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Abstract

When external finance is costly, liquid funds provide corporations with instruments to
absorb and react to shocks. Making optimal use of liquid funds means transferring them to
times and states where they are most valuable. We examine the determinants of corporate
liquidity management in a dynamic model where stochastic investment opportunities and
cash shortfalls provide liquidity needs. Firms can transfer liquidity across time using cash
and across states drawing on credit lines subject to debt capacity constraints. We gener-
ate empirical and quantitative predictions by means of calibration. Small and constrained
firms use cash to provide liquidity to fund investment opportunities, while large and un-
constrained firms manage their liquidity needs by means of credit lines. In the time series,
equity issuances are used to replenish cash balances, a credit lines to fund unanticipated
investment opportunities. We find strong support for our predictions in the data. Overall,
the model thus provides a quantitatively and empirically successful framework explaining
corporate investment, financing and liquidity policies and the joint occurrence of cash, debt
and credit lines in the presence of capital market imperfections.
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1 Introduction

When external finance is costly, liquid funds provide corporations with instruments to absorb

and react to shocks. Making optimal use of liquid funds means transferring them to times and

states where they are most valuable. Liquid funds may be valuable because they aid financing of

a profitable investment opportunity, or because they help covering cash shortfalls. Anticipations

of such future states thus provide a rationale for corporate liquidity management and renders it

inherently dynamic. One way to implement liquidity management is using uncontingent instru-

ments, such as holding cash, which transfers liquid funds across all states symmetrically. We

will refer to such policies as unconditional liquidity management. Alternative instruments, such

as credit lines or derivatives, have a more state-contingent flavor in that corporations may draw

on them to transfer funds to specific states only. We will refer to such policies as conditional

liquidity management.

In practice, we see firms engaging in many combinations of conditional and unconditional

liquidity management policies, yet there is relatively little work attempting to understand the

determinants of these choices. In this paper, our objective is to take a step towards filling this

gap. We do so by proposing a dynamic model of corporate policies that explicitly allows cor-

porations to transfer liquid funds unconditionally using cash and conditionally by drawing on

credit lines. In the model, liquidity needs arise from stochastic investment opportunities and

cash shortfalls in the context of high leverage. By solving the model numerically, we provide

novel empirical predictions on the cross-sectional and time-series determinants of corporations’

liquidity policies. We test these predictions empirically using data on credit lines from Capi-

talIQ and find strong support for them. The model thus provides a quantitatively and empirically

successful framework explaining corporate investment, financing and liquidity policies and the

joint occurrence of cash, debt and credit lines in the presence of capital market imperfections.
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In the model, firms attempt to take advantage of profitable investment opportunities that arise

stochastically. However, due to capital market imperfections, issuing equity entails costs such

that firms will find it beneficial to exploit the tax benefits of leverage by issuing debt. However,

we assume that debt needs to be collateralized by capital so that all debt is secured. This means

that firms’ debt capacity is endogenously bounded. In this context, a rationale for liquidity

management arises. Firms can transfer liquidity unconditionally across all states by saving, that

is, by holding cash. On the other hand, firms can preserve debt capacity in a state-contingent

way by drawing on their credit lines as economic conditions dictate. This allows firms to transfer

liquidity conditionally to specific states only. We show that the model predicts that firms will

exploit conditional and unconditional liquidity management highly differentially both in the

cross-section and in the time series. Calibrating the model, we find that such differential use of

liquidity management provides a coherent explanation for many stylized facts about firms joint

investment, financing and liquidity policies.

Our model rationalizes the empirical evidence that firms simultaneously hold cash and debt,

hence corroborating the notion that cash is not negative debt. Within the context of our model,

the intuition is simple. While debt and credit lines jointly allow for state-contingency within the

limits of debt capacity, holding cash allows to transfer liquidity beyond collateral constraints

in case of high financing needs. Such high financing needs most likely arise when firms have

many profitable investment opportunities. In this context, the model predicts that small firms

and constrained firms (as measured by net worth) hold more cash, all else equal. This is a

pattern well documented in the data, indicating that such firms mostly manage liquidity by

means of unconditional instruments. On the other hand, large firms and relatively unconstrained

firms are predicted to hold less cash and have more undrawn credit, indicating that they rely

more conditional policies for liquidity management. We confirm this prediction using data on

credit lines from CapitalIQ. Our model also replicates the well documented positive relationship

between leverage and size.
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An important implication of the model is that empirically we carefully need to distinguish

between small firms (as measured by the capital stock) and constrained firms (as measured by

net worth). Indeed, these variables are the two relevant (endogenous) state variables in the

model. While the two variables are indeed somewhat correlated, we document the need of dis-

tinguishing them by means of two way sorts on relevant variables on capital and undrawn credit.

These sorts suggest that the main driver of cash holdings is capital, while financial constraints

matter less. Since low capital implies valuable growth opportunities (in a model with decreasing

returns to scale), this suggests that unconditional liquidity management mostly serves to transfer

funds to states with high investment opportunities. On the other hand, the amount of undrawn

credit mostly varies with net worth, controlling for capital. Indeed, unconstrained firms have

more slack on their credit lines, so that the transfer more funds to valuable states conditionally.

Symmetrically, constrained firms mostly exhaust their debt capacity. This is consistent with the

notion, developed in Rampini and Viswanathan (2010), and Rampini and Viswanathan (2012a),

that constrained firms hedge less, and that if they do, they do it unconditionally using cash. We

find strong support for these predictions in the data, suggesting the need to distinguish between

size and financial constraints, in contrast to most commonly used financial constraint indicators

in empirical work. Moreover, these findings suggest that cross-sectionally we can distinguish

firms whose liquidity management is mostly dictated by preserving liquidity for investment op-

portunities, which we label ’upstate hedging’, as opposed to firms preserving liquidity in order

to cover cash shortfalls, which we label ’downstate hedging’. In particular, our findings suggest

that different instruments serve such liquidity needs better. Figure 1 illustrates our results.

Our analysis points to the importance of examining financing and liquidity policies in the

context of investment opportunities, and in particular, investment frictions. While it is well

known that financing policies in dynamic investment models exhibit considerable sensitivity to

the specification of investment technologies, we reinforce such results in the context of measures

of firms’ liquidity management. Obstructions to frictionless adjustment of the capital stock in
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dynamic corporate models are most commonly represented by means of a convex (quadratic)

adjustment cost. Our results clearly indicate that fixed costs of adjustment are important to

understand liquidity management at the firm level, and cash holdings in particular.

Our paper is at the intersection of several converging lines of literature. In particular we

interpret the quantitative literature on dynamic investment and financing (as started by Gomes

(2001), Hennessy and Whited (2005), and Hennessy and Whited (2007)) further in light of the

recently emerged literature on dynamic risk management and hedging in the context of col-

lateralized debt (Rampini and Viswanathan (2010), Rampini and Viswanathan (2012a)). We

build on Rampini and Viswanathan by modeling state-contingent debt subject to collateral con-

straints. While Rampini and Viswanathan operate in a dynamic optimal contracting framework,

we take the form of the contracts as exogenously given and interpret them in the wider context

of commonly used frictions in the dynamic financing literature, such as equity issuance costs

and investment frictions. Most importantly, we allow firms to use cash as a form of liquidity

management. While these leads to a distinct set of empirical predictions, we moreover view

our paper as contributing more to the quantitative and empirical literature rather than the one on

optimal security design.

Our paper is closely related to the emerging literature on firm policies and cash hold-

ings. A non-exhaustive list includes Nikolov and Whited (2009), Morellec and Nikolov (2009),

Hugonnier, Malamud and Morellec (2011), Bolton, Chen, and Wang (2011), Falato, Kadyrzhanova,

and Sim (2013), Bolton, Chen, and Wang (2012), and Eisfeldt and Muir (2013). Our main de-

parture from this line of literature is that we allow for conditional liquidity management that we

interpret in the context of credit lines. Our empirical results suggest that this is a relevant model

feature. In this context, our paper is most closely related to Bolton, Chen and Wang (2011,

2012), who allow firms to access credit lines and hedge aggregate shocks using derivatives. On

the other hand, for tractability, these authors operate within an AK-framework which allows to

reduce the number of state variables and to obtain analytical solutions up to an ordinary differ-
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ential equation. However, our empirical results suggest that distinguishing between the capital

stock and net worth as state variables is empirically relevant.

From a computational viewpoint, we introduce linear programming methods into dynamic

corporate finance. Accounting for conditional liquidity management by means of state-contingent

policies introduces a large number of control variables into our setup which would render our

model subject to the curse of dimensionality for standard computational methods. We exploit

and extend linear programming methods to circumvent this problem and efficiently solve for

the value and policy functions in this class of problems. Linear programming methods, while

common in operations research, have been introduced into economics and finance by Trick and

Zin (1993, 1997). We extend their methods to setups common in corporate finance. More

specifically, we exploit a separation oracle, an auxiliary mixed integer programming problem,

to deal with large state spaces and find efficient implementations of Trick and Zin’s constraint

generation algorithm.

This paper is structured as follows. After presenting some stylized empirical evidence on

corporate liquidity management in section 2, we present our model in section 3. We qualitatively

examine the determinants of corporations’ joint investment, financing and liquidity policies in

section 4. After detailing our approach to calibration and identification of our quantitative model

in section 5, we present cross-sectional implications in section 6 and time-series implications by

means of generalized nonlinear impulse response functions in section 7. Section 8 concludes.

[Insert Figure 1 Here]
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2 Stylized Facts on Corporate Liquidity

In this section we revisit the key empirical facts about firms’ joint liquidity management, cash,

and capital structure decisions. This evidence can be rationalized and interpreted within our

model. In Table 1, we present stylized evidence by sorting firms on the empirical counterpart

of the two state variables of our model, namely net worth, and capital stock. The sorts in

table 1 are based on a sample of manufacturing firms from the merged Compustat Annual and

Capital IQ datasets, for the period 2001-2011. As in the models of Rampini and Viswanathan

(2010), and Rampini and Viswanathan (2012a), net worth determines the amount of resources

that are available to the firm in a certain state of the world. Net worth is the sum of realized

cash flows from current investment, capital net of depreciation, and cash holdings, net of debt

repayments. Intuitively, net worth is the firm’s counterpart of household’s wealth. Therefore,

net worth captures how constrained a company is with respect to funds to allocate to investment,

risk management, and distributions. Consistent with the definition in our model, we proxy net

worth as the book value of shareholder equity as in Rampini, Sufi, and Viswanathan (2012).

Capital stock is measured as the book value of property, plant, and equipment. For each year,

firms that are above (below) the 67th (33th) percentile of net worth are classified as relatively

unconstrained (constrained). Using the same procedure, firms are classified as large or small on

the basis of their capital stock.

An important caveat that limits empirical evidence on corporate risk management is that

firm’s hedging is unobservable. Existing studies focus on specific industries and types of hedg-

ing to draw inference. For example, Tufano (1996) considers hedging of output price in the

gold mining industry, while Rampini, Sufi, and Viswanathan (2012) investigate hedging of in-

put (fuel) price for airlines. In our model, firms can transfer conditional liquidity by keeping

slack on their collateral constraints, that is by saving debt capacity in a state-contingent way. As

Rampini and Viswanathan (2012a) discuss, an important implementation of conditional liquid-
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ity management relies on loan commitments. This implementation appears to be important in

practice, because credit lines play a first-order role for firm’s financing. As Sufi (2009) points

out, over 80 percent of bank debt held by public firms is in the form of lines of credit. More-

over, Colla, Ippolito, and Li (2013) report that the drawn part alone of credit lines accounts

for more than 20 percent of the debt structure of US listed firms. On the contrary, the overall

quantitative importance of risk management based on derivatives is debatable. For instance,

Guay and Kothari (2003) find that even large firms implement little hedging through financial

derivatives. In table 1, we report the undrawn fraction of credits from lines of credit from the

Capital IQ dataset. For the aforementioned reasons, and because of data limitations, we con-

sider this indicator as a proxy of how much firms are slack on their collateral constraints for

providing stylized evidence. This choice is consistent with the definition of conditional liquid-

ity in our model. Despite there are reasons other than hedging for which firms do not fully draw

from their credit lines, such as limited investment needs, we expect to observe cross-sectional

differences in the fraction of undrawn debt capacity across net worth and capital clusters.

Panel A shows one-way sorts by net worth and capital. We report mean cash-to-asset and

debt-to-asset ratios, and the average fraction of undrawn credit from credit lines. More con-

strained and smaller firms have larger cash holdings, consistent with existing empirical studies,

such as Denis and Sibilkov (2009), and Almeida, Campello, and Weisbach (2004). Consistent

with some constrained firms having low cash holdings, as in Denis and Sibilkov (2009), the

pattern is more pronounced for the sort on capital. Small firms in our sample have an average

cash-to-asset ratio of 23.6 percent, compared to 9.6 percent for large firms. Constrained firms

instead hold 16.7% of their asset in cash and cash equivalents, while the ratio falls to 11.7%

for unconstrained firms. Regarding leverage, the cross-sectional patterns for sorts on net worth

and capital have opposite directions. The sort on capital highlights the well-known positive re-

lationship between leverage and size, that several studies document. Firms with low net worth

appear to have more debt than those with high net worth, namely 35.1% versus 23.1% of total
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assets. Finally, relatively unconstrained firms appear to have more undrawn credit, in line with

the result in Rampini, Sufi, and Viswanathan (2012) that firms with high net worth hedge more

(0.922 versus 0.716). Large firms also appear to keep more slack on their credit lines, despite

the pattern is not as clear as for the sort on net worth.

As Rampini, Sufi, and Viswanathan (2012) discuss, patterns that relate the corporate policy

to net worth are largely unexplored. In our framework, net worth measures how constrained is

a firm with respect to the amount of available resources. Other proxies of financial constraints

used in the empirical literature capture different dimensions. For example, bond ratings proxy

for distance to default. Remarkably, size, typically measured as the book value of total assets,

is one of those proxies. In our model, net worth and capital are two different state variables.

Therefore, in panel B, we report two-way sorts to revisit and provide new insights about the key

stylized facts on debt, cash, and risk management with respect to these two variables. Distin-

guishing between net worth and capital allows to uncover stylized evidence that can be useful

to understand firms’ conditional and unconditional liquidity and hedging policies.

