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1 Introduction

As early as Keynes (1936), it has been recognized that investors face uncertainty not only

about fundamentals, but also about the underlying characteristics and trading motives of

other market participants.1 Asset pricing models have focused primarily on the former,

taking the latter as common knowledge. For instance, in Grossman and Stiglitz (1980),

uninformed investors know the number of informed investors in the market and the precision

of their signals. Similarly, each agent in Hellwig (1980) is certain about both the number

other agents and the distribution of their signals. Arguably, this requires an unrealistic degree

of knowledge about the economy — it seems unlikely that investors who are uncertain about

fundamentals, know, with certainty, whether other investors are privately informed.

We develop a framework in which rational uninformed traders (speculators) are uncertain

about whether others trade on informative signals or noise. This uncertainty generates an

equilibrium price that is non-linear in the information about fundamentals, and reacts more

strongly to bad news than to good news. Surprisingly, the price may even decrease following

more positive news about dividends. We incorporate this uncertainty into a dynamic envi-

ronment in which speculators can gradually learn whether others are informed using realized

prices and dividends.

This combination of uncertainty and learning about other traders has rich implications

for return dynamics. Expected returns and volatility are stochastic but predictable and

vary with the disagreement across investors. The dynamic model also generates volatility

clustering in which large (positive or negative), unexpected return realizations in the current

period are followed by higher return volatility and higher expected returns in the next period.

Further, the relation between information quality and returns moments varies endogenously

over time and depends on disagreement across investors. Finally, we derive novel empirical

predictions on the relation between return moments and the variation in the composition of

ownership.

In order to explain the mechanism underlying these predictions, a brief overview of the

model is useful. There is a risky asset in fixed supply that pays a stream of dividends,

and there are two groups of investors in the market at any time. The first group consists

of uninformed rational speculators (U) who have no private information and are uncertain

about the type of other traders in the market. The second group of traders (θ) may be one

of two types: (i) they are either informed investors (i.e., θ = I), in which case they trade

on a signal that is informative about next period’s dividend shock, or (ii) they are noise /

1 Keynes (1936) distinguishes between enterprise (“the activity of forecasting the prospective yield of
assets over their whole lives”) and speculation (“the activity of forecasting the psychology of the market”).
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sentiment traders (i.e., θ = N) who trade on a spurious signal (noise) that they incorrectly

believe to be informative.2 Speculators are uncertain about the type of θ investors they

face and, hence, whether the price is informative about dividends. All investors have mean-

variance preferences and trade competitively in a centralized market by submitting limit

orders.

Our benchmark model is static: speculators face uncertainty about whether other traders

are informed, but there is no learning along this dimension. In equilibrium, the price and

residual demand reveals the realization of the θ investors’ signal to the speculators, but they

are uncertain about whether it is informative. Because of this uncertainty, a surprise in the

signal (in either direction) increases the speculators’ posterior variance about fundamentals.

As a result, the equilibrium price is (i) non-linear in the signal, and (ii) depends on the

probability that speculators assign to θ investors being informed. Moreover, disagreement

between speculators and θ investors is intimately linked to this belief. When speculators

place a high probability on θ investors being informed, both groups of traders agree that

the signal is informative and disagreement is low. When speculators place a low probability

on θ investors being informed, disagreement is high since θ investors think the signal is

informative while speculators believe it is noise.

The key additional feature of the dynamic setting is that, over time, speculators update

their beliefs about whether others are informed using realized prices and dividends. When

a dividend realization is in line with the information revealed through the price, speculators

increase the likelihood that others are informed. The endogenous evolution of their beliefs

(combined with (i) and (ii) above) implies that expected returns and volatility are stochastic,

but predictable, and vary with disagreement across investors. As mentioned earlier, uncer-

tainty and learning about other traders generates a number of additional implications, which

we discuss in more detail and connect to the empirical literature below.

Asymmetric Price Reaction to News. Prices react asymmetrically to news due to

the nature of the speculators’ filtering problem. When there is a negative surprise, the

speculators’ conditional expectation is lower and their conditional variance is higher, both

of which lead to a decrease in the price. However, when there is a positive surprise, the

conditional expectation is higher but so is the conditional variance, and these have off-

setting effects on the price. As a result, prices are more sensitive to bad news, or negative

surprises, than to good news. When the overall risk concerns are sufficiently large, the effect

2DeLong, Shleifer, Summers, and Waldman (1990) and Mendel and Shleifer (2012) use a similar speci-
fication to model noise traders that are subject to sentiment shocks, and Hirshleifer, Subrahmanyam, and
Titman (2006) use a similar specification for utility-maximizing irrational traders.
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on the conditional variance dominates and the price decreases following additional good news

about fundamentals. This occurs despite the fact that with good news, θ investors demand

strictly more of the asset (at any price).

Asymmetric price reactions have been well documented in the empirical literature. Camp-

bell and Hentschel (1992) document asymmetric price reactions to dividend shocks at the

aggregate stock market level through a volatility feedback channel. At the firm level, using

a sample of voluntary disclosures, Skinner (1994) documents that the price reaction to bad

news is, on average, twice as large as that for good news. Skinner and Sloan (2002) document

that the price response to negative earnings surprises is larger, especially for growth stocks.

Volatility Clustering. Since Mandelbrot (1963), a large number of papers have docu-

mented the phenomenon of volatility clustering for various asset classes, and at different

frequencies (see Bollerslev, Chou, and Kroner, 1992 for an early survey). In our model,

volatility clustering is a result of how speculators update their beliefs in response to realized

dividends. Since speculators form their conditional expectations of next period’s dividends

based on their inference about other traders’ signal, a dividend realization that is far from

their conditional expectation (i.e., a large dividend surprise) leads them to revise downward

the probability of others being informed. In other words, large surprises in dividend real-

izations, which are accompanied by large absolute return realizations, reduce the likelihood

that the potentially informed investors are actually informed. In turn, this increases the

speculators’ uncertainty about fundamentals and, therefore, leads to higher volatility and

higher expected returns in future periods.

Disagreement and Return Moments. Our model’s predictions may help reconcile the

mixed empirical evidence on the relation between disagreement and expected returns. For

instance, while Diether, Malloy, and Scherbina (2002) and Johnson (2004) document a nega-

tive relation between analyst disagreement and expected returns, Qu, Starks, and Yan (2004)

and Banerjee (2011) document a positive relation on average. In our model the relation be-

tween disagreement and return moments is not monotonic: disagreement and returns are

negatively related when disagreement is high, but positively related when disagreement is

low. Disagreement is high when speculators believe others are less likely to be informed —

in this case, an increase in disagreement makes speculators even more certain about the type

of other traders, and so leads to lower expected returns and volatility. On the other hand,

disagreement is low when others are more likely to be informed. In this case, an increase in

disagreement implies more uncertainty about the type of other traders, and therefore higher

expected returns and higher volatility. Moreover, in our model, the level of disagreement
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evolves endogenously with speculators’ beliefs about other traders, and as such, the relation

between disagreement and return moments is time-varying.

Information Quality and Return Moments. Another implication of our model is that

the relation between information quality and return moments itself depends on the disagree-

ment across investors. When speculators believe others are more likely to be informed (and

so disagreement is low), higher information quality reduces uncertainty about fundamentals

for all investors, which decreases expected returns and volatility. However, if the speculators

believe that other investors are not likely to be informed, the opposite relation obtains — a

more informative signal for the potentially informed investors induces them to trade more

aggressively. From the speculators’ perspective, this introduces more noise to current and

future prices leading to higher expected returns and volatility.

As such, this result may help reconcile the apparently contradictory empirical evidence

on the relation between information quality and returns that has been documented in the

literature. While some papers document a negative relation between information quality

and expected returns (e.g., Easley, Hvidkjaer, and O’Hara, 2002; Francis, LaFond, Olsson,

and Schipper, 2005; Francis, Nanda, and Olsson, 2008), others find either limited or no evi-

dence of a relation (e.g., Core, Guay, and Verdi, 2008; Duarte and Young, 2009). Our model

suggests that in order to empirically uncover the underlying relation between information

quality and returns, one must condition on the level of disagreement.

Variation in Ownership Composition and Return Moments. Our model also predicts

that expected returns and volatility can vary with the persistence of ownership composition.

In the dynamic version of our model, we allow for the type of θ investors to change over time.

When disagreement across investors is high, higher persistence implies that θ investors are

less likely to be informed in future periods, and this translates to lower expected returns and

lower volatility. On the other hand, when disagreement is low, higher persistence implies

θ investors are more likely to be informed in the future, and this leads to higher expected

returns and volatility. As a result, the relation between persistence in ownership composition

and return moments can vary over time, and is related to disagreement across investors. To

the best of our knowledge, this is a novel prediction of the model that has not been tested

in the empirical literature.

The rest of the paper is organized as follows. We discuss the related literature in the

next section. In Section 3, we solve the benchmark model, which allows us to highlight

the intuition for many of our results transparently in a static model. Section 4 extends
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the analysis to a dynamic setting, which allows us to focus on the effects of learning, and

discusses the implications of the model. In Section 5, we consider an alternative specification

in which all investors have rational expectations and the supply of the risky asset is subject

to aggregate shocks. Section 6 concludes. All proofs are in the Appendix.

2 Related Literature

A small number of recent asset-pricing models consider the effects of uncertainty about

other traders. Easley, O’Hara, and Yang (2013) consider a single-period economy in which

ambiguity-averse investors face uncertainty about the effective risk tolerance of other traders

and show that reducing ambiguity decreases expected returns. Gao, Song, and Wang (2012)

also explore a static environment where risk-averse, uninformed traders are uncertain about

whether the proportion of informed traders is either low or high.3 They show that in addition

to the fully revealing equilibrium, a continuum of partially revealing rational expectations

equilibria can exist. One advantage of our benchmark model relative to theirs is that we

obtain a unique equilibrium, which facilitates a sharper set of predictions. More generally,

we contribute to this literature by analyzing a dynamic setting, which allows us to explore

the effects of learning about others on return dynamics.

Our paper is also related to a subset of the market microstructure literature that an-

alyzes investors who face multiple dimensions of uncertainty. Gervais (1997) considers a

static Glosten and Milgrom (1985) model in which the market maker is uncertain about

the precision of informed trader’s signal. Romer (1993) and Avery and Zemsky (1998) con-

sider models in which the proportion of informed traders is uncertain (but is not learned

over time). Li (2011) considers a generalization of the continuous-time, Kyle-model of Back

(1992) that allows for uncertainty about whether the strategic trader is informed or not.

While these papers focus on the market microstructure implications of multidimensional

uncertainty (e.g., market depth, insider’s profit), our focus is primarily on the asset pricing

implications. Importantly, since our model considers risk-averse investors and learning over

time, we are able to analyze the effects on the dynamics of risk-premia and expected returns.

While the majority of the rational expectations literature has focused on linear-normal

equilibria, a number of papers, including most recently Breon-Drish (2012) and Albagli,

Hellwig, and Tsyvinski (2011), have explored the effects of relaxing the assumption that

fundamental shocks and signals are normally distributed.4 Our paper contributes to this

3In a less closely related environment, Stein (2009) explores market efficiency in a setting where arbi-
trageurs are uncertainty about the total arbitrage capacity in the market.

