’s value but not the details

of what information the traders will have, a lower-bound result can potentially provide

assurance that there will still be enough trade in the market to warrant the fixed costs of

opening the market.

A different perspective is to fit our work in with the literature on design of information

structures [10, 16, 12], taking the worst-case information structure literally as a description

of how an adversary might best prevent two parties from trading. This might describe,

for example, a firm that tries to prevent its rival from successfully trading with a supplier

by putting in place a technology that reveals to them information relevant to their trade.

Finally, one more economic interpretation of our results is as a counterpoint to the

literature on how asymmetric information leads to breakdown of trade. In particular,

recent work such as Morris and Shin [14] emphasizes the role of higher-order beliefs in

trade breakdown. Although it may indeed sometimes happen ex post that gains from trade

go unrealized for reasons traceable to higher-order beliefs, our results show that from the

ex-ante perspective, higher-order beliefs are not needed to explain the breakdown of trade.

That is, given the known distribution over values, the probability of trade breakdown that

can be explained using higher-order beliefs is no worse than may occur with very simple

and indeed symmetric information structures. This finding builds in a natural way on the

earlier work of Kessler [11] and Levin [13] showing that the extent of trade breakdown

in lemons markets is generally non-monotone in the amount of information asymmetry.

However, an important caveat to this interpretation is that it depends on our assumption

of a posted-price mechanism for trade. As discussed in Subsection 4.3 above, a different

mechanism could lead to different predictions.

More generally, a few words should be said about our assumption of a posted-price

mechanism and its importance. As we have seen, this assumption is limiting, both in

terms of the sharpness of our characterization — we show how to find the highest possible

2In our model, there is common knowledge of gains from trade. In this case, having a lower-bound
guarantee seems superfluous in this contracting story: the parties simply could agree up front to trade
with probability 1, at a price that splits the ex-ante gains from trade. However, the model fits the
following variant: The buyer will find out tomorrow whether he wants the widget (in which case gains
from trade are positive) or doesn’t want the widget (gains are negative), and there may be additional
information as well, of unknown structure. Ex ante, the buyer is unlikely to want the widget, so that
simply contracting to sell is inefficient. The model then describes what happens conditional on the buyer
wanting the widget.
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robust prediction for gains from trade, but this is no longer sharp if the agents are allowed

to choose a different mechanism — and our observations about the nature of the worst-

case information structure. One unimpressive defense that can be given is that we simply

follow the literature — e.g. [1, 7, 14] — in adopting this simple trading mechanism, in

order to better focus attention on the question of information structure. Another point

is that our main result is a lower bound on the attainable gains from trade; it would

continue to hold a fortiori if the parties were also allowed to use other mechanisms,

instead of being restricted to a posted price. In particular, imagine a double auction

mechanism as in Subsection 4.3. Any equilibrium of our posted-price mechanism can be

translated into an equilibrium of the double-auction mechanism: reinterpret “accepting

price p” as a bid of p in the double auction, and reinterpret “rejecting price p” as making

an unacceptable bid in the double auction (a bid outside the support of values, which the

other party would never want to accept). This produces the same outcome as the original

equilibrium of the posted-price mechanism. Thus our sharp lower bound on attainable

trade in the posted-price mechanism is also a valid lower bound for the double auction

mechanism, which has the advantage of being “parameter-free,” unlike the posted price

mechanism which has the pesky p exogenously given.

5.2 Future directions

We wrap up by quickly surveying directions for future exploration. On the technical side,

the sharp characterization of robust predictions of trade calls out to be extended to allow

for b < s, and more generally to allow negative values of the observer’s criterion w. The

other major direction, already pointed out in Subsection 4.3, would be to ask about the

best equilibrium outcome of the best trading mechanism, rather than a specific posted-

price mechanism. More incremental extensions could keep the restriction to a very simple

trading mechanism, but consider trade in multiple units of a good, or multiple goods.

From the methodological point of view, the role of this paper is to ask what predictions

can be made about economic interactions without knowing the details of the information

structure. We have focused here on one of the simplest possible economic transactions,

exchange of a single indivisible good. Aside from generalizing our results within the pure

exchange setting, it will be natural for future work to look at other similar workhorse

models — production, moral hazard, coordination games, public good provision — and

see where analogous approaches yield interesting results.
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A Some Boring Details

Proof of Lemma 3.4: For conciseness put µ+ = µB + µS. As α ranges over [0, 1],

the event Eα
< is increasing in α. (This depends on the fact that b − s ≥ 0 everywhere.)