Concerning cash holdings, our two-way sorts show that capital is the main variable that

influences cash. Small firms hold more cash than large firms for each cluster of new worth. The

”Cash holdings” panel shows that the cash-to-asset ratio of small firms is around three times

higher than that of large firms. Remarkably, after controlling for capital, unconstrained firms

appear to hold more cash than constrained firms. This evidence is consistent with the finding

in Denis and Sibilkov (2009) that some constrained firms have low cash holdings, despite small

firms hold more cash than large firms. The ”Leverage” panel highlights that large constrained

firms have very high debt ratios (69.6% of total assets), much higher than large firms with high

net worth (25.1% of total assets). A similar pattern, but less strong, can be observed for less

constrained firms, which are likely to have more internal resources (38.1% versus 8.9% for the

second cluster, and 25.1% versus 10.5% for unconstrained firms). Finally, the joint effect of

net worth and capital on undrawn credit suggest that unconstrained firms are more slack on
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their credit lines, while capital does not appear to play a very important role. This pattern is

consistent with the evidence in Rampini, Sufi, and Viswanathan (2012), and emphasizes the

importance to distinguish between net worth and size per se.

Finally, as Strebulaev and Whited (2012) point out, an interesting piece of evidence, which

existing dynamic models of investment and financing are generally unable to rationalize, is that

firms simultaneously hold cash and debt.1

[Insert Table 1 Here]

In summary, the key stylized facts on corporate liquidity, financing, and hedging can be

summarized as follows:

• Firms with low capital and high net worth have higher cash holdings;

• Firms with high capital and low net worth have higher leverage;

• Firms with high net worth are more slack on their lines of credit;

• Firms simultaneously hold cash and debt.

1An exception is Gamba and Triantis (2008).
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3 The Model

This section provides a dynamic neoclassical model of investment, financing, and corporate liq-

uidity. Managers decide at each period in a infinite-horizon environment. This ensures that they

take into account the expected consequences of today’s decisions for the feasibility of future

decisions. They jointly decide over (i) investment in real capital, (ii) debt and equity issues, (iii)

cash holdings, and (iv) state-contingent hedging in order to maximize shareholders’ wealth. The

feasible set of managers’ decisions is limited by the presence of real and financial frictions. As

in Rampini and Viswanathan (2010), dynamic debt financing is subject to collateral constraints

that limit firms’ debt capacity. Collateral constraints reflect limited enforcement problems that

prevent creditors from accurately assessing the firms ability to repay debt. State-contingent

hedging can hence be interpreted as conserving debt capacity to finance future investments, in

presence of uncertainty and limited debt capacity. State-contingent liquidity management can

be implemented, for example, by loan commitments, or by purchasing traded securities to hedge

shocks which can affect firms’ cash flows and investment opportunities. On the real side, ad-

justing the real capital stock entails both fixed and smooth costs, as in Cooper and Haltiwanger

(2006). In addition, following the existing literature, firms face costly equity issues, and costs

of maintaining cash balances.

3.1 Technology and Investment

We consider the problem of a value-maximizing firm in a perfectly competitive environment.

Time is discrete. The operating profit for firm i in period t depends upon the capital stock ki,t

and a shock zi,t , as described by the expression

Π(ki,t ,zi,t) = (1− τ)zi,tkα
i,t − f (1)
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The production function exhibits decreasing returns to scale with 0 < α < 1. As in Gomes

(2001), we assume there is a per-period fixed production cost f ≥ 0. τ ≥ 0 is the corporate tax

rate. The variable zi,t reflects shocks to demand, input prices, or productivity. zi,t is assumed to

be lognormal and to obey the Markovian law of motion

log(zi,t+1) = µz(1−ρz)+ρz log(zi,t)+σzεi,t+1 (2)

where εi,t+1 is a truncated standard normally distributed random variable. The parametrization

in equation (2) ensures that the transition probability has the Feller property. In addition, we

require that zi,t lies in a close and bounded (therefore compact) set by imposing large bounds

on the values of εi,t+1. ki,t falls into the compact set [0, K̄] without loss of generality. Following

Gomes (2001), K̄ can be defined as

Π(K̄, Z̄) = δK̄ (3)

where Z̄ in the upper bound for zi,t , and δ is the depreciation rate of capital. Hence, a capital

stock larger than K̄ cannot be observed, because not economically profitable. The compactness

of the state space for ki,t and zi,t , and the continuity of Π(ki,t ,zi,t), ensure that Π(ki,t ,zi,t) is

bounded. This is a necessary condition for the existence of a solution for the firm’s problem.

At the beginning of each period the firm is allowed to scale its operations by choosing next

period capital stock ki,t+1. This is accomplished through investment ii,t , which is defined by the

standard capital accumulation rule

ki,t+1 = ki,t(1−δ)+ ii,t (4)
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Investment is subject to capital adjustment costs. Following Cooper and Haltiwanger (2006), we

include both fixed and convex adjustment cost components. We parametrize capital adjustment

costs with the following functional form:

Ψ(ki,t+1,ki,t)≡

(
ψ+

0 ki,t +
1
2

ψ+

(
ii,t
ki,t

)2

ki,t

)
1{ki,t+1>(1−δ)ki,t}+

(
ψ−

0 ki,t +
1
2

ψ−
(

ii,t
ki,t

)2

ki,t

)
1{ki,t+1<(1−δ)ki,t}

(5)

where 1{·} is an indicator function, and the parameters ψ+
0 and ψ−

0 govern fixed-adjustment

costs of investing and disinvesting respectively. Non-convex costs of adjustment are typically

intended to capture indivisibilities in capital, increasing returns to the installation of new capital,

and increasing returns to retraining and restructuring of production activity. ψ+ and ψ− instead

drive the convex component of adjustment costs. We consider asymmetric adjustment costs

because, as in Zhang (2005), disinvesting is typically more costly than increasing capital. Both

convex and non-convex costs are proportional to the initial capital stock ki,t to eliminate any

size effect.

3.2 Financing and Liquidity Management

Investment and distributions to shareholders can be financed with three potential sources: inter-

nally generated cash flows, riskfree debt (net of repayments), and external equity. In addition,

firms have the option to hoard cash for future investments. As in Rampini and Viswanathan

(2010), we model one-period state-contingent debt. Formally, (1+ r)bi,t+1(z(i, t +1)) repre-

sents the face value to be repaid at time t + 1 in the state of the world s(t + 1) corresponding

to the realization of the shock z(i, t + 1), where r is the one-period rate of return.2 In other

words, the firm is borrowing from deep-pocket lenders who are willing to lend in all states and

2Because our focus in not on endogenous costs of distress, as in Hennessy and Whited (2005) we make the
assumption of riskfree debt in the interest of tractability. Given the high number of decision variables and the pres-
ence of occasionally non-binding constraints and non-convex costs, solving the model is computationally intensive.
The introduction of endogenous default costs would disproportionately increase the computational burden.
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dates at the rate of return r. To simplify notation, we introduce the shorthand bi(s(t +1)) for

the decision variables bi,t+1(z(i, t +1)). The value of new debt issues at time t in state s(t) is

Et [bi(s(t +1))]− (1+ r(1− τ))bi(s(t)) (6)

where the operator Et [·] denotes the expectation under the manager’s probability measure con-

ditional to her information set at time t. In equation (6), the term Et [bi(s(t +1))] represents the

observed debt stock on the firm balance sheet in period t, which is determined by risk-neutral

security pricing in the capital market.3 1+ r(1− τ) is the effective interest rate paid by the

firm, after accounting for the tax shield of debt. Firms are subject to collateral constraints, that

impose an upper bound on the amount of one-period state-contingent debt that a firm can issue.

Assuming that future cash flows are not pledgeable, collateral constraints take the form:

(1+ r(1− τ))bi(s(t +1))≤ θ(1−δ)ki,t+1 (7)

Up to a fraction θ of the resale value of the firm’s tangible capital can be used as collateral for

state-contingent debt at time t+1 in state s(t+1). Rampini and Viswanathan (2012a) prove that

collateral constraints of this form are equivalent to limited enforcement constraints. Intuitively,

in a dynamic agency problem, the enterpreneur can abscond with a part of tangible capital.

The lender is mindful of this possibility, and she cannot precisely gauge the firm’s ability to

support debt. Therefore, he imposes participation and enforcement constraints that limit the

share of capital she is willing to finance. We characterize risk management and the conditional

3To see this, one can apply the basic asset pricing formula to the state-contingent claim with payoffs
(1+ r)bi(s(t +1)) at time t + 1. Today’s market valuation of the debt stock under the measure of deep-pocket
investors is therefore

Et [M(s(t +1))(1+ r)bi(s(t +1))]

where M(s(t +1)) is the stochastic discount factor. Under risk neutrality, M(s(t +1)) = 1
1+r . As a consequence:

Et

[
1

1+ r
(1+ r)bi(s(t +1))

]
= Et [bi(s(t +1))]
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corporate liquidity policy by defining conditional hedging hC
i (s(t + 1)) as the slacks on the

state-contingent collateral contraints:

hC
i (s(t +1))≡ θ(1−δ)ki,t+1 − (1+ r(1− τ))bi(s(t +1)) (8)

The higher hC
i (s(t +1)), the larger the amount of debt capacity the firm is preserving for possi-

ble investment opportunities that may arise conditionally on the realization of the state s(t +1).

This means that firms can conditionally manage its liquidity, that is they can preserve their abil-

ity to raise debt and support investment in states in which their cash flows are low, and they have

less internally generated resources. There is a clear-cut tradeoff between conditional hedging

against future income shortfalls, and available funds for current investment. The amount of

raised debt Et [bi(s(t +1))] in equation (8) is supported by the promised payments in future

states. Therefore, the higher hC
i (s(t + 1)), the more firms are tranferring resources from today

to future states, and the lower Et [bi(s(t +1))]. As Rampini and Viswanathan (2010) discuss,

state-contingent debt contracts can be implemented in practice by arranging loan commitments

or purchasing derivative securities. The model with state-contingent debt bi(s(t + 1)) is also

equivalent to a model in which debt is not state-contingent, but the firm can conditionally trans-

fer liquidity by purchasing Arrow-Debreu securities.4

Conditional hedging is not the only way firms can transfer liquid funds. Firms can hoard

cash and implement unconditional hedging. Hoarding cash is equivalent to unconditionally

transferring resources from today to all future states, including those in which investment can be

financed by internally generated funds. As for conditional hedging, there is a tradeoff between

current investment and saving resources for the future. However, as we are going to discuss

in section 4, conditional hedging is preferable to unconditional hedging because it allows to

tranfer resources to the future states where they are needed the most. Nevertheless, the presence

4Technically, recalling that collateral constraints are equivalent to limited enforcement constraints, this inter-
pretation is possible because the market is complete in the set of enforceable payoffs.
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of capital adjustment costs as in equation (5) makes cash hoarding optimal for smaller firms that

would not otherwise be able to invest to an economically profitable scale, even if they exhaust

their debt capacity. For this reason, and consistent with empirical evidence, our model predicts

that firms can simultaneously hold debt and cash instead of using cash for repaying debt. This

mechanism corroborates the intuition in Acharya, Almeida, and Campello (2007) that cash is

not negative debt. We denote cash holdings in period t as ci,t . Firms earn the after-tax riskfree

interest rate r(1− τ) on their cash balances, but also bear costs for holding them. Previous

studies motivate the costs of holding cash by agency costs, and different lending and borrowing

rates. Following DeAngelo, DeAngelo, and Whited (2011), we model these costs through an

”agency parameter” 0 ≤ γ ≤ 1. We interpret γ as the one-period rate to which cash holdings

deteriorate in value. Accordingly, the total hedging for firm i at time t +1 in state s(t +1) is the

amount of resources available from both conditional hedging and unconditional hedging, that

is:

hT
i (s(t +1))≡ hC

i (s(t +1))+(1+ r(1− τ)− γ)ci,t+1 (9)

Finally, the firm can raise external equity. We assume seasoned equity offers are costly, so that

it is never optimal for the firm to simultaneously pay dividends and issue equity. Following

Hennessy and Whited (2005), we model equity flotation costs with a fixed and a proportional

component. We indicate net equity payout at time t as ei,t . When ei,t < 0 the firm is raising eq-

uity, while ei,t ≥ 0 means that the firm is making distributions to shareholders. Equity issuance

costs are given by:

(λ0 +λ1|ei,t |)1{ei,t<0} (10)

The parameters λ0 ≥ 0 and λ1 ≥ 0 drive the fixed and the proportional component, respectively.

The indicator function denotes that the firm faces these costs only in the region where the the

net payout is negative. Accordingly, distributions to shareholders di,t are the equity payout net

of issuance costs:

di,t = ei,t − (λ0 +λ1|ei,t |)1{ei,t<0} (11)
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3.3 The Firm Problem

Managers determine investment, financing, and risk management to maximize the wealth of

shareholders, which is the risk-neutral security price in the capital market. Hence, in period t,

they decide over real capital ki,t+1, cash ci,t+1, and state-contingent debt bi(s(t + 1)), for each

state s(t + 1). As we discuss in section 3.1, the choice set for capital is compact. Collateral

constraints in equation (7) imply that state contingent debt variables are bounded between 0

and θ(1−δ)ki,t+1
1+r(1−τ) . To ensure compactness of the feasible set for ci,t+1, we impose an arbitrarily

high bound C̄ on cash holdings. This bound is imposed without loss of generality because of

the assumption of costly cash balances. Intuitively, even when the marginal productivity of real

capital is low, it is never optimal for the firm to invest in liquid assets and have unbounded

savings. Cash can be distributed as dividends right away, and shareholders discount future

dividends at a rate r per period, while the rate of return for each unit of cash is r(1−τ)−γ. The

overall choice set is therefore compact.