4Earlier papers in this literature include Ausubel (1990), Foster and Viswanathan (1993), Rochet and
Vila (1994), DeMarzo and Skiadas (1998), Barlevy and Veronesi (2000), and Spiegel and Subrahmanyam
(2000).
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literature by developing a model in which the non-linearity arises because of the composi-

tion of traders in the market and the information structure rather than the distribution of

payoffs.56

A related non-linearity arises in the incomplete information, regime switching models of

David (1997), Veronesi (1999), David and Veronesi (2008, 2009), and others, in which a repre-

sentative investor updates her beliefs about which macroeconomic regime she is currently in

using signals about fundamental shocks (e.g., dividends). In these models, the non-linearity

in the representative investor’s filtering problem leads to time-variation in uncertainty and,

consequently, variation in expected returns and volatility. Stochastic volatility also arises in

noisy rational expectations models, like Fos and Collin-Dufresne (2012), in which noise trader

volatility is stochastic and persistent. These features arise endogenously in our model even

though shocks to both fundamentals and news are i.i.d., and are driven by how uninformed

investors learn to use the price to update their beliefs about fundamentals.

Cao, Coval, and Hirshleifer (2002) show that limited participation can also generate

stochastic volatility, as well as large price movements in response to little, or no, apparent

information.7 Because of participation costs, sidelined investors update the interpretation

of their private signals based on what they learn from prices, and only enter the market

once they are sufficiently confident. In our model, the friction is purely informational —

uninformed investors trade less aggressively because they are uncertain about the trading

motives of other investors, and consequently, the informativeness of the price.

3 The Benchmark Model

This section presents the analysis for the two-date, benchmark model. This simple setting

will allow us to isolate the effects of uncertainty about other traders from the effects of

learning about them, which can only obtain in the dynamic setting of Section 4. The static

model also allows us to solve for equilibrium prices in closed form and develop the underlying

intuition more transparently.

5Specifically, even though shocks to fundamentals and signals are normally distributed in our model, since
the uninformed investor is uncertain about whether other investors are informed, her beliefs about the price
signal are given by a mixture of normals distribution.

6In a series of papers, Easley, O’Hara and co-authors analyze the probability of informed trading (PIN)
in a sequential trade model similar to Glosten and Milgrom (1985) (e.g., Easley, Kiefer, and O’Hara, 1997a;
Easley, Kiefer, and O’Hara, 1997b; Easley et al., 2002). In these papers, the risk-neutral market maker
updates her valuation of the asset based on whether a specific trade is informed or not, but does not face
uncertainty about the presence of informed traders in the market. In contrast, the uninformed investors in
our model must update their beliefs, not only about the value of the asset, but also about the probability of
other investors being informed, which leads to non-linearity in prices.

7Other papers that study the informational effects of limited participation include Romer (1993), Lee
(1998), Hong and Stein (2003), and Alti, Kaniel, and Yoeli (2012).
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Agents. There are three different groups of traders in the model. Traders within each group

are identical and behave competitively.

• Informed/Inside Traders (I). I traders are rational agents who receive a private and

informative signal about the dividend (e.g., institutional investors).

• Uninformed/Speculative Traders (U). U traders are rational agents who receive no

private signal about fundamentals but update their beliefs by observing prices and

quantities (e.g., hedge funds).

• Noise/Sentiment Traders (N). N traders observe and trade on a signal that they

believe is informative, but is purely noise (e.g., retail investors).

The key feature we want to capture here is that speculative traders are uncertain about

whether other traders in the market are trading on information or noise. To this end, we

assume that either I or N traders are present in the market but not both, and further, U

traders are uncertain about which type of other traders they are facing. To introduce this

uncertainty, let θ ∈ {I,N} denote the random variable that represents the type of other

traders that are present in the market.8

Securities. There are two assets: a risk-free asset and a risky asset. The gross risk-free rate

is normalized to R ≡ 1 + r > 1. At date 1, the risky asset pays a dividend D = µ+ d, where

µ > 0 and d ∼ N (0, σ2). The aggregate supply of the risky asset is constant and equal to

Z. At date 0, the risky asset is traded in a competitive market. Let P denote the market

clearing price and Q ≡ D −RP denote the dollar return per share of the risky asset.

Preferences. Traders have mean-variance preferences over terminal wealth, and trade

competitively (i.e., are price takers). In particular, trader i submits a limit order, xi, such

that

xi = arg max
x

Ei[WiR + xQ]− α
2
vari[WiR + xQ], (1)

and where Ei[·] and vari[·] denote her conditional expectation and variance given her infor-

mation set, Wi denotes her wealth, and α denotes her risk-aversion. Given these preferences,

investor i’s optimal demand for the risky asset is given by

xi =
Ei[Q]

αvari[Q]
=

Ei [D]−RP
αvari [D]

. (2)

8One could also consider a setting in which all three types of traders are present in the market, and
speculators are uncertain about the proportion of informed traders vs. noise traders they face. We discuss
such a setting in Section 5.
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Information and Beliefs. The θ traders are either informed traders (i.e., θ = I) or noise

traders (i.e., θ = N), where the prior probability of being informed is π0 ≡ Pr(θ = I). Prior

to submitting their order, investor θ receives a signal Sθ of the form:

Sθ =

d+ ε if θ = I

u+ ε if θ = N,

where ε ∼ N (0, σ2
ε) and u is distributed identically to d and where (ε, u, d) are mutually in-

dependent. It is convenient to parametrize the information quality of the informed investors’

signal (i.e., SI) by the Kalman gain, λ, where

λ ≡ cov[SI , d]

var[SI ]
=

σ2

σ2 + σ2
ε

.

Note that λ is decreasing in the noise of the signal (i.e., σ2
ε) and takes values between zero

and one. When λ = 0, SI is completely uninformative; investors learn nothing about future

dividends by observing it. Conversely, when λ = 1, SI perfectly reveals the realization of

next period’s dividend. Unless otherwise noted, we assume λ > 0.

3.1 Remarks on Noise Traders

Our specification for noise trading is different from the standard approach in noisy rational

expectations models (e.g., aggregate supply shocks or private stochastic investment oppor-

tunities). Yet, it is in line with models of utility-maximizing traders that are subject to

sentiment shocks (e.g., DeLong et al., 1990; Hirshleifer et al., 2006; Mendel and Shleifer,

2012). More generally, investors in our model lack a common prior and may be interpreted

as having a difference of opinions. We view this specification of noise trading as an appealing

feature, both for its tractability and its empirical relevance.9

Nevertheless, our results do not rely on this particular specification of noise trading. In

Section 5, we show how a rational expectations model with noisy aggregate supply that gener-

alizes Grossman and Stiglitz (1980) generates qualitatively similar results to our benchmark

model.10 Thus, our key departure from prior work is that the type of investors trading in

the market is neither deterministic nor common knowledge. U traders do not know whether

9See Shleifer and Summers (1990) and Hirshleifer (2001) for discussions of the implications of noise /
sentiment traders, and Morris (1995) for a discussion of the implications of relaxing the common prior
assumption.

10In this setting, the two types of θ investors submit orders with different distributions, which allows the
U investor to learn about θ solely from prices and quantities. Hence, learning is relevant even in a static
environment.
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informed investors are actively trading and so are unsure whether the prices conveys relevant

information about the asset. It is this uncertainty that underlies the novel predictions of the

benchmark model.

One could also interpret the behavior of noise traders in our model as a form of over-

confidence (e.g., Daniel, Hirshleifer, and Subrahmanyam, 1998; Odean, 1998).11 The impli-

cations of the model remain qualitatively the same if, instead, we assume that noise traders

receive an informative signal about the asset, but over-estimate the informativeness of the

signal. In particular, suppose the θ = N investor receives a signal

SN = ψd+
√

(1− ψ2) u+ ε, (3)

for some ψ ∈ (0, 1), but believes she observes a signal SN = d + ε. In this case, the true

informativeness of her signal is given by

λN =
cov [SN , d]

var [d]
=

ψσ2

σ2 + σ2
e

= ψλ, (4)

while she believes the informativeness of the signal is λ. We consider the extreme case for

which ψ = 0 for ease of exposition.

3.2 Equilibrium Characterization

An equilibrium consists of a price for the risky asset, P , and investor demands, xi, such that:

(i) investor i’s demand are optimal, given their beliefs and information, (i.e., satisfy (2)) and

(ii) the market for the risky asset clears i.e.,

xU + xθ = Z. (5)

Since there are no additional sources of noise, one expects that in equilibrium, speculators

will be able to infer Sθ from the price and the aggregate residual supply and use this to

update their beliefs about the dividend.12 We say that an equilibrium is signal-revealing, if

the equilibrium price and allocations reveal Sθ, but not θ, to the U investors.13 Below we

show that the unique equilibrium is signal-revealing.

11Overconfidence has been shown to have important implications for trading behavior in financial markets
(e.g., Odean, 1999; Barber and Odean, 2000; and Grinblatt and Keloharju, 2000).

12As we will see, because the equilibrium price is non-monotonic in Sθ, observing the price alone does not
necessarily reveal the signal Sθ. We follow Kreps (1977) and allow the U investors to condition their order
on both price and quantity.

13Formally, that Sθ is measurable with respect to U ’s information set. Conceptually, when U is uncertain
about θ, a signal-revealing equilibrium differs from a fully-revealing equilibrium in which both Sθ and θ are
revealed.
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Regardless of type, θ believes that her signal is informative with probability one. This

implies that the conditional beliefs of the θ investor are symmetric across θ ∈ {I,N}. Investor

θ’s conditional beliefs about the value d next period are given by

Eθ[d] = λSθ, and varθ[d] = σ2(1− λ). (6)

However, since U investor faces uncertainty about θ, her beliefs about d conditional on

inferring the signal, Sθ, are given by

EU [d] = π0EU [d|θ = I] + (1− π0)EU [d|θ = N ] = π0λSθ, and (7)

varU [d] = π0σ
2(1− λ) + (1− π0)σ2︸ ︷︷ ︸

expected conditional variance

+ π0(1− π0)(λSθ)2.︸ ︷︷ ︸
variance of conditional expectation

(8)

Equation (8) highlights the key feature of the benchmark model: U ’s conditional variance

depends on the realization of the signal Sθ. Note that if U is certain that θ is informed

(i.e., π0 = 1), then her conditional expectation of d depends on Sθ. On the other hand,

if U were certain that θ is not informed (i.e., π0 = 0), then her conditional expectation is

identical to her prior and is unaffected by Sθ. In either case, since U is certain about θ,

the conditional variance is independent of Sθ. When U is uncertain about θ, the variance of

her conditional expectation is (generically) not zero, and this leads to additional uncertainty

about dividends. Furthermore, this additional uncertainty is increasing in the magnitude of

the signal—larger realizations of |Sθ| are further from the unconditional expectation (recall

E[d] = 0) and this increases disparity between the expected dividend conditional on θ = I

and the expected dividend conditional on θ = N . As we shall see, the dependence of the U

investor’s conditional variance on the realization of the signal plays an important role in our

results.

Since there is only one trading period, U investors do not trade subsequent to updating

their beliefs about whether others are informed. The prior belief, π0, is a key parameter

of interest; comparative statics with respect to π0 will help develop the intuition for the

dynamic model, in which beliefs evolve over time. Moreover, note that π0 is intimately tied

to disagreement across investors. Specifically, the disagreement about dividend forecasts

between the U and θ investors is given by

|EU [D]− Eθ[D]| = (1− π0)λ|Sθ|.