Moreover, any pair (b, s) contained in one Eα
< but not another satisfies b − p ≥ 0, since

pairs with b − p < 0 are in every Eα
<. Therefore

∫
Eα

<
(b − p) dµ+ is weakly increasing in

Eα
<. Also, it is negative when α = 0, and is left-continuous. Let α be the supremum of

values for which
∫
Eα

<
(b− p) dµ+ < 0.

Similarly,
∫
Eα

>
(p − s) dµ+ is weakly decreasing in α, negative at α = 1, and right-

continuous. Let α be the infimum of values for which
∫
Eα

>
(p− s) dµ+ < 0.

We show that α ≥ α. Suppose not. Then Eα
≤ = (Eα

< ∪ Eα
=) is disjoint from Eα

≥ =

(Eα
= ∪ Eα

>). We must have
∫
Eα

≤

(b − p) dµ+ ≥ 0, otherwise the maximality of α would be

violated. Similarly,
∫
E

α

≥

(p− s) dµ+ ≥ 0.

Define two new signed measures by

µ′
B(E) = µB(E)− µ+(E ∩ Eα

≤), µ′
S(E) = µS(E)− µ+(E ∩ Eα

≥).

Note that µ′
B is nonpositive on Eα

< and nonnegative on Eα
>, hence

∫
((b− p)− α(b− s)) dµ′

B ≥ 0.

Similarly ∫
((p− s)− (1− α)(b− s)) dµ′

S ≥ 0.

Then we have

0 >

∫

R2

(b− p) dµB −

∫

Eα
≤

(b− p) dµ+ =

∫

R2

(b− p) dµ′
B ≥ α

∫

R2

(b− s) dµ′
B,

0 >

∫

R2

(s− p) dµS −

∫

E
α

≥

(s− p) dµ+ =

∫

R2

(s− p) dµ′
S ≥ (1− α)

∫

R2

(s− p) dµ′
S.

So
∫
R2(b− s) dµ′

B < 0 and
∫
R2(b− s) dµ′

S < 0, and therefore

∫

R2

(b− s) d(µ′
B + µ′

S) < 0.
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However, µ′
B + µ′

S is a nonnegative measure since

(µ′
B + µ′

S)(E) = µ+(E)− µ+(E ∩ Eα
≤)− µ+(E ∩ Eα

≥) = µ+(E \ (Eα
≤ ∪ Eα

≥)) ≥ 0

for any event E. Since b− s ≥ 0 µ+-almost everywhere, we have a contradiction.

So indeed we have α ≥ α. If α > α, we can take α to be any number in between and

β to be arbitrary. Then define

µ̂B(E) = µ+(E ∩ Eα
<) + βµ+(E ∩ Eα

=),

µ̂S(E) = µ+(E ∩ Eα
>) + (1− β)µ+(E ∩ Eα

=).

Now

Eα
< ⊆ Eα

< ∪ Eα
= ⊆ Eα′

<

for any α′ ∈ (α, α) readily implies

∫

R2

b− p dµ̂B =

∫

Eα
<

b− p dµ+ + β

∫

Eα
=

b− p dµ+ < 0,

and by a similar argument ∫

R2

p− s dµ̂S < 0.

Thus, (µ̂B, µ̂S) is a valid pair. Since µ+ ≤ µ, it is (α, β)-separated, and evidently µ̂B+µ̂S =

µB + µS, so we are finished in this case.

We are left with the case α = α. In this case, we fix α = α = α and repeat the

argument with β.

Since b− p, p− s ≥ 0 everywhere on Eα
=, the expression

∫

Eα
<

(b− p) dµ+ + β

∫

Eα
=

(b− p) dµ+ (A.1)

is weakly increasing in β ∈ [0, 1]. Let β be the supremum of such values for which it is

< 0. (If it is ≥ 0 already at β = 0 then take β = 0.) Note that by continuity in β, (A.1)

is in fact ≥ 0 at β, except in the corner case where β = 1 and α = 1. But we can rule out

this corner case where (A.1) is < 0, since in this case we can take (α, β) = (1, 1) and the

conclusion of the lemma holds —
∫
(b− p) dµ̂B < 0 by assumption,

∫
(p− s) dµ̂S must be

< 0 because µ̂S only places weight on E1
>, where p− s < 0 for sure.

Similarly, the expression
∫
Eα

>
(p− s) dµ+ + (1− β)

∫
Eα

=

(p− s) dµ is decreasing in β; let
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β be the infimum of values for which it is < 0, or β = 1 if no such values exist. The

expression is ≥ 0 there except if β = 0 and α = 0, and again this corner case can be ruled

out.