Despite the large number of choice variables in the firm problem, the current state can be

more efficiently summarized by introducing realized net worth as a state variable. Realized net

worth at time t in the (realized) state s(t) for firm i is given by:

wi,t ≡ Π(ki,t ,zi,t)+ ki,t(1−δ)− (1+ r(1− τ))bi(s(t))+(1+ r(1− τ)− γ)ci,t + τδki,t (12)

As in Rampini and Viswanathan (2012a), net worth measures the amount of resources that are

available to the firm in a certain state. It includes cash flows from current investment, value

of capital net of depreciation, and value of cash holdings, all net of due debt payments. Intu-

itively, net worth is the corporate counterpart of household’s wealth (Rampini and Viswanathan

(2012b)). Therefore, net worth is a measure of how constrained a firm is in terms of avail-

able funds to allocate to investment, risk management, and distributions to shareholders. In our

model, the presence of capital adjustment costs implies that the current stock of capital ki,t is
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also a relevant state variable. In fact, the knowledge of net worth and of the choice variables does

not suffice to determine distributions to shareholders di,t that appear in the objective function,

because the adjustment costs Ψ(ki,t+1,ki,t) also directly depend on the current stock of capital.

The current state is therefore summarized by the vector (wi,t ,ki,t ,zi,t). The set of state variables

is compact because ki,t and zi,t are bounded, and from equation (12) it is straightforward that

net worth lies in a closed and bounded interval [W
¯
,W̄ ].

Investment, financing, and liquidity management decisions are intimately related. They

should satisfy the following budget identities between sources and uses of funds both at time t,

and for each state at time t +1:

wi,t +Et [bi(s(t +1))] = ei,t + ki,t+1 +Ψ(ki,t+1,ki,t)+ ci,t+1 (13a)

wi(s(t +1)) = Π(ki,t+1,zi,t+1)+ ki,t+1(1−δ)− (1+ r(1− τ))bi(s(t +1))+

+(1+ r(1− τ)− γ)ci,t+1 + τδki,t (13b)

where wi(s(t +1)) denotes net worth at time t +1 is state s(t +1).

The firm objective function is to maximize the equity value V (ki,t ,wi,t ,zi,t), that is the dis-

counted value of distributions to shareholders. By the Bellman’s principle of optimality, the

equity value be computed as the solution to the dynamic programming problem

V (ki,t ,wi,t ,zi,t) = max

{
0, max

ki,t+1,ci,t+1,bi(s(t+1))

{
di,t +

1
1+ r

Et [V (ki,t+1,wi,t+1,zi,t+1)]

}}
(14)

subject to the constraints in (4), (5), (7), (11), and (13). In equation (14), V (ki,t+1,wi,t+1,zi,t+1)

denotes the continuation value for equity, which depends on the future state (ki,t+1,wi,t+1,zi,t+1)

and on the values of the choice variables at time t. The first maximum captures instead the pos-
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sibility of default in current period, in which case the shareholders get nothing. To sum up, the

complete firm problem is the following:

V (ki,t ,wi,t ,zi,t) = max

{
0, max

ki,t+1,ci,t+1,bi(s(t+1))

{
di,t +

1
1+ r

Et [V (ki,t+1,wi,t+1,zi,t+1)]

}}
(15)

s.t.

wi,t +Et [bi(s(t +1))]≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t ,ki,t+1) (16a)

wi(s(t +1))≤ (1− τ)Π(ki,t+1,zi,t+1)+ ki,t+1(1−δ)− (1+ r(1− τ))bi(s(t +1))+

+(1+ r(1− τ)− γ)ci,t+1 + τδki,t+1 ∀s(t +1)

(16b)

(1+ r(1− τ))bi(s(t +1))≤ θ(1−δ)ki,t+1 ∀s(t +1)

(16c)

bi(s(t +1))≥ 0 ∀s(t +1)

(16d)

ci,t+1 ≥ 0 (16e)

3.4 Model Solution

Because of the presence of occasionally non-binding collateral constraints, and because costs

of equity issues and capital adjustment depend on indicator functions, the model cannot be

solved numerically by interior points methods. In principle, the model could be solved on a

discrete grid by value function iteration or policy function iteration. The Bellman operator in

equation (14) is indeed a contraction mapping, in that Blackwell’s sufficient conditions hold

in this framework. Therefore, the fixed point of the functional equation (14) is well-defined.
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For a standard formal proof in a similar framework, we refer to Hennessy and Whited (2005).

Unfortunately, there is a computational hurdle that prevents the solution of the model with

standard techniques. Due to the large number of control variables (capital, cash, and one debt

variable for each future state), value function iteration and policy iteration cannot be practically

implemented. In particular, the maximization step is critical. Determining for each state the

combination of control variables that maximizes the sum of distributions and the continuation

value implies to store and maximize over a vector of nk× nc× nbnz elements, where nk, nc,

nb, and nz are the number of grid points for capital, cash, debt, and the shock. As in Rust

(1997), this problem is plagued by a curse of dimensionality, since the amount of computer

memory and CPU time required increases exponentially with the number of control variables.

As a consequence, even for modest values for nz, such a vector becomes too large even to be

stored.

We overcome this difficulty by exploiting the linear programming representation of dynamic

programming problems with infinite horizon (Ross (1983)), as in Trick and Zin (1993), and

Trick and Zin (1997). This technique has not been historically widely used. Despite it often

allows to achieve significant speed gains over iterative methods, it requires in turn to store

huge matrices and arrays that make it impractical for complex enough models. Specifically, we

extend the constraint generation algorithm developed by Trick and Zin (1993), and we rely on a

separation oracle, an auxiliary mixed integer programming problem, to avoid dealing with large

vectors at all. As in Trick and Zin (1993), the contrained generation algorithm converges to the

fixed point faster than traditional iterative methods. Moreover, the separation oracle allows

to efficiently implement the maximization step because of a remarkable feature of our model,

namely the relatively small number of state variables in spite of the large number of control

variables. With this method, we manage to solve the model in a reasonable time (around ten

minutes on our workstation).

19



4 Investment, Financing, and Liquidity Management

4.1 Hedging Formulation

Lemma 4.1 (Hedging formulation)

The constrained optimization problem (15) is equivalent to:

V (ki,t ,wi,t ,zi,t)=max

{
0, max

ki,t+1,hU
i,t+1,h

C
i (s(t+1))

{
ei,t −Λ(ei,t)+

1
1+ r

Et [V (ki,t+1,wi,t+1,zi,t+1)]

}}
(17)

s.t.

wi,t ≥ ei,t +Et

[
hC

i (s(t +1))
1+ r(1− τ)

]
+

hU
i,t+1

1+ r(1− τ)− γ
+Pki,t+1 +Ψ(ki,t ,ki,t+1) (18a)

wi(s(t +1))≤ (1− τ)Π(ki,t+1,zi,t+1)+(1−θ)(1−δ)ki,t+1 + τδki,t+1 +hT
i (s(t +1)) ∀s(t +1)

(18b)

hC
i (s(t +1))≥ 0 ∀s(t +1)

(18c)

hC
i (s(t +1))≤ θ(1−δ)ki,t+1 ∀s(t +1)

(18d)

hU
i,t+1 ≥ 0 (18e)

where P ≡ 1− θ(1−δ)
1+r(1−τ) is the fraction of each unit of capital paid down by the firm at time t,

hC
i (s(t+1))≡ θ(1−δ)ki,t+1−(1+r(1−τ))bi(s(t+1)) is conditional hedging for state s(t+1),

hU
i (s(t + 1)) ≡ hU

i,t+1 = (1+ r(1− τ)− γ)ci,t+1 is unconditional hedging for all states at time

t +1, and hT
i (s(t +1))≡ hC

i (s(t +1))+hU
i,t+1 is total hedging.

The hedging formulation is particularly instructive because it emphasizes the role of dynamic

liquidity management. The problem (17) can be equivalently interpreted as a problem where
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firms pledge all their collateral, and transfer resources (net worth) from t to t+1 both condition-

ally, to specific states, and unconditionally, to all future states. Regarding conditional liquidity,

firms decide to purchase hC
i (s(t+1))

1+r(1−τ) Arrow-Debreu securities at time t in order to obtain a pay-

off of hC
i (s(t +1)) is state s(t +1) next period. Constraints (18c) and (18d) impose bounds on

the amount of conditional hedging the firm can implement. The collateral constraint imposes a

lower bound, that corresponds to exhausting all debt capacity. Constraint (18d) states that the

maximum amount of liquid funds that a firm can transfer to state s(t + 1) corresponds to its

debt capacity, that is to the firm having zero debt due in state s(t + 1). Unconditional hedging

instead consists of hoarding an amount of cash
hU

i,t+1
1+r(1−τ)−γ , in order to get to obtain a payoff

hU
i,t+1 in all future states at time t +1. The hedging formulation provides a preliminary intuition

on the different nature of conditional and unconditional liquidity management. Equations (18a)

and (18b) hint that transferring liquid funds conditionally is more efficient than doing so uncon-

ditionally if the firm needs to transfer resources only to some states (for example to bad states).

Transferring funds to future states involves subtracting resources available to be distributed to

shareholders ei,t and to be paid down to make investment possible Pki,t+1 +Ψ(ki,t ,ki,t+1). If,

for example, a firms needs to transfer an amount M only to the specific state s(t + 1) (for ex-

ample the lowest state), the amount of resources it needs at time t is π(s(t),s(t + 1)) M
1+r(1−τ) ,

where 0 ≤ π(s(t),s(t + 1)) < 1 is the transition probability from state s(t) to state s(t + 1).

On the contrary, implementing unconditional hedging for the same purpose would require to

subtract M
1+r(1−τ)−γ . So, why should firms engage in unconditional liquidity management at

all? Constraint (18d) states that the maximum amount of liquid funds that a firm can trans-

fer conditionally is bounded by its total debt capacity θ(1− δ)ki,t+1. Therefore, whenever it

is optimal for the firm to have total hedging greater than this amount, hoarding cash becomes

necessary. As a result, endougenously, cash is not negative debt, and consistent with empiri-

cal evidence we can observe firms simultaneously holding cash and debt.5 As the quantitative

5As DeAngelo, DeAngelo, and Whited (2011) discuss, in frameworks in which firms never optimally hold cash
and debt together, it is not necessary to model them using two separate positive control variables. In our model,
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analysis in section 5 emphasizes, capital adjustment costs Ψ(ki,t ,ki,t+1) play an important role,

both qualitatively and quantitatively. Specifically, they allow to differentiate between firms that

are constrained in terms of net worth, and small firms, and rationalize patterns that are observed

in the data. Equation (18a) points up that different current and future investment needs yield

to different needs of tranferring net worth to future states. This creates sharp differences in

corporate liquidity policy of large and small firms. Suppose, for example, that adjustment costs

are quadratic in the investment-to-capital ratio. With decreasing returns to scale, small firms

with high investment needs would be better off in spreading investment over multiple periods to

avoid incurring disproportionately high adjustment costs. Therefore, they may find optimal to

hedge more, by saving debt capacity in a state contingent and possibly by hoarding cash. This

creates a dependence between investment and liquidity needs, and, as a consequence, between

size and risk management.

4.2 Optimal Policy

Proposition 4.2 (Optimality conditions)

Denote by λw,
π(s(t),s(t+1))λw

s(t+1)
1+r ,

π(s(t),s(t+1))λC
s(t+1)

1+r ,
π(s(t),s(t+1))λC

s(t+1)
1+r , and λU the multipliers

on constraints (18a), (18b), (18c), (18d), and (18e) respectively, where π(s(t),s(t +1)) is

the Markovian transition probability from state s(t) to state s(t + 1). Assume that the equity

letting negative debt being cash by relaxing constraint (18d) would not only prevent firms from simultanously
holding cash and debt, but also assume that state-contingent cash securities exist, which is unrealistic.
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cost function Λ(ei,t) is differentiable in e(i, t).6 Then, the first order conditions for the hedging

formulation (17) can be expressed as follows:

λw = 1−
∂Λ(ei,t)

∂ei,t
(19a)

λw(P+
∂Ψ(ki,t ,ki,t+1)

∂ki,t+1
) =

1
1+ r

Et [λw
s(t+1)V

k(s(t +1))+λ
C
s(t+1)H

k] (19b)

λw 1
1+ r(1− τ)− γ

=
1

1+ r
Et [λw

s(t+1)]+λU (19c)

1
1+ r(1− τ)

λw = [(λC
s(t+1)−λ

C
s(t+1))+λw

s(t+1)]
1

1+ r
∀s(t +1) (19d)

where

V k(s(t +1)) = (1− τ)
∂Π(ki,t+1,zi,t+1)

∂ki,t+1
+ τδ+(1−θ)(1−δ) ∀s(t +1) (20a)

Hk = θ(1−δ) (20b)

The envelope conditions imply:

∂V (wi,t ,zi,t)

∂wi,t
= λw (21a)

∂V (wi,t+1,zi,t+1)

∂wi,t+1
= λw

s(t+1) ∀s(t +1) (21b)

Moreover, the investment Euler equation is:

P+
∂Ψ(ki,t ,ki,t+1)

∂ki,t+1
= Et [Mw(s(t),s(t +1))V k(s(t +1))]+Et [Mh(s(t),s(t +1))Hk] (22)

6In our model, we choose a functional form for equity flotation costs with a fixed and a proportional com-
ponent, which is non-differentiable for e(i, t) = 0 (its derivative at zero exists only in a distributional sense).
This assumption is not critical for our qualitative analysis. Alternatively, one can approximate Λ(ei,t) with
0.5(1+ tanh(Ne(i, t))), with N large enough, in the neighborhood of zero. A similar argument applies to the
adjustment cost function Ψ(ki,t ,ki,t+1) in case fixed costs are included.
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where Mw(s(t),s(t +1))≡ 1
1+r

λw
s(t+1)
λw and Mh(s(t),s(t +1))≡ 1

1+r
λC

s(t+1)
λw are stochastic discount

factors. In addition:

Mw(s(t),s(t +1)) =
1

1+ r(1− τ)
− 1

1+ r

λC
s(t+1)+λ

C
s(t+1)

λw (23)

The optimality conditions illustrate how investment, financing, liquidity and payout policies

are intimately related, and shed light on the qualitative mechanism that drive firm’s decisions.

Moreover, they allow to understand the rationale for liquidity management, and which future

states firms optimally hedge. Since the problem has no closed-form solution, the following

analysis relies on the economic interpretation of the Lagrange multipliers as shadow values.