The following result characterizes the unique equilibrium of our benchmark model.

Proposition 1. In the benchmark model, there exists a unique equilibrium. This equilibrium
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is signal-revealing and the price is given by

P = 1
R

(
µ+ (κ+ (1− κ)π0)λSθ − κασ2(1− λ)Z

)
, (9)

where the weight κ is given by

κ ≡ varU [d]

varU [d] + varθ [d]
=

σ2(1− π0λ) + π0(1− π0)(λSθ)2

σ2(1− λ) + σ2(1− π0λ) + π0(1− π0)(λSθ)2
∈ [0, 1]. (10)

The equilibrium price can be decomposed into a market expectations component and a

risk-premium component, since

P = 1
R

µ+ κEθ [d] + (1− κ)EU [d]︸ ︷︷ ︸
expectations

−κασ2(1− λ)Z︸ ︷︷ ︸
risk premium

 . (11)

The risk-aversion coefficient, α, and the aggregate supply of the asset, Z, scale the risk-

premium component, but not the expectations component. Thus, the product, αZ, deter-

mines the relative role of each component in the price. When risk aversion is low or the

aggregate supply of the asset is small, the price is primarily driven by the expectations com-

ponent. On the other hand, when risk aversion is high, or the aggregate supply of the asset is

large, the risk-premium component drives the price. As such, it will be useful to characterize

separately how each component of the price behaves. The following corollary presents these

results.

Corollary 1.

(i) The expectations component of the price is increasing in Sθ, increasing in both λ and

π0 for Sθ > 0, and decreasing both in λ and π0 for Sθ < 0.

(ii) The risk-premium component of the price is hump-shaped in Sθ around zero, U-shaped

in π0 around 1
2

(
1− σ2

λS2
θ

)
, increasing in λ for small and large |Sθ|, but decreasing in λ

for intermediate |Sθ|.

Intuitively, the comparative statics for the expectations component follow because it is a

weighted average of investors’ conditional expectations, which are increasing in Sθ. The risk-

premium component of prices depends on the uncertainty that investors face. In particular,

note that the risk-premium component can be rewritten as

−κασ2(1− λ)Z = −α
(

1
varθ[d]

+ 1
varU [d]

)−1
Z, (12)
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which is linear in the harmonic mean of the conditional variance of both U and θ investors.

Unlike standard rational expectations models with linear equilibria, because the conditional

variance of the uninformed investors depends on the signal realization, so too does the risk-

premium component. The conditional variance varU [d] (see (8)) increases in |Sθ|: larger

realizations of |Sθ| increase the uninformed investors’ uncertainty about fundamentals, since

they are unsure about whether the signal is informative. Finally, note that varθ[d] always

decreases in λ, while varU [d] decreases in λ for small realizations of |Sθ|, but increases in λ for

large realizations of |Sθ|. Moreover, the larger the conditional variance of the U investors, the

smaller its contribution to the risk-premium term. As a result, the risk-premium component

increases in λ for small and large realizations of |Sθ|, but decreases in λ for intermediate

values (when the increase in varU [d] dominates the decrease in varθ[d]).

3.3 Asymmetric Price Reaction to News

The overall effect of Sθ on the price in our model distinguishes it from linear models that

are standard in the literature. While the expectations component of price is monotonic in

Sθ, the risk-premium component is hump-shaped in Sθ around zero. This implies that the

two components reinforce each other when bad news arrives (Sθ < 0), but offset each other

when good news arrives (Sθ > 0).

Proposition 2. The equilibrium price reacts asymmetrically to news about fundamentals.

Specifically, it decreases more with bad news than it increases with good news. For any s > 0,

d

dSθ
P (s) <

d

dSθ
P (−s).

Since the risk-premium component is bounded, the expectations component dominates

when |Sθ| is large enough. However, for Sθ small enough, the risk-premium component

dominates. This means that the price can actually decrease with the signal.

Proposition 3. For any two signal realizations s1, s2 such that 0 < s1 < s2, there exists a

γ > 0 such that if αZ > γ, the equilibrium price is strictly greater when s1 is realized than

it is when s2 is realized.

Intuitively, if the overall risk concerns in the market (as measured by αZ) are large

enough, more positive news about fundamentals can have a bigger impact on prices through

the uncertainty it generates for uninformed investors than through its effect on the market’s

expectations about future dividends.

The mechanism through which the asymmetry in prices arises in our model differs from

those in the regime-switching models of Veronesi (1999) and others. Specifically, in Veronesi

12



(1999), the asymmetry in price reaction is driven by uncertainty about whether the under-

lying state of the economy is good or bad. The representative investor “over-reacts” to bad

news only if he believes with sufficiently high probability that the current state is good,

and “under-reacts” to good news only if he believes that the current state is bad, because

these are the instances in which the realization of the news increases uncertainty about the

underlying state. In our model, the asymmetry is not state-dependent: the price is more

sensitive to bad news for any π0 ∈ (0, 1), even in the absence of any learning about θ. This

is because the asymmetry is driven by uncertainty about the informativeness of the price

signal, not the underlying fundamentals.14

3.4 Expected returns and volatility

Given the results from Proposition 1, we now turn to investigating the moments of returns.

The decomposition in (11) implies that dollar returns can be expressed as

Q = d− (κEθ[d] + (1− κ)EU [d]) + κασ2(1− λ)Z. (13)

Return moments are computed based on the information set of the U investor, since

she has rational expectations.15 We refer to conditional expected returns as the expected

returns conditional on all information up to and including the current period (i.e., the price

and residual demand, and consequently, Sθ). Unconditional returns are computed based on

all information prior to the current period.

Proposition 4. In the static model, the conditional expected return and volatility are given

by

E[Q|P, xθ] = −(1− π0)λκSθ + κασ2(1− λ)Z, and (14)

var[Q|P, xθ] = σ2(1− π0λ) + π0(1− π0)(λSθ)2. (15)

The unconditional expected return and volatility are given by

E[Q] = E[κ]ασ2(1− λ)Z, and (16)

var[Q] = σ2(1− π2
0λ) + (1− π0)2λ2var[κSθ] + (σ2(1− λ)αZ)2var[κ] (17)

To gain some intuition for the expressions in Proposition 4, we note that the expectation

14Note that in the dynamic version of our model, the uninformed investor updates her beliefs based on
realizations of fundamentals, but this is not what drives the asymmetric reaction of prices to signals.

15This corresponds to the information set of an econometrician who observes the price and quantity of
executed trades as well as dividends.
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of (13) with respect to an arbitrary information set I can be decomposed into the following

two components:

E[Q|I] = E [κ(EU [d]− Eθ[d])|I]︸ ︷︷ ︸
expectations

+E[κασ2(1− λ)Z|I]︸ ︷︷ ︸
risk premium

. (18)

As noted earlier, because the U investor is uncertain about the interpretation of Sθ, her

conditional variance about d depends on both π0 and Sθ. This means that κ and, as a result,

the risk premium component of expected returns also depend on both π0 and Sθ. As we

will see in the next section, in the dynamic setting when θ is persistent, this dependence

on π0 and Sθ gives rise to expected returns that are stochastic, predictable and vary with

disagreement across investors.

The expression for the unconditional volatility of returns given in equation (17) can be

decomposed into three terms, each of which captures a different source of risk,

var[Q] = σ2(1− π2
0λ)︸ ︷︷ ︸

fundamental

+ (1− π0)2λ2var[κSθ]︸ ︷︷ ︸
expectations

+ (σ2(1− λ)αZ)2var[κ]︸ ︷︷ ︸
risk premium

. (19)

The first term is the expectation of the conditional variance in returns and so captures the

volatility in returns due to uncertainty about next period’s fundamental dividend shock d.

The second term in (19) reflects the volatility in returns due to variation in the expectations

component of conditional expected returns. Finally, the third term is volatility due to

variation in the risk-premium component of conditional expected returns. As in the case

of expected returns, each of these components depends on π0. Consequently, in a dynamic

setting with persistence in θ, the model generates stochastic, predictable return volatility. For

the interested reader, we explore these components in greater detail and discuss comparative

statics on return moments in the benchmark model in Appendix B.

4 The Dynamic Model

This section extends our analysis to a dynamic setting by developing an overlapping genera-

tions (OLG) model. There are two key additional considerations in the dynamic setting that

are not present in the static one. First, the price is affected not only by investors’ beliefs

about fundamentals and other traders, but also their beliefs about future prices. Second,

uninformed investors’ beliefs about other traders evolve stochastically over time as they learn

from realized prices and dividends.

We retain the key features of the benchmark model as described in Section 3 with the

following additions.
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Agents. As before, there are three types of traders: uninformed speculative traders

(U), informed traders (I), and noise/sentiment traders (N). In each generation, U traders

are uncertain about which type of other traders they face, and θt ∈ {I,N} denotes the

random variable that represents the type of these other traders at date t. We allow θ to

vary over time and consider two specifications: (i) θt is i.i.d. over time and (ii) θt exhibits

persistence according to a Markov switching process. These cases together allow us to model

the composition of traders in the market quite generally.

Securities. In date t, the risky asset pays a dividend Dt, which evolves according to an

AR(1) process:

Dt+1 = (1− ρ)µ+ ρDt + dt+1, (20)

where dt+1 ∼ N (0, σ2), and ρ < 1. The dollar return at time t on a share of the risky asset

is given by Qt ≡ Pt +Dt −RPt−1.

Preferences. Each generation of investor lives for two dates, and has mean-variance prefer-

ences over terminal wealth. An investor i, who is born in date t and consumes in date t+ 1,

has optimal demand for the risky asset given by:

xi,t =
Ei,t [Pt+1 +Dt+1]−RPt
αvari,t [Pt+1 +Dt+1]

. (21)

Information and Beliefs. In addition to the information structure defined in Section 3,

each generation of investor can observe the history of dividend realizations, prices and trades.

Since the type of other investors can change over time, we denote the date t beliefs of U

traders about whether others are informed by πt = Prt(θt = I).

4.1 When the distribution of types is i.i.d.

When the distribution of types of other traders (i.e., the distribution of θt) is independent

and identical across generations, there exists an equilibrium of the dynamic model which

resembles the equilibrium of the benchmark model. Moreover, as we show below, this sta-

tionary equilibrium is the limit of the unique equilibrium of the finite horizon version of the

model.

Proposition 5. Suppose R − ρ − 2ασZ > 0 and the distribution of θt is i.i.d. with π =

Pr(θt = I). Then, there exists a stationary equilibrium. This equilibrium is signal-revealing
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and the price is given by Pt = Aµ+BDt + p(Sθ,t), where A = R(1−ρ)
(R−1)(R−ρ) , B = ρ

R−ρ ,

p(Sθ,t) = 1
R

(
(1 +B)(κt + (1− κt)π)λSθ,t +m− ακt((1 +B)2σ2(1− λ) + v)Z

)
, (22)

κt =
(1+B)2(σ2(1−πλ)+π(1−π)(λSθ,t)2)+v

(1+B)2(σ2(1−πλ)+π(1−π)(λSθ,t)2)+(1+B)2σ2(1−λ)+2v
, (23)

m = E [p(Sθ,t)] = − 1
R−1((1 +B)2σ2(1− λ) + v)αZE [κt] , (24)

and v is implicitly characterized by

v = var[p(Sθ,t] (25)

Moreover, the equilibrium price is the limit of the price of the unique equilibrium of the finite

horizon (T period) model, as the horizon increases (i.e., as T →∞).