Now we show that β > β. Suppose not. Then take any β with β ≤ β ≤ β. Define

µ′
B(E) = µB(E)− µ+(E ∩ Eα

<)− βµ+(E ∩ Eα
=),

µ′
S(E) = µS(E)− µ+(E ∩ Eα

>)− (1− β)µ+(E ∩ Eα
=).

As before, µ′
B is nonpositive on Eα

< and nonnegative on Eα
>, hence

∫
((b− p)− α(b− s)) dµ′

B ≥ 0,

and similarly ∫
((p− s)− (1− α)(b− s)) dµ′

S ≥ 0.

Now

0 >

∫

R2

(b− p) dµB −

(∫

Eα
<

(b− p) dµ+ + β

∫

Eα
=

(b− p) dµ+

)

(since the first integral is negative by assumption, and the expression in parentheses is

just (A.1) at β, which is ≥ 0 because we ruled out the corner case)

=

∫

R2

(b− p) dµ′
B ≥ α

∫

R2

(b− s) dµ′
B.

Thus,
∫
R2(b − s) dµ′

B < 0. By a similar argument,
∫
R2(b − s) dµ′

S < 0. Adding,
∫
R2(b −

s) d(µ′
B + µ′

S) < 0. But µ′
B + µ′

S is identically zero — a contradiction.

Thus, β > β. So we can choose β ∈ (β, β). Now let (µ̂B, µ̂S) be defined by (A.1-

A.1). It is immediate that
∫
R2(b − p) dµ̂B, which is just (A.1), is < 0, and similarly∫

R2(p− s) dµ̂S < 0. Thus the new pair is valid, and the rest is checked as before. �

Proof of Lemma 3.5: We only prove the formula for YB; the YS case is analogous.

First suppose γ∗
B = ∞. Then

∫
R2 w(b, s) dµB is clearly an upper bound for Y (α, β).

From the definition of γ∗
B, we have

∫
F∞
<
(b− p) dµB ≤ 0, where F∞

< is the event (w(b, s) >

0 or b − p < 0). If the inequality is strict, we can take µB = µB|F∞
<
. Otherwise, since

there is a positive probability of b − p < 0 under µ (by assumption) and so also under

µB|F∞
<

(note that this equals µ for events where b − p < 0), then there is also a positive

probability of b − p > 0 under µB|F∞
<
. So we can form µB from µB|F∞

<
by removing an
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arbitrarily small probability mass on such an event. In either case, we obtain µB with∫
R2(b− p) dµB < 0 strictly, and

∫
R2 w(b, s) dµB arbitrarily close to

∫
R2 w(b, s) dµB.

Now suppose γ∗
B is finite. Define the measure µ̂B by

µ̂B(E) = µB(E ∩ F
γ∗
B

< ) + δ∗Bµ(E ∩ F γ∗
B

= ).

So the expression given as the value of Y (α, β) in the lemma statement is simply
∫
w(b, s) dµ̂B.

Also, we know that
∫
b− p dµ̂B = 0.

We first show that this value is an upper bound on Y (α, β). Otherwise, let µB be a

measure with higher value of
∫
w(b, s) dµB, still satisfying

∫
(b − p) dµB < 0. Define a

signed measure by µ′
B = µB − µ̂B. Then µ′

B is nonpositive on F
γ∗
B

< , and nonnegative on

F
γ∗
B

> (which we define in the obvious way). Therefore,

∫

R2

(b− p)− γ∗
Bw(b, s) dµ

′
B ≥ 0.

This implies

∫

R2

(b− p) dµB −

∫

R2

(b− p) dµ̂B ≥ γ∗
B

(∫

R2

w(b, s) dµB −

∫

R2

w(b, s) dµ̂B

)
.

But here the left side is negative, while the right side is positive — a contradiction.

So
∫
R2 w(b, s) dµ̂ is indeed an upper bound on Y (α, β). For the reverse direction, note

that, as in the γ∗
B = ∞ case, the measure µ̂B places some positive probability on the event

b − p < 0 (which is contained in F
γ∗
B

< ), and so it must also place positive probability on

b − p > 0. By removing an arbitrarily small amount of probability mass with b − p > 0,

we get a new measure µB such that
∫
R2(b− p) dµB < 0, and

∫
R2 w(b, s) dµB is arbitrarily

close to
∫
R2 w(b, s) dµ̂B. �
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