Equation (19b) relates the costs and benefits of investing an additional unit of real capital

at time t +1. The left hand side represent the marginal cost of investing. An additional unit of

capital requires that the firm puts P money down and pays capital adjustment costs. The cost of

doing so is (P+
∂Ψ(ki,t ,ki,t+1)

∂ki,t+1
)λw. The multiplier λw accounts for the shadow loss in firm value of

relaxing the resource constraint (18a) at time t (resource constraints are always binding). The

right hand side is the marginal benefit of an additional unit of investment, discounted back to

time t by the shareholders’ discount factor 1
1+r . The benefits correspond to the two terms on

the right hand side. First, the expected value of the additional investment V k(s(t + 1)) across

all future possible states, that consists of marginal changes in profits, of tax benefits, and of the

liquidation value of the share of capital not pledged to lenders. Second, the expected increase

in debt capacity available for conditional hedging Hk in all states. The multipliers λw
s(t+1) and

λ
C
s(t+1) instead account respectively for the additional future net worth (constraint (18b)), and
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for the additional debt capacity (constraint (18d)) available to transfer conditional liquidity to

state s(t +1) because of the additional unit capital installed (in case this constraint is binding).

Marginal cost of investment︷ ︸︸ ︷
λw(P+

∂Ψ(ki,t ,ki,t+1)

∂ki,t+1
) =

Marginal benefit of investment︷ ︸︸ ︷
1

1+ r
Et [λw

s(t+1)V
k(s(t +1))︸ ︷︷ ︸

Net worth

+λ
C
s(t+1)H

k]︸ ︷︷ ︸
Debt capacity

(24)

Equation (19c) describes the unconditional liquidity policy of the firm. Similar to equa-

tion (19b), the left-hand side λw 1
1+r(1−τ)−γ is the cost of allocating a unit of current net worth to

cash hoarding, in order to tranfer one unit of cash to all future states at t+1. The right-hand side

is the value of this additional unit of net worth available in all states 1
1+r Et [λw

s(t+1)]. In addition,

the term λU accounts for the possibility that the constraint on positive cash is binding.7

Marginal cost of unconditional liquidity︷ ︸︸ ︷
λw 1

1+ r(1− τ)− γ
=

Marginal benefit of unconditional liquidity︷ ︸︸ ︷
1

1+ r
Et [λw

s(t+1)]︸ ︷︷ ︸
Net worth

+ λU︸︷︷︸
Positive cash holdings

(25)

Equation (19d) describes the conditional liquidity policy of the firm. As for unconditional

liquidity management, the marginal cost of allocating one unit of net worth to risk management

is λw 1
1+r(1−τ) (the agency parameter γ > 0 makes it more costly for unconditional hedging). It

is however more interesting to examine the right-hand side, and to compare it to the optimality

conditions for unconditional liquidity management in equation (19c). As for cash hoarding, the

benefits are discounted to time t through the manager’s discount factor 1
1+r . However, the value

of additional net worth potentially available for the state s(t + 1) is λw
s(t+1). In equation equa-

7This term is more meaningful in case we interpret the first-order condition on unconditional hedging for a
reduction of one unit. In this case, the marginal benefit is the additional amount λw 1

1+r(1−τ)−γ available at time t
for investment, distributions, and conditional hedging, and the marginal cost is the sum of the value of one less unit
of net worth available in all states, and of the shadow value of being able to reduce further cash if constraint (18e)
binds.
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tion (19c), the value of the net worth tranferred to state s(t +1) is only π(s(t),s(t +1))λw
s(t+1).

8

This supports the statement in section 4.1 that conditional liquidity management is preferrable

to unconditional liquidity management because with the same amount of net worth at time t

it allows to transfer more resources to a specific state s(t + 1). The term λC
s(t+1)− λ

C
s(t+1) in-

stead illustrates why firms may be interested in managing its liquidity both conditionally and

unconditionally at the same time. Specifically, since in our model conditional hedging can be

implemented only saving debt capacity in a state contingent way, the amount of conditional liq-

uidity is limited by the constraints (18c) and (18d). The term λC
s(t+1) accounts for the presence

of occasionally binding state-contingent collateral constraints, that may become active and limit

the amount of state-contingent debt that a firm can hold given the amount of pleadgeable capital

ki,t+1. Simmetrically, the multiplier λ
C
s(t+1) is different from zero in case the firm would like to

transfer more resources conditionally, but its amount is limited because the firm has alredy zero

debt due in state s(t + 1). The limited amount of implementable conditional hedging through

liquidity management implies that firms can simultaneously hold cash and debt. To see this,

suppose that the firm is interested in hedging a specific state, such as the lowest state s, as much

as possible. Ceteris paribus, the maximum amount of resources that the firm can tranfer to s

corresponds to exhausting all debt capacity in all states except s. This implies that no debt is

due in state s. Moreover, the firm can transfer the net worth raised by the state-contingent debt

issues in all states excluding s, to all future states, including s, by hoarding cash. As a result,

the firm would hold cash and debt together.

Marginal cost of conditional hedging︷ ︸︸ ︷
1

1+ r(1− τ)
λw =

Marginal benefit of conditional liquidity︷ ︸︸ ︷
[ (λC

s(t+1)−λ
C
s(t+1))︸ ︷︷ ︸

Limited conditional liquidity

+ λw
s(t+1)︸ ︷︷ ︸

Net worth

]
1

1+ r
∀s(t +1)

(26)

8To better see this, notice that the expectation in equation (19c) is ∑S
s=1 π(s(t),s)λw

s , where S is the total number
of states.
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The payout policy instead balances the marginal cost of allocating a unit of net worth to

dividend distributions or, viceversa, to issue equity to increment net worth by one unit. In case

of equity issues, there is not a one-to-one correspondence between raised equity and increased

net worth because of equity flotation costs.

Marginal benefit of issuing equity︷︸︸︷
λw︸︷︷︸

Marginal cost of paying dividends

=

Marginal cost of issuing equity︷ ︸︸ ︷
1︸︷︷︸

Marginal benefit of paying dividends

−
∂Λ(ei,t)

∂e
(27)

The Euler condition (22) clarifies the important matter of the firm’s rationale for liquidity

management, and of which states it is optimal to hedge. The Euler equation can be interpreted as

a pricing relationship. The left-hand side can be seen as the valuation of the paid down share P+

∂Ψ(ki,t ,ki,t+1)
∂ki,t+1

per unit of capital. The right-hand hand side shows that this value is supported by

two terms. The term Et [Mw(s(t),s(t+1))V k(s(t+1))] is the stochastically discounted valuation

of the benefits V k(s(t + 1)) of investing an additional unit. Mw(s(t),s(t + 1)) is the firm’s

stochastic discount factor, and is equal to 1
1+r

λw
s(t+1)
λw . The concavity properties of the value

function imply that the marginal value of a certain level of net worth is higher in bad times,

so that the stochastic discount factor puts more weight on bad states through the Lagrange

multipliers. Indeed, envelope conditions (21a) and (21b) show how Langrange multipliers are

related to the shape of the value function, so that λw
s(t+1) is decreasing in wi(s(t + 1)). In a

valuation perspective, since a larger share of P is supported by those states, the firm behaves as if

it were risk-averse. This provides incentives to implement liquidity management by preserving

net worth for investments and distributions for bad future states, where internally generated

cash flows and future realized net worth are, other conditions equal, lower. Viceversa, the

payoff from investments V k(s(t + 1)) suggests that the firm may want to hedge good states as

well. If the law of motion of shocks to capital productivity zi,t is persistent enough, the payoff of

investing in good (bad) times is higher (lower) because the firm expects a sequence of good (bad)

shock realizations. The firm will therefore save resources for good states and boost investment
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in good times. If this is the case, the marginal value of net worth is not necessarily lower in

bad states anymore. An instructive benchmark case is the case with independent productivity

shocks. In such a scenario, the expected productivity of capital ∂Π(ki,t+1,zi,t+1)
∂ki,t+1

is independent of

the current state. As a consequence, firms only hedge bad states because of the properties of

the discount factor Mw(s(t),s(t + 1)). In practice, however, the productivity process in quite

persistent. Therefore, the matter of whether firms hedge good or bad states (or both), and how

much, is a purely quantitative question. Also, it is a quantitative question whether firms hedge

at all. As in Rampini and Viswanathan (2012a), firms that are particularly constrained may not

hedge, and prefer to allocate their scarce resources to current investment and distributions. The

second term on the right-hand side instead Hk reflects that capital is valuable also because it

serves as collateral, it increases debt capacity and, as a consequence, the amount of conditional

liquidity management implementable in all states. The stochastic discount factor Mh(s(t),s(t +

1)) depends on the multiplier λ
C
s(t+1). Therefore, the value of increased debt capacity is higher

is states where firms hold no debt because conditional liquidity is more valuable.

Value of paid-down capital︷ ︸︸ ︷
P+

∂Ψ(ki,t ,ki,t+1)

∂ki,t+1
=

Discounted investment profits︷ ︸︸ ︷
Et [Mw(s(t),s(t +1))V k(s(t +1))]+

Debt capacity︷ ︸︸ ︷
Et [Mh(s(t),s(t +1))Hk] (28)

Finally, equation (23) explicitly relates the stochastic discount factor Mw(s(t),s(t + 1)),

which appears in the investment Euler equation, to the hedging policy of the firm. The multipli-

ers λC
s(t+1), and λ

C
s(t+1) differ from zero respectively when the firm exhausts all its debt capacity

in state s(t + 1), and when the firm has zero debt in state s(t + 1). These multipliers enter the

Euler equation because of market incompleteness. Given the stochastic nature of the model,

firms anticipate that colleteral and debt positivity constraints may bind in the future, and this

affect their investment and liquidity management policy. By transferring liquid funds condition-

ally, the firm can therefore influence the relative importance of different states for determining

the value of paid-down capital. For example, if a company borrows constrained in the low state
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s and saves all its debt capacity for future investment in the high state s, the stochastic discount

factor puts more weight on the high state, namely 1
1+r(1−τ) +

1
1+r

λC
s

λw versus 1
1+r(1−τ) −

1
1+r

λC
s

λw .

Mw(s(t),s(t +1)) =
1

1+ r(1− τ)︸ ︷︷ ︸
Unconditional component

− 1
1+ r

Debt capacity︷ ︸︸ ︷
λC

s(t+1) +

Positive debt︷ ︸︸ ︷
λ

C
s(t+1)

λw︸ ︷︷ ︸
State-contingent component

(29)

4.3 Numerical Illustration

We provide numerical examples to illustrate the analytical analysis in section 4.2, and to better

understand the qualitative importance of different types of capital adjustment costs for corporate

investment and liquidity policy. In the interest of clarity, in all the examples we solve the model

with three possible states and in absence of equity issues, and report the policy for the middle

state. The details of the parametrizations are reported in the captions of figures 2 to 7.

Figure 2 refers to the case with no adjustment costs and independent investment opportuni-

ties. Specifically, Markovian transition probabilities are uniform (equal to one third for each pair

of states), so that the expected capital productivity is the same for every state at time t. Panels A

and B depict investment and payout as a function of current net worth. Similar to Rampini and

Viswanathan (2012a), there esist a threshold of net worth below which investment is increasing,

and dividends are zero. Above the threshold investment is constant and dividends are linear.

Panel C shows that the value function is weakly concave in net worth. This is an important

property, because the firm’s stochastic discount factor in equation (28) is equal to 1
1+r

λw
s(t+1)
λw . As

a consequence, the firm behaves as if risk averse with respect to net worth. Such a behavior

is clearly visible in panel F. As we pointed out in the previous section, with independent pro-

ductivity, the firm implements downstate hedging. In this example, it saves all its debt capacity

for the low state for almost all levels of net worth. The dashed line (conditional hedging for
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the low state), and the thin line (available debt capacity) are indeed very close. The amount

of hedging decreases for the middle states (solid line), and is equal to zero for the high state

(dashed-dotted line). Panel E shows the cash policy of the firm. When hedging needs exceed

the available debt capacity, that is the amount of implementable conditional hedging, and the

firm is unconstrained enough in terms of net worth, it implements unconditional hedging too.

This way, additional resources are transferred to the low state. As a consequence, as panel D

depicts, cash is not negative debt, and it is optimal for the firm to simultaneously hold them.

[Insert Figure 2 Here]

Figure 3 removes the assumption of independent investment opportunities, and introduces

some persistence. In particular, the firm has now a probability of one half to stay in the current

state, and of one quarter to move to another state. The policy is generally similar to that in

figure 2, except for conditional liquidity management. The dashed-dotted line in Panel F is no

longer equal to zero, meaning that the firm hedges upstate as well. Intuitively, with independent

investment opportunities, the firm has no incentive to hedge the state where the marginal value

of future net worth is lower. However, as equation (28) states, if there is a high probability that

periods of high profits are followed by periods of high profits, expected future productivity is

higher in good states. Therefore, the firm may rationally save resources for future investments

in states where investment opportunities are likely to remain good.

[Insert Figure 3 Here]

Figures 4 to 7 emphasize the importance of capital adjustment costs to disentangle net worth

from capital, and rationalize the patterns in table 1. We consider, one at a time, the four types

of adjustment costs in the general functional form (5), namely convex investment costs, fixed

investment costs, convex disinvestment costs, and fixed disinvestment costs. This approach
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allows to see how the firm implements conditional and unconditional liquidity management for

investment and disinvestment motives. Moreover, we can assess how the investment, liquidity,

and risk management policy differs if we consider either fixed or smooth costs.

Figure 4 illustrates investment and liquidity management in presence of smooth investment

costs. Panels A to C show how, for some values of the current capital stock, the policy is similar

to the case with no adjustment costs. Conditional on capital, unconstrained firms transfer more

liquidity, both conditionally and unconditionally. However, Panels D to F depict how the level

of current capital now influences investment and hedging decisions, conditional on net worth.

Panel D reports the optimal investment-to-capital ratio as a function of firm’s size. Because

of decreasing returns to scale in the production function, capital installment is relatively more

profitable for small firms, which have higher investment needs. Because adjustment costs are

quandratically increasing in the investment-to-capital ratio, smaller firms cannot istantaneously

adjust to the desired capital level. Partial adjustment is hence optimal, and small firms transfer

net worth for (costly) investment to future states, both conditionally (panel F), and uncondi-

tionally (panel E). This behavior results in small firms having more cash. Remarkably, these

patterns are qualitatively consistent with the stylized facts we revisit in the two-way sorts of

table 1.