As in other OLG models (e.g., Spiegel, 1998), the sufficient condition for existence

R − ρ − 2ασZ > 0 ensures that the aggregate risk in holding the risky asset is not too

large. Intuitively, when the aggregate amount of risk (i.e., ασZ) increases, the risk-premium

component of the current price is large and more sensitive to shocks (in κt), which in turn

increases the risk-premium in the previous period. As a result, if ασZ is too large, the

risk-premium terms explode and a stationary equilibria does not exist.

Though we do not have an analytical proof that the equilibrium is unique, we have been

unable to find parameters in which there are multiple solutions to (25). This is in contrast to

standard (linear) OLG models (e.g., Spiegel, 1998; Banerjee, 2011) which generally exhibit

two equilibria. A likely explanation for this difference is due to our specification of noise

traders. In standard OLG models, the price is exposed to two types of shocks: fundamental

shocks and noise shocks. The multiplicity in equilibria arise due to multiplicity in self-

fulfilling beliefs about the price sensitivity to noise shocks.16 In our model, the price is a

non-linear function of a single shock (Sθ,t) and the price sensitivity of this shock is pinned

down by the traders’ beliefs of its informativeness.

Note that the equilibrium price in Proposition 5 depends not only on beliefs about current

dividends and whether others are informed, it also depends on investors’ beliefs about the

price next period. However, because the distribution of the type of other traders (i.e., θ) is

i.i.d., U investors do not learn about θ. The effect of learning about θ on the equilibrium

price is the focus of the following subsections.

16Generically, there is a low volatility equilibrium (when investors believe prices are not very sensitive to
noise) and a high volatility equilibrium (when investors believe prices are sensitive to noise). See Spiegel
(1998) for a discussion.
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4.2 When the distribution of types is persistent

Suppose that instead of being distributed i.i.d. across generations, θt follows a Markov

switching process with persistence q i.e., Pr(θt+1 = I|θt = I) = Pr(θt+1 = N |θt = N) = q. In

this case, prices and dividends in period t are informative about the composition of traders

in the market at t+ 1.

Recall that πt = Prt(θt = I) with respect to the U investors’ information set at date

t. Because of the symmetry in the equilibrium trades of the I and N investors, observing

date-t prices and quantities alone are not informative about θt — the U investor must also

observe dividends. Following the realization of Dt+1, the posterior probability that U assigns

to θt = I, is given by

Pr(θt = I|Sθ,t, dt+1) =
πt Pr(Sθ,t|θt = I, dt+1)

πt Pr(Sθ,t|θt = I, dt+1) + (1− πt) Pr(Sθ,t|θt = N, dt+1)
(26)

=

πt
σε
φ
(
Sθ,t−dt+1

σε

)
πt
σε
φ
(
Sθ,t−dt+1

σε

)
+ 1−πt√

σ2+σ2
ε

φ

(
Sθ,t−0√
σ2+σ2

ε

) , (27)

where φ(·) is the probability distribution function for a standard normal random variable.

As a result, the probability U assigns to θt+1 = I is given by

πt+1 = q Pr(θt = I|Sθ,t, dt+1) + (1− q)(1− Pr(θt = I|Sθ,t, dt+1)) (28)

= (1− q) + (2q − 1)

πt
σε
φ
(
Sθ,t−dt+1

σε

)
πt
σε
φ
(
Sθ,t−dt+1

σε

)
+ 1−πt√

σ2+σ2
ε

φ

(
Sθ,t−0√
σ2+σ2

ε

) . (29)

Equation (29) illustrates an important feature of the model; uninformed investors’ belief

about other traders is persistent and evolves stochastically. As we will see, this leads to

time-variation and predictability in return moments, even though shocks to fundamentals

and information are i.i.d. The next result provides a characterization of signal revealing

equilibria in the general dynamic setting.

Proposition 6. In any signal-revealing equilibrium, investor i’s optimal demand is given by

expression (21), investor beliefs are given by

EU,t[Dt+1] = (1− ρ)µ+ ρDt + πtλSθ,t, Eθ,t[Dt+1] = (1− ρ)µ+ ρDt + λSθ,t,

varU,t[Dt+1] = σ2(1− πtλ) + πt(1− πt)(λSθ,t)2, and varθ,t[Dt+1] = σ2(1− λ),
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and the price of the risky asset is given by

Pt = 1
R

Ēt[Pt+1 +Dt+1]︸ ︷︷ ︸
expectations

−ακtvarθ,t[Pt+1 +Dt+1]Z︸ ︷︷ ︸
risk premium

 , (30)

where Ēt[·] ≡ κtEθ,t[·] + (1− κt)EU,t[·], and κt is given by

κt =
varU,t[Pt+1 +Dt+1]

varU,t[Pt+1 +Dt+1] + varθ,t[Pt+1 +Dt+1]
. (31)

The characterization of the price has a familiar form; it is a weighted average of investors’

conditional expectations about future payoffs, adjusted for a risk-premium.17 The weight of

each investor’s expectation in Ēt[·] depends on the conditional variance of her beliefs relative

to those of the others.

The equilibrium price cannot be characterized in closed form. We solve for it numerically,

by using an iterative procedure to compute the equilibrium price function as the limit of the

(unique) signal-revealing equilibrium of the finite horizon model, as characterized by the

following result.

Proposition 7. In the finite horizon (T -period) model, there exists a unique, signal-revealing

equilibrium. The equilibrium price is of the form Pt = Atµ+BtDt+pt(Sθ,t, πt), where pT = 0,

AT = 0, BT = 0, At = 1
R

(At+1 + (1− ρ)(1 +Bt+1)), Bt = ρ
R

(1 +Bt),

pt(Sθ,t, πt) =
1

R

{
Ēt [(1 +Bt+1) dt+1 + pt+1(Sθ,t+1, πt+1)]

−ακtvarθ,t [(1 +Bt+1) dt+1 + pt+1(Sθ,t+1, πt)]Z

}
,

κt =
varU,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1,πt+1)]

varU,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1,πt+1)]+varθ,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1,πt+1)]
,

and Ēi,t [·] = κtEθ,t [·] + (1− κt)EU,t [·] .

Specifically, we first solve for the unique equilibrium price function of the static model on

a grid over the space of signals and beliefs. Then, we iterate backwards, using the current

price function (evaluated on the grid) as next period’s price for the next iteration, until

the mean squared difference in the price functions across iterations is negligible. Under the

17To this point, we do not have a proof of existence for the general case as doing so requires solving a
non-standard fixed point problem and then verifying that the fixed point retains certain properties. However,
we have established existence and uniqueness in the finite horizon model, existence in the dynamic model
with i.i.d. θ, and existence and uniqueness in the limiting cases where πt ∈ {0, 1}, as discussed in Appendix
B. We have also verified existence numerically for a wide range of parameters in the general case.
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sufficient condition given in Proposition 5 (i.e., R − ρ − 2ασZ > 0), we find that the price

function converges for a wide range of parameters.

As in the static setting, the price is more sensitive to bad news (i.e., negative Sθ,t) than

it is to good news (i.e., positive Sθ,t). All else equal, investors’ expectation of dividends next

period, and hence the expectations component of the price, increases in Sθ,t as in Figure 1(a).

However, a surprise in Sθ,t in either direction also leads to an increase in uncertainty for the

U investor, and so the risk-premium component is hump-shaped in Sθ,t as in Figure 1(b).

For negative Sθ,t these two effects reinforce each other, while for positive Sθ,t, the effects

offset each other, and this leads to the asymmetric reaction of the price to Sθ,t.
18
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Figure 1: The two components of the equilibrium price function as they depend on the underlying state
variable and the realization of information.

In Appendix B, we present two natural limiting cases in which U investors are not un-

certain about whether θ investors are informed: (i) πt = 1 and θt = I, and (ii) πt = 0 and

θt = N . In both cases, without uncertainty about other traders, the model’s predictions are

more standard — the equilibrium price is linear, return volatility is constant, and expected

returns are either constant or i.i.d. This exercise illustrates our main results are driven

by U ’s uncertainty about θ and subsequent learning, neither of which are present in these

limiting cases.

18The comparative statics with respect to πt are familiar from the static case — the sensitivity of the
expectations component to Sθ,t increases in πt and the risk-premium component is U shaped in πt for any
Sθ,t.
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4.3 Implications of the Model

Since the solution to the dynamic model with persistent types is not analytically tractable,

we explore the implications by analyzing the model numerically. While the analysis in

the earlier sections has focused on characterizing properties of dollar returns per share,

Qt+1 = Pt+1 + Dt+1 − RPt, we will now characterize properties of the excess rate of return,

Qt+1/Pt, in order to highlight the robustness of the results and to facilitate comparisons

to the broader literature. The parameters are set to the following baseline values unless

otherwise specified: r = 2.5%, µ = 3%, ρ = 0.95, σ = 6%, Z = 1, α = 0.75, and q = 0.65.19

For these baseline parameter values, the expected excess return on the risky asset is 5.7%

and the volatility is 20.4%, when evaluated at πt = 1 and λ = 0.5.

4.3.1 Disagreement and predictability in return moments

When speculators are uncertain about θ, the effect of πt on the price generates novel empirical

predictions that distinguish our model form standard, dynamic rational expectations models.

In particular, the belief πt is an endogenous state variable of the model, which evolves

stochastically and is persistent. As a result, in addition to generating stochastic expected

returns and volatility, the model predicts that these moments are persistent, despite the fact

that shocks to fundamentals and signals are i.i.d.

As Figure 2 shows, excess returns are first increasing in πt but decreasing for larger

πt. Similarly, expected returns and volatility are decreasing in λ for high πt, since better

quality information reduces uncertainty when traders are sufficiently confident of its source.

However, returns and volatility are increasing in λ for low πt; higher quality information

leads to more volatile asset prices when traders are skeptical of the information source.

Figure 2 also suggests that the magnitude of the comparative statics results is econom-

ically meaningful. For instance, an increase in λ from 0.3 to 0.7 implies an increase in

expected returns from 7% to 7.2% and an increase in volatility from 24% to 26% percent

(for πt = 0.5); an increase in πt from 0.3 to 0.7 implies a decrease in expected returns from

7.3% to 6.7% percent and a decrease in volatility from 26% to 23% percent (for λ = 0.5).

Finally, recall that a natural proxy for πt in our model is disagreement across investors.