[Insert Figure 4 Here]

Figure 5 shows instead the case of liquidity management for investment in presence of

fixed capital adjustment costs. As panel D clearly shows, the firm has a standard (S,s) policy

as a function of current capital.9 In the figure, k∗ denotes the ”frictionless” level of capital in

absence of investment adjustment costs, defined as in Caballero, Engel, and Haltiwanger (1995),

and Caballero and Engel (1999). Intuitively, the more the firm deviates from the ”target” level,

the higher the cost it bears. As a consequence, when the disequilibrium |ki,t − k∗| is large, it is

9For an exhaustive treatment of models with fixed costs we refer to Stokey (2008).
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optimal to pay the fixed cost and to re-adjust the capital level to k∗. This policy determines an

inaction region bounded by the low barrier kD, and by the high barrier kU . In this region, optimal

investment is zero. Panels E and F emphasize how firms transfers conditional and unconditional

liquid funds precisely in the inaction region. Intuitively, since they are not currently investing,

they transfer some net worth to future states, instead of paying it off as dividends.

[Insert Figure 5 Here]

Finally, figures 6 and 7 analyze the case of costly disinvestment with convex and fixed costs

respectively. In these cases, firms implement conditional and unconditional liquidity manage-

ment to cover future costs of disinvestment. This mechanism is similar to the one in Gamba

and Triantis (2008), where firms hold cash and debt together because of the presence of trans-

action costs of issuing debt. Panel F of figure 6 shows how the firm hedges the low state, where

disinvestment needs, and costs, are higher. In addition, if the firm is small, current investment

needs are high, as panel D depicts. As a consequence, the firm borrows constrained against the

middle and the good state, and hoards cash (Panel E) to transfer additional net worth to the bad

state as well.

[Insert Figure 6 Here]

In the case with fixed disinvestment costs, the firm still transfers resources to the low state

(Panel F). In the inaction region, collateral constraints imply that the firm’s debt capacity is

higher because of the capital in excess to the ”frictionless” target capital stock. Therefore, in

this region, firms are able to save more conditional liquidity for the bad state, and they need to

hoard less cash, as Panel E shows. In this example, also large firms hold cash. Different from

the investment case, disinvestment generates internal resources from capital liquidation. Firms

can keep part of these resources as cash reserves, and hedge future investment and disinvestment

needs.
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[Insert Figure 7 Here]

In the full model, all these types of adjustment costs are present. Therefore, it is a quan-

titative question how much each type of cost is important, and whether firms hedge mainly

for either investment or disinvestment reasons. In sections 5 and 6 we analyze the quantitative

implications of the model.
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5 Calibration and Identification

In order to assess the quantitative implications of the model, and to perform counterfactual

comparative statics, we calibrate the model to match a set of data moments. In this process, it

is important to understand how the parameters of the model can be identified. Ideally, a one-to-

one mapping between the structural parameters and a set of data moments provides a sufficient

condition for identification. Such a close mapping in difficult to obtain in every economic

model, and all the model parameters affect all the data moments to some extent. However,

although firm’s investment, financing, and liquidity management decisions are intertwined, we

can still classify the moments roughly as representing the firm’s investment, financing, and

hedging decisions. We first discuss the implementation of state-contingent debt with credit

lines. This provides a mapping between the concept of conditional liquidity in the model, and

the data of leverage an lines of credits from Compustat and Capital IQ. Then we describe how

parameter values are set, and discuss the quantitative performance of the model.

5.1 Implementation with Lines of Credit

As we discuss in Section 2, conditional liquidity management entails transfers of net worth to

specific states, which are inherently unobservable. This feature renders our structural approach

particularly suitable to investigate corporate liquidity management. To identify conditional liq-

uidity management, we take advantage of data on credit lines from the Capital IQ dataset.

Capital IQ reports the drawn fraction of funds from firms’ credit lines. This metric is par-

ticularly useful because, consistent with the model, reflects differences in the fraction of debt

capacity that firms preserve to conditionally transfer liquidity. The following proposition shows

how state-contingent debt can be implemented in the model with a combination of traditional

state-uncontingent debt intruments, such as bank loans or corporate bonds, and lines of credit.
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Proposition 5.1 (Implementation with Credit Lines) State-contingent debt bi(s(t +1)) can be

implemented by the following combination of securities: state-uncontingent debt Di,t+1 ≥ 0, and a

secured line of credit CL
i (s(t +1)), with interest rate r, and limit Ci,t+1. The firm arranges a loan Li,t

at time t of size

Li,t = Et

[
Di,t+1

1+ r(1− τ)

]
(30)

where the uncontingent debt claim is

Di,t+1 = (1+ r(1− τ))Et [bi(s(t +1))] (31)

and saves state-contingent debt capacity by drawing (1+ r(1− τ))(Et [bi(s(t + 1))]− bi(s(t + 1)))

from the credit line in each state s(t +1) ∈ S, that is:

CL
i (s(t +1)) = (1+ r(1− τ))(Et [bi(s(t +1))]−bi(s(t +1))) (32)

The limit of the credit line is defined as

Ci,t+1 = (1+ r(1− τ))Et [bi(s(t +1))]

The proposition illustrates how firms can implement conditional liquidity management com-

bining available securities, namely standard debt and credit lines. This provides a mapping

between the variables in the model and the corresponding data moments. We use this map-

ping to compare the mean, the variance, and the serial correlation of undrawn debt capacity

in the model and in the data. More precisely, in this implementation firms borrow the ex-

pected amount of required debt financing Et [bi(s(t + 1))] using standard uncontingent debt.

Liquidity is then drawn from credit lines to fulfill unanticipated funding needs in the amount

(1+ r(1− τ))(Et [bi(s(t + 1))]− bi(s(t + 1))) in each future state s(t + 1). The limit Ci,t+1 on
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the credit line is set such that the total amount borrowed never exceeds the firm’s debt capacity

θ(1−δ)ki,t+1.

Of course, the implementation with credit lines is not the only possibility for firms to engage

in conditional liquidity management. For example, as Rampini and Viswanathan (2010) discuss,

other possibilities involve the use of forwards and futures. In general, the state-contingent debt

variables bi(s(t +1)) in the model encompass different possible implementations. However, in

quantitative analyses, taking a stand on a specific implementation provides a closer mapping

between the model and the data. In this respect, as we discuss in Section 2, credit lines appear

to be very important in practice, while even larger firms appear to implement little hedging

through financial derivatives. For these reasons, and because of data limitations, we rely on the

implementation in Proposition 5.1 in the following quantitative analysis.

5.2 Parameter Values and Model Fit

The model parameters we set in order to obtain a close match between the simulated data

moments from the model, and the real data moments, are the production function curvature α,

the operating leverage parameter f , the shock serial correlation ρz, the shock standard deviation

σz, the fixed and convex physical adjustment cost parameters ψ+
0 , ψ−

0 , ψ+, and ψ−, the debt

capacity parameter θ, the agency parameter γ, and the equity issuance fixed and proportional

unit costs λ0, and λ1.10

We pick 19 moments to match. On the investment side, we choose moments that relate to

operating income, investment, and Tobin’s Q. Average operating income is primarily affected

10Following DeAngelo, DeAngelo, and Whited (2011), we instead fix the tax rate parameter τ to the the statutory
tax rate in the United States (0.35), the interest rate r to be approximately equal to the real interest rate in the 20th
century (0.015), and δ to be approximately equal to the depreciation rate in our sample (0.15). Finally, we set the
unconditional mean µz of the shock process such that the steady-state stock of capital is normalized to the value of
two. This choice allows to obtain a sufficient precision on the grid for capital without significantly increasing the
computational burden with a finer grid choice.
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by the curvature of the production function α, and by the operating leverage parameter f . The

variance of operating income and its first-order autocorrelation instead capture the parameters

σz and ρz that govern the dynamics of the shock process zi,t . The investment moments we

match are the mean, the variance, the serial correlation, and the skewness of investment. These

moments are not only affected by the parameters α, σz, and ρz, but also help pin down the

capital adjustment cost parameters ψ+
0 , ψ+, ψ−

0 , and ψ−. Higher values of ψ−
0 , and ψ+

0 lead

to more volatile, less autocorrelated, and more skewed investment. Higher ψ+ and ψ− result

in less volatile, and more serially autocorrelated investment. Also, the debt capacity parameter

θ has an impact on investment variance and skewness, because financing and investment are

linked through state-contingent collateral constraints. Finally, average Tobin’s Q is affected by

all the parameters in the models, especially by σz and ρz, by the adjustment cost parameters,

and by the fixed operating costs f .

On the financing side, we consider mean, average, and serial correlation of leverage, average

equity issues, and their variance. The leverage moments are affected by all parameters in the

model, and especially by θ. The mean and variance of equity issues help identify λ0 and λ1. The

remaining moments pertain to the conditional, and unconditional hedging policy. We choose to

match mean, variance and serial correlation for both cash holdings, and undrawn credit from

firms’ credit lines. As we illustrate in section 4, all these moments are affected by the dynamics

of the shock process, and by the capital adjustment cost parameters. Moreover, the agency

parameter γ affects average cash holdings. Finally, θ plays a very important role for the tradeoff

between conditional, and unconditional liquidity management. Higher values of θ imply that

the amount of liquid funds which can be transferred conditionally is higher. As a consequence,

the higher θ, the higher the average undrawn debt capacity, and the lower the average cash

holdings.

The calibrated parameters in table 2 are comparable to those of existing studies. The cur-

vature of the profit function α is close to the estimated values in Hennessy and Whited (2005),
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and Hennessy and Whited (2007). The fixed cost parameter f , on an annual basis, is in line with

the calibration of Gomes and Schmid (2010). The parameters σz, and ρz, that govern the shock

dynamics, are less than one standard error from the estimates in Hennessy and Whited (2005).

The external equity cost parameters λ0 and λ1 are also very close to the point estimates of Hen-

nessy and Whited (2005), who use the same functional form. The value of the cash hoarding

cost parameter γ is similar to the one in DeAngelo, DeAngelo, and Whited (2011). Our values

for the capital adjustment cost parameters exhibit a similar patterns to Cooper and Haltiwanger

(2006), and DeAngelo, DeAngelo, and Whited (2011) as far as the relative magnitude of the

fixed and convex component is concerned. Different from these studies, we also allow for asym-

metries in capital adjustment costs for investment and disinvestment. Our parameters provide

support to the calibration in Zhang (2005), who requires that disinvestment is by far more costly

than investment to rationalize the value premium. Finally, to the best of our knowledge there is

no direct quantitative term of comparison for the parameter θ in state-contingent collateral con-

straints. However, our calibrated value is extremely close to the share of pledgeable steady-state

capital estimated by DeAngelo, DeAngelo, and Whited (2011).

Table 2 shows that, overall, the model provides a good fit to the data. Remarkably, with

only one exogenous shock process, the model manages to endogenously generate very differ-

ent variances for operating income on one hand, and investment, leverage, and undrawn debt

capacity on the other hand. In contrast, in existing models (e.g. Hennessy and Whited (2007),

DeAngelo, DeAngelo, and Whited (2011), Nikolov and Schmid (2012)) simulated variances are

typically much lower than real data variances. This leads to the need to either remove firm and

time fixed effects from the data, or to add noise to the simulation, in order to make volatilities

of simulated and actual moments comparable. We attribute this result to the presence of addi-

tional frictions in comparison to these models, and in particular to state-contingent collateral

constraints, and to our flexible adjustment cost function for physical capital. In addition, the

model is able to replicate fairly well the relative differences in serial correlations for operating
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income, investment, leverage, cash, and undrawn credit that are observed in the data. Specifi-

cally, data moments for these variables are approximately 0.79, 0.37, 0.91, 0.89, and 0.63, while

their simulated counterparts are around 0.63, 0.22, 0.68, 0.72, and 0.68.

The model appears to be slightly on the variance of cash holdings, and on the mean of

undrawn debt capacity. The former is too high because in our model the only motive for which

firms hold cash is hedging. Therefore, firms with no hedging needs, or firms that can satisfy all

their hedging needs with conditional liquidity only, hold exactly zero cash. In reality, firms also

hold cash for other reasons, for example for operating purposes. The lower mean of undrawn

debt capacity with respect to the data is the result of the assumption of relative impatience of

managers because of tax benefits of debt. As in Rampini and Viswanathan (2012a), firms are

never completely unconstrained, and even large unconstrained firms issue debt. The fit may be

probably further improved by introducing additional frictions. However, we do not include them

to make the tradeoff between unconditional and conditional hedging clearly driven by limited

conditional hedging in presence of collateral constraints, and investment adjustment costs.

[Insert Table 2 Here]
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6 Empirical Implications and Comparative Statics

6.1 Stylized evidence under the baseline calibration

In this section, we evaluate the model performance by reproducing the stylized empirical ev-

idence on corporate liquidity we revisit in section 2. Table 3 is a replica of table 1 with a

simulated panel of observations from our model. All parameters are set to the baseline values

in table 2, and data are simulated using the same procedure.

A comparison of tables 1 and 3 shows that the model conforms with the key patterns that are

observed in the data, and that we summarize in section 2. The patterns of simulated evidence

are generally sharper that those in actual data. This is primarily because of the higher variance

of cash, and the lower undrawn debt capacity, as we discuss in section 5.

Panel A of table 3 reports simulated evidence for one-way sorts on net worth and capital.

The row labeled ”Cash Holdings” shows that smaller and more constrained firms hoard more

cash, as Almeida, Campello, and Weisbach (2004), and Denis and Sibilkov (2009) document.

The ”Leverage” row reproduces the well-known positive relation between size and leverage. In

addition, firms with low net worth are more levered than firms with high net worth. Finally,

the row labeled ”Undrawn Credit” reproduces the finding that unconstrained firms are more

slack on their credit lines. While the evidence in panel A provides a crude assessment of the

model, the two-way sorts in panels B and C are definitely more informative. Indeed, they

allow to effectively interpret empirical patterns within our framework of our model, and better

understand why these patterns are observed in actual data.

The sub-panel labeled ”Cash Holdings” emphasizes that the main variable that drives firms

cash policy is capital, rather than net worth. This can be rationalized within our model, and is

consistent with the graphical representation in figure 1. Conditional on some level of net worth,
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hence on some total liquidity need, capital essentially determines the optimal mix between

conditional and unconditional liquidity. Transferring resources in a state-contingent way is

more efficient, but a firm’s ability to implement conditional hedging is limited by collateral

constraints. As a consequence, smaller firms also need to transfer resources unconditionally, to

all future states, and hoarding more cash than large firms. In addition, consistent with net worth

being the main determinant of total corporate liquidity (figure 1), less constrained firms appear

to have more cash than more constrained firms after controlling for capital. As in the data,

the pattern is less pronounced than on the capital dimension. Unconstrained firms implement

more total hedging and, ceteris paribus, also hoard more cash. This piece of evidence relates to

the result in Denis and Sibilkov (2009) that some constrained firms have surprisingly low cash

holdings.

The ”Undrawn Credit” sub-panel replicates the stylized fact that firms with high net worth

implement more total and, consequently, more conditional hedging. At a first glance, this result

may look at odds with our key message that capital is the main determinant of the composi-

tion of corporate liquidity as conditional versus unconditional, as figure 1 shows. However, an

important caveat is needed in interpreting this reduced-form evidence. In table 3, we compute

undrawn credit as a fraction of debt capacity, while the mix of conditional and unconditional

liquidity must account for how much cash firms hoard. Large firms have also less cash than

small firms, and the ratio of conditional-to-unconditional liquidity is higher for more capital-

ized, hence more collateralized, firms. Panel C addresses this point and provides additional

evidence by computing the ratio of conditional-to-total liquidity for simulated data, and the ra-

tio of undrawn credit to the sum of undrawn credit and cash for the sample of table 1. Clearly,

panel C shows that capital determines the mix of conditional and unconditional liquidity as the

model predicts, and empirical proxies support this prediction.

Finally, the ”Leverage” sub-panel in panel B provides substantial support for the hedging

view of capital structure in Rampini and Viswanathan (2012a). Similar to them, in our model
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capital stucture and conditional hedging are intimately related. For the same level of capital,

the more a firm raises debt, the less resources it allocates to risk management. For this reason,

within every capital group, we observe an opposite pattern with respect to the ”Undrawn Credit”

panel. Conditional on capital, which is determined endougenously, the more a firm keeps slack

on its collateral contraints, the higher observed leverage is. Because in practice one important

way to tranfer conditional liquidity is based on loan commitments (Rampini and Viswanathan

(2010)), this pattern is also reflected in data on credit lines. Undrawn credit therefore appears

to be a good proxy for conditional hedging.

We believe these results are informative in three ways. First, our dynamic model of cor-

porate liquidity provides a unified framework to rationalize and interpret existing empirical

evidence on cash, risk management, leverage, and lines of credit.

Second, our simulated results have implications for empirical work, and specifically for how

to proxy financial constraints. Our model shows that net worth, that we proxy as the book value

of equity, and capital, capture different aspects of financial constraints for corporate liquidity. A

common practice in empirical studies is to use both capital and book value of equity as proxies

for how a firm is constrained. In constrast, recognizing that net worth is a theoretically grounded

state variable in models of financial constraints, and that it plays a different role from capital for

liquidity and risk management decisions, appears to be a necessary condition for most empirical

studies to be informative.

Third, our findings suggest an empirical proxy for hedging, namely undrawn credit from

credit lines. As we discuss in section 2, empirical studies on risk management are plagued

because hedging is unobservable. Despite there is not a one-to-one mapping between undrawn

credit and conditional hedging, our results suggest that the former is a reasonable proxy for the

latter. This appears plausible if one considers the widespread use of lines of credits, as Sufi

(2009) points out. Data on credit lines are nowadays available for large cross sections of firms
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in commercial datasets. Therefore, they may help extend and complement existing studies that,

while based on specific data that are more closely mapped into hedging, are limited in scope.

[Insert Table 3 Here]

6.2 Comparative Statics: Debt Capacity

Table 4 summarizes the predicted impact of variations in the fraction of collateralizable capital

θ on firms’ policy. The rows of the table refer to investment, leverage, equity issues, cash

holdings, and hedging through conditional liquidity. The columns report average values for all

firms, and for firms that differ in terms of the two state variables of our model, namely net worth

and capital.

Panel A refers to low values of θ, panel B to moderate values, and panel C to high values.

Different levels of θ can be interpreted as cross-industry predictions. Intuitively, the information

technology industry relies on more intangible assets, that cannot usually be pledged as collat-

eral.11 In contrast, steel manufacturing companies typically operate with collateralizable capital

such as properties, plants, and equipments. In our framework, industries with less pledgeable

assets can be associated to lower values of θ.

Table 4 illustrates the hedging view of capital structure of Rampini and Viswanathan (2012a),

and the tradeoff between conditional and unconditional liquidity management. Firms with a

low fraction of collateralizable assets have both lower leverage, and residual debt capacity. Our

model predicts that firms with θ equal to 10% have a debt-to-asset ratio of 4.7%, compared to

30.7% for firms with θ equal to 90%. Residual debt capacity is ranging from 43.8% for firms

with a low fraction of pledgeable capital, to almost 60% for firms with a high fraction. The

latter can implement more conditional liquidity management, and therefore face less needs to
11However, Amable, Chatelain, and Ralf (2010) argue that a recent common practice is to pledge patents as

collateral.
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resort to cash hoarding to hedge against income shortfalls. In addition, firms with lower debt

capacity have less needs for costly external equity financing.

Consistent with the patterns we illustrate in section 6.1, firms that differ in terms of the

endogenous state variables of our model have a different expected leverage and liquidity man-

agement policy across different levels of θ. In particular, since debt capacity is a fraction of cap-

ital, the latter is the variable that interacts more with θ to determine the firm’s policy. Smaller

firms hoard more cash and implement less conditional liquidity management in all panels A, B,

and C, but their liquidity is disproportionally more state-contingent for high values of θ. For

instance, small firms in panel A have a 91.7% cash-to-assets ratio, and 53.6% undrawn debt ca-

pacity. Panel C instead predicts a cash-to-asset ratio of 38.2%, and a fraction of undrawn credit

equal above 75% when θ = 0.9. In addition, our model predicts that the positive relationship

between leverage and capital is steeper in industries with more tangible assets, reflecting higher

opportunities to secure debt financing with collateral.

[Insert Table 4 Here]

6.3 Comparative Statics: Capital Adjustment Costs

As we discuss in section 4 and illustrate in figures 4 through 7, the presence of investment

and disinvestment adjustment costs has a qualitative and quantitative impact on the type of

liquidity management firms implement. In this section, we examine how predicted liquidity

management and financing policy vary across firms with different magnitudes for adjustment

costs of physical capital.

Table 5 examines the case of convex disinvestment adjustment costs. As figure 6 illustrates,

firms with higher smooth adjustment costs of disinvestment have more liquidity needs for bad

states. These needs reflect the necessity to bear these expected costs in future periods, and to
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be able to gradually adjust their capital stock. Panels A to C show how firms with higher ad-

justment cost of disinvestment implement more liquidity management, both conditionally and

unconditionally. Average cash holdings vary from about 10% to over 20% if disinvestment

adjustment costs increase from low to high values. Analogously, undrawn debt capacity ap-

proximately ranges from 48% to 60%. As a consequence, firms with lower values for ψ− need

to save less debt capacity, and are more levered.

[Insert Table 5 Here]

Table 6 performes counterfactual analysis for firms that are associate to different smooth

investment adjustment costs ψ+. Firms with higher values for ψ+ are more levered, invest less,

and implement less liquidity management. Intuitively, investment is less profitable if associated

to higher costs, and companies that are more exposed to these costs raise more debt finance to

pay out more dividends, and take advantage of the tax benefits of debt. As figure 3 illustrates,

the persistence in investment opportunities creates a need to transfer liquidity to good states.

However, when adjustment costs are too high, investment needs decrease in such states, and so

do liquidity needs. As a consequence, firms with high ψ+ hoard less cash than firms with low

ψ+ (2% versus 31%), and save less debt capacity (32% versus 60%).

[Insert Table 6 Here]

7 Impulse Response Functions

In this section, we investigate the dynamics of investment, leverage, conditional, and uncon-

ditional liquidity management for firms that differ in terms of net worth and capital. To this

end, figures 8 to 11 depict impulse response functions for the model to a positive shock (dashed
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lines), and to a negative shock (dashed-dotted lines). In all panels, the solid lines represents the

benchmark case, that is the case in which the representative firm is exposed to neutral shocks.

Firms are classified as relatively constrained/unconstrained, and relatively small/large on the

basis on their initial values for the two endogenous state variables of the models. Accordingly,

figure 8 plots impulse response functions for firms with initial low net worth and median capital

stock (constrained), figure 9 refers to firms with with initial high net worth and median capital

stock (unconstrained), figure 10 refers to firms with with initial low capital stock and median

net worth (small), and figure 11 refers to firms with with initial high capital stock and median

net worth (large).

Because the model is nonlinear, we construct generalized impulse response functions fol-

lowing Potter (2000), to which we refer for an exhaustive treatment. Effectively, impulse re-

sponse functions are computed as the averages of 5000 draws of sequences of shocks from zi,t

for 30 periods under the baseline parametrization of table 2. In the benchmark case, the shock

process is initalized to the mean shock µz for all draws, while for the positive (negative) response

cases the process is initialized to values above (below) µz. The exact definitions of positive and

negative shocks, small and high initial net worth and capital, and of the variables on the graphs

are provided in the caption of the figures.

A comparison of figure 8 and figure 9 highlights how the dynamics of investment, leverage,

and hedging differ between relatively constrained and unconstrained firms in response to pos-

itive and negative shocks to investment opportunities. Panel A shows that both types of firms

increase investment when a positive shock occurs, and decrease investment when a negative

shock occurs. This result is due to the high persistence of exogenous shock process. However,

the dynamics of both unconditional and conditional hedging deeply differ, as panels D, E, and F

depict. Specifically, constrained firms have less resources to allocate to risk management when

the shock realizes. Therefore, their adjustment to cash holdings (panel D), hedging for good
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states (panel E), and hedging for bad states (panel F) are low than for unconstrained firms. This

implies that the dynamics of leverage, net worth, and capital differ in that the effects of the

shocks are more persistent for more constrained firms. Remarkably, the response is asymmet-

ric. After a negative shock constrained firms become even more constrained, as the dynamics of

net worth in panel C show. They can allocate little resources to conditional downstate hedging

and to cash hoarding for future bad states, that are more likely to occur due to the persistence

of the shock process. After a positive shock, instead, constrained firms benefit from additional

cash flow, and have more net worth to tranfer to future states in the form of both conditional

and unconditional liquidity. To sum up, relatively constrained firms have a lower capacity to

implement total hedging the relatively unconstrained firms, and they are sluggish in reacting to

negative shocks.

Figures 10 and 11 illustrate how the dynamics of corporate policy differs between small and

large firms. As figure 1 indicates, the capital stock primarily affects the composition of corpo-

rate liquidity (conditional versus unconditional), rather than the amount of total liquidity. The

hump-shaped investment dynamics in panel A suggest that small firms are slower in adjust their

capital stock after the shocks. Indeed, large firms can transfer larger amounts of state-contingent

liquidity (panels E and F), and be more efficient in boosting their investment in good times, and

reducing their capital stock in bad times. Small firms, because on collateral constraints, can

pledge less capital and need to hedge by hoarding cash (panel D). As a consequence they are

forced to tranfer net worth to all future states and, ceteris paribus, they can tranfer less resources

to the states where they are needed the most. Overall, large firms can take advantage of more

pleadgeable capital for conditional liquidity management, and be more efficient in adjusting

their investment policy. As a consequence, they benefit more than small firms from improved

investment opportunities, and they reduce the impact of bad shocks on their value.

[Insert Figure 8 Here]
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[Insert Figure 9 Here]

[Insert Figure 10 Here]

[Insert Figure 11 Here]

8 Conclusions

In the presence of capital market imperfections expectations of future investment opportuni-

ties or cash shortfalls provide a rationale for dynamic liquidity management. We develop a

quantitative model to examine the cross-sectional and time-series determinants of corporations’

liquidity management. Our model identifies unconditional liquidity management using cash and

conditional liquidity management by means of drawing on credit lines as important instruments

of corporate policy. In particular, our model predicts substantial cross-sectional variation in the

relative usage of these instruments for liquidity purposes across firms, for which we find strong

empirical support. Similarly, the model successfully rationalizes time-series patterns in corpora-

tions’ liquidity management. Overall, the model thus provides a quantitatively and empirically

successful framework explaining corporate investment, financing and liquidity policies and the

joint occurrence of cash, debt and credit lines in the presence of capital market imperfections.