As such, the model predicts that time-variation in expected returns and volatility are closely

related to disagreement across investors. However, the relation between return moments

19Because we are using normally distributed random variables, the population moments of Qt+1/Pt are
not well defined due to prices arbitrarily close to zero — see Campbell, Grossman, and Wang (1993) and
Llorente, Michaely, Saar, and Wang (2002) for a discussion. We adopt the conventional approach and choose
Dt large enough relative to the volatility of dividend shocks (setting Dt = 1 and σ = 0.06) such that the
numerical estimation of these moments is well behaved.
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Figure 2: This figure plots the expected excess rate of return and volatility as a function of πt and λ. The
parameters are set to the following baseline values unless otherwise specified: r = 2.5%, µ = 3%, ρ = 0.95,
σ = 6%, Z = 1, α = 0.75, and q = 0.65

and disagreement is not monotonic: an increase in disagreement (decrease in π) leads to

higher expected returns and volatility when initial disagreement is low, but lower expected

returns and volatility when initial disagreement is high. Intuitively, when disagreement is

high, speculators assign a low likelihood to other investors being informed (i.e., πt is low). An

increase in disagreement reduces πt further, which reduces the uncertainty that speculators

have about others, and so leads to lower expected returns and volatility. In contrast, when

disagreement is low (i.e., πt is high), an increase in disagreement increases uncertainty about

whether θ investors are informed, and this leads to higher expected returns and volatility.20

As discussed in the introduction, these results may also help reconcile the mixed empirical

evidence on the relation between disagreement and returns documented in the literature.

4.3.2 Information quality and return moments

Figure 2 suggests that the relation between return moments and information quality (i.e.,

λ) depends on the state πt, and, therefore, can vary over time. Specifically, when investors

agree on the informativeness of Sθ,t (i.e., πt is close to one), higher information quality leads

to lower uncertainty and therefore lower expected returns. However, if investors disagree on

the interpretation of the signal (i.e., πt is close to zero), a signal distribution with a higher

20The intuition is consistent with the predictions of Banerjee (2011) which derives a negative relation
between disagreement and return moments for models in which investors exhibit differences of opinion, but
a positive relation for models in which investors exhibit rational expectations and condition on prices. In
the current model, when πt is low, investors behave as if they “agree to disagree,” since U traders do not
believe Sθ,t is informative, but θ traders do. On the other hand, when πt is high, both groups of investors
agree on the informativeness of Sθ,t, as they would in a rational expectations model.
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λ generates more uncertainty for the U investor since it makes the θ investor trade more

aggressively on his information. All else equal, this leads to higher volatility of prices and

higher expected returns.

The above results may be useful in reconciling the mixed empirical evidence on the

relation between information quality and returns discussed in the introduction. In particular,

the model suggests that conditioning on an empirical proxy of πt (e.g., institutional ownership

or disagreement) may be useful in uncovering the underlying relation.

4.3.3 Volatility clustering

The dynamic model generates time-series predictability in both expected returns and volatil-

ity. In particular, for πt close to one and persistent θt (i.e., q close to one), the model predicts

volatility clustering — return surprises in either direction are followed by an increase in both

volatility and expected returns. The intuition for these results follows from how U updates

her beliefs about whether θt is informed. An unanticipated realization of Dt+1 leads the U

investor to revise her beliefs about θ being informed downwards (i.e., πt+1 < πt).
21 This

revision in beliefs generates additional uncertainty for U investors, and as a result, leads to

higher future volatility and higher expected returns going forward. Figure 3 illustrates this

clustering effect. Specifically, the figure plots expected returns and volatility in period t+ 1

as a function of the current realization of Dt+1 (scaled by its standard error) starting from

πt close to one. Starting from zero on the x-axis, increasing the dividend surprise in either

direction implies πt+1 is closer to 1
2

and therefore U is more uncertain about θ, which leads

to higher expected returns and volatility.22

For πt close to zero, the opposite relationship can obtain; returns in line with expectations

cause the U investor to revise her belief upwards, which again increases the uncertainty about

other traders and hence volatility and expected returns. In this sense, no news (i.e., little to

no surprise in returns) can either be good news (when πt is close to one) or bad news (when

πt is close to zero). More generally, our model highlights a channel through which cash-flow

news (i.e., dividend surprises) can affect discount rates (i.e., expected returns) in the future

through its effect on uncertainty about other investors.23

For the baseline parameters, Figure 3 provides magnitudes for the volatility clustering

effect. For λ = 0.75, a one-standard deviation surprise in dividend realizations predicts an

increase in future expected excess returns of roughly 50 b.p. (from 6.5% to 7%) and an

21This follows from the evolution of πt in (29), q being close to one, and πt being large initially.
22Note that for sufficiently large (and unlikely) surprises, the posterior, πt+1, tends to zero and expected

returns and volatility may decrease.
23We thank Karl Diether for this observation.
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Figure 3: The figure plots expected returns and volatility in period t + 1 as they depend on dividend
surprises in period t and the quality of the information (in both figures πt = 0.95). The parameters are set
to the following baseline values unless otherwise specified: r = 2.5%, µ = 3%, ρ = 0.95, σ = 6%, Z = 1,
α = 0.75, and q = 0.975.

increase in future volatility of 1.75% (from 22.5% to 24.25%), while a two-deviation surprise

generates increases of 1% in expected returns and about 6% in volatility. Finally, note that in

the limiting cases without uncertainty about others (i.e., where πt ∈ {0, 1}), these plots are

perfectly flat. Thus, even for small deviations from the standard model (πt = 0.95 instead

of πt = 1), the clustering effect can be quite economically significant.

4.3.4 Variation in the composition of ownership and return moments

The analysis also suggests that the effect of the persistence in types of other traders (i.e.,

q) on return moments also depends on πt, and therefore is time-varying. As an instance,

Figure 4 plots the expected excess rate of return and volatility as a function of πt and q for

the baseline parameters. The plots suggest that except near the boundaries of q = 0 and

q = 1, expected returns and volatility are increasing in q for large πt, but decreasing in q or

low πt.

Intuitively, changing q does not change beliefs about next period’s dividends, but it does

affect beliefs about future prices. Specifically, when the likelihood of other traders being

informed is low in the current period (i.e., πt is low), and increase in persistence of θ implies

that the likelihood of other traders being informed is lower in future periods. On the other

hand, an increase in q when πt is high implies that the likelihood of other traders being

informed is higher in future periods. Since future prices are more sensitive to signals, and

therefore riskier, when the likelihood of θ = I is higher, expected returns and volatility is
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Figure 4: This figure plots the expected excess rate of return and volatility as a function of πt and q. The
parameters are set to the following baseline values unless otherwise specified: r = 2.5%, µ = 3%, ρ = 0.95,
σ = 6%, Z = 1, α = 0.75, and λ = 0.5.

increasing in q for high πt but decreasing in q for low πt.

These results suggest a novel prediction of the model, which has not been tested in

the literature (to the best of our knowledge). As discussed above, in our model, higher

disagreement across investors corresponds to lower πt. One could also argue that higher

variation in ownership composition of the risky asset reflects lower persistence (i.e., lower

q) in the type of θ traders. As such, the model predicts that higher variation in ownership

composition (lower q) should be associated with higher expected returns and higher volatility

when disagreement across investors is high, and lower expected returns and volatility when

disagreement is low.

5 Robustness: Common priors and noisy aggregate supply

In this section, we consider an alternative specification to our benchmark model. We focus

on the two-date version (and normalize R = 1, µ = 0) using the same setup is as in Section

3, with the following exceptions: investors share a common prior, N investors are fully

rational, and the aggregate supply of the risky asset is stochastic. This specification is useful

in highlighting the main effects of uncertainty about others in a more familiar setting —

the model reduces to the noisy rational expectations model of Grossman and Stiglitz (1980)

when π = 1. This specification also helps to illustrate the robustness of our qualitative

implications though it is less analytically tractable than the benchmark model.

Conditional on θ = N , investors agree that the signal is uninformative.24 As a result,

24Or, equivalently, N investors do not observe a signal prior to submitting orders.

24



the optimal demand for a θ investor is given by:

xθ =


λSθ−P
ασ2(1−λ) if θ = I

0−P
ασ2 if θ = N,

(32)

Note that without an additional source of noise, observing price and quantities perfectly re-

veals both Sθ and θ. Thus, we follow the noisy rational expectations literature and introduce

aggregate supply shocks (e.g., noise traders). In particular, the aggregate supply of the risky

asset is Z + z, where z ∼ N(0, σ2
z).

25 The market clearing condition is given by:

xθ + xU = Z + z. (33)

Finally, as in the benchmark model, we assume U investors can condition on the equilibrium

price and residual supply when determining their optimal demand. In this setup, we show

that there exists a rational expectations equilibrium which is characterized by the following

proposition.

Proposition 8. There exists a rational expectations equilibrium in which the price is given

by the solution to:

P = (κ∗ + (1− κ∗) π∗λy) y︸ ︷︷ ︸
expectations

−κ∗ασ2 (1− λ)Z︸ ︷︷ ︸
risk premium

.

where y = ασ2(1− λ)(xθ − z) + P , π∗ = Pr(θ = I|y, P ), and

κ∗ = σ2(1−π∗λy)+π∗(1−π∗)(λyy)
2

σ2(1−λ)+σ2(1−π∗λy)+π∗(1−π∗)(λyy)
2 .

Analogous to the decomposition in equation (11), the price can be decomposed into the

expectations and risk-premium components. Figure 5 illustrates these two components and

suggests that uncertainty about whether others are informed has qualitatively similar im-

plications in this setup. As in the static model of Section 3, the expectations component is

monotonic in the price signal. Moreover, U investors are unsure about the informativeness

of y, which implies that their posterior variance, and therefore, the risk-premium component

of price depends on the realization of y. Thus, as in the benchmark model, the price reacts

asymmetrically to good news versus bad news.

In contrast to the benchmark model, U investors learn directly about θ from the signal

25Alternatively, one could assume that in addition to being potentially informed, θ investors anticipate an
endowment to their wealth of zd in the next period, where z is known to θ investors but not to U investors,
and z ∼ N(0, σ2

z).
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Figure 5: Using the alternative specification given in Section 5, this figure illustrates the two components
of the equilibrium price function as they depend on the price signal y and the prior beliefs π0.

y; large realizations of y lead to large updates in π∗ (either towards zero or one). That is,

both uncertainty and learning are present in the two date version of this specification. As a

result, the risk-premium component is dampened for large realizations of y, since for these

realizations π∗ is closer to zero or one. Though we do not numerically solve the dynamic

version of this specification, clearly both uncertainty and learning will play a role in such

a setting. Based on the analysis here, we expect that similar results to those in Section 4

would obtain.

Note that in all specification thus far, we assume that either I or N traders are present

in the market, but not both. One could instead consider a setting in which both I and N

investors are present simultaneously, but the U investor is uncertain about the proportion

of each type of investor. The analysis of such a setting would not be dissimilar to the

specification above. Specifically, by conditioning on the information in the residual demand

and the price, speculators will be able to update their beliefs about the proportion of informed

investors even in a static setting. Conditional on these beliefs, the residual demand provides

a noisy signal about the dividend next period, which speculators can use to update their

beliefs about fundamentals. A complete analysis of such a model is left for future work.

6 Final Remarks

Asset pricing models have focused primarily on uncertainty about the underlying fundamen-

tals and assume that the characteristics of other traders in the market is common knowledge.

We consider a framework in which investors are uncertain about whether others are informed

and gradually learn about them by observing prices and dividends. We show that these ad-

ditional channels of uncertainty and learning can have important implications for return
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dynamics. Specifically, the model generates non-linear prices, which are more sensitive to

bad news than good news; stochastic, predictable expected returns and volatility, that vary

with disagreement; volatility clustering (i.e., big return realizations of either sign are followed

by higher volatility and higher expected returns); time-variation in the relation between in-

formation quality and return moments; and time-variation in the relation between return

moments and variation in ownership composition.