A large literature has recently attempted to rationalize the apparent secular trend in firms’

cash holdings. It has been widely documented that in the US, firms’ cash-to-asset ratios have

increased dramatically since the 1970’s. While in this paper we focus on stationary properties of

firms’ liquidity policies, we think it would be interesting to examine the possible determinants

of this trend through the lens of our model. We leave this important question for future research.
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Figure 1: Dynamic Corporate Liquidity

The figure illustrates the relationship between the different types of corporate liquidity, and the
state variables of the model. In every period, firms are sorted independently by net worth wi,t ,
capital ki,t , and productivity zi,t . Firms whose net worth is above the median of the cross-sectional
distribution are labeled as unconstrained (’Unc’), and firms whose net worth is below the median
of the cross-sectional distribution are labeled as constrained (’Con’). Firms whose capital is above
the median of the cross-sectional distribution are labeled as large (’Lar’), and firms whose capital is
below the median of the cross-sectional distribution are labeled as small (’Sm’). Firms whose realized
productivity is above the middle state are labeled as profitable (’Pr’), and firms whose productivity is
below the middle state are labeled as unprofitable (’Unp’). For each bin, we compute total hedging,
the fraction of conditional to total hedging (on the horizontal axis), and the fraction of upstate to total
hedging (on the vertical vertical axis). In the figure, the radious of the circle is proportional to total
hedging. Data are simulated from the model with the baseline parametrization in Table X, for a panel
of 1000 firms and 100 time periods.
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Figure 2: Firm’s policy with no persistence and no adjustment costs

The figure illustrates the investment, financing, and risk management policy of the firm as a func-
tion of current net worth wi,t . For illustrative purposes, the model is solved with a number of states
equal to three, with uniform transition probabilities, and with all adjustment costs parameters set to zero.
Dividends are constrained to be positive, that is no equity issues are possible. The values for the exogenous
productivity shock zi,t are set to -0.3000 for the low state, to 0.5000 for the middle state, and to 1.7000 for
the high state. Panels A through F show: the future capital stock ki,t+1, the net equity payout ei,t the equity
value Vi,t , the observed debt stock E[bi(s(t + 1))], unconditional hedging (cash) hU

i,t+1, and conditional
hedging hC

i (s(t + 1)). In panel F, the solid blue line represents total debt capacity θδki,t+1 the solid thick
line conditional hedging for the middle state, the dashed thick line conditional hedging for the low state,
the dashed-dotted thick line conditional hedging for the high state. The remaining parameter values are as
follows: α = 0.5000, f = 0.0000, τ = 0.3500, θ = 0.5000, γ = 0.0010, r = 0.0100.
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Figure 3: Firm’s policy with persistence and no adjustment costs

The figure illustrates the investment, financing, and risk management policy of the firm as a func-
tion of current net worth wi,t . For illustrative purposes, the model is solved with a number of states equal
to three, and with all adjustment costs parameters set to zero. From each state, the transition matrix
attaches probability 0.5 to remain in the same state, and 0.25 to move to each of the remaining two states.
Dividends are constrained to be positive, that is no equity issues are possible. The values for the exogenous
productivity shock zi,t are set to 0.2000 for the low state, to 0.5000 for the middle state, and to 0.8000 for
the high state. Panels A through F show: the future capital stock ki,t+1, the net equity payout ei,t the equity
value Vi,t , the observed debt stock E[bi(s(t + 1))], unconditional hedging (cash) hU

i,t+1, and conditional
hedging hC

i (s(t + 1)). In panel F, the solid blue line represents total debt capacity θδki,t+1 the solid thick
line conditional hedging for the middle state, the dashed thick line conditional hedging for the low state,
the dashed-dotted thick line conditional hedging for the high state. The remaining parameter values are as
follows: α = 0.5000, f = 0.0000, τ = 0.3500, θ = 0.6000, γ = 0.0010, r = 0.0100.
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Figure 4: Firm’s policy with convex investment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a function of cur-
rent net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For illustrative purposes, the
model is solved with a number of states equal to three. The convex investment adjustment cost parameter
ψ+ is set to 1.0000. All the other capital adjustment cost parameters are set to zero. From each state,
the transition matrix attaches probability 0.5 to remain in the same state, and 0.25 to move to each of
the remaining two states. Dividends are constrained to be positive, that is no equity issues are possible.
The values for the exogenous productivity shock zi,t are set to 0.3000 for the low state, to 0.7000 for the
middle state, and to 1.1000 for the high state. Panels A through C show: the future capital stock ki,t+1,
unconditional hedging (cash) hU

i,t+1, and conditional hedging hC
i (s(t+1)) as a function of current net worth.

Panels D through F show: the investment-to-capital ratio ii,t/ki,t , unconditional hedging (cash) hU
i,t+1, and

conditional hedging hC
i (s(t +1)) as a function of the current capital stock. In panels C and F, the solid blue

line represents total debt capacity θδki,t+1 the solid thick line conditional hedging for the middle state, the
dashed thick line conditional hedging for the low state, the dashed-dotted thick line conditional hedging
for the high state. The remaining parameter values are as follows: α = 0.5000, f = 0.0000, τ = 0.3500,
θ = 0.6000, γ = 0.0010, r = 0.0100.
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Figure 5: Firm’s policy with fixed investment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a function of cur-
rent net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For illustrative purposes, the
model is solved with a number of states equal to three. The convex investment adjustment cost parameter
ψ+

0 is set to 0.0750. All the other capital adjustment cost parameters are set to zero. From each state,
the transition matrix attaches probability 0.5 to remain in the same state, and 0.25 to move to each of
the remaining two states. Dividends are constrained to be positive, that is no equity issues are possible.
The values for the exogenous productivity shock zi,t are set to 0.3000 for the low state, to 0.7000 for the
middle state, and to 0.9000 for the high state. Panels A through C show: the future capital stock ki,t+1,
unconditional hedging (cash) hU

i,t+1, and conditional hedging hC
i (s(t + 1)) as a function of current net

worth. Panels D through F show: the future capital stock ki,t+1, unconditional hedging (cash) hU
i,t+1, and

conditional hedging hC
i (s(t + 1)) as a function of the current capital stock. In panel D, k∗ denotes the

”frictionless” level of capital with ψ+
0 = 0, while kD and kU are the bounds of the inaction region. In panels

C and F, the solid blue line represents total debt capacity θδki,t+1 the solid thick line conditional hedging
for the middle state, the dashed thick line conditional hedging for the low state, the dashed-dotted thick
line conditional hedging for the high state. The remaining parameter values are as follows: α = 0.3500,
f = 0.0000, τ = 0.3500, θ = 0.4000, γ = 0.0010, r = 0.0100.
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Figure 6: Firm’s policy with convex disinvestment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a function of cur-
rent net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For illustrative purposes,
the model is solved with a number of states equal to three. The convex disinvestment adjustment cost
parameter ψ− is set to 0.4000. All the other capital adjustment cost parameters are set to zero. From each
state, the transition matrix attaches probability 0.5 to remain in the same state, and 0.25 to move to each of
the remaining two states. Dividends are constrained to be positive, that is no equity issues are possible.
The values for the exogenous productivity shock zi,t are set to -0.1000 for the low state, to 0.5000 for the
middle state, and to 0.6000 for the high state. Panels A through C show: the future capital stock ki,t+1,
unconditional hedging (cash) hU

i,t+1, and conditional hedging hC
i (s(t+1)) as a function of current net worth.

Panels D through F show: the investment-to-capital ratio ii,t/ki,t , unconditional hedging (cash) hU
i,t+1, and

conditional hedging hC
i (s(t +1)) as a function of the current capital stock. In panels C and F, the solid blue

line represents total debt capacity θδki,t+1 the solid thick line conditional hedging for the middle state, the
dashed thick line conditional hedging for the low state, the dashed-dotted thick line conditional hedging
for the high state. The remaining parameter values are as follows: α = 0.3750, f = 0.0000, τ = 0.3500,
θ = 0.4000, γ = 0.0010, r = 0.0100.
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Figure 7: Firm’s policy with fixed disinvestment adjustment costs

The figure illustrates the investment, and risk management policy of the firm as a function of cur-
rent net worth wi,t (Panels A-C) and current capital stock ki,t (Panels D-F). For illustrative purposes, the
model is solved with a number of states equal to three. The convex investment adjustment cost parameter
ψ−

0 is set to 0.0250. All the other capital adjustment cost parameters are set to zero. From each state,
the transition matrix attaches probability 0.5 to remain in the same state, and 0.25 to move to each of
the remaining two states. Dividends are constrained to be positive, that is no equity issues are possible.
The values for the exogenous productivity shock zi,t are set to -0.1000 for the low state, to 0.6000 for the
middle state, and to 0.7000 for the high state. Panels A through C show: the future capital stock ki,t+1,
unconditional hedging (cash) hU

i,t+1, and conditional hedging hC
i (s(t + 1)) as a function of current net

worth. Panels D through F show: the future capital stock ki,t+1, unconditional hedging (cash) hU
i,t+1, and

conditional hedging hC
i (s(t + 1)) as a function of the current capital stock. In panel D, k∗ denotes the

”frictionless” level of capital with ψ−
0 = 0, while kD and kU are the bounds of the inaction region. In panels

C and F, the solid blue line represents total debt capacity θδki,t+1 the solid thick line conditional hedging
for the middle state, the dashed thick line conditional hedging for the low state, the dashed-dotted thick
line conditional hedging for the high state. The remaining parameter values are as follows: α = 0.4000,
f = 0.0000, τ = 0.3500, θ = 0.4000, γ = 0.0010, r = 0.0100.
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Figure 8: Impulse Response Functions for Relatively Constrained Firms

Panels A through F illustrate the generalized impulse response functions of capital, leverage, net
worth, cash, conditional upstate hedging (one state up), and conditional downstate hedging (one state
down). The impulse response functions are computed as averages 5000 draws of 30 periods for the shock
zi,t . For each draw, the process zi,t is initialized at the middle state for the benchmark case (solid line),
to the second highest state for the response to a positive shock (dashed line), and to the second loweest
state for the response to a negative shock (dashed-dotted line). The initial values for capital are set to
the corrisponding median point on the grid for ki,t , and the initial values for net worth are set to the
corresponding value for the point on the grid for wi,t that leaves one fifth of grid points to its left. All
parameters values are set to the baseline values reported in table 2.
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Figure 9: Impulse Response Functions for Relatively Unconstrained Firms

Panels A through F illustrate the generalized impulse response functions of capital, leverage, net
worth, cash, conditional upstate hedging (one state up), and conditional downstate hedging (one state
down). The impulse response functions are computed as averages 5000 draws of 30 periods for the shock
zi,t . For each draw, the process zi,t is initialized at the middle state for the benchmark case (solid line),
to the second highest state for the response to a positive shock (dashed line), and to the second loweest
state for the response to a negative shock (dashed-dotted line). The initial values for capital are set to
the corrisponding median point on the grid for ki,t , and the initial values for net worth are set to the
corresponding value for the point on the grid for wi,t that leaves one fifth of grid points to its right. All
parameters values are set to the baseline values reported in table 2.
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Figure 10: Impulse Response Functions for Relatively Small Firms

Panels A through F illustrate the generalized impulse response functions of capital, leverage, net
worth, cash, conditional upstate hedging (one state up), and conditional downstate hedging (one state
down). The impulse response functions are computed as averages 5000 draws of 30 periods for the shock
zi,t . For each draw, the process zi,t is initialized at the middle state for the benchmark case (solid line), to
the second highest state for the response to a positive shock (dashed line), and to the second loweest state
for the response to a negative shock (dashed-dotted line). The initial values for net worth are set to the
corrisponding median point on the grid for wi,t , and the initial values for capital are set to the corresponding
value for the point on the grid for ki,t that leaves one fifth of grid points to its left. All parameters values
are set to the baseline values reported in table 2.
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Figure 11: Impulse Response Functions for Relatively Large Firms

Panels A through F illustrate the generalized impulse response functions of capital, leverage, net
worth, cash, conditional upstate hedging (one state up), and conditional downstate hedging (one state
down). The impulse response functions are computed as averages 5000 draws of 30 periods for the shock
zi,t . For each draw, the process zi,t is initialized at the middle state for the benchmark case (solid line), to
the second highest state for the response to a positive shock (dashed line), and to the second loweest state
for the response to a negative shock (dashed-dotted line). The initial values for net worth are set to the
corrisponding median point on the grid for wi,t , and the initial values for capital are set to the corresponding
value for the point on the grid for ki,t that leaves one fifth of grid points to its right. All parameters values
are set to the baseline values reported in table 2.
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Table 1: Leverage, Cash, and Conditional Liquidity: Stylized Evidence.

The table reports stylized evidence from sorts of companies by net worth and capital (the state vari-
ables of our model). Data are from Compustat and Capital IQ for the period 2001-2011. Net worth is measured
as the book value of equity, in line with Rampini, Sufi, and Viswanathan (2012), and capital is the book value
of property, plant and equipment. The breakpoints for defining relative constrained and unconstrained firms
for the sorts on net worth, and relatively small and large firms for the sorts on capital are the 33th and the 66th
percentile of the cross-sectional distribution for every fiscal year. We exclude financials (SIC 4900-4099),
utilities (SIC 6000-6999), and firms from other regulated industries (SIC greater than 9000). The final sample
consists of 14220 firm-year observations. Panel A reports average cash holdings and debt as a fraction of total
assets, and the fraction of undrawn credit from credit lines for one-way sorts, while panel B reports the same
variables for two-way sorts.

Panel A: Univariate Sorts
Net Worth Capital

Constr. 2 Unconstr. Small 2 Large
Cash Holdings 0.187 0.178 0.126 0.240 0.153 0.098

Leverage 0.216 0.192 0.228 0.118 0.220 0.296

Undrawn Credit 0.754 0.811 0.861 0.793 0.793 0.842

Panel B: Bivariate Sorts
Cash Holdings Leverage Undrawn Credit

Capital Small 2 Large Small 2 Large Small 2 Large
Constr. 0.220 0.103 0.085 0.128 0.385 0.697 0.770 0.712 0.748

Net Worth 2 0.297 0.156 0.075 0.089 0.180 0.378 0.864 0.810 0.761

Unconstr. 0.269 0.193 0.105 0.109 0.161 0.249 0.878 0.833 0.867
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Table 2: Model Calibration.

The table reports actual and simulated moments, together with the corresponding choice of structural
parameters. Calculations of data moments are based on a sample of nonfinancial, unregulated firms from
the annual 2011 Compustat Industrial database merged to the Capital IQ dataset. The sample period is
from 2001 to 2011. Panel A reports the moments from a simulated panel of firms, and the corresponding
moments from the data. Operating income is defined as (zkα − f )/k, investment as i = kt+1 − (1 − δ)kt ,
leverage as E[b(zt+1)]/k, equity issues as |min(d,0)|/k, cash holdings as c/k, undrawn debt capacity as
hc(zt+1)/(θ(1− δ)k), and Tobin’s Q as (V +E[b(zt+1)])/k. Panel B reports the chosen values for structural
parameters. α is the curvature of the production function, f is the per-period fixed production cost, θ is the
collateralizable fraction of assets, γ is the agency cost cash parameter, ψ+

0 and ψ+ are the fixed and convex
investment adjustment costs parameters, ψ−

0 and ψ− are the fixed and convex disinvestment adjustment costs
parameters, ρz and σz are the serial correlation and the standard deviation to innovations of ln(z), where z is
the shock to the revenue function, λ0 and λ1 are the fixed and the proportional equity flotation costs. The
remaining parameters are r, the interest rate, τ, the tax rate, and δ, the depreciation rate. They are set to 0.015,
0.35, and 0.15, to be approximately equal to the real interest rate in the 20th century, to the statutory tax rate in
the United States, and to the average depreciation in our sample.