We have focused on a setting in which investors are uncertain about whether other traders

are informed. However, one could also consider alternative settings in which uninformed

investors are uncertain about other characteristics of other traders such as their risk aversion

or hedging demands (Section 2 discusses some recent advances along similar lines). The

predictions of such a model will depend on the exact source of uncertainty, yet a number

of similarities should arise: the multi-dimensional uncertainty will generally lead to a non-

linearity in prices, and learning about others should generate rich return dynamics.

We have kept the model as parsimonious as possible to highlight the key mechanism

behind our results. Although beyond the scope of the current paper, we believe that an

enriched version of the model may be suitable for calibration. Moreover, our theoretical

framework could potentially be extended to study information acquisition in a dynamic

setting, thereby endogenizing the information structure.
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Appendix A - Proofs

Proof of Proposition 1. First, note that in the static model the optimal demand given in
(2) reduces to

xi =
µ+ Ei[d]−RP

αvari[d]
. (34)

For θ investors, this can be expressed as

xθ =
µ+ λSθ −RP
α(1− λ)σ2

. (35)

We argue that any equilibrium must be signal revealing. If the equilibrium is not signal
revealing, then there must exist two signal realizations, s1 > s2, for which P is the same.
But in this case, from (35), the θ investor would demand strictly more after observing s1,
which implies that the U investor can distinguish between s1 and s2 using residual demand
(i.e., Z − xθ). Next, since I and N have symmetric optimal strategies, prices and quantities
cannot reveal information about θ. Hence, the equilibrium cannot be fully revealing and
therefore, U ’s beliefs about the dividend must be given by (7) and (8). Existence and
uniqueness follow by plugging the formulas for the optimal demand of U and θ investors
given by (34) into the market clearing condition and solving for P as given by (9).

Proof of Corollary 1. To demonstrate the results, it will be useful to establish the follow-
ing properties of κ:

∂
∂λ
κ =

σ2(1−π0)(π0S2
θ (2−λ)λ+σ

2)

(σ2(1−λ)+σ2(1−π0λ)+π0(1−π0)(λSθ)2)2
=

(1−π0)(π0S2
θ (2−λ)λ+σ

2)

σ2(1−λ)2 (1− κ)2 ≥ 0

∂
∂π0
κ = − (σ2−(1−2π0)λS2

θ)λ(1−λ)σ2

(σ2(1−λ)+σ2(1−π0λ)+π0(1−π0)(λSθ)2)2
= −(σ2−(1−2π0)λS2

θ)λ
σ2(1−λ) (1− κ)2 (36)

∂
∂Sθ

κ = 2π0(1−π0)(1−λ)λ2σ2Sθ
(σ2(1−λ)+σ2(1−π0λ)+π0(1−π0)(λSθ)2)2

= 2π0(1−π0)λ2Sθ
σ2(1−λ) (1− κ)2

which imply κ is (i) increasing in λ, (ii) hump shaped in π0 around 1
2

(
1− σ2

λS2
θ

)
, and (iii)

U -shaped in Sθ around 0.
Effect of λ: The derivative of the expectations component of P with respect to λ is given by

∂
∂λ

((κ+ (1− κ)π0))λSθ) =
(
π0 + (1− π0)

(
κ+ λ ∂

∂λ
κ
))
Sθ.

From (i) above, this component increases with λ for Sθ > 0 and decreases in λ otherwise.
The derivative of risk-premium component is given by

∂
∂λ(−ασ2(1− λ)κZ) =

αZσ2((−1+π0)2π02S4
θλ

4+2π0σ2S2
θλ(−1+π0+3λ−3π0λ−λ2+π02λ2)+σ4(1+π02λ2+π0(1−4λ+λ2)))

((−1+π0)π0S2
θλ

2+σ2(−2+λ+π0λ))
2

The expression can be positive or negative depending on |Sθ|. For Sθ = 0 and as |Sθ| →
∞, the derivative is strictly positive and so the risk-premium component of price increases
in λ at these extremes. However, for intermediate values of |Sθ|, the derivative is negative.
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Effect of π0: The derivative of the expectations component of P with respect to π0 is given
by

∂
∂π0

((κ+ (1− κ)π0))λSθ) =
(

(1− κ) + (1− π0) ∂
∂π0
κ
)
λSθ

Inserting the expression from (36) for ∂
∂π0
κ gives:

(
(1− κ) + (1− π0) ∂

∂π0
κ
)
λSθ =

σ2(1− λ) (((1− π0)Sθλ)2 + 2(1− λ)σ2)

(1− λ)σ2 + (1− π0λ)σ2 + (λSθ)2(1− π0)
λSθ

Therefore, the derivative of the expectations component of prices with respect to π0 has
the same sign as Sθ. The risk premium component of the price is U -shaped in π0 around
1
2

(
1− σ2

λS2
θ

)
. This can be seen by using (ii) above and

∂
∂π0

(−ασ2(1− λ)κZ) = −ασ2(1− λ)Z ∂
∂π0
κ.

Effect of Sθ: The expectations component of P is increasing in Sθ. This can be seen by using
(iii) above and

∂
∂Sθ

((κ+ (1− κ)π0))λSθ) = (κ+ (1− κ)π0))λ+ (1− π0)λSθ ∂
∂Sθ

κ > 0.

The risk-premium component of the price is hump-shaped in Sθ around zero. This can also
be seen by using (iii) above and

∂
∂Sθ

(−ασ2(1− λ)κZ) = −ασ2(1− λ)Z ∂
∂Sθ

κ.

This completes the proof of the comparative static results.

Proof of Proposition 2. To be completed.

Proof of Proposition 3. Let P (s) denote the equilibrium price (as given by (11)) for an
arbitrary signal realization s, and similarly for κ(s) (which is given by (10)). Note that for
0 < s1 < s2, the difference in the price is given by

P (s2)− P (s1) = 1
R

(
(κ(s2) + (1− κ(s2))π0)λs2 − (κ(s1) + (1− κ(s1))π0)λs1

−ασ2(1− λ)Z(κ(s2)− κ(s1))

)
Since κ(s2) > κ(s1) (see proof of Corollary 1), setting

γ =
(κ(s2) + (1− κ(s2))π0)λs2 − (κ(s1) + (1− κ(s1))π0)λs1

σ2(1− λ)(κ(s2)− κ(s1))

gives the result.

Proof of Proposition 4. The expressions for the conditional expected return and volatil-
ity follow from the observation that the only source of randomness in returns, conditional on
P and xθ, is the realization of the dividend d. In particular, this implies that var[Q|P, xθ] =
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varU [d|P, xθ]. To derive the expression for unconditional expected return, take the expecta-
tion of the right-hand side (RHS) of (13) and using that EU [d] = π0λSθ, we have

E[Q] = E[E[Q|P, xθ]] = ασ2(1− λ)ZE[κ]− (1− π0)λE[κSθ]

Thus, it suffices to show that E[κSθ] = 0. For this, note that κ ·Sθ is an odd-function (of Sθ)
and the distribution of Sθ is symmetric around zero. Thus, E[κSθ|Sθ > 0] = −E[κSθ|Sθ < 0],
which implies E[κSθ] = 0.

For unconditional volatility of returns, we have that

var[Q] = E[var[Q|P, xθ]] + var[E[Q|P, xθ]]
= E[σ2(1− π0λ) + π0(1− π0)(λSθ)2] + var

[
ασ2(1− λ)κZ − (1− π0)κλSθ

]
= σ2(1− π2

0λ) + (ασ2(1− λ)Z)2var[κ] + (1− π0)2λ2var[κSθ]

− 2ασ2(1− λ)λZ(1− π0)cov(κ, κSθ).

Stein’s Lemma implies that for Y ∼ N (0, σ2
Y ), and g(Y ) such that E[g(Y )Y ] < ∞ and

σ2
YE[g′(Y )] <∞, we have cov(g(Y ), X) = E[g′(Y )]cov(Y,X). Therefore

cov(κ, Sθ) = E
[

∂
∂Sθ

κ
]

var(Sθ)

var[κSθ] = E[κ2S2
θ ]− (E[κSθ])

2 = cov(κ2Sθ, Sθ)− cov(κ, Sθ)

=
(
E
[
κ2 + 2κSθ

∂
∂Sθ

κ
]
− E

[
∂
∂Sθ

κ
])

var(Sθ)

cov(κ, κSθ) = E[κ2Sθ]− E[κ]E[κSθ] = cov(κ2, Sθ)− E[κ]cov(κ, Sθ)

=
(
E
[
2κ ∂

∂Sθ
κ
]
− E[κ]E

[
∂
∂Sθ

κ
])

var(Sθ).

Since ∂
∂Sθ

κ(Sθ) = − ∂
∂Sθ

κ(−Sθ), we have that E
[

∂
∂Sθ

κ
]

= 0, and E
[
κ ∂
∂Sθ

κ
]

= 0. This implies

that volatility can be expressed as:

var[Q] = σ2(1− π2
0λ) + (ασ2(1− λ)Z)2var[κ] + (1− π0)2λ2var[κSθ]

since λ = σ2/var(Sθ).

Proof of Proposition 5. We first establish that there is a unique equilibrium in the finite
horizon model.

Lemma 1. In the finite horizon model, the unique equilibrium price is of the form

Pt = Atµ+BtDt + pt(Sθ,t), (37)

where pT = 0, AT = 0, Bt = ρ
R

(1 +Bt), At = 1
R

(At+1 + (1− ρ)(1 +Bt+1)), and

pt(Sθ,t) = 1
R

{
Ēt [(1 +Bt+1) dt+1 + pt+1(Sθ,t+1)]− ακtvarθ,t [(1 +Bt+1) dt+1 + pt+1(Sθ,t+1)]Z

}
,

(38)
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where

κt =
varU,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1)]

varU,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1)]+varθ,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1)]

and Ēi,t [·] = κtEθ,t [·] + (1− κt)EU,t [·] .

Proof of Lemma 1. We shall establish the claim by verifying the recursion.
Base Step. The terminal date is T (i.e., PT = 0) and so PT−1 is given by:

PT−1 = 1
R

(
(1− ρ)µ+ ρDT−1 + Ēi,T−1[dT ]− ακT−1varθ,t [dT ]Z

)
(39)

= AT−1µ+BT−1DT−1 + pT−1(Sθ,T−1), (40)

since AT = BT = pT = 0. Also, note that at date T − 1, both investors’ beliefs about pT has
finite first and second moments (degenerately).
Recursive Step. Suppose the price in the next period satisfies Pt+1 = At+1µ+Bt+1Dt+1 +
pt+1(Sθ,t+1), and both investors’ date t beliefs about pt+1 has finite first and second moments.
Then,

xi,t =
Ei,t [Pt+1 +Dt+1]−RPt
αvari,t [Pt+1 +Dt+1]

(41)

=
Ei,t [At+1µ+ (1 +Bt+1)Dt+1 + pt+1(Sθ,t+1)]−RPt

αvari,t [(1 +Bt+1)Dt+1 + pt+1(Sθ,t+1)]
(42)

=
(At+1+(1+Bt+1)(1−ρ))µ+(1+Bt+1)ρDt+Ei,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1)]−RPt

αvari,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1)]
(43)

Market clearing implies
∑

i xi,t = Z, or equivalently,

Pt =
1

R

 (At+1 + (1 +Bt+1)(1− ρ))µ+ (1 +Bt+1)ρDt

+Ēi,t [(1 +Bt+1)dt+1 + pt+1(Sθ,t+1)]
−ακtvarθ,t [(1 +Bt+1)dt+1 + pt+1(Sθ,t+1)]Z

 (44)

≡ Atµ+BtDt + pt(Sθ,t), (45)

which verifies our conjecture. Finally, since Sθ,t+1 is independent of dt+1 and both investors’
date t beliefs about pt+1 has finite first and second moments, the above implies both investors’
date t− 1 beliefs about pt has finite first and second moments.

Stationary solution to OLG IID θ model. Now we turn to the proof of the main
result. Note that in a stationary equilibrium of the infinite horizon OLG model in which θ
is IID, we should have At = A and Bt = B, which implies A = R(1−ρ)

(R−1)(R−ρ) , and B = ρ
R−ρ .

Denote m = Ei,t [pt+1] = Ei [pt+1] and v = vari,t+1 [pt+1]. Note that E [κtSθ,t] = 0 and
cov [κtSθ,t, κt] = 0, since κt is even in Sθ,t, and var [κtSθ,t] ≤ σ2 + σ2

ε and var [κt] ≤ 1, since
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κt ≤ 1. Finally, note that dt+1 and pt+1 are uncorrelated. Then,

m = Ei [pt] = Ei
[
1
R

{
Ēt [(1 +B) dt+1 + pt+1]− ακtvarθ,t [(1 +B) dt+1 + pt+1]Z

}]
(46)

= 1
R

(
E
[
(1 +B)(κt + (1− κt)π)λSθ,t +m− ακt((1 +B)2σ2(1− λ) + v)Z

])
(47)

⇒ m = − 1
R−1((1 +B)2σ2(1− λ) + v)αZE [κt] (48)

Let σ2
E ≡ var [(κt + (1− κt)π)Sθ,t] and σ2

κ = var [κ]. Then, we have

v = vari
[
1
R

(
(1 +B)(κt + (1− κt)π)λSθ,t +m− ακt((1 +B)2σ2(1− λ) + v)Z

)]
(49)

= 1
R2

(
(1 +B)2λ2σ2

E + α2((1 +B)2σ2(1− λ) + v)2Z2σ2
κ

)
(50)

⇒ v = J(v) (51)

where J(v) = 1
R2 ((1 +B)2λ2σ2

E + α2((1 +B)2σ2(1− λ) + v)2Z2σ2
κ). Note that J(0) > 0

and since

J(v) ≤ 1
R2

(
(1 +B)2λ2(σ2 + σ2

ε) + α2((1 +B)2σ2(1− λ) + v)2Z2
)

(52)

≡ F +G(v +H)2 (53)

where F = 1
R2 (1 + B)2λ2(σ2 + σ2

ε), G = 1
R2α

2Z2, and H = (1 + B)2σ2(1− λ). The solution
to the quadratic equation v = F +G(v +H)2 is given by:

v∗ =
1−2GH±

√
1−4G(F+H)

2G
(54)

and a sufficient condition for existence is

1− 4G(F +H) ≥ 1− 4α2Z2σ2

(R−ρ)2 > 0, (55)

since σ2
E ≤ σ2 + σ2

ε , and σ2
κ ≤ 1. This implies that J(v∗) ≤ v∗ which implies there exists a

solution to J(v) = v, and consequently, an equilibrium.
The equilibrium price is then given by

Pt = Aµ+BDt + 1
R

(
(1 +B)(κt + (1− κt)π)λSθ,t +m− ακt((1 +B)2σ2(1− λ) + v)Z

)
,

where A, B, m and v are characterized above.

Proof of Proposition 6. Optimality of xi,t follows from (2), the expressions for beliefs
are given by (7)–(6), and the expression for the price follows from the market clearing
condition.

Proof of Proposition 7. We shall establish the claim by verifying the recursion.
Base Step. The terminal date is T (i.e., PT = 0) and so PT−1 is given by:

PT−1 = 1
R

(
(1− ρ)µ+ ρDT−1 + Ēi,T−1[dT ]− ακT−1varθ,t [dT ]Z

)
(56)

= AT−1µ+BT−1DT−1 + pT−1(Sθ,T−1), (57)
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since AT = BT = pT = 0. Also, note that at date T − 1, both investors’ beliefs about pT has
finite first and second moments (degenerately).
Recursive Step. Suppose the price in the next period satisfies Pt+1 = At+1µ+Bt+1Dt+1 +
pt+1(Sθ,t+1, πt+1), and both investors’ date t beliefs (at any (Sθ,t, πt)) about pt+1 has finite
first and second moments. Then,

xi,t =
Ei,t [Pt+1 +Dt+1]−RPt
αvari,t [Pt+1 +Dt+1]

(58)

=
Ei,t [At+1µ+ (1 +Bt+1)Dt+1 + pt+1(Sθ,t+1, πt+1)]−RPt

αvari,t [(1 +Bt+1)Dt+1 + pt+1(Sθ,t+1, πt+1]
(59)

=
(At+1+(1+Bt+1)(1−ρ))µ+(1+Bt+1)ρDt+Ei,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1,πt+1)]−RPt

αvari,t[(1+Bt+1)dt+1+pt+1(Sθ,t+1,πt+1)]
(60)

Market clearing implies
∑

i xi,t = Z, or equivalently,

Pt =
1

R

 (At+1 + (1 +Bt+1)(1− ρ))µ+ (1 +Bt+1)ρDt

+Ēi,t [(1 +Bt+1)dt+1 + pt+1(Sθ,t+1, πt+1)]
−ακtvarθ,t [(1 +Bt+1)dt+1 + pt+1(Sθ,t+1, πt+1)]Z

 (61)

≡ Atµ+BtDt + pt(Sθ,t, πt), (62)

which verifies our conjectured form. To verify this is an equilibrium, we need to confirm that
the conditional expectation and variance of pt(·) is bounded.

Suppose |Ei,t [pt+1(Sθ,t+1, πt+1)|πt+1] | ≤ mt and vari,t [pt+1(Sθ,t+1, πt+1)] | ≤ vt. Note that
the first constraint implies that |Ei,t [pt+1(Sθ,t+1, πt+1)] | ≤ mt. Also, since pT = 0, these
conditions hold degenerately for T . We want to show that the same moments of pt(Sθ,t, πt)
are also bounded. Note that since the equilibrium is signal-revealing, we have:

pt = 1
R

(
Ēt [(1 +Bt+1)dt+1 + pt+1]− ακtvarθ,t [(1 +Bt+1)dt+1 + pt+1]Z

)
(63)

= 1
R

(
(1 +Bt+1)(κt + (1− κt)πt)λSθ,t + Ēt [pt+1]− ακtvarθ,t [(1 +Bt+1)dt+1 + pt+1]Z

)
(64)

Given our conjecture,

varθ,t [(1 +Bt+1)dt+1 + pt+1] (65)

= (1 +Bt+1)
2varθ,t [dt+1] + varθ,t [pt+1] + 2(1 +Bt+1)covθ,t [dt+1, pt+1] (66)

≤ (1 +Bt+1)
2σ2 + vt + 2(1 +B)σ

√
vt ≡ Vt, (67)

But this implies that:

Ei,t−1 [κtvarθ,t [(1 +Bt+1)dt+1 + pt+1] |πt] ≤ Vt +
√
Vt, (68)

since κt ∈ [0, 1]. Finally, since κt is even in Sθ,t, and Sθ,t has zero mean, we have

Ei,t−1 [(κt + (1− κt)πt)λSθ,t|πt] = 0, (69)
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and so,

|Ei,t−1 [pt(Sθ,t, πt)|πt] | ≤ 1
R

(
mt + αZ(Vt +

√
Vt)
)
≡ mt−1, (70)

which verifies the conjecture for the conditional mean of the price.
Next, note that

vari,t−1 [pt|πt] ≤ 1
R2

(
(1 +Bt+1)

2λ2(σ2 + σ2
ε) +m2

t + α2Z2V 2
t

+2
(

(1 +Bt+1)λ
√
σ2 + σ2

ε(mt + αZVt) +mtαZVt

) ) ≡ Wt. (71)

But this implies that by applying the law of total variance, we have

vari,t−1 [pt(Sθ,t, πt)] = Ei,t−1 [vari,t−1 [pt|πt]] + vari,t−1 [Ei,t−1 [pt|πt]] (72)

≤ Wt +m2
t−1 ≡ vt−1, (73)

which verifies the conjecture for the conditional variance in the price.

Proof of Proposition 8. Define the random variable

y ≡ ασ2(1− λ)(xθ − z) + P

Since U investors can observe the equilibrium price and the residual supply, y is measurable
w.r.t. their information. Given the optimal demand of the θ investors, y takes the form

y =

{
λSθ − ασ2(1− λ)z if θ = I

λP − ασ2(1− λ)z if θ = N,

Note that this implies that, unlike the static version of the base model, the U investor can
use the “signal”, y, to learn about θ. In particular, her updated belief conditional on (y, P )
is given by:

π∗ (y, P ) =

π0√
σ2
Y,I

φ

(
y√
σ2
Y,I

)
π0√
σ2
Y,I

φ

(
y√
σ2
Y,I

)
+ 1−π0√

σ2
Y,NI

φ

(
y−λP√
σ2
Y,NI

)
where

σ2
Y,I = λ2

(
σ2 + σ2

ε

)
+ α2σ4 (1− λ)2 σ2

z , and σ2
Y,NI = α2σ4 (1− λ)2 σ2

z .

Conditional on θ = I, U ’s belief about d is given by

EU [d|y, θ = I] = λyy, varU [d|y, θ = I] = σ2 (1− λy) ,

where

λy =
cov (y, d)

var (y)
=
λσ2

σ2
Y,I

=
λσ2

λσ2 + λ2α2σ4
εσ

2
z

.

38



Optimal demand for the U investor is then given by

xU(xθ − z, P ) = 1
α

π∗λyy−P
π∗σ2(1−λy)+(1−π∗)σ2+π∗(1−π∗)(λyy)

2 .

The market clearing condition (33) implies that the equilibrium price, P , can be implicitly
characterized as the solution to the following equation:

xU(xθ − z, P ) = Z − (xθ − z). (74)

Note that since

∂π∗

∂P
= π0(1−π0)

σ2
Y,Iσ

2
Y,NI

(
ασ2(1− λ)(xθ − z)

(
σ2
Y,I (1− λ)− σ2

Y,NI

)
+ P

((
σ2
Y,I (1− λ)2 − σ2

Y,NI

)))
,

for any realization of xθ − z, we have:

• If σ2
Y,I (1− λ)2 − σ2

Y,NI > 0, the derivative is increasing in P and, for large enough
values of P , it is positive, which implies lim|P |→∞ π

∗ = 1, and consequently

lim
|P |→∞

xU = λyy−P
ασ2(1−λy) .

• If σ2
Y,I (1− λ)2− σ2

Y,NI < 0, the derivative is decreasing in Pt and, for large enough Pt,
it is negative. This implies that lim|P |→∞ π

∗ = 0, and consequently

lim
|P |→∞

xU = 0−P
ασ2 .