Panel A: Moments
Simulated Moments Data Moments

Mean of operating income 0.1201 0.1387
Variance of operating income 0.0056 0.0068
Serial correlation of operating income 0.6270 0.7920
Mean of investment 0.1723 0.2018
Skewness of investment 1.3465 1.9872
Variance of investment 0.0531 0.0516
Serial correlation of investment 0.2167 0.3655
Mean of leverage 0.2965 0.2121
Variance of leverage 0.0365 0.0461
Serial correlation of leverage 0.6813 0.9173
Mean of equity issues 0.0107 0.0205
Variance of equity issues 0.0042 0.0028
Mean of cash holdings 0.1277 0.1632
Variance of cash holdings 0.0650 0.0294
Serial correlation of cash holdings 0.7298 0.8859
Mean of undrawn debt capacity 0.5278 0.8114
Variance of undrawn debt capacity 0.0926 0.0744
Serial correlation of undrawn debt capacity 0.6813 0.6344
Mean Tobin’s Q 2.0666 1.5594

Panel B: Calibrated Parameters
α f θ γ ψ+

0 ψ+ ψ−
0 ψ− ρz σz λ0 λ1

0.6800 0.1000 0.7500 0.0020 0.0075 0.1100 0.0400 0.2000 0.7100 0.2900 0.6000 0.0080
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Table 3: Leverage, Cash, and Conditional Liquidity: Simulated Stylized Evidence.

The table reports stylized evidence from sorts of companies by net worth and capital (the state vari-
ables of our model). Data are simulated from the model under the baseline parametrization in table 2 for a
panel of 1000 firms and 100 time periods. The breakpoints for defining relative constrained and unconstrained
firms for the sorts on net worth, and relatively small and large firms for the sorts on capital are the 33th and the
66th percentile of the cross-sectional distribution. Panel A reports average cash holdings and debt as a fraction
of capital, and the fraction of undrawn debt capacity for one-way sorts, panel B reports the same variables for
two-way sorts, and panel C reports the fraction of conditional to total liquidity for both simulated, and actual
data.

Panel A: Univariate Sorts
Net Worth Capital

Constr. 2 Unconstr. Small 2 Large
Cash Holdings 0.129 0.122 0.133 0.334 0.051 0.000

Leverage 0.303 0.282 0.305 0.162 0.281 0.450

Undrawn Credit 0.518 0.550 0.515 0.742 0.553 0.283

Panel B: Bivariate Sorts
Cash Holdings Leverage Undrawn Credit

Capital Small 2 Large Small 2 Large Small 2 Large
Constr. 0.228 0.025 0.000 0.211 0.357 0.560 0.664 0.432 0.108

Net Worth 2 0.310 0.035 0.000 0.119 0.291 0.531 0.811 0.537 0.155

Unconstr. 0.872 0.132 0.000 0.072 0.120 0.404 0.885 0.808 0.357

Panel C: Liquidity Composition
Conditional Liquidity (model) Conditional Liquidity (data)

Capital Small 2 Large Small 2 Large
Constr. 0.681 0.922 1.000 0.377 0.551 0.497

Net Worth 2 0.679 0.916 1.000 0.258 0.479 0.621

Unconstr. 0.430 0.824 1.000 0.250 0.390 0.534
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Table 4: Comparative Statics: Debt Capacity.

The table reports simulated evidence from the model for the same panel of table 2. All parameters ex-
cept θ are set to the baseline values of table 2. In each panel, we report average investment, leverage, equity
issses, cash, and residual debt capacity (conditional liquidity). Averages are reported both for all firms, and for
firms with low, medium, and high capital and net worth. Breakpoints are set as in panel A of tables 1 and 3.
All variables are measured as in table 2. Panel A reports simulated moments for θ = 0.1, panel B for θ = 0.5,
and panel C for θ = 0.9.

A. θ = 0.1000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.170 0.215 0.173 0.123 0.191 0.166 0.153
Leverage 0.047 0.039 0.046 0.056 0.044 0.048 0.049

Equity Issues 0.007 0.016 0.003 0.001 0.017 0.002 0.002
Cash 0.513 0.917 0.492 0.129 0.547 0.702 0.282

Residual Debt Capacity 0.438 0.536 0.452 0.327 0.472 0.425 0.419

B. θ = 0.5000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.169 0.210 0.179 0.119 0.195 0.166 0.148
Leverage 0.195 0.121 0.157 0.309 0.176 0.158 0.253

Equity Issues 0.007 0.012 0.004 0.006 0.013 0.005 0.005
Cash 0.159 0.409 0.069 0.003 0.239 0.215 0.022

Residual Debt Capacity 0.534 0.711 0.624 0.263 0.580 0.622 0.397

C. θ = 0.9000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.171 0.216 0.172 0.124 0.213 0.179 0.120
Leverage 0.307 0.174 0.234 0.514 0.350 0.202 0.372

Equity Issues 0.005 0.009 0.005 0.002 0.010 0.004 0.002
Cash 0.134 0.382 0.020 0.003 0.198 0.190 0.011

Residual Debt Capacity 0.593 0.769 0.690 0.318 0.535 0.733 0.507
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Table 5: Comparative Statics: Smooth Disinvestment Adjustment Costs.

The table reports simulated evidence from the model for the same panel of table 2. All parameters ex-
cept ψ− are set to the baseline values of table 2. In each panel, we report average investment, leverage, equity
issses, cash, and residual debt capacity (conditional liquidity). Averages are reported both for all firms, and for
firms with low, medium, and high capital and net worth. Breakpoints are set as in panel A of tables 1 and 3.
All variables are measured as in table 2. Panel A reports simulated moments for ψ− = 0, panel B for ψ− = 0.5,
and panel C for ψ− = 1.

A. ψ− = 0.0000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.174 0.219 0.186 0.116 0.217 0.159 0.146
Leverage 0.310 0.231 0.250 0.450 0.269 0.328 0.333

Equity Issues 0.015 0.031 0.012 0.003 0.035 0.008 0.002

Cash 0.095 0.251 0.035 0.000 0.171 0.044 0.071
Residual Debt Capacity 0.479 0.611 0.579 0.243 0.547 0.449 0.441

B. ψ− = 0.5000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.172 0.228 0.174 0.115 0.233 0.148 0.137
Leverage 0.300 0.198 0.257 0.445 0.279 0.289 0.331

Equity Issues 0.011 0.022 0.008 0.002 0.027 0.003 0.003

Cash 0.108 0.276 0.050 0.001 0.147 0.093 0.086
Residual Debt Capacity 0.496 0.666 0.568 0.252 0.531 0.514 0.443

C. ψ− = 1.0000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.172 0.227 0.166 0.121 0.195 0.186 0.134
Leverage 0.241 0.147 0.197 0.391 0.250 0.202 0.274

Equity Issues 0.007 0.015 0.005 0.002 0.016 0.003 0.003

Cash 0.212 0.529 0.102 0.003 0.179 0.323 0.130
Residual Debt Capacity 0.594 0.753 0.668 0.342 0.580 0.660 0.540
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Table 6: Comparative Statics: Smooth Investment Adjustment Costs.

The table reports simulated evidence from the model for the same panel of table 2. All parameters ex-
cept ψ+ are set to the baseline values of table 2. In each panel, we report average investment, leverage, equity
issses, cash, and residual debt capacity (conditional liquidity). Averages are reported both for all firms, and for
firms with low, medium, and high capital and net worth. Breakpoints are set as in panel A of tables 1 and 3.
All variables are measured as in table 2. Panel A reports simulated moments for ψ+ = 0, panel B for ψ+ = 0.5,
and panel C for ψ+ = 1.

A. ψ+ = 0.0000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.224 0.422 0.197 0.050 0.275 0.226 0.172
Leverage 0.240 0.140 0.164 0.419 0.251 0.150 0.322

Equity Issues 0.007 0.010 0.007 0.005 0.014 0.006 0.003
Cash 0.314 0.814 0.123 0.001 0.412 0.457 0.070

Residual Debt Capacity 0.596 0.765 0.724 0.295 0.578 0.747 0.458

B. ψ+ = 0.5000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.158 0.177 0.158 0.134 0.157 0.169 0.147
Leverage 0.321 0.353 0.211 0.458 0.386 0.242 0.338

Equity Issues 0.016 0.040 0.004 0.005 0.040 0.006 0.002
Cash 0.069 0.148 0.047 0.003 0.090 0.095 0.021

Residual Debt Capacity 0.461 0.407 0.646 0.230 0.351 0.594 0.432

C. ψ+ = 1.0000
Capital Net Worth

All Low 2 High Low 2 High
Investment 0.155 0.183 0.140 0.142 0.094 0.195 0.175
Leverage 0.403 0.424 0.483 0.301 0.514 0.444 0.251

Equity Issues 0.054 0.120 0.036 0.006 0.161 0.001 0.001
Cash 0.022 0.005 0.024 0.036 0.004 0.017 0.045

Residual Debt Capacity 0.322 0.286 0.188 0.495 0.135 0.254 0.578

69



Appendix A Proofs of Propositions

Proof of Lemma 4.1. From the definition of hC
i (s(t +1)) we obtain:

bi(s(t +1)) =
θ(1−δ)ki,t+1 −hC

i (s(t +1))
1+ r(1− τ)

(A.1)

Substituting (A.1) and the definition of hU
i,t+1 into the original problem yields the result.

Proof of Proposition 4.2. Denote the total number of states by S. The Lagrangian function for the con-

strained optimization problem is:

L(ei,t ,ki,t+1,hU
i,t+1,{hC

i (s(t+1))},{wi(s(t+1))},λw,

{
π(s(t),s(t+1))λw

s(t+1)
1+r

}
,

{
π(s(t),s(t+1))λC

s(t+1)
1+r

}
,

{
π(s(t),s(t+1))λC

s(t+1)
1+r

}
,λU )≡

ei,t −Λ(ei,t)+
1

1+r Et [V (wi,t+1,zi,t+1)]+λw(wi,t − ei,t −Et

[
hC

i (s(t+1))
1+r(1−τ)

]
−

hU
i,t+1

1+r(1−τ)−γ −Pki,t+1 −Ψ(ki,t ,ki,t+1))+

+∑S
s=1

π(s(t),s)λw
s

1+r ((1− τ)Π(ki,t+1,zi,s)+(1−θ)(1−δ)ki,t+1 + τδki,t+1 +hT
i (s)−wi(s))+

+∑S
s=1

π(s(t),s)λC
s

1+r (hC
i (s))+∑S

s=1
π(s(t),s)λC

s
1+r (θ(1−δ)ki,t+1 −hC

i (s))+λU (hU
i,t+1)

Differentiating the Lagrangian with rispect to ei,t , ki,t+1, hU
i,t+1, {hC

i (s(t + 1))}, and {wi(s(t + 1))} yields equa-

tions (19a), (19b), (19c), (19d), (21b) after some algebraic manipulation. Because the Slater condition holds, the

envelope theorem can expressed as:

∂V (wi,t ,zi,t )
∂wi,t

=
∂ei,t−Λ(ei,t )

∂wi,t
+λw

∂(wi,t−ei,t−Et

[
hC

i (s(t+1))
1+r(1−τ)

]
−

hU
i,t+1

1+r(1−τ)−γ−Pki,t+1−Ψ(ki,t ,ki,t+1))

∂wi,t
+

+∑S
s=1

π(s(t),s)λw
s

1+r
∂((1−τ)Π(ki,t+1,zi,s)+(1−θ)(1−δ)ki,t+1+τδki,t+1+hT

i (s)−wi(s))
∂wi,t

+∑S
s=1

π(s(t),s)λC
s

1+r
∂(hC

i (s))
∂wi,t

+

+∑S
s=1

π(s(t),s)λC
s

1+r
∂(θ(1−δ)ki,t+1−hC

i (s))
∂wi,t

+λU ∂(hU
i,t+1)

∂wi,t

which immediately yields (21a). The Euler equation (22) can be simply obtained, by dividing both sides of (19b) by

λw. The division is well-defined because the resource constraint at time t is always binding. Finally, equation (23)

can be derived by substituting λw
s(t+1) from (19d) into the definition of Mw(s(t),s(t +1)).

Proof of Proposition 5.1. To prove the claim, we proceed in two steps. First, we show that the payoff

bi(s(t +1))can be replicated with the combination of securities described above. Second, we verify that the recur-

sive problem with the new securities is equivalent to the original one in terms of constraints. First, in the recursive

problem, at time t +1 in each state s(t +1)the firm pays back Di,t+1 −CL
i (s(t +1))Therefore, using (31) and (32)

we obtain

Di,t+1 −CL
i (s(t +1)) = (1+ r(1− τ))bi(s(t +1)) (A.2)
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from which the replication result follows:

bi(s(t +1)) =
Di,t+1 −CL

i (s(t +1))
1+ r(1− τ)

(A.3)

Because state-contingent debt can be directly expressed as the combination in (A.3) of state-uncontingent debt and

the credit line, the replicating strategy is trivially budget feasible at time t +1. The resource constraint at time t is

also unchanged, because

wi,t +Li,t ≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t ,ki,t+1)

can be rewritten as

wi,t +Et [bi(s(t +1))]≥ ei,t + ki,t+1 + ci,t+1 +Ψ(ki,t ,ki,t+1)

using (30) and (A.3). Finally, we shall show that the limits for the feasible set for bi(s(t +1)) implied by collateral

and debt positivity constraints are preserved by the replicating portfolio of debt and lines of credit, namely that:

0 ≤
Di,t+1 −CL

i (s(t))
1+ r(1− τ)

≤ θ(1−δ)ki,t+1

The debt positivity constraints can be rewritten as:

CL
i (s(t +1))≤ (1+ r(1− τ))Et [b(s(t +1))]

which is consistent with the feasible set for CL
i (s(t +1)) because:

maxCL
i (s(t +1)) =Ci,t+1
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