Since xU is continuous in P and π∗, this implies that in either case, there exists a P that
satisfies equation (74). Rearranging equation (74) gives the expression for the price in the
proposition.

Appendix B - Supplementary Analysis

Comparative statics on return moments

To investigate comparative statics, we start by presenting the following result.

Proposition 9. In the static model,

(i) The unconditional expected return is homogeneous of degree 1 (HD1) in σ2 and αZ.

(ii) The unconditional volatility component due to fundamental shocks is HD1 in σ2 and
HD0 in αZ.

(iii) The unconditional volatility component due to the expectations component of returns is
HD1 in σ2 and HD0 in αZ.

(iv) The unconditional volatility component due to the risk premium component of returns
is HD2 in σ2 and αZ.
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Proof of Proposition 9. It suffices to show that E[κ] and var[κ] are HD0 in σ2, while
var[κSθ] is HD1 in σ2. Recall that

κ =
σ2(1− π0λ) + π0(1− π0)λ2S2

θ

σ2(1− λ) + σ2(1− π0λ) + π0(1− π0)λ2S2
θ

and by definition, λ = σ2

σ2+σ2
ε

and Sθ ∼ N(0, σ2 + σ2
ε ) = N(0, σ2/λ), we have

E[κ] =
1√

2πσ2/λ

∫ ∞
−∞

σ2(1− π0λ) + π0(1− π0)λ2s2

σ2(1− λ) + σ2(1− π0λ) + π0(1− π0)λ2s2
exp

(
−s2

2σ2/λ

)
ds

Using a change of variables, by letting x ≡
√
λ
σ
s, we get that

E[κ] =
1√

2πσ2/λ

σ√
λ

∫
σ2(1− π0λ) + π0(1− π0)λ2 σ

2

λ
x

σ2(1− λ) + σ2(1− π0λ) + π0(1− π0)λ2 σ
2

λ
x

exp

(
−x2

2

)
dx

=
1√
2π

∫ ∞
−∞

(1− π0λ) + π0(1− π0)λx
(1− λ) + (1− π0λ) + π0(1− π0)λx

exp

(
−x2

2

)
dx (75)

And clearly (75) is independent of σ. To see that var[κ] is also independent of σ, note
that same proof as above applies to E[κ2].

For var [κSθ] , again using the same change of variables, we have that

E[κSθ] =
1√

2πσ2/λ

∫ ∞
−∞

σ2(1− π0λ) + π0(1− π0)λ2s2

σ2(1− λ) + σ2(1− π0λ) + π0(1− π0)λ2s2
s exp

(
−s2

2σ2/λ

)
ds

=
σ√
2π

∫
(1− π0λ) + π0(1− π0)λx

(1− λ) + (1− π0λ) + π0(1− π0)λx
x√
λ

exp

(
−x2

2

)
dx

which clearly scales with σ and hence (E[κSθ])
2 scales with σ2. The same change of variables

can be used to show that the same is true of E[(κSθ)
2], which completes the proof.

As expected, (i) implies that unconditional expected returns are increasing in the funda-
mental volatility and the overall risk concerns in the market as captured by αZ. Results (ii)
through (iv) are also fairly intuitive, but they have important implications for which compo-
nent drives overall volatility. In particular, when overall concerns about risk in the market
are relatively high, the risk premium component of expression (19) is the key driver of overall
return volatility. When αZ and σ2 are relatively small, the first and second components of
expression (19) drive overall volatility.

Proposition 9 is also useful for exploring comparative static results with respect to λ
and π0. For example, (i) implies that when exploring how expected returns change with λ
and π0, it is without loss to normalize σ2 and αZ. By doing so, we are left with a two-
dimensional parameter space (i.e., (π0, λ) ∈ [0, 1]2), over which the expected return can be
plotted to obtain comparative-static results that obtain for any parameter specification of
the model. Figure 6(a) illustrates the result; both higher quality information and greater
likelihood of an informed trader decrease the expected return. This is because both higher
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quality information and a higher likelihood of an informed trader imply that the price is
more informative about the fundamentals in expectation, and the uncertainty faced by the
uninformed investor is lower.
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(a) Expected Return
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(b) Volatility

Figure 6: Illustration of expected returns (a) and total volatility (b) as they depend on the quality of
information λ and the probability of a θ being informed, i.e., π0. The other parameters are σ = 40%, and
αZ = 3.

Using (ii) through (iv), we can conduct a similar exercise to characterize the compara-
tive static effects of each of the individual components of volatility. Figure 7(a) shows the
volatility in returns due to fundamental dividend shocks is decreasing in π0 and λ, since an
increase in either parameter reduces the uncertainty that investors face about next period’s
dividend. Figure 7(b) shows that the variance in the expectations component of conditional
expected returns is decreasing in π0 but increasing in λ. Recall that the expectations compo-
nent of the conditional expected returns is non-zero because investors exhibit differences of
opinion, and in particular, because uninformed θ investors believe they are informed. This
effect is larger when π0 is smaller (since θ investors are less likely to actually be informed)
and when λ is larger (since uninformed θ investors put more weight on their signals), which
leads to the effect on volatility. Figure 7(c) shows the risk-premium component of volatility
is non-monotonic in both π0 and λ. This is because the risk-premium component of returns
is stochastic only when both λ and π0 are strictly between zero and one.26

Of course, comparative statics on the total return volatility depend on the relative mag-
nitudes of σ2 and αZ, which determine the relative weight on each component. For instance,
Figure 6(b) presents the effect of π0 and λ on overall volatility for a given set of parame-
ters, for which the fundamental and expectations components dominate the risk-premium
component.

26If π0 ∈ {0, 1}, the conditional variance of U investors does not depend on Sθ. Consequently, κ and the
risk-premium component of expected returns are constant. Similarly, when λ = 1, the risk-premium is zero,
while when λ = 0, all θ investors are effectively uninformed, and so the risk-premium is, again, constant.
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(c) Risk-Premium Component

Figure 7: The three components of volatility as they depend on the quality of information, λ, and the
probability of a θ being informed, π0. Panel (a) plots the fundamental component of volatility (i.e., σ2(1−
π2
0λ)), panel (b) plots the expectations component (i.e., (1 − π0)2λ2var[κSθ]), and panel (c) plots the risk-

premium component (i.e., (σ2(1− λ)αZ)2var[κ]). The other parameters are set as in Figure 6.

Limiting Cases: No uncertainty (or learning) about other traders

In this subsection, we present two natural limiting cases of the general model. First, we
characterize the equilibrium for the case in which πt = 1. This setting is analogous to a
standard rational expectations environment. Next, we consider the other extreme, when
πt = 0. In this case, U investors do not condition on the price when updating their beliefs
about the fundamental value of the asset and thus it is analogous to a standard difference
of opinions (or Walrasian) setting. The analysis implies that our main results are driven
by speculators’ uncertainty, and learning, about θ investors — neither feature is present in
these limiting cases.

Proposition 10. If π0 = 1 and θ = I, there exists a unique linear, stationary equi-
librium. The equilibrium is signal-revealing, and the price of the risky asset is given by
Pt = Aµ + BDt + CSθ,t + F , where A = R(1−ρ)

(R−1)(R−ρ) , B = ρ
R−ρ , C = λ

R−ρ , and F =

− 1
2(R−1)

(
C2

λ
+ (1 +B)2(1− λ)

)
σ2αZ. Conditional on Sθ,t, expected returns and volatility
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are given by

Et[Qt+1|Sθ,t] = 1
2
αvart[Qt+1|Sθ,t]Z, and (76)

vart[Qt+1|Sθ,t] = σ2
(
C2

λ
+ (1 +B)2(1− λ)

)
(77)

When θ investors are informed and U investors are certain about this, the price is linear
in the signal Sθ,t and informationally efficient. The expected return is constant, and reflects
only the risk-premium that investors require for holding the risky asset. The conditional
volatility of returns is also constant since the equilibrium price is linear in Sθ,t.

Proposition 11. If π0 = 0 and θ = NI, there exists a unique linear, stationary equilibrium.
The equilibrium is signal-revealing, and the price of the risky asset is given by Pt = Aµ +
BDt + CSθ,t + F , where A = R(1−ρ)

(R−1)(R−ρ) , B = ρ
R−ρ , C is the unique solution to

C =
λ (R2λ+ C2(R− ρ)2)

(R2(2− λ)λ+ 2C2(R− ρ)2) (R− ρ)
, (78)

and F = − 1
R−1

(C2/λ+(1+B)2)(C2/λ+(1+B)2(1−λ))
(C2/λ+(1+B)2+C2/λ+(1+B)2(1−λ))σ

2αZ. Conditional on Sθ,t, expected returns and
volatility are given by

Et[Qt+1|Sθ,t] = (C2/λ+(1+B)2)(C2/λ+(1+B)2(1−λ))
(C2/λ+(1+B)2+C2/λ+(1+B)2(1−λ))σ

2αZ −RCSθ,t, and (79)

vart[Qt+1|Sθ,t] = σ2
(
C2

λ
+ (1 +B)2

)
(80)

Again, without uncertainty about θ, the price is linear in Sθ,t and return volatility is
constant. Though θ investors are not informed, they believe they have payoff relevant infor-
mation — as a result, the price responds to realizations of Sθ,t. However, since the signals
are spurious, the price is expected to mean-revert in the next period, and this induces pre-
dictability in expected returns through the −RCSθ,t term in expression (79).

Proofs of Propositions 10 and 11. One can conjecture and verify the specified price
function in each case. In particular, suppose Pt+1 = Aµ + BDt+1 + CSθ,t+1 + F . Since
Sθ,t+1 is uncorrelated with dt+1, we have that optimal demand for investor i is given by:

xi,t =
Ei,t [Pt+1 +Dt+1]−RPt

vari,t [Pt+1 +Dt+1]
(81)

=
Aµ+ (B + 1)((1− ρ)µ+ ρDt + Ei,t [dt+1]) + F −RPt

(B + 1)2vari,t [dt+1] + C2(σ2 + σ2
ε)

. (82)

This implies that the equilibrium is signal-revealing, since the optimal demand for θ investors
is linear in Sθ,t. Moreover, note that for πt = 1 and θ = I, we have

Ei,t [dt+1] = λSθ,t, and vari,t [dt+1] = σ2(1− λ), (83)
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for i ∈ {U, θ}, while for πt = 0 and θ = N , we have

Eθ,t [dt+1] = λSθ,t, and varθ,t [dt+1] = σ2(1− λ), (84)

EU,t [dt+1] = 0, and varU,t [dt+1] = σ2. (85)

Plugging in these beliefs into the optimal demand for each type of investor, and imposing the
market clearing condition (i.e., xU,t+xθ,t = Z) verifies the conjectured linear form. Matching
coefficients implies uniqueness of the equilibrium. In particular, for πt = 1 and θ = I, we
have

C =
λ

R− ρ
, (86)

while for πt = 0 and θ = N , we can show that C is the solution to the cubic equation:

C =
λ (R2λ+ C2(R− ρ)2)

(R2(2− λ)λ+ 2C2(R− ρ)2) (R− ρ)
. (87)

Since the discriminant of the above equation is less than zero, there is one real solution,
which pins down the unique linear equilibrium in this case.

The expressions for expected returns and volatility in returns follow from plugging in the
expression for price and computing the moments.
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